Supplementary Material for

Construction of CoP/MnP/Cu₃P heterojunction for efficient

methanol oxidation-assisted seawater splitting

Figure S1. (a) XRD pattern of precursor Mn and its (b) SEM; (c) XRD pattern of precursor MnCo and its (d) SEM; (e) SEM of CoP/MnP/Cu₃P@CF.

Figure S2. CV curves in the range of $0.9 \sim 1.5$ V vs. RHE at a scan rate of 50 mV s⁻¹ used to calculate the TOF of the OER.

Figure S3. Comparison of R_s and R_{ct} values of equivalent circuits at HER, OER, and MOR for different samples in different electrolytes, respectively.

Figure S4. CV curves in the range of $0.9 \sim 1.5$ V vs. RHE at a scan rate of 50 mV s⁻¹ used to calculate the TOF of the MOR.

Figure S5. Nyquist plot of CoP/MnP/Cu₃P@CF in seawater + 1M KOH + 1M methanol electrolyte after 24 h of stability test.

Figure S6. CV curves in the range $0 \sim 0.6$ V vs. RHE at a scan rate of 50 mV s⁻¹ used to calculate the TOF of the HER.

Figure S7. CV curves and corresponding C_{dl} values for (a) CF, (b) $Cu_3P@CF$, (c) $MnP/Cu_3P@CF$, (d) $CoP/Cu_3P@CF$, and (e) $CoP/MnP/Cu_3P@CF$ in the non-Faraday region (0.22 ~ 0.32 V vs. RHE).

Motorial	Electrolyte	Tafel slope	Current density @	Reference	
Material	Electrolyte	$(mV dec^{-1})$	Potential		
CoP/MnP/Cu ₃ P@CF	1 M KOH +	43	10 mA cm ⁻² at 1.530	This	
	Seawater		V (vs. RHE)	I nis work	
NiMoPx@Ni5P4	1 M KOH	_	$10 \text{ mA cm}^{-2} \text{ at} \sim 1.56$	[1]	
			V (vs. RHE)		
Ni ₃ S ₂ -CNFs@CC	1 M KOH	_	10 mA cm ⁻² at \sim 1.540	[2]	
			V (vs. RHE)		
Co _{10%} -CuV	1 M KOH	141	10 mA cm ⁻² at ~1.610	[3]	
			V (vs. RHE)		
Co ₂ V ₂ O ₇ NRs@NF	1 М КОН	76	$10~mA~cm^{-2}$ at ${\sim}1.570$	[4]	
			V (vs. RHE)		
NiVP/Pi-VC	1 M KOH	120	10 mA cm ⁻² at ~1.530	[5]	
			V (vs. RHE)		
r-Se/NiSe2@NF	1 M KOH +	90	10 mA cm ⁻² at \sim 1.550	[6]	
	Seawater		V (vs. RHE)		

 Table S1. Comparison of OER performances of MnP/CoP/Cu₃P@CF with other reported electrocatalysts.

Motorial	Electrolyte	Tafel slope	Current density @	Deference	
Material	Electrolyte	(mV dec ⁻¹)	Potential	Kelerence	
CoP/MnP/Cu3P@CF	1 M KOH + 1 M Methanol + Seawater	76.2	10 mA cm ⁻² at 1.356 V (vs. RHE)	This work	
NiFe ₂ O ₄ @NF	1 M KOH + 0.5 + Methanol	28.5	10 mA cm ⁻² at ~ 1.410 V (vs. RHE)	[7]	
NiMoP _x @Ni ₅ P ₄	1 M KOH + 1 M Methanol	14.8	10 mA cm ⁻² at 1.360 mV (vs. RHE)	[1]	
NiFe LDH@NiMo	1 M KOH + 0.5 + Methanol	54.0	10 mA cm ⁻² at 1.360 mV (vs. RHE)	[8]	
Ni ₃ S ₂ -CNFs@CC	1 M KOH + 1 M Methanol	_	10 mA cm ⁻² at ~ 1.350 V (vs. RHE)	[2]	
NiFe-LDH/NiFe- HAB@CF	1 M KOH + 3 M Methanol	_	10 mA cm ⁻² at ~ 1.400 V (vs. RHE)	[9]	
r-Se/NiSe ₂ @NF	1 M KOH + 0.33 M Urea + Seawater	82	10 mA cm ⁻² at ~ 1.420 V (vs. RHE)	[6]	

 Table S2. Comparison of MOR performances of MnP/CoP/Cu₃P@CF with other reported electrocatalysts.

Material	Flaatralyta	Tafel slope	Current density @	Deference
	Electroryte	$(mV dec^{-1})$	Potential	Kelefence
MnP/CoP/Cu ₃ P@CF	1 M KOH +	85	10 mA cm ⁻² at 146	This work
	Seawater		mV (vs. RHE)	
Cu Co So@NC	1 М КОН	162	10 mA cm ⁻² at 208	[10]
$Cu-Co_{0.85}Se(\underline{w})NC$			mV (vs. RHE)	
Co _{10%} -CuV	1 M KOH	94	10 mA cm ⁻² at 176	[3]
			mV (vs. RHE)	
	1 M KOH	114	10 mA cm ⁻² at ~160	[4]
$\operatorname{CO}_2 \operatorname{V}_2 \operatorname{O}_7 \operatorname{NKS}(\mathcal{U})\operatorname{NF}$			mV (vs. RHE)	
NIVD/D: VC	1 M KOH	104	10 mA cm ⁻² at ~150	[5]
NIVP/PI-VC			mV (vs. RHE)	
r-Se/NiSe ₂ @NF	1 M KOH +	146	10 mA cm ⁻² at ~180	[6]
	Seawater	140	mV (vs. RHE)	[0]

 Table S3. Comparison of HER performances of MnP/CoP/Cu₃P@CF with other reported electrocatalysts.

2				
Two-electrode electrolyzer	Electrolyte	Cell voltage	Reference	
CoP/MnP/Cu ₃ P@CF	1 M KOH + 1 M	1.410 V for 10	TT1 ' 1	
CoP/MnP/Cu ₃ P@CF	Methanol + Seawater	mA cm ⁻²	I his work	
	1 M KOH + 0.5 M	1.520 V for 10	[7]	
$N1Fe_2O_4(a)NF \parallel N1Fe_2O_4(a)NF$	Methanol + Seawater	mA cm ⁻²		
ת 'זגר ה (זגר ה אניזג ה (זגר ה אניזג	1 M KOH + 1 M	~1.42 V for 10	F13	
$N_1MOPx@N_15P_4 \parallel N_1MOPx@N_15P_4$	Methanol	mA cm ⁻²	[1]	
Cu-Co _{0.85} Se@NC Cu-	1 M KOH + 0.12 M	1.460 V for 10	[10]	
Co _{0.85} Se@NC	Methanol	mA cm ⁻²	[10]	
NiFe LDH@NiMo NiFe	1 M KOH + 0.5 M	~1.410 V for 10	[8]	
LDH@NiMo	Methanol	mA cm ⁻²		
$Co_2V_2O_7 NRs@NF \parallel Co_2V_2O_7$	1 M KOH + 50 mM	1.510 V for 10	E 4 3	
NRs@NF	Glucose	mA cm ⁻²	[4]	
	1 M KOH + 0.33 M	1.590 V for 10	5.0	
$r-Se/NiSe_2@NF \parallel r-Se/NiSe_2@NF$	Urea+ Seawater	mA cm ⁻²	[6]	

Table S4. Comparison of OMS performances of CoP/MnP/Cu₃P@CF with other reported electrocatalysts.

References

1. Zhu, B.; Xiong, J.; Wu, S.; You, K.; Sun, B.; Liu, Y.; Chen, M.; Jin, P.; Feng, L., Advanced Functional Materials **2024**, 2407236.

2. Zhao, B.; Liu, J.; Wang, X.; Xu, C.; Sui, P.; Feng, R.; Wang, L.; Zhang, J.; Luo, J.-L.; Fu, X.-Z., *Nano Energy* **2021**, *80*, 105530.

3. Tripathi, V.; Jain, S.; Kabra, D.; Panchakarla, L. S.; Dutta, A., *Nanoscale Advances* **2023**, *5* (1), 237-246.

4. Ashoka, S.; Sushmitha, M.; Shirisha, M.; Akshaya, H. M.; Yogesh, K.; Girish Kumar, S., *Materials Science in Semiconductor Processing* **2024**, *184*, 108838.

5. Thakur, N.; Mehta, D.; Chaturvedi, A.; Mandal, D.; Nagaiah, T. C., *Journal of Materials Chemistry A* **2023**, *11* (29), 15868-15877.

6. Khatun, S.; Roy, P., Journal of Colloid and Interface Science 2023, 630, 844-854.

7. Du, X.; Tan, M.; Wei, T.; Kobayashi, H.; Song, J.; Peng, Z.; Zhu, H.; Jin, Z.; Li, R.; Liu, W., *Chemical Engineering Journal* **2023**, *452*, 139404.

8. Wang, J. Y.; Sun, L. P.; Li, Q.; Huo, L. H.; Zhao, H., Materials Today Chemistry 2023, 27, 101338.

9. Jiang, S.; Xiao, T.; Xu, C.; Wang, S.; Peng, H.-Q.; Zhang, W.; Liu, B.; Song, Y.-F., *Small* **2023**, *19* (27), 2208027.

10. Hu, L.; Zhong, P.; Zhu, J.; Wang, J.; Zheng, Y.; Lin, X.; Zhang, Y.; Yang, H., *CrystEngComm* **2024**, *26* (35), 4804-4811.