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1. Methods and Measurements
(1) Measurements

All starting materials were obtained from commercial supplies and used as
received. '"H NMR spectra were recorded on a Bruker 400 NMR spectrometer.
Chemical shifts were reported in parts per million (ppm) using tetramethylsilane
(TMS) as a reference and CDCl; as the solvent. HRMS data were recorded on an
Applied Biosystems Voyager-DE STR mass spectrometer. UV-vis spectra were
measured using a Shimadzu UV-2600 spectrometer, and fluorescence spectra using a
Hitachi F-4600 spectrometer. Fluorescence quantum yields and lifetime
measurements for solid powders and crystals were performed on an Edinburgh FS5
luminescence spectrometer, using a 375 nm excitation source. Phosphorescence
lifetimes were measured using an Edinburgh FS5 spectrometer equipped with a micro
flash-lamp (MCS diode). SEM images of the xerogels were obtained using an SSX-
550 (Shimadzu). Optical microscopy images were captured using a LEICA DMi8
fluorescence microscope. XRD diagrams were obtained using a D8 ADVANCE
(Bruker). Rheological measurements were carried out on freshly prepared gels using a
Malvern Bohlin GeminiHRnano controlled stress rheometer. The single-crystal X-ray

diffraction data was collected on a Rigaku XtaLAB PRO single-crystal X-ray



diffractometer equipped with a graphite monochromated Cu Ka radiation (A = 1.54 A)
at 298 K.

(2) Molecular dynamics simulation

MD simulations involved placing 5 gelator molecules in a periodic cubic box
with solvent molecules to achieve a 5.0% w/v concentration. This concentration was
also used to determine gelation performance experimentally. A 50 ns trajectory with a
0.5 fs timestep was recorded using the Amber99sb-ildn force field. Parameters were
retrieved from the Sobtop and Multiwfn service. Before production simulations,
energy minimization and temperature/pressure equilibration were performed to
prevent steric clashes and ensure proper NPT-ensemble equilibration. The simulations
utilized the V-rescale thermostat and Parrinello-Rahman barostat, maintaining a
temperature of 298K and a pressure of 1.0 bar. All molecules were randomly placed
in the simulation box using Packmol, with gelator molecules dispersed separately in
the solvent. Simulations were run using Gromacs software version 2018.8'.
Descriptors were calculated as time averages over the 50 ns simulation period,
following methods from a previous report®. Details are provided as follows:
(I) Calculating SASA. Rmax and V

Fully extended molecules are saved as a PDB file with all main chain dihedral
angles set to 180°, without additional structure optimization. R, measures the
distance between the furthest atoms in a fully extended conformation. The SASA for
the fully extended conformation was calculated using GROMACS' gmx sasa tool. To
generate the index file (index.ndx), the PDB file of the extended molecule was
processed with the GROMACS command: gmx make_ndx -f 180.pdb -o index.ndx.
The SASA of the extended molecule was calculated using the command: gmx sasa -f
180.pdb -s 180.pdb -n index.ndx -o sasa.xvg. During the SASA calculation, the
software prompts for a group selection, where the entire system is chosen. Gelator
molecular volume (V) is determined using the Marching Tetrahedron (MT) algorithm
in Multiwfn software.

(IT) Calculating rSASA



SASA . 1s calculated by multiplying the SASA of the fully extended gelator

molecules by their total number in the simulation, which is five. To calculate the

average SASA (SI‘TSA), a trajectory file (.xtc) and a GROMACS structure file

(prod.gro) are needed, with solvent and gelator molecules labeled as SOL and GEL,
respectively, to exclusively track gelator molecules. The index file (.ndx) is created
using the command: gmx make ndx -f prod.gro -o indexprod.ndx. Subsequently,
the SASA changes during the simulation are calculated with: gmx sasa -f prod.xtc -s
prod.gro -n indexprod.ndx -surface GEL -o sasaprod.xvg. The mean SASA is
calculated using the sasaprod.xvg file with the command: gmx analyze -f
sasaprod.xvg.

(III) Calculating rH

To calculate the average distance R,, create an index file (indexrH.ndx) listing

the furthest apart atoms of each gelator molecule, for instance: [gelatorl] “index1
index2” and [gelator2] “index1 index2”. The change in distance between these
atoms during the simulation is calculated using the GROMACS command: gmx
distance -f prod.xtc -s prod.gro -n indexrH.ndx -oall rH.xvg. During the
calculation, GROMACS prompts for the selection of groups to calculate distances; all

groups are selected. The rH.xvg file is then analyzed using the gmx analyze command

to calculate the average distance R

(IV) Calculating F




R'h, representing a derived parameter, was calculated using the total number of

gelator molecules (5) and their volume (V) during the simulation. The average radius

of gyration, Rg, is calculated with the GROMACS command: gmx gyrate -f prod.xtc
-s prod.tpr -o gyrate.xvg. During the execution, GROMACS prompts for the
selection of a group; the GEL group is selected to focus the calculation on gelator

molecules. After obtaining the gyrate.xvg file, the gmx analyze command is used to

calculate Rg.

(3) TD-DFT calculation

To gain insights into their excited triplet states, monomers and dimers were
extracted from the final MD snapshot and analyzed using TD-DFT with the B3LYP
functional and 6-31G(d,p) basis set. Similarly, spin-orbit coupling matrix elements
(SOCMEs) were evaluated using ORCA software®. Molecular packing from the MD
simulation results was analyzed using Mercury software to assess structural
arrangement. The selected molecular cluster was calculated using the M06-2X/6-
31G(d,p) level, including empirical dispersion correction (GD3). Subsequently,

intermolecular interactions were analyzed using Multiwfn software 4.

(4) Gelation test

The gelator and solvent were placed in a septum-capped test tube and heated
until the solid dissolved. Subsequently, the sample vial was cooled to room
temperature either naturally or via sonication. Gelation was qualitatively deemed
successful if the sample did not flow when the container was inverted at room
temperature, using the inverse flow method. Xerogel samples were produced by

freeze-drying to evaporate the solvent from the gel.

(5) Crystal cultivation



Single crystals were cultivated in conventional organic solvents, such as THF,
acetonitrile, THF and methanol. Finally, single crystal suitable for X-ray diffraction
measurement was obtained for DBF-dPh in acetonitrile, and the CCDC number is

2350009.

2. Synthesis
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Scheme S1. Synthetic routes of DBF-dAc (a) and DBF-dPh (b).

DBF-dAc: Under an atmosphere of nitrogen, chloroform (15 mL) was added to
anhydrous AICl; (7.35 g, 55.29 mmol, 3.1 equiv). Subsequently, acetyl chloride (10.1
mL, 142.69 mmol, 8.0 equiv) was added dropwise under stirring. Then,
dibenz[b,d]furan (3.00 g, 17.83 mmol, 1.0 equiv) in chloroform (50 mL) was slowly
added to the reaction mixture, which was allowed to stir at room temperature
overnight. Upon completion of the reaction, the mixture was quenched with dilute
hydrochloric acid (HCl) and extracted three times with dichloromethane (DCM). The
combined organic extracts were washed with water, dried over anhydrous sodium
sulfate (Na,SO,), and concentrated under vacuum. The crude product was purified by
silica gel column chromatography to provide a yellow powder (60%). 'H NMR (400
MHz, CDCls): ¢ 8.65 (d, J = 0.8 Hz, 2H), 8.19 (m, 2H), 7.66 (d, J = 8.4 Hz, 2H), 2.74
(s, 6H). 13C NMR (100 MHz, CDCl3): 6 197.00, 159.51, 133.10, 128.67, 124.12,
121.89, 111.99, 26.78. HRMS (ESI) m/z: [M+H]" calcd for CycH;05; 253.0865,
found 253.0876. The 'H NMR data matches the reference’.

DBF-dPh: Under an inert nitrogen atmosphere, chloroform (10 mL) was added
to anhydrous AICl; (3.19 g, 24.0 mmol, 4.0 eq). This was followed by the slow



addition of benzoyl chloride (4.16 mL, 36.0 mmol, 6.0 eq). Subsequently,
dibenz[b,d]furan (1.01 g, 6.0 mmol, 1.0 eq) dissolved in chloroform (20 mL) was
gradually introduced into the previous reaction mixture and stirred at room
temperature for 6 h. After completion of the reaction, the mixture was quenched with
dilute hydrochloric acid (HCI) and extracted three times with dichloromethane (DCM).
The combined organic extracts were washed with water, dried over anhydrous
Na,SO,, and the crude product was concentrated under vacuum. The final product
DBF-dPh was obtained through purification by column chromatography, providing a
pale yellow solid (65%). '"H NMR (400 MHz, CDCls): ¢ 8.45 (d, J= 1.2 Hz, 2H), 8.06
(m, 2H), 7.85 (d, J= 7.2 Hz, 4H), 7.72 (d, J = 8.8 Hz, 2H), 7.65 (t, /= 7.4 Hz, 2 H),
7.55 (t, J = 7.6 Hz, 4H). 3C NMR (100 MHz, CDCls): 6 195.95, 159.20, 137.83,
133.29, 132.45, 130.46, 129.99, 128.42, 123.86, 123.78, 111.87. HRMS (ESI) m/z:
[M+H]* calcd for C,¢H 703 377.1178, found 377.1219.

3. Figures and Tables
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Fig. S1 The root-mean-square deviation (RMSD) profile with respect to time in the
self-assembly process of DBF-dAc (a) and DBF-dPh (b) in DMSO.
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Fig. S2 The root-mean-square deviation (RMSD) profile with respect to time in the
self-assembly process of DBF-dAc (a) and DBF-dPh (b) in DMSO/H,0 (2:1 v/v).
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Fig. S3 (a) Snapshots of MD simulation tracking the self-assembly of five DBF-dAc
molecules in DMSO (DBF-dAc molecules are colored blue); (b) molecular stacking
of the five DBF-dAc molecules from the final MD snapshot (50 ns); (c)
intermolecular n-t stacking of DBF-dAc as extracted from final MD snapshot (n-n
interaction is shown as green cloud).

Fig. S4 (A) Snapshots of MD simulation tracking the self-assembly of five DBF-dPh
molecules in DMSO (DBF-dPh molecules are colored blue); (B) molecular stacking
of the five DBF-dPh molecules from the final MD snapshot (50 ns); (C)
intermolecular n-t stacking of DBF-dPh as extracted from final MD snapshot (n-n
interaction is shown as green cloud).



Fig. S5 (a) Snapshots of MD simulation tracking the self-assembly of five DBF-dAc
molecules in a mixture of DMSO and water (DBF-dAc molecules are colored blue);
(b) molecular stacking of the five DBF-dAc¢ molecules from the final MD snapshot
(50 ns); (c) intermolecular n-n stacking of DBF-dAc as extracted from final MD
snapshot (n-m interaction is shown as green cloud).

_

Fig. S6 (A) Snapshots of MD simulation tracking the self-assembly of five DBF-dPh
molecules in a mixture of DMSO and water (DBF-dPh molecules are colored blue);
(B) molecular stacking of the five DBF-dPh molecules from the final MD snapshot
(50 ns); (C) intermolecular n-n stacking of DBF-dPh as extracted from final MD
snapshot (n-m interaction is shown as green cloud).



Table S1. Gelation test of synthesized compounds

Solvents DBF-dAc DBF-dPh
cyclohexane In In
Toluene S S
THF S S
acetonitrile P P
acetone S S
methanol In In
ethanol In In
DMSO S S

DMSO/H,0 (2:1 v/v) G (15 mg/mL) G (20 mg/mL)

In: insoluble; P: precipitate; S: soluble; G: gel. CGC: critical gelation concentration
(mg/mL)

Note: The numbers in brackets are CGC values; all the gels are formed by heating and
sonication

W

Solid

10 20 30 40 50
Degree (26)

Fig. S7 XRD pattern of DBF-dAc xerogel and solid from evaporation of eluent from

column.
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Fig. S8 XRD pattern of DBF-dPh xerogel and solid from evaporation of eluent from column.
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Fig. S9 FTIR spectra of DBF-dAc¢/DBF-dPh in gel and sol states. (a) DBF-dAc; (b)
DBF-dPh.
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Fig. S10 Fluorescence spectra of concentrated (102 M, a) and dilute (10> M, b) DBF-
dPh solutions at different temperatures (Aex: 400 nm)
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Fig. S11 Fluorescence spectra of concentrated (102 M, a) and dilute (10> M, b) DBF-
dAc solutions at different temperatures (Aex: 400 nm)
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Fig. S12 Steady-state photoluminescence intensity of DBF-dAc in DMSO/H,0
during the sol-gel transition (Aex: 370 nm; concentration: 15 mg mL1).
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Fig. S13 Steady-state photoluminescence intensity of DBF-dPh in DMSO/H,0
during the sol-gel transition (A.,: 400 nm; concentration: 20 mg mL-").
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Fig. S14 Fluorescence lifetimes of DBF-dPh gel (a) and DBF-dAc gel (b).
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Fig. S15 Concentration-dependent fluorescence spectra in DMSO. (a) benzophenone;

(b) DBF-dAc; (c) DBF-dPh
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Fig. S16 (a) Luminescent images; (b) steady-state and delayed spectra; (c)

phosphorescence lifetime of DBF-dAc powder as obtained from column
chromatography (Aex: 370 nm; delayed 1 ms).
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Fig. S17 (a) Luminescent images; (b) steady-state and delayed spectra; (c)
phosphorescence lifetime of DBF-dPh powder as obtained from column

chromatography (Aex: 400 nm; delayed 1 ms).
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Fig. S18 Monomer and dimers as extracted from the single crystal structure of DBF-
dPh and their energy level diagrams calculated at B3LYP/6-31G(d,p).
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Fig. S19 (a) Luminescent images; (b) steady-state and delayed spectra; (c)
phosphorescence lifetime of DBF-dAc gel in DMSO/H,0 (Ae: 370 nm; delayed 1
ms).
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Fig. S20 (a) Delayed emission spectra of DBF-dPh gel with different concentrations;
(b) photoluminescence and afterglow images of DBF-dPh gel with different

concentrations (Aex: 400 nm; delayed 1 ms).
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Fig. S21 Delayed spectra of DBF-dPh gel in its initial state and after 3 days (A: 400

nm, delay: 1 ms).
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Fig. S22 The phosphorescence spectra of DBF-dPh gel were performed before/after
25 min of UV irradiation in a nitrogen atmosphere (Ae: 400 nm; delayed 1 ms).
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Fig. S23 Afterglow images of DBF-dPh gel (20 mg mL!) at various temperatures.
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Fig. S25 '"H NMR of DBF-dAc.
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Fig. S26 3C NMR of DBF-dAc.
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Fig. S28 '"H NMR of DBF-dPh.
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Fig. S29 3C NMR of of DBF-dPh.
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Fig. S30 HRMS of DBF-dPh.
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