Electronic Supplementary Materials

New Heater@Luminescent Thermometer Nano-objects: Prussian Blue Core@Silica Shell loaded with β-diketonate Tb³⁺/Eu³⁺ Complex

Aurore Larquey,[†] Houda Bellahsene,[†] Gautier Félix, Mickaël Beaudhuin, Tristan Pelluau, Basile Bouvet, Yannick Guari, Saad Sene* and Joulia Larionova*

ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France

Contents

Figure S1. a) IR spectra for $[(Tb/Eu)_9(acac)_{16}(\mu_3-OH)_8(\mu_4-O)(\mu_4-OH)]$ H₂O compound (Tb/Eu = 9/1) (black) and PB@SiO₂-acac/(Tb/Eu)₉ nano-objects (green); b) Magnification of these spectra in the 500 - 1800 cm⁻¹ window. 2

Figure S2. Size distribution histograms for PB (a), $PB@SiO_2$ (b), $PB@SiO_2$ -acac (c) and $PB@SiO_2$ -acac/(Tb/Eu)₉ (d) nano-objects. 3

Figure S3. Size distribution histograms for the PB core of $PB@SiO_2$ (a), $PB@SiO_2$ -acac (b) and $PB@SiO_2$ -acac/(Tb/Eu)₉ (c) nano-objects. 3

Figure S4. Size distribution histograms for the silica shell of $PB@SiO_2$ (a), $PB@SiO_2$ -acac (b) and $PB@SiO_2$ -acac/(Tb/Eu)₉ (c) nano-objects. 3

Figure S5. a) N_2 sorption isotherms of the PB@SiO₂ and PB@SiO₂-acac/(Tb/Eu)₉ nanoobjects; b) distribution of pore size of the PB@SiO₂. 4

Figure S1. a) IR spectra for $[(Tb/Eu)_9(acac)_{16}(\mu_3-OH)_8(\mu_4-O)(\mu_4-OH)]$ H₂O compound (Tb/Eu = 9/1) (black) and PB@SiO₂-acac/(Tb/Eu)₉ nano-objects (green); b) Magnification of these spectra in the 500 - 1800 cm⁻¹ window.

Figure S2. Size distribution histograms for PB (a), PB@SiO₂ (b), PB@SiO₂-acac (c) and PB@SiO₂-acac/(Tb/Eu)₉ (d) nano-objects.

Figure S3. Size distribution histograms for the PB core of PB@SiO₂ (a), PB@SiO₂-acac (b) and PB@SiO₂-acac/(Tb/Eu)₉ (c) nano-objects.

Figure S4. Size distribution histograms for the silica shell of PB@SiO₂ (a), PB@SiO₂-acac (b) and PB@SiO₂-acac/(Tb/Eu)₉ (c) nano-objects.

Figure S5. a) N_2 sorption isotherms of the PB@SiO₂ and PB@SiO₂-acac/(Tb/Eu)₉ nano-objects; b) distribution of pore size of the PB@SiO₂.

Figure S6. Temperature as a function of the time of the sample prepared for the extraction of the light-to-heat conversion coefficient irradiated with a 808 nm laser at a power of 2.58 W.cm⁻² (blue curve) and its fit realized with the model developed and solved with the COMSOL software (red curve).

Figure S7. Specific heat of the pristine PB nano-object with the standard deviation obtained on 5 cycles.

Figure S8. a) Excitation spectra of the $[(Tb/Eu)_9(acac)_{16}(\mu_3-OH)_8(\mu_4-O)(\mu_4-OH)]$.H₂O compound (Tb/Eu = 9/1) monitored at λ_{em} = 547 nm (green) and λ_{em} = 616 nm (black) measured in solid state at room temperature; b) Emission spectra of the $[(Tb/Eu)_9(acac)_{16}(\mu_3-OH)_8(\mu_4-O)(\mu_4-OH)]$ H₂O (Tb/Eu = 9/1) compound performed at room temperature in solid state with the excitation at λ_{em} = 325 nm. Eu³⁺ and Tb³⁺ linked transitions are labelled in red and green, respectively.