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S1 Methods

S1.1 MD simulations

The donor/acceptor and donor/donor interfaces for the ternary FG3:FG4:Y6 cell have been char-

acterized by performing classical molecular dynamics (MD) simulations on a cubic box containing

15 FG3 molecules, 35 FG4 molecules, and 75 Y6 molecules, thus reproducing the experimental rel-

ative abundance (0.12:0.28:0.60) of components.1 The molecules have been randomly arranged to

mimic a BHJ interface. After a 1 ns equilibration and 100 ns of simulated annealing, trajectories

have been simulated for 100 ns.

For electronic coupling calculations, we sampled ≈ 100 molecular pairs (either D/D, or D/A,

depending on the process under study) geometries from the last 40 ns of the simulation, at 500

ps intervals, to extract uncorrelated snapshots. We selected only molecules such that at least two

atoms belonging to the interacting units is less than 5 Å and such that the long molecular axis

was at least 90% of the length of the same axis at the equilibrium geometry.2 The same protocol

has been applied to the A/D interface for the binary blends FG3:Y6 and FG4:Y6. In both cases,

the box is composed of 50 molecules of donor and 75 molecules of acceptor, i.e. the adopted

composition match the experimental ratio (0.4:0.6).1 Figure S1 shows the configurations yielding

the fastest PET for FG3/Y6, FG4/Y6 and the most efficient FRET at FG3/FG4 interface in the

ternary cell. We remark that this protocol has been followed on the basis of previous studies,2,3

showing that it leads to a good description of the average behaviour of the cell, see also section

S5 below.

S1.2 Electronic couplings

For PHT, PET and CR processes, the electronic couplings have been calculated as Jij = ⟨ϕi|F̂ |ϕj⟩,
where ϕi and ϕj are the unperturbed frontier Kohn-Sham orbitals of the isolated D and A, respec-

tively, and F̂ is the Kohn-Sham-Fock operator of the D/A pair.4–6 Computations were carried

out at the density functional level of theory (DFT) by using the CAM-B3LYP functional and the

3-21G* basis set.7

Electronic couplings for FRET and EET have been evaluated by means of a perturbative approach

from the transition densities of the non-interacting units,8 as implemented in the Gaussian pack-

age,9 by using time dependent (TD) DFT, at the (TD)CAM-B3LYP/3-21G* level of theory. The

highest electronic couplings are reported in Tables S1 and S2, whereas average couplings are given

in Tables 1 and 2 of the main article. While in MD simulations all the alkyl substituents have

been retained, they have been replaced by methyl groups in DFT and TD-DFT computations of

electronic couplings.2
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Fig. S1: Predicted (MD) configurations giving rise, in the ternary cell, to the highest PET coupling at
the FG3/Y6 interface (top), FG4/Y6 interface (bottom left) and the highest FRET coupling FG3/FG4

interface (bottom right).

Table S1: Highest electronic couplings (meV) for the formation of charge transfer states (PET/PHT)
at the D/A interfaces, for the charge recombination (CR) from the charge transfer states to the ground

states and for the energy transfer (EET) in the binary devices.

Cell PHT PET CR EET

FG3:Y6 41.9 53.6 78.2 40.3
FG4:Y6 26.9 60.6 42.1 33.6

Table S2: Highest electronic couplings (meV) for the formation of charge transfer states (PET and
PHT) and charge recombination (CR) at the D/A interfaces. Highest couplings for energy transfer
(FRET) at the FG3/FG4 interface is also included. The corresponding configurations of binary

complexes are depicted in Figure S1. All data refer to the ternary cell.

Interface PHT PET CR FRET

FG3/Y6 25.8 18.5 81.6 -
FG4/Y6 30.4 59.6 49.1 -
FG3/FG4 - - - 53.7
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Fig. S2: Orbitals in CR for FG3:Y6 (top) and FG4:Y6 (bottom) in the ternary cell.
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S1.3 Prediction of kinetic rates and lineshapes

To simplify the mathematical notation, at variance with the main text we will use uppercase

letters (e.g. A) to identify electronic states, while lowercase letter to identify vibrational states of

the corresponding electronic states (e.g. a is a vibrational state of the electronic state A).

Kinetic rates and spectral lineshapes have been computed by resorting to the so-called generating-

function (GF) theory.10 Details on the derivation and implementation of the GF formalism can

be found elsewhere;11 here we only summarize the main results.

According to Fermi’s golden rule, the rate for an electronic transition from initial state A to final

state B, can be expressed as:

k =
2π

h̄
|JAB|2F (∆E + ϵ, T ), (S1)

where JAB is the electronic coupling for A and B, F is the density of states, ∆E = EB − EA,

ϵ =

±hν radiative transition,

−∆E non-radiative transition
(S2)

and the plus (minus) sign in Eq. S2 refers to emission (absorption).

Upon introducing the Born-Oppenheimer approximation, we have for X = A,B:

|X⟩ = |X,x⟩ = |X⟩ ⊗ |x⟩ , (S3)

EX = EX + ηx (S4)

where |X⟩ denotes a pure electronic state whose energy is EX and |x⟩ represents the vibronic

states of X with energy ηx. Under the assumption that JAB is independent of the nuclear

coordinates (Condon approximation), the density of states (Eq. S1) can be cast in the form:12

F (∆E + ϵ, T ) =
∑
a,b

| ⟨b|a⟩ |2e−βηaδ(EB − EA + ϵ)/ZA, (S5)

where T is temperature, β = 1/(kBT ), with kB the Boltzmann constant, ZA is the vibrational

partition function of state A, and ⟨b|a⟩ are Franck-Condon integrals, so that F is the Franck-

Condon weighted density of states (FCWD). By using the integral representation of the delta

function, the FCWD can be written as:

F =
1

2π

∫ +∞

−∞
ei(∆E+ϵ)τf(τ) dτ (S6)
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where ∆E = EB − EA considers “purely electronic” energies (Eq. S4) and:

f(τ) =
Tr

[
eiτHBe−(β+iτ)HA

]
Tr [e−βHA ]

, (S7)

with HA(HB) being the vibrational Hamiltonian operator of the initial(final) electronic state. By

assuming the harmonic model for vibrations and using mass-weighted vibrational coordinates,

Kubo and Toyozawa were able to to put the correlation function into closed form.10 Upon in-

troducing normal coordinates and using the affine transformation proposed by Duschinsky to

express one set of normal coordinates with respect to the other:11,13

QB = JQA +K,

where Q denote normal coordinates, the Jacobian J is the Duschinsky matrix and K is the

displacement vector, f(τ) assumes the form:

f(τ) = [detΦ]−1/2 exp
[
−DTTA (TA +TB)

−1TBD
]
, (S8)

where:

TA = ωA tanh [(β − iτ)ωA/2] ; TB = JTωB tanh (iτωB/2)J

CA = ωA/ tanh [(β − iτ)ωA/2] ; CB = JTωB/ tanh (iτωB/2)J

Φ = [2 sinh (βωA/2)]
−2ωA

−1 sinh [(β − iτ)ωA] (TA +TB) (CA +CB)ωB
−1 sinh (iτωB)

D = J−1K.

(S9)

Herein, T superscript denotes transpose, energies are expressed as wavenumbers, ωA(B) is the

diagonal matrix holding the harmonic vibrational wavenumbers for state A(B). The fraction bar

symbol appearing in the expressions for CA and CB and connecting diagonal matrices, denotes

division between corresponding diagonal elements.

For bimolecular processes (such as charge or energy transfer) involving two weakly interacting

molecules, the final FCWD, F (∆E, T ) can be obtained by the convolution of the FCWD of the

two half-reactions. For example, in the case of photo-electron transfer:

D∗ → D+ + e−,

A+ e− → A−,
(S10)

where D∗ is the donor molecule in its excited state and A is the acceptor molecule in its ground
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state. The convolution is obtained as

F (∆E) =

∫ ∞

−∞
dE FD(E)FA(E −∆E), (S11)

where FD and FA are the FCWD for the processes in Eq. S10.

Rates were determined by using Eq. S1 with the average couplings of Tables 1 and 2 of the main

text and F (∆Er, T = 298 K), where ∆Er is the reaction energy of the relevant process, namely:

∆EPET,FG3 = IP(FG3)− EA(Y6)− E0−0(FG3),

∆EPET,FG4 = IP(FG4)− EA(Y6)− E0−0(FG4),

∆EPHT,FG3 = IP(FG3)− EA(Y6)− E0−0(Y6),

∆EPHT,FG4 = IP(FG4)− EA(Y6)− E0−0(Y6),

∆ECR,FG3 = EA(Y6)− IP(FG3),

∆ECR,FG4 = EA(Y6)− IP(FG4),

∆EEET,FG3 = EY6
0−0 − EFG3

0−0 ,

∆EEET,FG4 = EY6
0−0 − EFG4

0−0 ,

∆EFRET = EFG4
0−0 − EFG3

0−0 .

(S12)

Adiabatic ionization energies (IP) and electron affinities (EA) used in previous equations are

given in Table S3. They were set equal to the oxidation (reduction) free energies referred to

vacuum. Oxidation and reduction free energies were obtained by Guijarro et al. (ref.s 1 and

14) by Osteryoung square wave voltammetry measurements carried out in orthodichloroben-

zene:acetonitrile (4:1) solutions using ferrocenium/ferrocene (Fc+/Fc) as the internal reference.

The absolute reduction potential for the Fc+/Fc couple has been set to 5.1 V, as in ref.s 1 and

14, but it elides in the differences (Eqn.s S12). E0−0 energies were estimated by aligning the

predicted and observed FCWD for the S1 ← S0 absorption of FG3, FG4 and Y6. Indeed, as

is well known, the FCWD for a radiative transition is related to emission intensity and molar

absorption coefficient as:15,16

Iem(ν) ∝ ν4F (∆E + hν),

η(ν) ∝ νF (∆E − hν). (S13)

Because we set ∆E = 0 (Eq. S6) in the computations of FCWD’s and because the FCWD must

be normalized in the sense of unit area, upon aligning the FCWD extracted from the observed

spectrum with the predicted one in such a way to maximize the overlap between the curves, it is

possible to localize the position of the 0-0 transition energy. An example is given in Figure S3 for
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Table S3: Ionization potentials (IP), electron affinities (EA) and 0-0 transition energies E0−0 used in
computations. All data are expressed in eV.

FG3 FG4 Y6

IPa 5.39 5.17 -
EAa - - 4.06
Eb

0−0 1.53 1.27 1.46

aFor all the molecules, IP(EA) has been approximated as the oxidation(reduction) free energy
referred to vacuum. Oxidation and reduction free energies were inferred by Osteryoung square
wave voltammetry measurements carried out in orthodichlorobenzene:acetonitrile (4:1) solu-
tions using ferrocenium/ferrocene (Fc+/Fc) as the internal reference. The absolute reduction
potential for the Fc+/Fc couple has been set to 5.1 V, as in refs 14 and 1. bObtained by
aligning the predicted and observed FCWD for the S1 ← S0 absorption, see Figure S3.

the absorption of FG3. Comparison of observed and predicted FCWD shows a very good agree-

ment between the computed and the experimental bandwidth for the lowest energy absorption.

In the region of high wavenumbers the experimental FCWD exhibits a band peaked at ≈ 25000

cm−1 causing a slight enlargement of the experimental signal. That, however, corresponds to a

transition to a higher excited electronic state of FG3, not considered in computations.

Fig. S3: Superimposition of the experimental(blue) and theoretical(orange) FCWDs for the S1 ← S0
absorption of FG3; the 0-0 transition energy is indicated by the black dashed vertical bar. The

experimental absorption spectrum has been digitized from ref.1

The FCWD’s for all the investigated processes and their relative ∆Er are illustrated in Section
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S4.

S2 Computational Details

Equilibrium geometries, vibrational frequencies and normal modes of vibration have been com-

puted at the density functional theory (DFT) level, employing the CAM-B3LYP functional and

the 6-31G∗ basis set via the Gaussian 16 package.9 We settled on this particular functional and

basis set because it has been already shown their ability to precisely describe long-range properties

of extended π-conjugated systems, similar to the molecules considered here.7,17 Time-dependent

DFT (TD-DFT) was used to treat excited states. The polarizable continuum model (PCM) was

used to take into account bulk polarization; the dielectric constant, ε, was set to 4, which is a

suitable value for mimicking the environment in organic solid state devices.2,18,19 The unrestricted

formalism was adopted for species with unpaired electrons. Alkyl substituents have been replaced

by methyl groups in DFT and TDDFT geometry optimizations and computations of the Hessian

matrix.

MD simulations were carried out by using the gromacs 2020.5 software.20 The OPLS force

field was adopted throughout.21 Periodic boundary conditions were introduced and long range

electrostatic effects were taken into account through the PME algorithm.22 An integration time

step of 2 fs was set up, by imposing constraints on the bonds involving H atoms through the

LINCS algorithm,23 adopting a modified Berendsen thermostat to control temperature and a

Parrinello-Rahman barostat to control pressure.24,25 The computational protocol consisted of an

initial steepest descent minimisation, followed by a NVT equilibration in at 300 K over 1 ns. The

system was then subjected to 5 simulated annealing (SA) cycles over 100 ns, between 300 K and

600 K, adopting the NPT ensemble: heatings and coolings were run over 500 ps intervals, the

target temperature was maintained for 9.5 ns. Finally, a production run of 100 ns in the NPT

ensemble was carried out.
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S3 Kinetic model for binary cells

We have set up a kinetic model for state populations,2,26 described by the following set of coupled

differential equations:

d
dt


PGS

PD∗

PA∗

PCT

 =


0 0 0 kCR

0 −(kEET + kPET) 0 0

0 kEET −kPHT 0

0 kPET kPHT −kCR



PGS

PD∗

PA∗

PCT


(S14)

where P is the (normalized) population and the labels GS, D∗, A∗, CT refer, respectively, to

the ground state, the locally excited donor, the locally excited acceptor, and the charge transfer

state. The matrix of rate constants has been built according to the model of electronic states

and processes reported in the main text, Fig 1.
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S4 Predicted FCWD and energy for charge transfer and energy

transfer reactions

FCWDs computations have been carried out through the MolFC software package.27 Rate con-

stants have been computed evaluating F (∆Er, T ) at T = 298 K and the proper ∆Er, by averaging

the FCWD over a small interval around that energy (200 cm−1), a practical way to account for

thermal disorder. Convoluted FCWD’s as well as adopted ∆Er are shown in Figures S4-S12.

Fig. S4: FCWD for the charge recombination of FG3+ with Y6− obtained by convolution of the
FCWDs for the FG3+ → FG3 and Y6− → Y6 processes. The black dashed line indicates the energy of

the reaction (∆Er) at which the FCWD is evaluated.
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Fig. S5: FCWD for the charge recombination of FG4+ with Y6− obtained by convolution of
the FCWDs for the FG4+ →FG4 and Y6− →Y6 processes. The black dashed line represents

the energy of the reaction (∆Er) at which the FCWD is evaluated.

Fig. S6: FCWD for the excitation energy transfer process Y6+FG3∗→Y6∗+FG3 obtained by
convolution of the FCWDs for the FG3∗ →FG3 and Y6→Y6∗ processes. The black dashed line

indicates the energy of the reaction (∆Er) at which the FCWD is evaluated.
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Fig. S7: FCWD for the excitation energy transfer process Y6 + FG4∗ → Y6∗ + FG4. Since
EET for FG4 to Y6 is an endoergic process, the rate for the inverse reaction has been firstly

evaluated through the convolution of the FCWDs for the FG4→ FG4∗ and Y6∗ → Y6
processes. The black dashed line indicates the energy of the inverse reaction (∆Er). The direct

rate has been determined by means of the principle of detailed balance.28,29

Fig. S8: FCWD for the photoelectron transfer process Y6+FG3∗→Y6−+FG3+obtained by
convolution of the FCWDs for the FG3∗ →FG3+ and Y6→Y6− processes. The black dashed

line indicates the energy of the reaction (∆Er) at which the FCWD is evaluated.
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Fig. S9: FCWD for the photoelectron transfer process Y6 + FG4∗ → Y6− + FG4+ obtained by
convolution of the FCWDs for the FG4∗ → FG4+ and Y6→ Y6− processes. The black dashed

line indicates the energy of the reaction (∆Er) at which the FCWD is evaluated.

Fig. S10: FCWD for the photohole transfer process Y6∗ + FG3→ Y6− + FG3+ obtained by
convolution of the FCWDs for the Y6∗ → Y6− and FG3→ FG3+ processes. The black dashed

line indicates the energy of the reaction (∆Er) at which the FCWD is evaluated.
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Fig. S11: FCWD for the photohole transfer process Y6∗ + FG4→ Y6− + FG4+ obtained by
convolution of the FCWDs for the Y6∗ → Y6− and FG4→ FG4+ processes. The black dashed

line indicates the energy of the reaction (∆Er) at which the FCWD is evaluated.

Fig. S12: FCWD for the Förster resonance energy transfer from FG3∗ to FG4 obtained by
convolution of the FCWDs for the FG3∗ → FG3 and FG4→ FG4∗ processes. The black dashed

line indicates the energy of the reaction (∆Er) at which the FCWD is evaluated.
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S5 Time dependent evolution of state populations with a re-

duced conformational sampling

In Fig. S13 we report the time-dependent evolution of the populations of the electronic states

for FG3:Y6 and FG4:Y6, for an initial condition corresponding to a local excitation of the donor

(PD∗ = 1), using transfer integral values computed on a reduced conformational space, i.e. sam-

pling only from the last 20 ns of the MD simulations. Comparison with Fig. 3 in the main text

shows that the time evolution remains qualitatively similar, ensuring that the sampling used to

compute the rates used for the kinetic model is extensive enough to obtain a correct prediction

of the average behaviour of the device.

0 10 20 30
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0 10 20 30
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Fig. S13: Time dependent evolution of state populations for FG3:Y6 (left) and FG4:Y6 (right)
using rates of . We consider an initial condition corresponding to a local excitation of the donor
(PD∗ = 1). The labels GS, X∗ and CT refer, respectively, to the ground state, a local excitation

on the molecule X, and the charge transfer state.
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S6 Predicted SOC

In this section we report the spin-orbit coupling for the Intersystem Crossing between the first

triplet excited state (T1) and the ground state (S0) and between the first singlet excited state

(S1) and T1 for all the molecules under study.

Table S4: Spin-orbit coupling (SOC, cm−1) for the Intersystem Crossing between the first triplet
excited state (T1) and the ground state (S0) and between the first singlet excited state (S1) and T1. The
former has been computed starting from the T1 geometry, the latter starting from the S1 geometry. All

the couplings have been computed using the Orca software.30

Molecule SOCT1→S0
SOCS1→T1

(cm−1)

FG3 0.11 0.01
FG4 0.25 0.01
Y6 0.11 0.06
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