Supporting Information

Thermoelectric performance of organic conductors

Takehiko Mori

Department of Materials Science and Engineering, Tokyo Institute of Technology, O-

okayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan. E-mail: mori.t@mac.titech.ac.jp

Calculation of thermoelectric power

Eqn (2) is numerically integrated.^{47,48}

$$K_0 = \tau \iiint v^2 \left(-\frac{df_0}{dE} \right) dk^3 = \frac{\tau^2 N_x \sum \Delta E^2 \left(-\frac{df_0}{dE} \right)_{a\pi}}{\hbar^2 N_y N_z bc}$$
(S1)

The second form for v_x is derived from the following relation.

$$v_{x} = \frac{1\partial E(k)}{\hbar \partial k_{x}} = \frac{N_{x} a \Delta E}{\hbar \pi}$$
(S2)

The Brillouin zone is divided by a mesh of $N_x \times N_y \times N_z$, and E(k) is calculated at the respective points. E(k) is estimated from the tight-binding energy band considering only the highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO).^{S1,S2} The interval of k contains Δk_x $= \pi/aN_x$, where Δk_x appears not only in the denominator coming from eqn (S2) but also in the numerator from the integration in eqn (S1). Accordingly, N_yN_z appears as the number of the summation, and N_x comes from the segment of the v_x calculation. In the actual calculation, the coefficient of eqn (S1) is $\pi e^{3/\hbar 2} = 1.2867 \times 10^{14} \text{ C}^2$ Å J⁻¹ s⁻² cm⁻², where ($-df_0/dE$) is proportional to inverse temperature and represented in eV⁻¹ unit. Eqn (3) is estimated similarly.

For β -(BEDT-TTF)₂I₃, κ -(BEDT-TTF)₂Cu(NCS)₂, and α -(BEDT-TTF)₂NH₄Hg(SCN)₄, transfer integrals that are optimized so as to reproduce the observed thermoelectric power are used.^{47,48} The reported transfer integrals are used for other cases.

When the Fermi energy crosses more than two energy bands, K_0 and K_1 are summed for these bands.

$$S = \frac{1}{eT} \sum_{i}^{K_{1i}} K_{0i} = \frac{1}{eT} \sum_{i}^{K_{0i}/K_{0i}/K_{0i}} = \frac{1}{E} \sum_{i}^{K_{0i}/K_{0i}} \frac{1}{E} \sum_{i}^{K_{0i}/K_{0i}} \frac{1}{E} \sum_{i}^{K_{0i}/K_{0i}} \frac{1}{E} \sum_{i}^{K_{0i}/K_{0i}} \frac{1}{E} \sum_{i}^{K_{0i}/K_{0i}} \frac{1}{E} \sum_{i}^{K_{0i}/K_{0i}/K_{0i}} \frac{1}{E} \sum_{i}^{K_{0i}/K_{0i}/K_{0i}/K_{0i}} \frac{1}{E} \sum_{i}^{K_{0i}/K_{0i}/K_{0i}/K_{0i}} \frac{1}{E} \sum_{i}^{K_{0i}/K_{0i}/K_{0i}/K_{0i}/K_{0i}} \frac{1}{E} \sum_{i}^{K_{0i}/K_{0i}/K_{0i}/K_{0i}/K_{0i}} \frac{1}{E} \sum_{i}^{K_{0i}/K_{0i}/K_{0i}/K_{0i}/K_{0i}/K_{0i}/K_{0i}/K_{0i}} \frac{1}{E} \sum_{i}^{K_{0i}/K_{$$

Here, K_{0i} represents K_0 for different energy bands *i*. Using eqn (5), this is a weighted average of S_i with respect to σ_i .

Fig. S1 Calculated K_0 and K_1 integrals, and the Fermi surface of (a) (EDT-TTF)₂AuBr₂, (b) (DTEDT)₃Au(CN)₂, (c) (BEDT-TTP)₂I₃, and (d) (EP-TTP)₂Au(CN)₂.

Compound	axis	τ _{rt}	τ_{max}	axis	$e^2 K_0 / \tau$ (rt)	$e^{2}K_{1}/\tau$ (rt)		
-	×10 ⁻¹⁵ (s)				$\times 10^{15} (C^2 J^{-1} s^{-2} cm^{-1})$	$(1 \text{ s}^{-2} \text{ cm}^{-1}) \times 10^{15} (\text{C}^2 \text{ s}^{-2} \text{ cm}^{-1})$		
(TTF)(TCNQ)	stack	7	70	stack	58	0.49		
$(TMTSF)_2PF_6$	stack	1.6	600	stack	310	-2.7		
β-(BEDT-TTF) ₂ I ₃	а	0.3	100	a/b	120/210	-1.2/-1.5		
κ-(BEDT-TTF) ₂ Cu(NCS) ₂	С	0.7	130	c/b	14/8	-0.73/0.62		
α-(BEDT-TTF) ₂ KHg(SCN) ₄	С	0.1	1.8	c/a	55/560	-0.2/2.1		
α-(BEDT-TTF) ₂ NH ₄ Hg(SCN) ₄	С	1.2	700	c/a	19/210	-0.17/1.8		
α -(BEDT-TTF) ₂ I ₃	а	0.3	1.5	a/b	56/47	-1.6/0.70		
θ-(BEDT-TTF) ₂ CsCo(SCN) ₄	С	3	7	c/a	12/82	-0.12/-0.46		
β -(BEDT-TTF) ₂ PF ₆	С	0.6	0.72	c/a	14/71	-0.21/0.47		
β"-(BEDT-TTF) ₄ Pd(CN) ₄ H ₂ O	а	0.4		a/c	210/400	-0.74/-2.2		
(EDT-TTF) ₂ AuBr ₂	stack	1.2	2.6	stack	130	-1.4		
(DTEDT) ₃ Au(CN) ₂	С	3.2	48	c/a	470/54	-4.4/0.054		
$(BEDT-TTP)_2I_3$	С	2.2	75	c/a	470/140	-0.45/0.30		
(EP-TTP) ₂ Au(CN) ₂	stack	7.2	100	a/c	210/84	-1.6/-0.63		
$(TTM-TTP)(I_3)_{3/5}$	stack	1.8	3.0	stack	140 2.3			
$(BTBT)_2AsF_6$	stack	12	43	stack	550	-2.7		
Cu(DMDCNQI) ₂	stack	8	1600	stack	130	1.3		

Table S1 Relaxation time (τ) and calculated K_0 and K_1 integrals.

TTM-TTP and τ-phase conductors

Fig. S2 (a) Resistivity, τ , and thermoelectric power, and (b) $S\sigma$ and PF of (TTMTTP)(I₃)_{5/3}. (c) Resistivity, τ , and thermoelectric power, and (d) $S\sigma$ and PF of τ -(EDO-DMEDT-TTF)₂AuBr₂ and τ -(EDT-DMEDT-TTF)₂AuBr₂. (e) Resistivity, τ , and thermoelectric power, and (f) $S\sigma$ and PF of τ -(EDO-DMEDT-TTF)₂AuI₂, τ -(EDT-DMEDT-TTF)₂AuI₂, and τ -(P-DMEDT-TTF)₂AuI₂. EDO-DMEDT-TTF: ethylenedioxy-*S*,*S*-dimethylethylenedithio-TTF EDT-DMEDT-TTF: ethylenedithio-TTF.

BTBT and DMDCNQI

Fig. S3 Calculated K₀ and K₁ integrals of (a) (BTBT)₂AsF₆, (b) Cu(DMDCNQI)₂ based on the onedimensional band, and (c) the three-dimensional two bands. (d) Calculated *S* along the *c* and *a* axes using the upper one, two, and four bands of Cu(DMDCNQI)₂ with t_c : 0.2, $t_{\pi d}$: 0.054, and Δ : 0.3 eV.⁷⁶ $t_{\pi d}$ dependence of *S* calculated for (e) upper four bands, and (f) two bands.

Due to the body centered symmetry, a unit of Cu(DMDCNQI)₂ contains four DMDCNQI molecules and two Cu atoms.⁷⁵ Considering the LUMO of DMDCNQI and a single 3d orbital of Cu, the energy bands consist of six bands (Fig. 7(e)). The resulting energy bands are identical to Ref. 77 using the same parameters, t_c : 0.2, $t_{\pi d}$: 0.054, and Δ : 0.3 eV.

Owing to the 3D character, the upper two bands afford large *S*, while *S* of the next two is small (Table S2). When all four bands are included, the resulting *S* is small (Fig. 7(f)) because *S* of a multiband is a weighted average of *S* with respect to K₀ following eqn (S3). Since the conductivity of a 1D band is larger than that of a 3D band (K₀ in Table S2), *S* is small even when a 3D band with large *S* participates in the conduction. Even increasing $t_{\pi d}$, the overall *S* decreases (Fig. S3(e)) because *S* of the 1D band decreases (Table S2). By contrast, *S* of the 3D band increases with increasing $t_{\pi d}$ (Fig. S3(f)). At the same time, *S* along the *a* axis shifts to the positive direction (Fig. S3(d) and (f)).

Even in the 3D band, S decreases with lowering the temperature. The observed increasing temperature dependence of S is not reproduced even including the Cu d orbital. The observed S is reproducible when the contribution of the 1D band is lost between 200 and 100 K potentially due to the 1D instability.

	S_{c} (rt) ($\mu V K^{-1}$)			$e^{2}K_{0}/\tau$ (rt)	×10 ¹⁵ (C ² J ⁻¹	$^{1} \text{ s}^{-2} \text{ cm}^{-1}$	$e^{2}K_{1}/\tau$ (rt) ×10 ¹⁵ (C ² s ⁻² cm ⁻¹)		
$t_{\pi d} (eV)$	0.27	0.54	0.80	0.27	0.54	0.80	0.27	0.54	0.80
1	-141	-156	-185	21	14	8.7	0.85	0.66	0.47
2	-100	-71	-56	33	37	38	0.97	0.75	0.62
3	-20	-13	-9	66	73	78	0.39	0.28	0.21
4	-20	-13	-9	66	73	78	0.39	0.28	0.21
sum	-47	-35	-28	186	198	202	2.6	1.97	1.51

Table S2 S, K₀, and K₁ of each band in Cu(DMDCNQI)₂.

References

- S1 T. Mori, A. Kobayashi, Y. Sasaki, H. Kobayashi, G. Saito, H. Inokuchi, The intermolecular interaction of tetrathiafulvalene and bis(ethylenedithio)tetrathiafulvalene in organic metals. Calculation of orbital overlaps and models of energy-band structures, *Bull. Chem. Soc. Jpn.* 1984, 57, 627.
- S2 The software is available from http://indigo1026.la.coocan.jp/lib/program.html (accessed 1 July 2024).