Lanthanide luminescent di-metallic triple-stranded helicates formed from bis-tridentate (1,2,3-triazol-4-yl)-picolinamide (tzpa) ligands and their higher order self-assemblies

Dawn E. Barry,^a Oxana Kotova,^{a,b} Niamh A. O'Shea,^{a,b} Shauna R. Donohoe,^a Aramballi J. Savyasachi,^{a,b} and Thorfinnur Gunnlaugsson^{*a,b}

^aSchool of Chemistry and Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland. E-mail: gunnlaut@tcd.ie

^bAdvanced Materials and BioEngineering Research (AMBER) Centre, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland

Figure S1. ¹H NMR of 1 (DMSO-d6, 400 MHz).

Figure S2. ¹³C NMR of 1 (DMSO-d6, 400 MHz).

Figure S3. IR spectrum of 1.

Figure S4. ¹H NMR of 1a (DMSO-d6, 600 MHz).

Figure S5. ¹³C NMR of 1a (DMSO-d6, 150 MHz).

Figure S6. HSQC of 1a (DMSO- d_6).

Figure S7. IR of 1a.

Figure S8. ¹H NMR of 2 (CDCl₃, 400 MHz).

Figure S9. ¹³C NMR of **2** (CDCl₃, 100 MHz).

Figure S10. HSQC of 2 (CDCl₃).

Figure S11. IR of 2.

Figure S12. DOSY NMR of 2 (2.0×10^{-3} M, DMSO- d_6 , 400 MHz).¹

Figure S13: DOSY NMR of 2 (1.7×10^{-3} M) with 0.66 equivalents of Eu(CF₃SO₃)₃ (CD₃OD, 400 MHz).²

Figure S14. Absorbance of 1 vs concentration recorded in CH₃CN at a) 235 nm and b) 292 nm.

Figure S15. Absorbance of **2** *vs* concentration recorded in CH₃CN:CHCl₃ (80:20) at **a)** 235 nm and **b)** 292 nm.

Figure S16. ¹H NMR of 3 (400 MHz, CD₃CN): a) full spectrum and b) zoomed area.

Figure S17. IR of 3.

Figure S18. ¹H NMR of **4** (400 MHz, CD₃CN): **a)** full spectrum and **b)** zoomed area.

Figure S19. IR of 4.

Figure S20. MALDI MS where the experimental and theoretical isotopic distribution are shown for $[Tb_21_3(CF_3SO_3)_5]^+$ (C₁₃₁H₁₀₈F₁₅N₃₀O₃₃S₅Tb₂⁺) of **3**.

Figure S21. ESI-MS of 4 showing experimental and theoretical isotopic distribution for [Tb2₂]³⁺.

Figure S22. Absorbance, fluorescence (λ_{ex} = 279 nm) and delayed excitation spectra (λ_{em} = 545 nm) of a) 3 (c = 3.4 × 10⁻⁴ M) and b) 4 (c = 2.5 × 10⁻⁴ M) in CH₃OH.

Figure S23. The experimental binding isotherms at $\lambda = 355$, 490, 545 and 621 nm of the fluorescence for the titration of **1** (1.0 x 10⁻⁵ M) against Tb(CF₃SO₃)₃ (0 \rightarrow 6 equiv.) in CH₃CN at 22 °C.

Figure S24. a) Recalculated spectra, **b)** experimental binding isotherms ($\lambda = 225, 250, 300$ and 320 nm; •••) and their fit (–) for the titration of **1** (1.0×10^{-5} M) against Tb(CF₃SO₃)₃ ($0 \rightarrow 6$ equiv.) in CH₃CN at 22 °C.

Figure S25. The experimental binding isotherms at $\lambda = 352$, 491, 545 and 622 nm of the fluorescence for the titration of **2** (1.1 x 10⁻⁵ M) against Tb(CF₃SO₃)₃ (0 \rightarrow 6 equiv.) in CH₃CN at 22 °C.

Figure S26. Overall changes in the: **a)** phosphorescence [delayed Tb(III)] emission upon titrating **2** (1.1 x 10⁻⁵ M) against Tb(CF₃SO₃)₃ (0 \rightarrow 6 equiv.) in CH₃CN at 22 °C (λ_{ex} = 292 nm), and **b**) experimental binding isotherms representing the changes at λ = 490, 545, 583 and 622 nm versus number of equivalents of Tb(III) added to the solution.

Figure S27. a) Recalculated spectra, **b)** speciation-distribution diagram, **c)** experimental binding isotherms (•••) and their fit (–) for the titration of **2** (1.1×10^{-5} M) against Tb(CF₃SO₃)₃ (0 \rightarrow 6 equiv.) in CH₃CN at 22 °C.

Figure S28. Life-times of Tb(III)-centred emission (λ_{ex} = 292 nm; λ_{em} = 545 nm) decays and their mono-exponential fits recorded for **3** in **a**) CH₃OH and **b**) CD₃OD.

Figurer S29. Life-times of Tb(III)-centred emission (λ_{ex} = 292 nm; λ_{em} = 545 nm) decays and their biexponential fits recorded for **3** in **a**) H₂O and **b**) D₂O.

Figure S30. Life-times of Tb(III)-centred emission ($\lambda_{ex} = 292 \text{ nm}$; $\lambda_{em} = 545 \text{ nm}$) decays and their mono-exponential fits recorded for **4** in **a**) CH₃OH and **b**) CD₃OD.

Figurer S31. Life-times of Tb(III)-centred emission (λ_{ex} = 292 nm; λ_{em} = 545 nm) decays and their mono-exponential fits recorded for **4** in **a**) H₂O and **b**) D₂O.

Figure S32. SEM Images of sample **1** prepared in MeOH [0.5 % w/v (2 mg in 400 μ L)] where 10 μ L of solution was deposited onto silica wafers and dried overnight: **a)** [scale bar = 100 μ m], **b)** [scale bar = 20 μ m], and **c)** [scale bar = 20 μ m], respectively.

Figure S33. SEM Images of sample **1** prepared in EtOH [0.5 % w/v (2 mg in 400 μ L)] where 10 μ L of solution was deposited onto silica wafers and dried overnight: **a**) [scale bar = 20 μ m], and **b**) [scale bar = 10 μ m], respectively.

Figure S34. SEM Images of sample **1** prepared in THF [0.5 % w/v (2 mg in 400 μ L)] where 10 μ L of solution was deposited onto silica wafers and dried overnight: **a**) [scale bar = 100 μ m], and **b**) [scale bar = 20 μ m], respectively.

Figure S35. SEM Images of samples **2** prepared in MeOH [0.5 % w/v (2 mg in 400 μ L)] where 10 μ L of solution was deposited onto silica wafers and dried overnight: **a)** [scale bar = 100 μ m], **b)** [scale bar = 20 μ m], and **c)** [scale bar = 10 μ m], respectively.

Figure S36. SEM Images of samples **2** prepared in EtOH [0.5 % w/v (2 mg in 400 μ L)] where 10 μ L of solution was deposited onto silica wafers and dried overnight: **a**) [scale bar = 20 μ m], **b**) [scale bar = 100 μ m], **c**) [scale bar = 10 μ m], **d**) [scale bar = 20 μ m], respectively.

Figure S37. SEM Images of samples **2** prepared in THF [0.5 % w/v (2 mg in 400 μ L)] where 10 μ L of solution was deposited onto silica wafers and dried overnight: **a**) [scale bar = 100 μ m], **b**) [scale bar = 20 μ m], **c**) [scale bar = 10 μ m], and **d**) [scale bar = 20 μ m], respectively.

Figure S38. SEM Images of samples **2** prepared in MeOH [1.0 % w/v (2 mg in 200 μ L)] where 10 μ L of solution was deposited onto silica wafers and dried overnight: **a**) [scale bar = 100 μ m], **b**) [scale bar = 20 μ m], **c**) [scale bar = 20 μ m], **d**) [scale bar = 10 μ m], **e**) [scale bar = 2 μ m], and **f**) [scale bar = 2 μ m], respectively.

Figure S39. SEM Images of samples **3** prepared in MeOH [0.5 % w/v (2 mg in 400 μ L)] where 10 μ L of solution was deposited onto silica wafers and dried overnight: **a)** [scale bar = 20 μ m], and **b)** [scale bar = 2 μ m], respectively.

Figure S40. SEM Images of samples **3** prepared in MeOH [1.0 % w/v (2 mg in 200 μ L)] where 10 μ L of solution was deposited onto silica wafers and dried overnight: **a)** [scale bar = 2 μ m], and **b)** [scale bar = 3 μ m], respectively.

Figure S41. SEM Images of samples **3** prepared in EtOH [0.5 % w/v (2 mg in 400 μ L)] where 10 μ L of solution was deposited onto silica wafers and dried overnight: **a**) [scale bar = 2 μ m], **b**) [scale bar = 2 μ m], and **c**) [scale bar = 2 μ m], respectively.

Figure S42. SEM Images of samples **3** prepared in THF [0.5 % w/v (2 mg in 400 μ L)] where 10 μ L of solution was deposited onto silica wafers and dried overnight: **a**) [scale bar = 20 μ m], **b**) [scale bar = 10 μ m], and **c**) [scale bar = 2 μ m], respectively.

Figure S43. SEM Images of samples **4** prepared in MeOH [1.0 % w/v (2 mg in 200 μ L)] where 10 μ L of solution was deposited onto silica wafers and dried overnight: **a**) [scale bar = 100 μ m], **b**) [scale bar =

100 μ m], **c)** [scale bar = 20 μ m], **d)** [scale bar = 10 μ m], and **e)** [scale bar = 10 μ m], and **f)** [scale bar = 2 μ m], respectively.

Figure S44. SEM Images of samples **4** prepared in EtOH [0.5 % w/v (2 mg in 400 μ L)] where 10 μ L of solution was deposited onto silica wafers and dried overnight: **a**) [scale bar = 100 μ m], **b**) [scale bar = 20 μ m], **c**) [scale bar = 20 μ m], **d**) [scale bar = 10 μ m], and **e**) [scale bar = 2 μ m], and **f**) [scale bar = 1 μ m], respectively.

Figurer S45. a) The emission (λ_{ex} = 290 nm) and b) excitation (λ_{em} = 545 nm) spectra recorded for the solid **3** in phosphorescence mode. c) The excited state decay recorded in phosphorescence mode (λ_{em} = 545 nm), which was best fitted to bi-exponential decay (λ_{ex} = 290 nm).

References

1. H. Günther, NMR spectroscopy: Basic principles, concepts, and applications in chemistry, Wiley-VCH, 2013.