Multi-Stimuli Responsive Smart Materials: Cyanine Amphiphile Self-Assembly for Photochromic and pH-Switching Applications

Tzu-Yu Tseng,^{a,‡} Yao-Chun Yeh,^{a,‡} Wei Hsing,^a Lien-Chen Fu,^a Mei-Yu Yeh^{a,*}

^aDepartment of Chemistry, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist., Taoyuan City 320314, Taiwan, Republic of China.

*Corresponding author. E-mail: myyeh@cycu.edu.tw

^{*}The authors contributed equally to this work.

Scheme S1 Synthetic routes for DPIIH and DPIIF	S3
Synthesis of compounds	S3
Characterizations	
Biocompatibility of DPIIF	S6
Computational methodology	S6
Table S1. Physical properties of DPIOH, DPIIH, DPIIF	S8
Fig. S1. SEM images of DPIIF hydrogels	
Fig. S2. FT-IR spectra	S8
Table S2. NBO charge distribution	
Table S3-S8 Theoretically calculated electron transition energy	S10
Fig. S3. Theoretical ¹ H NMR spectra	S14
Table S9 and Table S10 Theoretical ¹ H NMR calculation data	S14
Fig. S4. Theoretical ¹ H NMR spectrum	S15
Table S11 and Table S12 Theoretical ¹ H NMR calculation data	S16
Table S13. The quantum yields	S16
Fig. S5. UV-vis and emission spectra in toluene/DMSO mixtures	S17
Fig. S6. Optimized structure of (<i>E</i>)-DPIIF	S17
Fig. S7. DFT analysis	S18
Fig. S8. Noncovalent interaction	S18
Fig. S9. Optical images	S19
Fig. S10. Rheology measurement	S19
Fig. S11 Cell viability	S19
Fig. S12-S17 ¹ H NMR spectra	S20
Fig. S18 and Fig. 19 HRMS spectra	S23
Reference	S24

Scheme S1. Synthetic routes for DPIIH and DPIIF.

Synthesis of 2,3,3-trimethyl-3*H*-indole (5a)

Phenylhydrazine hydrochloride (**4a**) (20.7 mmol, 3.00 g) and 3-methyl-2-butanone (22.8 mmol, 2.44 mL) were dissolved in acetic acid (20mL), then the reaction mixture was refluxed at 120°C for 4h. After cooling to room temperatur, the crude product was extracted with DCM (80mL) and the organic layer was dried over MgSO₄ to obtain 2,3,3-trimethyl-3*H*-indole (**5a**) as a brown liquid (2.63g, 80%). ¹H NMR (300 MHz, DMSO-*d*₆): δ = 1.23 (s, 6H, 2CH₃), 2.20 (s, 3H, CH₃), 7.14-7.24 (m, 1H, CH), 7.26-7.29 (m, 2H, 2CH), 7.40-7.43 (m, 1H, CH).

Synthesis of 5-fluoro-2,3,3-trimethyl-3*H*-indole (5b)

In a manner similar to that described above, a mixture of (4-fluorophenyl)hydrazine hydrochloride (**4b**) (0.012 mol, 2.00 g) and 3-methyl-2-butanone (0.018 mol, 0.55 mL) were converted to 5-fluoro-2,3,3-trimethyl-3*H*-indole (**5b**) as a red-brown liquid (1.53 g, 72%). ¹H NMR (300 MHz, CDCl₃): δ = 1.32 (s, 6H, 2CH₃), 2.28 (s, 3H, CH₃), 6.97-7.03 (m, 2H, 2CH), 7.44-7.48 (m, 1H, CH).

Synthesis of 1-(2-carboxyethyl)-2,3,3-trimethyl-3*H*-indol-1-ium bromide (IH bromide, **6a**)

2,3,3-trimethyl-3*H*-indole (**5a**) (8.27 mmol, 1.32 g) and 3-bromopropionic acid (10.7 mmol, 1.64 g) were dissolved in dry CH₃CN (5 mL) and the reaction mixture was refluxed under nitrogen for 24h. After cooling to room temperature, the mixture was concentrated under reduced pressure, and diethyl ether was added to precipitate the crude product, followed by purified using chromatography on silica (acetone: diethyl ether 1:2 and DCM) to afford IH bromide (**6a**) as red solid (1.29 g, 76%). ¹H NMR (300 MHz, DMSO-*d*₆): δ = 1.53 (s, 6H, 2CH₃), 2.86 (s, 3H, CH₃), 2.99 (t, *J*= 9.2 Hz, 2H, CH₂), 4.66 (t, *J*= 9.2 Hz, 2H, CH₂), 7.61-7.63 (m, 2H, CH), 7.83-7.84 (m, 1H, CH) 7.98-8.00 (m, 1H, CH).

Synthesis of 1-(2-carboxyethyl)-5-fluoro-2,3,3-trimethyl-3*H*-indol-1-ium bromide (IF bromide, **6b**) In a manner similar to that described above, a reaction mixture of 5-fluoro-2,3,3-trimethyl-3*H*-indole (**5b**) (8.63 mmol, 1.53 g) and 3-bromopropionic acid (9.41 mmol, 1.44 g) were converted to IF bromide (**6b**) as a yellow solid (1.94 g, 68%). ¹H NMR (300 MHz, DMSO-*d*₆): δ = 1.54 (s, 6H, 2CH₃), 2.84 (s, 3H, CH₃), 2.97 (t, *J*= 9.2 Hz, 2H, CH₂), 4.64 (t, *J*= 9.2 Hz, 2H, CH₂), 7.46-7.53 (m, 1H, CH), 7.82-7.86 (m, 1H, CH), 8.03-8.08 (m, 1H, CH).

Synthesis of DPIIH

DPI-CHO (1.65 mmol, 0.43 g), IH bromide (1.27 mmol, 0.39 g), and a catalytic amount of pyridine were dissolved in dry ethanol. The reaction mixture was then heated to reflux under nitrogen for 12 hours. After cooling to room temperature, the reaction mixture was concentrated using a rotary evaporator, and the residue was precipitated with diethyl ether to obtain DPIIH as a red-brown solid (0.61 g, 87% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.81 (s, 6H, 2CH₃), 2.98 (t, *J*= 6.7 Hz, 2H, CH₂), 3.77 (s, 3H, CH₃), 4.81 (t, *J*= 6.7 Hz, 2H, CH₂), 7.25-7.29 (m, 3H, 3CH), 7.44-7.47 (m, 4H, 4CH), 7.58-7.63 (m, 5H, 5CH), 7.86 (d, *J*= 15.6 Hz, 1H, CH), 7.89-7.96 (m, 2H, 2CH), 8.11 (d, *J*= 15.6 Hz, 1H, CH). ¹³C NMR (100 MHz, DMSO-*d*₆) δ = 181.7, 172.0, 144.0, 143.3, 142.8, 141.1,

136.9, 136.2, 133.6, 130.9, 129.8, 129.7, 129.4, 128.9, 128.2, 127.3, 123.5, 115.7, 112.5, 52.7, 43.3, 32.7, 32.3, 26.4. HRMS (ESI⁺) *m*/*z* for C₃₁H₃₀N₃O₂, calcd 476.2338, found 476.2593.

Synthesis of DPIIF

In a manner similar to that described above, a reaction mixture of DPI-CHO (0.10 mmol, 28 mg), IF bromide (0.10 mmol, 35 mg), and a catalytic amount of pyridine was utilized. This yielded DPIIF as a red-brown solid (0.06 g, 63% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.82 (s, 6H, 2CH₃), 2.97 (t, *J*= 6.6 Hz, 2H, CH₂), 3.77 (s, 3H, CH₃), 4.79 (t, *J*= 6.6 Hz, 2H, CH₂), 7.25-7.30 (m, 3H, 3CH), 7.43-7.50 (m, 4H, 4CH), 7.57-7.59 (m, 4H, 4CH) , 7.83 (d, *J*=15.1, 1H, CH) , 7.89-7.92 (m, 1H, CH), 8.00-8.03 (m, 1H, CH), 8.09 (d, *J*=15.1, 1H, CH). ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 181.8, 172.0, 161.8, 146.7, 143.3, 142.8, 137.5, 136.9, 133.6, 130.9, 130.1, 129.8, 129.4, 128.8, 128.2, 127.3, 124.3, 116.8, 112.4, 52.9, 43.4, 32.6, 32.2, 26.2. HRMS (ESI⁺) *m/z* for C₃₁H₂₉FN₃O₂, calcd 494.2238, found 494.2469.

Characterizations

The ¹H, ¹³C, and ¹⁹F NMR spectra were captured using a Bruker AVANCE II-400 MHz spectrometer with DMSO-d6 as the solvent, and CF₃COOH was utilized as the reference (δ = -75.0 ppm) for the ¹⁹F NMR.^{\$1} Fourier transform infrared (FT-IR) spectra were acquired employing a Thermo Fisher Scientific Nicolet iS5 infrared spectrophotometer to characterize and evaluate the intermolecular and/or intramolecular interactions of DPIIH and DPIIF. Scanning electron microscopy (SEM) using the JEOL JSM-7600F model was utilized to examine the morphologies of DPIIH and DPIIF, with test samples prepared *via* freeze-vacuum drying.^{\$2} UV-vis absorption and fluorescence emission spectra were recorded with a Shimadzu UV-2550 spectrometer for UV-vis absorption and a Horiba FluoroMax[®]-4 spectrometer for fluorescence emission. The emission spectra of samples were observed at excitation wavelengths of 495.3 nm, 513.8 nm, and 536.2 nm in water, DMSO, and CHCl₃, respectively. To prevent reabsorption of emission from the sample, micro fluorometer cuvettes with a 1 mm light path and 0.35 mL volume were utilized.^{\$3} Rheological assessments were performed using a TA rheometer (DHR-1) with a 40 mm parallel plate. The hydrogel sample (400 μ L, 1 wt%) underwent an angular frequency sweep test with parameters including a test range of 1-100 rad·s⁻¹, a strain of 1%, 15 points per decade, a sweep mode of "log", and a temperature of 25 °C.^{S4}

Biocompatibility of DPIIF

The biocompatibility of DPIIF hydrogel was evaluated by culturing L929 cells with an extraction medium.^{S5} The extraction medium was prepared by immersing DPIIF hydrogel in Dulbecco's Modified Eagle Medium (DMEM, Gibco, Life Technologies, Carlsbad, CA, USA) at a volume ratio of 1:10 (hydrogel volume to medium volume) and incubating at 37 °C for two days. L929 cells were seeded in 96-well plates and cultured with DMEM at 37 °C under 5% CO₂ for one day. The cells were treated with extraction medium at pH values ranging from 5.5 to 8.0, replacing the DMEM, and allowed to grow for one, three, and five days.^{S6,S7} For the light exposure experiment, the selected wells were irradiated with UV light for 30 seconds and subsequently cultured for one, three, and five days.^{S8} Cell viability assays were conducted on the L929 cells cultured with the extraction medium at DMEM using the MTT reagent. The optical density of the resulting solution was measured at 595 nm using a BioTek (Winooski, VT, USA) 800 TS microplate reader. Cells that were not exposed to the test hydrogels were assigned to the control group.

Computational methodology

Theoretical calculations were conducted using Gaussian 09 software to elucidate the structural and electronic properties of the molecules under study.^{S9} Geometry optimization in both the ground and excited states was achieved *via* density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods, using the M06-2X density functional with a 6-31G (d,p) basis set, respectively.^{S10-S13} The polarizable continuum model (PCM) was employed to simulate the water or DMSO solution environment.^{S14} Analysis of frontier molecular orbitals, electrostatic potential

maps, and calculations of both ground and excited states were conducted at the same optimized structural level. Furthermore, UV-Vis absorption and emission spectra of the molecules in water were generated using the TD-DFT method, providing insights into their spectroscopic behavior. Additionally, calculations of ¹H NMR chemical shifts (δ), referenced relative to tetramethylsilane (TMS), were performed using the Gauge-Independent Atomic Orbital (GIAO) method developed by Wolinski *et al.*, further enhancing the understanding of molecular properties.^{S15} To address the basis set superposition error (BSSE), the counterpoise (CP) method proposed by Boys and Bernardi was employed.^{S16} Larger negative binding energy (E_B) values indicate stronger interactions, such as hydrogen bonding, leading to more stable complexes. Moreover, non-covalent interactions were visualized and analyzed in real space using Multiwfn 3.7 software, with graphical representations generated using VMD 1.9.^{S17, S18}

	Conc. (wt%)	Appearance	G', G" (Pa)
DPIOH	0.5-2.0	Solution	/
DPIIH	0.5-2.0	Solution	/
DPIIF	0.5	Solution	/
DPIIF	1.0ª	Gel	688.0, 201.3
DPIIF	2.0	Gel	2387.3, 472.2

Table S1. Physical properties of DPIOH, DPIIH, DPIIF.

^aThe lower critical gelation concentration.

Fig. S1. SEM images of DPIIF hydrogels at (a) 1 wt% and (b) 2 wt%. Scale bar: 100 nm.

Fig. S2. FT-IR spectra of DPIIH (black) and DPIIF (red).

Table S2 NBO charge distribution of (*E*)-DPIIF, and (*Z*)-DPIIF by M06-2X/6-31G(d,p) level of theory using IEFPCM in water solvent.

	(E)-DPIIF				(Z)-DPIIF		
C_1	-0.24743	C ₃₄	-0.28954	C_1	-0.25154	C ₃₄	-0.28751
C_2	-0.24665	O ₃₅	-0.65335	C_2	-0.24622	O ₃₅	-0.62269
C_3	-0.22893	O ₃₆	-0.71815	C_3	-0.23174	O ₃₆	-0.74771
C_4	-0.08859	H ₃₇	0.2567	C_4	-0.08166	H ₃₇	0.25586
C_5	-0.22414	H ₃₈	0.25787	C_5	-0.22649	H ₃₈	0.25679
C_6	-0.24728	H ₃₉	0.25701	C_6	-0.24619	H ₃₉	0.25596
C_7	0.13797	H_{40}	0.26027	C_7	0.12691	H_{40}	0.25175
C_8	0.19242	H_{41}	0.25744	C_8	0.16371	H_{41}	0.25589
N ₉	-0.3375	H_{42}	0.26395	N_9	-0.34941	H_{42}	0.26277
C_{10}	0.32689	H ₄₃	0.26245	C_{10}	0.34385	H ₄₃	0.26138
N_{11}	-0.4786	H_{44}	0.26096	N_{11}	-0.52978	H_{44}	0.26003
C_{12}	-0.11583	H45	0.26288	C_{12}	-0.11107	H45	0.26172
C ₁₃	-0.21544	H_{46}	0.26222	C ₁₃	-0.21917	H_{46}	0.26068
C_{14}	-0.24256	H_{47}	0.25568	C_{14}	-0.24344	H_{47}	0.28365
C ₁₅	-0.23593	H_{48}	0.28423	C15	-0.23932	H_{48}	0.30172
C_{16}	-0.24205	H49	0.26853	C_{16}	-0.24275	H49	0.26248
C_{17}	-0.22956	H_{50}	0.2702	C_{17}	-0.23103	H_{50}	0.26996
C_{18}	-0.13456	H_{51}	0.26186	C_{18}	-0.20455	H_{51}	0.26207
C ₁₉	-0.33212	B ₅₂	0.28632	C ₁₉	-0.31544	H ₅₂	0.28924
C_{20}	0.39927	O ₅₃	0.28401	C ₂₀	0.46449	H ₅₃	0.28933
N_{21}	0.31467	O ₅₄	0.29615	N_{21}	0.27528	H54	0.29125

C_{22}	0.13957	H55	0.29447	C ₂₂	0.1272	H55	0.28811
C ₂₃	-0.01567	H56	0.26188	C ₂₃	-0.01165	H56	0.26364
C ₂₄	-0.10613	H57	0.25862	C ₂₄	-0.11305	H57	0.26081
C ₂₅	-0.50044	H58	0.26447	C ₂₅	-0.5012	H58	0.26871
C ₂₆	-0.28235	H59	0.25769	C ₂₆	-0.27987	H59	0.26153
C ₂₇	-0.60727	H ₆₀	0.26278	C ₂₇	-0.59803	H ₆₀	0.26335
C_{28}	0.87864	H61	0.26554	C ₂₈	0.87135	H61	0.26537
C ₂₉	-0.68425	H62	0.279	C ₂₉	-0.68537	H62	0.28158
C ₃₀	-0.68366	H ₆₃	0.28378	C ₃₀	-0.68388	H ₆₃	0.28607
C ₃₁	-0.23863	H64	0.28442	C ₃₁	-0.23483	H64	0.28703
C ₃₂	-0.29761	H65	0.53804	C ₃₂	-0.29702	H65	0.53936
C ₃₃	0.44281	F66	-0.33805	C ₃₃	0.4483	F66	-0.33599

Table S3. Theoretically calculated electron transition energy of (*E*)-DPIIF using the TD-DFT/M06-2X/6-31G(d,p) level of theory with the PCM model in a water environment.

Bands	Electron transitions	Molecular orbitals	
(<i>nm</i>)			
	HOMO→LUMO		
	Molecular contribution		
452.0	0.69001		
453.9	Oscillator strength (f)	A Star Star Star Star Star	
	1.3391		
		$E_{ex} = 2.73 \text{ eV}$	
	HOMO-1→LUMO		
207 7	Molecular contribution		
	0.67705		
307.7	Oscillator strength (f)		
	0.0606		
		$E_{ex} = 4.03 \text{ eV}$	
	HOMO-3→LUMO		
	Molecular contribution		
282.5	0.55089		
	Oscillator strength (f)		
	0.0270		
		$E_{ex} = 4.39 \text{ eV}$	

Table S4. Theoretically calculated electron transition energy of (*Z*)-DPIIF using the TD-DFT/M06-2X/6-31G(d,p) level of theory with the PCM model in a water environment.

Bands	Electron transitions	Molecular orbitals		
(nm)				
	HOMO→LUMO			
	Molecular contribution			
278 1	0.67031			
576.1	Oscillator strength (f)			
	0.2133	see		
		$E_{ex} = 3.28 \text{ eV}$		
	HOMO→LUMO+1			
280.0	Molecular contribution			
	0.57614			
280.9	Oscillator strength (f)			
	0.3732	Jene Jene		
		$E_{ex} = 4.41 \text{ eV}$		
	HOMO-2→LUMO			
	Molecular contribution			
274.9	0.34858			
	Oscillator strength (f)			
	0.1649	2 -2 -2		
		$E_{ex} = 4.51 \text{ eV}$		

Bands	Electron transitions	Molecular orbitals
(nm)		
	HOMO→LUMO	and a star and a star
	Molecular contribution	
281.5	0.57564	
	Oscillator strength (f)	
	0.0743	
		$E_{ex} = 4.40 \text{ eV}$
	HOMO-1→LUMO	
	Molecular contribution	
27777	0.61625	
211.1	Oscillator strength (f)	
	0.6127	
		$E_{ex} = 4.47 \text{ eV}$
	HOMO→LUMO+2	
	Molecular contribution	
269.4	0.42926	
	Oscillator strength (f)	
	0.2996	
		$E_{ex} = 4.60 \text{ eV}$

Table S5. Theoretically calculated electron transition energy of (E)-DPIIF-OH using the TD-DFT/M06-2X/6-31G(d,p) level of theory with the PCM model in a water environment.

Table S6. Theoretically calculated emission transition energy of (E)-DPIIF using the TD-DFT/M06-2X/6-31G(d,p) level of theory with the PCM model in a water environment.

Bands	Electron transitions	Molecular orbitals	
(nm)			
	LUMO→HOMO		
	Molecular contribution	in the second	
577 1	0.69897		
377.4	Oscillator strength (f)		
	1.0980		
		$E_{em} = 2.15 \text{ eV}$	

Bands	Electron transitions	Molecular orbitals
(nm)		
	LUMO→HOMO	
	Molecular contribution	
284.02	0.66861	
364.03	Oscillator strength (f)	
	0.0761	
		$E_{em} = 3.23 \text{ eV}$
	LUMO+1→HOMO	
	Molecular contribution	
284.41	0.63782	
	Oscillator strength (f)	
	0.1843	
		$E_{em} = 4.36 \text{ eV}$

Table S7. Theoretically calculated emission transition energy of (*Z*)-DPIIF using the TD-DFT/M06-2X/6-31G(d,p) level of theory with the PCM model in a water environment.

Table S8. Theoretically calculated emission transition energy of (*E*)-DPIIF-OH using the TD-DFT/M06-2X/6-31G(d,p) level of theory with the PCM model in a water environment.

Bands	Electron transitions	Molecular orbitals	
(nm)			
	LUMO→HOMO		
	Molecular contribution		
292.10	0.60623		
282.19	Oscillator strength (f)		
	0.2095		
		$E_{em} = 4.39 \text{ eV}$	

Fig. S3. Theoretical ¹H NMR spectra of (a) (*E*)-DPIIF and (b) (*Z*)-DPIIF by the DFT/M06-2X/6-31G(d,p) level of theory with PCM model in a DMSO environment.

(E)-DPIIF	Chemical Shift	(Z)-DPIIF	Chemical Shift
Atom	(ppm)	Atom	(ppm)
H56 、H57 、H58 、H59 、	1 70	H_{56} \cdot H_{57} \cdot H_{58} \cdot H_{59} \cdot H_{60} \cdot	1.79
$H_{60} \cdot H_{61}$	1.72	H_{61}	
$H_{54} \cdot H_{55}$	3.12	$H_{54} \cdot H_{55}$	2.84
$H_{49} \sim H_{50} \sim H_{51}$	3.83	H_{49} 、 H_{50} 、 H_{51}	3.68
H52 \ H53	4.91	H52 \ H53	4.60
H63	8.07	H_{48}	7.11
H37 、 H64	8.16	H38 \cdot H39 \cdot H40 \cdot H41	7.56
H38、H39、H40、H41	8.24	H37	7.88
$H_{42} \cdot H_{43} \cdot H_{45} \cdot H_{46}$	8.30	H47	7.94
H62	8.37	$H_{42} \circ H_{43} \circ H_{45} \circ H_{46} \circ H_{63}$	8.25
H44	8.45	$H_{44} \sim H_{64}$	8.39
H_{48}	8.64	H62	8.57
H47	9.06		

Table S9. Theoretical ¹H NMR calculations for (*E*)-DPIIF and (*Z*)-DPIIF by the DFT/M06-2X/6-31G(d,p) level of theory with PCM model in a DMSO environment.

(E)-DPIIF	Chemical Shift	(Z)-DPIIF	Chemical Shift
Atom	(ppm)	Atom	(ppm)
H_{47} b	9.06	$H_{47}b$	7.94
H_{48^b}	8.64	H_{48^b}	7.11
Hac	8.09	Hac	6.92
H_{b^c}	7.83	H_{b^c}	6.75

Table S10. Comparison of theoretical and experimental chemical shifts of H_{47} (H_a) and H_{48} (H_b) in ¹H NMR for (*E*)-DPIIF and (*Z*)-DPIIF.^a

^aH₄₇ represents H_a, and H₄₈ represents H_b. ^btheoretical chemical shifts, ^cexperimental chemical shifts.

Fig. S4. Theoretical ¹H NMR spectrum of (*E*)-DPIIF-OH by the DFT/M06-2X/6-31G(d,p) level of theory with PCM model in a DMSO environment.

Atom	Chemical Shift (ppm)
H56 \cdot H57 \cdot H58 \cdot H59 \cdot H60 \cdot H61	1.31
$H_{54} \cdot H_{55}$	2.96
$H_{49} \sim H_{50} \sim H_{51}$	3.34
$H_{52} \cdot H_{53}$	3.73
H47	6.92
H62	7.12
H63	7.42
H_{48}	7.51
H65	7.74
H37	7.97
$H_{38} \land H_{39} \land H_{40} \land H_{41}$	8.10
$H_{42} \sim H_{43} \sim H_{45} \sim H_{46}$	8.17
H44	8.27

Table S11. Theoretical ¹H NMR calculations for (*E*)-DPIIF-OH by the DFT/M06-2X/6-31G(d,p) level of theory with PCM model in a DMSO environment.

Table S12. Comparison of theoretical and experimental chemical shifts of H47 (Ha) and H48 (Hb) in

¹H NMR for (*E*)-DPIIF-OH.^a

Atom	Chemical Shift (ppm)
H47 ^b	6.92
H_{48^b}	7.51
Ha ^c	6.62
$H_{b^{c}}$	6.88

^aH₄₇ represents H_a, and H₄₈ represents H_b. ^btheoretical chemical shifts, ^cexperimental chemical shifts.

Table S13. The quantum yields of DPIIF in solution and solid state.

Solution ^{<i>a,b</i>}	$Solid^b$
1.82%	9.05%

^aMeasured in DMSO; ^bDetermined by absolute method.^{S19}

Fig. S5. (a) UV-vis absorption and (b) emission spectra of DPIIF at 5 μ M in toluene/DMSO mixtures (λ ex= 513.8). (c) Plot of the relative fluorescence intensity (I/I₀) of DPIIF with respect to the fraction of toluene in the toluene/DMSO mixtures; I₀: fluorescence intensity at 598 nm in pure DMSO.

Fig. S6. (*E*)-DPIIF was optimized using the DFT/M06-2X/6-31G(d,p) level of theory with the PCM solvation model (water as the solvent). Carbon, hydrogen, nitrogen, oxygen, and fluorine atoms are depicted in gray, white, blue, red, and cyan, respectively.

Fig. S7. DFT analysis of the intermolecular binding energy between DPIIF and water. Carbon, hydrogen, nitrogen, oxygen, and fluorine atoms are depicted in gray, white, blue, red, and cyan, respectively.

Fig. S8. Reduced density gradient (σ) between DPIIF and water, plotted with respect to the electron density (ρ) multiplied by the sign of λ_2 . (b) Visualization of the intermolecular interactions between DPIIF and water in real space; carbon, hydrogen, nitrogen, oxygen, and fluorine atoms are depicted in cyan, white, blue, red, and pink, respectively.

Fig. S9. Optical images of 1 wt% (E)-DPIIF at (a) pH 2, (b) pH 7, and (c) pH 12, with (a) and (b)

captured under ambient room lighting (left) and UV illumination (right).

Fig. S10. Frequency-dependent rheology measurement of 2 wt% of (E)-DPIIF hydrogel.

Fig. S11. Cell viability of L929 cells on DPIIF hydrogels for 1, 3, and 5 days. (From left to right are the control, pH 5.5, pH 6.5, pH 7.0, pH 8.0, and samples exposed to UV light irradiation for 30 seconds.)

Fig. S12. ¹H NMR spectrum of compound **5a** in DMSO-*d*₆.

Fig. S13. ¹H NMR spectrum of compound **5b** in CDCl₃.

Fig. S14. ¹H NMR spectrum of compound **6a** in DMSO-*d*₆.

Fig. S15. ¹H NMR spectrum of compound **6b** in DMSO-*d*₆.

Fig. S17. ¹H NMR spectrum of DPIIF in DMSO-*d*₆.

Fig. S18. HRMS spectrum of DPIIH.

Fig. S19. HRMS spectrum of DPIIF.

Reference

- S1. A. O. Okaru, T. S. Brunner, S. M. Ackermann, T. Kuballa, S. G. Walch, M. Kohl-Himmelseher,D. W. Lachenmeier, *J. Anal. Methods Chem.* 2017, 2017, 9206297.
- S2. Y.-S. Zhang, X.-J. Liu, Y.-Z. Chu, P.-W. Chen, Y.-C. Yeh, Y.-F. Ni, M.-Y. Yeh, ACS Appl. Electron. Mater. 2023, 5, 6114.
- S3. H.-Y. Chen, C.-C. Yao, T.-Y. Tseng, Y.-C. Yeh, H.-S. Huang, M.-Y. Yeh, *RSC Adv.* 2021, 11, 40228.
- S4. M.-Y. Yeh, C.-T. Huang, T.-S. Lai, F.-Y. Chen, N.-T. Chu, D. T.-H. Tseng, S.-C. Hung, H.-C. Lin, *Langmuir* **2016**, *32*, 7630.
- S5. ISO 10993-5: 2009 Biological Evaluation of Medical Devices-Part 5: Tests for in Vitro Cytotoxicity (International Organization for Standardization, **2009**).
- S6. C. R. Kruse, M. Singh, S. Targosinski, I. Sinha, J. A. Sorensen, E. Eriksson, K. Nuutila, *Wound Rep. Reg.* 2017, 25, 260-269.
- S7. A. Souza, M. Parnell, B. J. Rodriguez, E. G. Reynaud, Gels 2023, 9, 853.
- S8. Y. Zheng, H. Lu, Z. Jiang, Y. Guan, J. Zou, X. Wang, R. Cheng, H. Gao, J. Mater. Chem. B, 2017, 5, 6277-6281.
- S9. M. J. Frisch et al., Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2009.
- S10. H. Wang, Q. Li, J. Zhang, H. Zhang, Y. Shu, Z. Zhao, W. Jiang, L. Du, D. L. Phillips, J. W.
 Y. Lam, H. H. Y. Sung, I. D. Williams, R. Lu and B. Z. Tang, J. Am. Chem. Soc. 2021, 143, 9468.
- S11. B. J. Graham, I. W. Windsor, B. Gold, R. T. Raines, *Proc. Natl. Acad. Sci. USA* 2021, *118*, e2013691118.
- S12. Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
- S13. M.-Y. Yeh, H.-C. Lin, Phys. Chem. Chem. Phys. 2014, 16, 24216.
- S14. B. Mennucci, E. Cances, J. Tomasi, J. Phys. Chem. B 1997, 101, 10506.

- S15. K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251.
- S16. S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553-566.
- S17. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
- S18. E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen and W. Yang,
- J. Am. Chem. Soc., 2010, 132, 6498-6506
- S19. Z. Song, W. Zhang, M. Jiang, H. H. Y. Sung, R. T. K. Kwok, H. Nie, I. D. Williams, B. Liu, B.
- Z. Tang, Adv. Funct. Mater. 2016, 26, 824.