Electronic Supporting Information

Composition regulation of Ni-BDC MOF architecture to enhance electrocatalytic urea oxidation in alkaline solution

Xin Fu,^{4a} Bo Pu,^{4a} Li Pan,^a Ruiqi Ming,^a Qian Lv,^a Xiaobo Chen^b and Lihong Tian^{*a}

^aHubei Collaborative Innovation Center for Advanced Organochemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Applications of Organic Functional Molecules, Hubei University, Wuhan 430062, PR China

E-mail: tian7978@hubu.edu.cn

^bDepartment of Chemistry, University of Missouri – Kansas City, Kansas City, Missouri 64110, USA.

Fig. S1 PXRD patterns of binary NiCo MOF and NiMn MOF.

Fig. S2 FE-SEM graphs of NiMn MOF(A) and NiCo MOF (B).

Fig. S3 N₂ adsorption-desorption isotherms of all samples.

Fig. S4 FT-IR spectra of all samples.

Fig. S5 Raman spectra of all samples.

Fig. S6. Electro-chemical activation of NiMnCo MOF electrode.

Fig. S7. Chronopotentiometric curves of Ni MOF-A (A), NiCo MOF-A (B) and NiMn MOF-A (C) at constant current density of 100 mA cm⁻².

Catalyst	Electrolyte	E _j =10(V)	Tafel slope mV dec ⁻¹	Ref.
NiMnCo MOF/NF	1.0 M KOH 0.33 M urea	1.29	46	This work
Fe ₂ P@Ni _x P/NF	1 M KOH 0.5 M urea	1.26	30	[1]
CoFeCr LDH/NF	1.0 M KOH 0.33 M urea	1.31	85	[2]
O-NiMoP/NF	1 M KOH 0.5 M urea	1.31	35	[3]
Ni ₂ P/Fe ₂ P/NF	1 M KOH 0.5 M urea	1.37	79	[4]
Ni ₃ N/NF	1 M KOH 0.5 M urea	1.34	41	[5]
Ni-Co ₂ VO ₄ /NF	1 M KOH 0.5 M urea	1.28	46	[6]
NiO-NiPi	1 M KOH 0.5 M urea	1.35	70.6	[7]
P/Cr60-NiMoO4	1.0 M KOH 0.33 M urea	1.33	32	[8]
Fe-Co _{0.85} Se/FeCo-LDH	1 M KOH 0.5 M urea	1.29	40	[9]
Fe-Ni ₁₂ P ₅ /Ni ₃ P	1 M KOH 0.5 M urea	1.3	82.8	[10]
Ni ₄ N/Cu ₃ N/CF	1 M KOH 0.5 M urea	1.34	56	[11]

Table S1. Comparison of UOR activity of NiMnCo MOF/NF with other catalysts reported.

[1] T. Guo, X. Xu, X. Wang, J. Zhou, H. Wang, Z. Shi, M. Huang, Enabling the full exposure of Fe₂P@Ni_xP heterostructures in tree-branch-like nanoarrays for promoted urea electrolysis at high current densities, Chem. Eng. J. 417 (2021) 128067. https://doi.org/10.1016/j.cej.2020.128067.
[2] Z. Wang, W. Liu, Y. Hu, M. Guan, L. Xu, H. Li, J. Bao, H. Li, Cr-doped CoFe layered double hydroxides: highly efficient and robust bifunctional electrocatalyst for the oxidation of water and

urea, Appl. Catal. B 272 (2020) 118959. https://doi.org/10.1016/j.apcatb.2020.118959.

[3] H. Jiang, M. Sun, S. Wu, B. Huang, C.S. Lee, W. Zhang, Oxygen-incorporated NiMoP nanotube arrays as efficient bifunctional electrocatalysts for urea-assisted energy-saving hydrogen production in alkaline electrolyte, Adv. Funct. Mater. 31 (2021) 2104951. https://doi.org/10.1002/adfm.202104951.

[4] L. Yan, Y. Sun, E. Hu, J. Ning, Y. Zhong, Z. Zhang, Y. Hu, Facile in-situ growth of Ni₂P/Fe₂P nanohybrids on Ni foam for highly efficient urea electrolysis, J. Colloid Interface Sci. 541 (2019) 279-286. https://doi.org/10.1016/j.jcis.2019.01.096.

[5] S. Hu, C. Feng, S. Wang, J. Liu, H. Wu, L. Zhang, J. Zhang, Ni₃N/NF as bifunctional catalysts for both hydrogen generation and urea decomposition, ACS Appl. Mater. Interfaces 11 (2019) 13168-13175. https://doi.org/10.1021/acsami.8b19052.

[6] M. Pan, G. Qian, T. Yu, J. Chen, L. Luo, Y. Zou, S. Yin, Ni modified Co₂VO₄ heterojunction with poor/rich-electron structure for overall urea-rich wastewater oxidation, Chem. Eng. J. 435 (2022) 134986. https://doi.org/10.1016/j.cej.2022.134986.

[7] X. Xu, T. Guo, J. Xia, B. Zhao, G. Su, H. Wang, M. Huang, A. Toghan, Modulation of the crystalline/amorphous interface engineering on Ni-P-O-based catalysts for boosting urea electrolysis at large current densities, Chem. Eng. J. 425 (2021) 130514. https://doi.org/10.1016/j.cej.2021.130514.

[8] Y. Li, H. Guo, Y. Zhang, R. Song, Cooperative phosphorus and chromium doping induced electronic and morphological dual modulation in NiMoO₄ hydrate for energy-efficient urea-assisted hydrogen production, Appl. Catal. B 341 (2024) 123296. https://doi.org/10.1016/j.apcatb.2023.123296.

[9] H. Yu, S. Zhu, Y. Hao, Y. Chang, L. Li, J. Ma, H. Chen, M. Shao, S. Peng, Modulating local interfacial bonding environment of heterostructures for energy-saving hydrogen production at high current densities, Adv. Funct. Mater. 33 (2023) 2212811. https://doi.org/10.1002/adfm.202212811.
[10] X. Xu, C. Zhang, J. Li, H. Liu, G. Su, Z. Shi, M. Huang, Redistributing interfacial charge density of Ni₁₂P₅/Ni₃P via Fe doping for ultrafast urea oxidation catalysis at large current densities, Chem. Eng. J. 452 (2023) 139362. https://doi.org/10.1016/j.cej.2022.139362.

[11] J. Li, C. Yao, X. Kong, Z. Li, M. Jiang, F. Zhang, X. Lei, Boosting hydrogen production by electrooxidation of urea over 3D hierarchical Ni₄N/Cu₃N nanotube arrays, ACS Sustainable Chem. Eng. 7 (2019) 13278-13285. https://doi.org/10.1021/acssuschemeng.9b02510.

Table S2. Comparison of the electrocatalytic performance of NiMnCo MOF/NF||NiMnCo MOF/NF towards overall urea electrolysis in alkaline media with catalysts reported previously.

Anode//Cathode	Flectrolyte	Cell voltage (V)	Rof	
Anoue//Cathoue	Electrolyte	(10 mA cm ⁻²)	Kci.	
	1 M KOH	1 20	This work	
NIMINCO MOF/NF (+/-)	0.33 M urea	1.38		
	1 M KOH	1 42	[12]	
remi-mor m88 (+/-)	0.33 M urea	1.43		
NCAMOE EA/NE(+/)	1 M KOH	1 41	[13]	
	0.33 M urea	1,41		
NiCo MOF/NF-EA //	1 M KOH	1 447	[14]	
NiCoP/NF	0.33 M urea	1.44 /		
N: MOE $0.5/\text{NE}(1/)$	1 M KOH	1 52	[15]	
INI-INIOF-0.3/INF (+/-)	0.5 M urea	1.32		
MOE NI@MOE Ea S (+/)	1 M KOH	1 54	[16]	
	0.5 M urea	1.34		
DDA@MOE Ni/So(1/)	1 M KOH	1 40	[17]	
1 DA(WINOT-IN/SC (+/-)	0.5 M urea	1.47		
NiFo MIL 53 NH. (1/-)	1 M KOH	1 566	[18]	
1111 [•] C-11111-55-11112 (+/-)	0.33 M urea	1.300		

[12] X. Zhang, X. Fang, K. Zhu, W. Yuan, T. Jiang, H. Xue, J. Tian, Fe-doping induced electronic structure reconstruction in Ni-based metal-organic framework for improved energy-saving hydrogen production via urea degradation, J. Power Sources 520 (2022) 230882. https://doi.org/10.1016/j.jpowsour.2021.230882.

[13] L. Xu, X. Wang, L. Zhang, H. Sun, X. Xie, Y. Zhang, B. Tan, R. Yuan, Carboxyferrocene modulated Ni/Co bimetallic metal-organic framework for highly efficient electrocatalysis of urea oxidation reaction, Electrochim. Acta 428 (2022) 140877. https://doi.org/10.1016/j.electacta.2022.140877.

[14] D. Wei, W. Tang, N. Ma, Y. Wang, NiCo bimetal organic frames derived well-matched electrocatalyst pair for highly efficient overall urea solution electrolysis, J. Alloys Compd. 874 (2021) 159945. https://doi.org/10.1016/j.jallcom.2021.159945.

[15] S. Zheng, Y. Zheng, H. Xue, H. Pang, Ultrathin nickel terephthalate nanosheet threedimensional aggregates with disordered layers for highly efficient overall urea electrolysis, Chem. Eng. J. 395 (2020) 125166. https://doi.org/10.1016/j.cej.2020.125166. [16] H. Xu, K. Ye, K. Zhu, J. Yin, J. Yan, G. Wang, D. Cao, Efficient bifunctional catalysts synthesized from three-dimensional Ni/Fe bimetallic organic frameworks for overall urea electrolysis, Dalton Trans. 49 (2020) 5646-5652. https://doi.org/10.1039/d0dt00605j.

[17] H. Xu, K. Ye, K. Zhu, Y. Gao, J. Yin, J. Yan, G. Wang, D. Cao, Hollow bimetallic selenide derived from a hierarchical MOF-based Prussian blue analogue for urea electrolysis, Inorg. Chem. Front. 8 (2021) 2788-2797. https://doi.org/10.1039/d1qi00230a.

[18] Z. Gao, Y. Wang, L. Xu, Q. Tao, X. Wang, Z. Zhou, Y. Luo, J. Yu, Y. Huang, Optimizing local charge distribution of metal nodes in bimetallic metal-organic frameworks for efficient urea oxidation reaction, Chem. Eng. J. 433 (2022) 133515. https://doi.org/10.1016/j.cej.2021.133515.