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Chemicals

The following reagents were used without further purifications. Manganese(III) acetate 

dihydrate (Mn(CH3COO)3·2H2O, AR, 97.0%), dopamine hydrochloride 

(C8H11NO2·HCl, AR, 99%), tris(hydroxymethyl)aminomethane(C4H11NO3, AR, 99%), 

manganese sulfate tetrahydrate (MnSO4·4H2O, AR, 98.0%), zinc sulfate heptahydrate 

(ZnSO4·7H2O, AR, 98.0%), and doubly distilled water.

Material characterizations

Crystallographic phases of the samples are assessed using X-ray diffraction (XRD) 

employing a Bruker D8 Advance instrument in Bragg-Brentano geometry with a Cu 

target (λ = 0.154 nm). Thermogravimetric analysis (TGA) is conducted to analyze the 

degradation pattern of precursor samples (post-drying) from room temperature to 600 

°C at a heating rate of 5 °C min-1 under N2 flow, utilizing a thermogravimetric analyzer 

(STA7200RV, Hitachi). X-ray photoelectron spectroscopy (XPS) measurements are 

performed using an AXIS SUPRA instrument (Renishaw-invia). Field emission 

scanning electron microscopy (FE-SEM) at an accelerating voltage of 10 kV is 

employed to observe sample morphologies. Raman spectroscopy measurements are 

conducted using a Renishaw Invia Raman spectroscope. Transmission electron 

microscopy (TEM) equipped with energy-dispersive X-ray spectroscopy (EDS) 

(Xplore-30, Oxford), High-resolution transmission electron microscopy (HR-TEM), 

and selected area electron diffraction (SAED) patterns are obtained utilizing the FEI 

Tecnai G2 F20 instrument with an acceleration voltage of 200 kV.

Electrochemical characterizations



The cathode of the ZIBs is fabricated using active material, acetylene black as the 

conductive agent, and polyvinylidene fluoride as the binder (with a weight ratio of 

7:2:1), and N-methyl-2-pyrrolidone is utilized as the solvent during the process of ink 

slurry preparation. After continuous stirring, the resulting slurry is coated onto a 

stainless steel circular mesh with a diameter of 12 mm, followed by drying in a vacuum 

oven at 80 ℃ for 12 h. The active material loading was approximately 2 mg cm-2. The 

electrochemical analysis of all samples is performed using a CR2032 coin cell with zinc 

foil as the negative electrode, glass fiber as the separator, and 2 M ZnSO4, 2 M ZnSO4 

+ 0.2 M MnSO4 or 2 M ZnSO4 + 0.5 M MnSO4 aqueous solution as the electrolyte. 

Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are 

conducted using CHI660E or PARSTAT MC potentiostats. Unless specified otherwise, 

all potentials are referenced to Zn/Zn2+. The CV scans are performed within the range 

of 1-1.85 V at a scan rate of 0.1 mV s-1, while EIS measurements are carried out across 

a frequency spectrum from 105 to 0.01 Hz, with an alternating potential amplitude of 5 

mV. A battery test system (LAND MTI-5 V 10 mA) is utilized to assess the cycling 

and charge–discharge characteristics of the coin cells.



Fig. S1. SEM images of the (a) Mn-PDA and (b) MnO-C/PDA.



Fig. S2. EDS spectrum of the MnO-C/PDA.



Fig. S3. TGA curve of the MnO-C/PDA.



Fig. S4. Rate performances of the MnO-C/PDA in 2 M ZnSO4, 2 M ZnSO4 + 0.2 M 

MnSO4 and 2 M ZnSO4 + 0.5 M MnSO4 electrolytes.



Fig. S5. The fitted equivalent circuit of EIS.



Fig. S6. CV curves of MnO-C/PDA ranging from 0.1 to 0.9 mV s-1 in (a) 2 M ZnSO4 

and (d) 2 M ZnSO4 + 0.5 M MnSO4 electrolytes; Log (peak current) versus log (scan 

rate) plot of MnO-C/PDA in (b) 2 M ZnSO4 and (e) 2 M ZnSO4 + 0.5 M MnSO4 

electrolytes; Contribution of the capacitive-controlled process to the capacity of MnO-

C/PDA in (c) 2 M ZnSO4 and (f) 2 M ZnSO4 + 0.5 M MnSO4 electrolytes.



Fig. S7. Ex-situ XRD patterns of MnO-C/PDA in 2 M ZnSO4 electrolyte at the initial, 

charging and discharging states.



Fig. S8. Ex-situ XRD patterns of MnO-C/PDA in 2 M ZnSO4 + 0.5 M MnSO4 

electrolyte at the initial, charging and discharging states.



Fig. S9. XPS spectra of Zn 2p region at the charging and discharging states.



Fig. S10. Ex-situ XRD patterns of MnO-C/PDA in 2 M ZnSO4 + 0.2 M MnSO4 

electrolyte for the charging and discharging states at the 10th cycle.



 Table S1. Performance comparison of aqueous ZIBs with manganese oxide-based 
materials as cathodes. 

Cathode material Electrolyte Specific capacity Capacity retention Ref.

MnO-C/PDA 2 M ZnSO4+ 0.2 M MnSO4 295.4 mA h g−1 at

0.2 A g−1

88.9% after 500 cycles 

at 1 A g−1

This 

work

F-MO 2 M ZnSO4+ 0.2 M MnSO4 288 mA h g−1 at

0.1 A g−1

96% after 200 cycles at 

0.2 A g−1

1

MnO2 @MXene 2 M ZnSO4+ 0.2 M MnSO4 184 mA h g−1 at

0.05 A g−1

84.5% after 1000 cycles 

at 0.1 A g−1

2

HCM 2 M ZnSO4+ 0.3 M MnSO4 341 mA h g−1 at

0.2 A g−1

87% after 3500 cycles at 

2 A g−1

3

ε- MnO2@N 2 M ZnSO4+ 0.5 M MnSO4 183.4 mA h g−1 at

0.5 A g−1

83% after 1000 cycles at 

5 A g−1

4

δ- MnO2 1 M ZnSO4 252 mA h g−1 at 

0.083 A g−1

43% after 100 cycles at 

0.083 A g−1

5

Mn3O4/CP 2 M ZnSO4+ 0.2 M MnSO4 201 mA h g−1 at

0.3 A g−1

No decreasing after 200 

cycles at 1 A g−1

6

ZnMn2O4/NG 1 M ZnSO4+ 0.05 M MnSO4 232 mA h g−1 at

0.1 A g−1

97.4% after 2500 cycles 

at 1 A g−1

7

Ocu-Mn2O3 3 M ZnSO4+ 0.1 M MnSO4 241 mA h g−1 at

0.1 A g−1

88% after 600 cycles at 

1 A g−1

8

ZMO/CNTs 1 M ZnSO4+ 0.1 M MnSO4 220.3 mA h g−1 at

0.1 A g−1

97.0% after 2000 cycles 

at 3 A g−1

9



Mn3O4@HCFs 2 M ZnSO4+ 0.15 M MnSO4 215.8 mA h g−1 at

0.3 A g−1

No decreasing after 

1300 cycles at 0.4 A g−1

10

Fe/α-MnO2@PPy 2 M ZnSO4+ 0.1 M MnSO4 270 mA h g−1 at

0.1 A g−1

71.4.% after 100 cycles 

at 0.1 A g−1

11

α-MnO2/CNT 

HMs

2 M ZnSO4+ 0.1 M MnSO4 296 mA h g−1 at

0.2 A g−1

No decreasing after 100 

cycles at 0.2 A g−1

12

Ti-MnO2 3 M Zn(CF3SO3)2 + 0.1 M 

Mn(CF3SO3)2 

259 mA h g−1 at

0.1 A g−1

80% after 4000 cycles at 

1 A g−1

13
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