Supporting Information

Nickel-free Cross-electrophile Coupling of Unactivated Alkyl

Bromides with Thiosulfonates and Sulfinyl Sulfones

Qiujin Fan¹, Yanchuang Zhao¹, Jin-Tao Liang¹, Yan Zhang¹, Yuenian Xu¹, Qingqing

Zhang¹, Hua Zhu², Min Jiang^{1*} and Xinxin Shao^{1*}

¹College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
²Sichuan Qingmu Pharmaceutical Co., Ltd., Meishan City, 620036, People's Republic of China.

E-mail: xxshao@hznu.edu.cn, jiang-m18@hznu.edu.cn

Table of Contents

I. General information	2
II. Synthesis of starting materials	4
III. Optimization of the reaction conditions	12
IV. Substrate scope	14
V. Synethetic application of current method	47
VI. Mechanistic studies	
VII. References	
VIII. Crystallographic data	
IX. NMR spectra	86

I. General information

General procedures. Unless specifically stated, all reagents were commercially obtained and where appropriate, purified prior to use. For example, dichloromethane (dichlormethane) was freshly distilled from CaH₂; toluene, ether (Et₂O) was dried and distilled from metal sodium and benzophenone. Other commercially available reagents and solvents were used directly without purification. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Flash column chromatography was performed over silica (200 - 300 mesh). ¹H, ¹³C, ¹⁹F NMR spectra were recorded on a Bruker 400 MHz or 500 MHz spectrometer in CDCl₃ or d_6 -DMSO. Multiplicities were given as: s (singlet); d (doublet); dd (doublets of doublet); t (triplet); q (quartet); td (triplet of doublets); tt (triplet of triplets) ddd (doublet of doublets) or m (multiplets). High resolution mass spectra (HRMS) of the products were obtained on a Bruker Daltonics micro TOFspectrometer. High resolution mass spectra (HRMS) of the products were obtained on a Agilent Technologies micro Q-TOF-spectrometer. Light Source: The photoreactors used in this research were bought from GeAo Chem Technology Co., Ltd. (blue LEDs, 1W for every light bulb; light intensity = 32.8 mw/cm^2 ; every Schlenk tube was irradiated by 4 light bulbs from the side).

Reagents. The following chemicals were used as received: Acetyl chloride (Energy-Chemical), 1-(2-Bromoethyl)-4-chlorobenzene (Leyan), (Bromomethyl)cyclopropane (Energy-Chemical), ((3-Bromopropoxy)methyl)benzene (Bide), 11-Bromoundecan-1-ol (Leyan), Benzoyl chloride (Energy-Chemical), 6-Bromohexanoic acid (Energy-Chemical), 3-Bromopropan-1-ol (Energy-Chemical), 4-(Benzo[d][1,3]dioxol-5-yl)butan-2-one (Energy-Chemical), 6-Bromohexan-1-ol (Leyan), 5-Bromopentanoic acid (Energy-Chemical), 6-Bromohex-1-ene (Leyan), 2-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetic acid (Energy-Chemical), 5-Bromopent-1-ene (Leyan), 3-Chlorobenzoperoxoic acid (Energy-Chemical), 9,10-Dihydroanthracene (Bide), 1,6-Dibromohexane (Energy-Chemical),

2

Dicyclohexylmethanediimine (Energy-Chemical), 1.3-Dibromo-5.5dimethylimidazolidine-2,4-dione (Bide), 1,4-Dibromobutane (Leyan), 1.2-Dicyclohexyldisulfane (Adamas), 1,2-Diphenyldisulfane (Energy-Chemical), 1,2-Di*p*-tolyldisulfane (Leyan), 4-Dimethylaminopyridine (Energy-Chemical), 2.6-Ditert-butyl-4-methylphenol (Energy-Chemical), 2,3-Dihydro-1H-inden-2-ol (Leyan), 3-(4,5-Diphenyl-4,5-dihydrooxazol-2-yl)propanoic acid (Energy-Chemical), 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (Energy-Chemical), (2E,6E)-3,7-Dimethylnona-2,6-dien-1-ol (Energy-Chemical), 4-Hydroxybenzonitrile (Energy-Chemical), 4-Hydroxybenzaldehyde (Energy-Chemical), 1-(4-Hydroxyphenyl)ethan-1-one (Leyan), 2-(1H-Indol-3-yl)ethan-1-ol (Energy-Chemical), 4-Hydroxybenzoate (Leyan), 4-Iodophenol (Energy-Chemical), 9H-Carbazole (Energy-Chemical), 4-Methoxyphenol (Energy-Chemical), Methyl Pent-4-yn-1-ol (Leyan), 4-Methoxybenzenethiol (Energy-Chemical), Perbromomethane (Energy-Chemical), Potassium 1,3-ioxoisoindolin-2-ide (Energy-Chemical), Potassium indol-1-ide (Energy-Chemical), ((Phenylsulfinyl)oxy)zinc (Cesium Carbonate), 4-Phenylbutan-2-o1 (Leyan), 4-(4-Methoxyphenyl)butan-2-one (Leyan), (R)-2-(6-Methoxynaphthalen-2-yl)propanoic acid (Energy-Chemical), (1R, 4R)-Bicyclo[2.2.1]hept-5-ene-2-carboxylic acid (Energy-Chemical), (R)-2,5,7,8-Tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-ol Sodium (Bide), benzenesulfinate (Leyan), Sodium 4-methylbenzenesulfinate (Leyan), Sodium 4chlorobenzenesulfinate (Leyan), (S)-2-(3-Isobutylphenyl)propanoic acid (Energy-Chemical), Sodium periodate (Energy-Chemical), (13S)-3-Hydroxy-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17*H*-cyclopenta[a]phenanthren-17-one (Energy-Chemical), Triphenylphosphane (Leyan), Thiophene-2-carbonyl chloride (Energy-Chemical), tert-Butylchlorodiphenylsilane (Bide), Triethylamine (Energy-Chemical), 1-(*tert*-Butoxycarbonyl)piperidine-4-carboxylic acid (Energy-Chemical), (tert-Butoxycarbonyl)-L-phenylalanine (Leyan).

II. Synthesis of starting materials

1. Synthesis of alkyl bromides 1f-1v, 1y-z, 1ar

The alkyl bromides **1f**, **1m**, **1ar**, **1y**, **1z** were synthesized according to our previous report, the spectral data match those previously reported¹.

The alkyl bromides **1i-k**, **1n**, **1r-1t** were synthesized according to our previous report, the spectral data match those previously reported².

The alkyl bromides **1g-1h**, **1l**, **1o-1q**, **1u-1v** were synthesized according to our previous report, the spectral data match those previously reported³.

2. Synthesis of 3-bromobutyl thiophene-2-carboxylate 1w

An oven-dried 200-mL round-bottom flask, equipped with a stirring bar, was charged with DMAP (0.244 g, 2.00 mmol, 0.100 equiv). The solid was evacuated and backfilled with nitrogen for three times. Then dry dichloromethane (100 mL), Et₃N (3.04 g, 30.0 mmol, 1.50 equiv) and butane-1,3-diol (1.98 g, 22.0 mmol, 1.10 equiv) were added under N₂ atmosphere. The thiophene-2-carbonyl chloride (2.93 g, 20.0 mmol, 1.00 equiv) was slowly added under stirring at 0 °C. Then, the mixture was allowed to stir at room temperature for 4 h. The mixture was poured into water (50.0 mL) and extracted with dichloromethane (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 100:1 to 10:1 petroleum ether: ethyl acetate). The product was isolated as a yellow liquid (2.57 g, 12.8 mmol,

64.2% yield) which is a known compound. The spectral data match those previously reported⁴.

An oven-dried 50-mL round-bottom flask, equipped with a stirring bar, was charged with CBr₄ (1.09 g, 3.30 mmol, 1.10 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry dichloromethane (15.0 mL) and 3hydroxybutyl thiophene-2-carboxylate (0.601 g, 3.00 mmol, 1.00 equiv) was added under N₂ atmosphere. A solution of PPh₃ (0.866 g, 3.30 mmol, 1.10 equiv) in dichlormethane (10.0 mL) was slowly added under stirring at 0 °C. Then, the mixture was stirred at room temperature for 12 h. The mixture was poured into water (25.0 mL) and extracted with dichloromethane (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 100:1 to 30:1 petroleum ether: ethyl acetate). The product was isolated as a colorless liquid (0.731 g, 2.78 mmol, 92.6% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (1H, d, J = 4.0 Hz), 7.55 (1H, d, J= 5.1 Hz), 7.10 - 7.08 (1H, m), 4.52 - 4.46 (1H, m), 4.44 - 4.37 (1H, m), 4.31 - 4.23 (1H, m), 2.28 - 2.15 (2H, m), 1.78 (3H, d, J = 6.6 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 162.0, 133.6, 133.5, 132.6, 127.8, 63.2, 46.9, 39.8, 26.6; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₉H₁₁NaBrO₂S: 284.9555, found: 284.9554.

3. Synthesis of 3-bromobutyl benzoate 1x

An oven-dried 200-mL round-bottom flask, equipped with a stirring bar, was charged with DMAP (0.122 g, 1.00 mmol, 0.100 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the dry dichloromethane (50.0 mL), Et_3N (1.53 g, 15.0 mmol, 1.50 equiv) and butane-1,3-diol (1.08 g, 12.0 mmol,

1.20 equiv) was added under N_2 atmosphere. The benzoyl chloride (1.405 g, 10.0 mmol, 1.00 equiv) was slowly added under stirring at 0 °C. Then, the mixture was allowed to stir at room temperature for 4 h. The mixture was poured into water (50.0 mL) and extracted with dichloromethane (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 100:1 to 10:1 petroleum ether: ethyl acetate). The product was isolated as a colorless liquid (1.72 g, 1.73 mmol, 89.2% yield) which is a known compound. The spectral data match those previously reported⁵.

An oven-dried 50-mL round-bottom flask, equipped with a stirring bar, was charged with CBr₄ (1.82 g, 5.50 mmol, 1.10 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the dichloromethane (25.0 mL) and 3-hydroxybutyl benzoate (0.971 g, 5.00 mmol, 1.00 equiv) was added under N₂ atmosphere. A solution of PPh₃ (1.44 g, 5.50 mmol, 1.10 equiv) in dichloromethane (10.0 mL) was slowly added under stirring at 0 °C. Then, the mixture was allowed to stirat room temperature for 12 h. The mixture was poured into water (25.0 mL) and extracted with dichlormethane (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate). The product was isolated as a colorless liquid (0.997 g, 3.88 mmol, 77.6%) which is a known compound. The spectral data match those previously reported⁶.

4. Synthesis of 3-bromopropyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-

methyl-1*H*-indol-3-yl)acetate 1aa

An oven-dried 200-mL round-bottom flask, equipped with a stirring bar, was

charged with DMAP (0.183 g, 1.50 mmol, 0.100 equiv) and 2-(1-(4-chlorobenzoyl)-5- methoxy-2-methyl-1H-inden-3- yl)acetic acid (5.37 g, 15.0 mmol, 1.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the dry dichlormethane (60.0 mL) and 3-bromopropan-1-ol (2.50 g, 18.0 mmol, 1.20 equiv) was added under N₂ atmosphere. A solution of DCC (3.71 g, 18.0 mmol, 1.20 equiv) in dichloromethane (36.0 mL) was slowly added under stirring at 0 °C. Then, the mixture was allowed to stir at room temperature for 24 h. The mixture was poured into water (50.0 mL) and extracted with dichloromethane (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 3), dried over Na_2SO_4 and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 100:1 to 30:1 petroleum ether: ethyl acetate). The product was isolated as a white solid (5.20 g, 10.9 mmol, 72.7% yield). M.p. = 75.3 - 75.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (2H, d, J = 8.5 Hz), 7.47 (2H, d, J = 8.4 Hz), 6.95 (1H, d, J = 2.5 Hz), 6.87 (1H, d, J = 9.0 Hz), 6.67 (1H, dd, J = 9.0, 2.6 Hz), 4.24 (2H, t, J = 6.0 Hz), 3.84 (3H, s), 3.68 (2H, s), 3.36 (2H, t, J = 6.5 Hz), 2.39 (3H, s), 2.18 – 2.12 (2H, m); ¹³C NMR (101 MHz, CDCl₃) *b* 170.7, 168.3, 156.1, 139.3, 135.9, 133.8, 131.2, 130.8, 130.6, 129.2, 115.0, 112.4, 111.7, 101.1, 62.7, 55.7, 31.5, 30.3, 29.3, 13.4; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₂H₂₁BrClNaNO₄: 500.0235, found: 500.0229.

5. Synthesis of (R)-2,5,7,8-tetramethyl-2-((4S,8S)-4,8,12-trimethyl-

tridecyl)chroman-6-yl 5-bromopentanoate 1ab

An oven-dried 200-mL round-bottom flask, equipped with a stirring bar, was charged with 5-bromopentanoic acid (1.81 g, 10.0 mmol, 1.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry dichloromethane

(30.0 mL) was added under N₂. The mixture was cooled to 0 °C and DCC (2.26 g, 11.1 mmol, 1.10 equiv) was added under N₂. The mixture was allowed to stir at room temperature for 0.5 h. Then (R)-2,5,7,8-tetramethyl-2-((4S,8S)-4,8,12trimethyltridecyl)chroman-6-ol (4.77 g, 11.1 mmol, 1.10 equiv) was added under N₂. The mixture was stirred at room temperature for 12 h. The mixture was filtered and the solid was washed with dichloromethane. The combined organic layers were concentrated under vacuo. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography to provide the desired product as a colorless liquid (5.00 g, 8.43 mmol, 84.3% yield). ¹H NMR (400 MHz, CDCl₃) δ 3.44 (2H, t, J = 6.3 Hz), 2.62 (2H, t, J = 7.0 Hz), 2.58 (2H, t, J = 6.8 Hz), 2.09 (3H, s),2.008 - 1.97 (4H, m), 1.97 - 1.89 (6H, m), 1.84 - 1.70 (2H, m), 1.578 - 1.47 (3H, m), 1.46 - 1.35 (4H, m), 1.32 - 1.18 (11H, m), 1.16 - 1.03 (6H, m), 0.878 - 0.84 (12H, m); ¹³C NMR $(101 \text{ MHz}, \text{CDCl}_3) \delta$ 171.7, 149.4, 140.5, 126.6, 124.9, 123.1, 117.4, 75.1, 39.4, 37.5, 37.5, 37.4, 33.1, 33.0, 32.9, 32.8, 32.2, 28.0, 24.9, 24.5, 23.7, 22.8, 22.7, 21.1, 20.7, 19.8, 19.8, 13.1, 12.2, 11.9 (three carbons were missing due to overlap); HRMS (ESI⁺) $[M+Na]^+$ calc'd for $C_{34}H_{57}NaO_3S_2$: 615.3383, found: 615.3383.

6. Synthesis of S-alkylthiosulfonates 2a-g, 2i-n, 2q

The *S*-alkylthiosulfonates **2a-g**, **2i-n**, **2q** were synthesized according to our previous report, the spectral data match those previously reported³.

7. Synthesis of S-cyclohexyl benzenesulfonothioate 2h

An oven-dried 100-mL round-bottom flask, equipped with a stirring bar, was charged with sodium benzenesulfonothioate (2.63 g, 16.0 mmol, 3.20 equiv), diiodine (2.54 g, 10.0 mmol, 2.00 equiv), Then dry dichlormethane (20.0 mL) and 1,2-dicyclohexyldisulfane (1.15 g, 5.00 mmol, 1.00 equiv) was added under N_2 atmosphere. The mixture was stirred at room temperature for 22 h. The mixture was poured into water (25.0 mL) and extracted with dichlormethane (25.0 mL x 3). The

combined organic layers were washed with saturated $Na_2S_2O_3$ aqueous solution (25.0 mL x 3), dried over Na_2SO_4 and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 100:1 to 20:1 petroleum ether: ethyl acetate). The product was isolated as a colorless liquid (2.42 g, 9.44 mmol, 94.4% yield) which is a known compound. The spectral data match those previously reported⁷.

8. General Method A: Synthesis of S-alkylthiosulfonates 20, 2r-v

An oven-dried 100-mL round-bottom flask, equipped with a stir bar, was charged with sodium benzenesulfonothioate (2.35 g, 12.0 mmol, 1.20 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then alkyl bromide (10.0 mmol, 1.00 equiv) and dry DMF (20.0 mL) was added under N₂ atmosphere and the mixture was stirred at room temperature for 12 h. The mixture was diluted with H₂O (50.0 mL) and extracted with ethyl acetate (50.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (50.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography.

3-((Phenylsulfonyl)thio)propyl (*R*)-2-(4-isobutylphenyl)propanoate 20: Prepared according to General Method A (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (3.11 g, 7.41 mmol, 74.1% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (2H, d, *J* = 7.1 Hz), 7.65 – 7.61 (1H, m), 7.55 – 7.51 (2H, m), 7.16 (2H, d, *J* = 8.1 Hz), 7.08 (2H, d, *J* = 7.9 Hz), 4.10 – 4.02 (2H, m), 3.68 – 3.63 (1H, m), 2.88 (2H, t, *J* = 7.2 Hz), 2.43 (2H, d, *J* = 7.2 Hz), 1.92 – 1.86 (2H, m), 1.84 – 1.79 (1H, m), 1.46 (3H, d, *J* = 7.1 Hz), 0.88 (6H, d, *J* = 6.6 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 144.7, 140.8, 137.6, 133.8, 129.5, 129.4, 127.1, 127.0, 62.4, 45.1, 45.0, 32.5, 30.3, 28.2, 22.5, 18.4; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₂H₂₈NaO₄S₂: 443.1321, found: 443.1337.

3-((Phenylsulfonyl)thio)propyl 3-(4,5-diphenyloxazol-2-yl)propanoate 2r: Prepared according to **General Method A** (Eluent: 200:1 to 3:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (4.02 g, 7.92 mmol, 79.2% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (2H, d, J = 7.4 Hz), 7.64 – 7.59 (3H, m), 7.57 – 7.52 (4H, m), 7.37 – 7.30 (6H, m), 4.14 (2H, t, J = 6.0 Hz), 3.16 (2H, t, J = 7.4 Hz), 3.03 (2H, t, J = 7.1 Hz), 2.88 (2H, t, J = 7.4 Hz), 2.02 – 1.95 (2H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.9, 161.7, 145.6, 144.7, 135.2, 133.9, 132.5, 129.5, 129.0, 128.8, 128.7, 128.6, 128.2, 127.9, 127.1, 126.6, 62.6, 32.7, 31.1, 28.3, 23.5; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₂₇H₂₅NaNO₅S₂: 530.1066, found: 530.1057.

3-((Phenylsulfonyl)thio)propyl 5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoate 2s: Prepared according to **General Method A** (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (3.35 g, 7.21 mmol, 72.1% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (2H, d, J = 7.1 Hz), 7.65 – 7.61 (1H, m), 7.57 – 7.52 (2H, m), 7.00 (1H, d, J = 7.4 Hz), 6.66 (1H, d, J =7.5 Hz), 6.62 (1H, s), 4.07 (2H, t, J = 6.0 Hz), 3.93 – 3.90 (2H, m), 3.06 (2H, t, J =7.2 Hz), 2.31 (3H, s), 2.17 (3H, s), 2.02 – 1.97 (2H, m), 1.72 – 1.68 (4H, m), 1.20 (6H, s); ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 155.9, 143.7, 135.6, 132.9, 129.4, 128.4, 126.0, 122.5, 119.8, 111.0, 66.9, 61.3, 41.2, 36.1, 31.7, 27.3, 24.2, 24.2, 20.5, 14.9; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₂₄H₃₂NaO₅S₂: 487.1583, found: 487.1604.

3-((Phenylsulfonyl)thio)propyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H***indol-3-yl)acetate 2t:** Prepared according to **General Method A** (Eluent: 200:1 to 1:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless 10 liquid (3.96 g, 6.93 mmol, 69.3% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (2H, d, J = 7.0 Hz), 7.61 (2H, d, J = 8.5 Hz), 7.56 (1H, d, J = 7.3 Hz), 7.49 – 7.46 (2H, m), 7.40 (2H, d, J = 8.5 Hz), 6.93 (1H, d, J = 2.5 Hz), 6.89 (1H, d, J = 9.0 Hz), 6.64 (1H, dd, J = 9.0, 2.5 Hz), 4.07 (2H, t, J = 6.0 Hz), 3.77 (3H, s), 3.63 (2H, s), 2.95 (2H, t, J = 7.1 Hz), 2.34 (3H, s), 1.94 – 1.87 (2H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 170.4, 168.0, 155.8, 144.3, 138.9, 135.7, 133.7, 131.0, 130.4, 130.5, 129.2, 128.9, 126.6, 114.8, 112.2, 111.4, 101.0, 62.6, 55.55, 32.4, 30.0, 27.9, 13.2; **HRMS** (ESI⁺) [M+H]⁺ calc'd for C₂₈H₂₇CINO₆S₂: 572.0963, found: 572.0947.

(13S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthren-3-yl 6-((phenylsulfonyl)thio)hexanoate 2u: Prepared according to General Method A (Eluent: 200:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (3.53 g, 6.52 mmol, 65.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (2H, d, J = 7.2 Hz), 7.66 – 7.61 (1H, m), 7.58 – 7.54 (2H, m), 7.28 (1H, d, J = 7.5 Hz), 6.84 – 6.78 (2H, m), 3.06 – 3.02 (2H, m), 2.92 – 2.89 (2H, m), 2.54 – 2.47 (3H, m), 2.42 – 2.37 (1H, m), 2.31 – 2.24 (1H, m), 2.19 – 2.12 (1H, m), 2.10 – 1.93 (3H, m), 1.77 – 1.74 (4H, m), 1.66 – 1.41 (6H, m), 0.90 (3H, s); ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 148.4, 144.7, 138.1, 137.5, 133.8, 129.4, 127.0, 126.4, 121.5, 118.7, 50.4, 47.9, 44.1, 38.0, 35.9, 35.6, 33.5, 31.6, 29.4, 28.2, 26.3, 25.8, 23.7, 21.6, 13.9 (one carbon was missing due to overlap); HRMS (ESI⁺) [M+H]⁺ calc'd for C₂₉H₃₄NaO₅S₂: 549.1740, found: 549.1744.

(*R*)-2,5,7,8-tetramethyl-2-((4*S*,8*S*)-4,8,12-trimethyltridecyl)chroman-6-yl 5-((phenylsulfonyl)thio)pentanoate 2v: Prepared according to General Method D (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (4.99 g, 7.28 mmol, 72.8% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (2H, d, *J* = 7.1 Hz), 7.66 – 7.61 (1H, m), 7.58 – 7.54 (2H, m), 3.05 (2H, t, *J* = 6.6 Hz), 2.60 – 2.53 (4H, m), 2.08 (3H, s), 1.97 (3H, s), 1.93 (3H, s), 1.84 – 1.72 (6H, m), 1.58 – 1.49 (4H, m), 1.42 – 1.33 (4H, m), 1.32 – 1.20 (10H, m), 1.16 – 1.04 (6H, m), 0.87 - 0.83 (12H, m); ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 149.5, 144.9, 140.5, 133.8, 129.5, 127.1, 126.6, 124.9, 123.2, 117.5, 75.2, 39.5, 37.6, 37.4, 35.7, 33.3, 32.9, 32.8, 28.5, 28.1, 24.9, 24.6, 24.0, 22.9, 22.8, 21.1, 20.7, 19.9, 19.8, 13.1, 12.3, 12.0 (one carbons were missing due to overlap); **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₄₀H₆₂NaO₅S₂: 709.3931, found: 709.3928.

III. Optimization of the reaction conditions

Br Ph	+ 0,0 + Ph S S	Ph M (3.00 equiv) DMF (0.200 M) 80 °C, 12 h	→ Ph S Ph
1a	2a		3a
	entry	Μ	yield (%) ^a
	1 2 3 4	Mn Cu Mg Zn	<5 <5 <5 >99

Table S1. Evaluation of different reductants

Reaction condition: **1a** (0.200 mmol), **2a** (0.400 mmol), **M** (0.600 mmol), DMF (1.00 mL) at 80 $^{\circ}$ C for 12 h. ^aYield was determined by ¹H NMR spectroscopy in the presence of CH₂Br₂ as an internal standard.

Table S2. Evaluation of different temperature

Br Ph	+ 0,0 + Ph S S	← Ph	hiv) M) Ph M	∕_s∕∕_Ph
1a	2a			3a
	entry	T (°C)	yield (%) ^a	
	1 2	22 40	34 56	
	3 4	80	90 >99	

Reaction condition: **1a** (0.200 mmol), **2a** (0.400 mmol), Zn (0.600 mmol), DMF (1.00 mL) at **T** ($^{\circ}$ C) for 12 h. ^aYield was determined by ¹H NMR spectroscopy in the presence of CH₂Br₂ as an internal standard.

Br Ph	+ 0,0 + Ph ^{-S} S	Zn (3.00 equiv) Ph DMF (0.200 M) 80 °C, t (h)	→ Ph	S Ph
1a	2a			3a
	entry	t (h)	yield (%) ^a	
	1	2	85	
	2	4	96 00	
	3 4	12	99 >99	

Reaction condition: **1a** (0.200 mmol), **2a** (0.400 mmol), Zn (0.600 mmol), DMF (1.00 mL) at 80 °C for **t** (h). ^aYield was determined by ¹H NMR spectroscopy in the presence of CH_2Br_2 as an internal standard.

Table S4. Evaluation of different amounts of Zn

Reaction condition: **1a** (0.200 mmol), **2a** (0.400 mmol), Zn (0.200**x** mmol), DMF (1.00 mL) at 80 °C for 12 h. ^aYield was determined by ¹H NMR spectroscopy in the presence of CH_2Br_2 as an internal standard.

Br	`Ph + 0,0 Ph SS	Ph Zn (3 solver 80	.00 equiv) nt (0.200 M) Ph ∕ °C, 12 h	S Ph
1a		2a		3a
	entry	solvent	yield (%) ^a	
	1	MeOH	22	
	2	DCM	20	
	3	MeCN	18	
	4	THF	35	
	5	DMAc	>99	
	6	DMSO	93	
	7	DMF	>99	

Table S5. Evaluation of different solvents

Reaction condition: **1a** (0.200 mmol), **2a** (0.400 mmol), Zn (0.600 mmol), **solvent** (1.00 mL) at 80 °C for 12 h. ^aYield was determined by ¹H NMR spectroscopy in the presence of CH_2Br_2 as an internal standard.

IV. Substrate scope

1. General Method B:

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (98.1 mg, 1.50 mmol, 3.00 equiv) and *S*-(3-phenylpropyl) benzenesulfonothioate (292.4 mg, 1.00 mmol, 2.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then alkyl bromide (0.500 mmol, 1.00 equiv) and dry DMF (2.50 mL) was added under N₂ and the mixture was allowed to stir for 12 h at 80 °C. After cooling to room temperature, the mixture was diluted with NaCl aqueous solution (25.0 mL) and extracted with ethyl acetate (25.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with ethyl acetate (10.0 mL x 3). The combined organic layers were washed with H₂O (25.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography.

Bis(3-phenylpropyl)sulfane 3a: Prepared according to **General Method B** (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (96.1 mg, 0.355 mmol, 71.1% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (4H, m), 7.20 – 7.16 (6H, m), 2.70 (4H, t, J = 7.5 Hz), 2.51 (4H, t, J = 7.3 Hz), 1.92 – 1.85 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 128.6, 128.5, 126.0, 34.9, 31.5, 31.2. Spectra were consistent with literature data¹.

(4-Chlorophenethyl)(3-phenylpropyl)sulfane 3b: Prepared according to General Method B (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (102.2 mg, 0.351 mmol, 70.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.23 (4H, m), 7.20 – 7.15 (3H, m), 7.11 – 7.08 (2H, m), 2.84 – 2.79 (2H, m), 2.74 – 2.67 (4H, m), 2.51 (2H, t, *J* = 9.3 Hz), 1.94 – 1.86 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 141.6, 139.1, 132.2, 130.0, 128.6, 128.6, 128.5, 126.1, 35.7, 34.9, 33.5, 31.7, 31.2. Spectra were consistent with literature data¹.

1,6-Bis((3-phenylpropyl)thio)hexane 3c: Prepared according to **General Method B** (2.00 mmol *S*-(3-phenylpropyl) benzenesulfonothioate, 3.00 mmol zinc were used) (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (132.3 mg, 0.342 mmol, 68.4% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.29 (4H, m), 7.22 – 7.21 (6H, m), 2.75 (4H, t, *J* = 7.6 Hz), 2.56 – 2.51 (8H, m), 1.97 – 1.91 (4H, m), 1.62 – 1.56 (4H, t, *J* = 7.4 Hz), 1.43 – 1.39 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 128.5, 128.4, 126.0, 34.9, 32.1, 31.5, 31.3, 29.6, 28.6; HRMS (FI) calc'd for C₂₄H₃₄S₂: 386.2098, found: 386.2096.

(3-(Benzyloxy)propyl)(3-phenylpropyl)sulfane 3d: Prepared according to General Method B (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (125.8 mg, 0.419 mmol, 83.7% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.30 (4H, m), 7.28 – 7.25 (3H, m), 7.18 – 7.15 (3H, m), 4.48 (2H, s), 3.54 (2H, t, *J* = 6.2 Hz), 2.69 (2H, t, *J* = 7.6 Hz), 2.60 (2H, t, *J* = 7.3 Hz), 2.50 (2H, t, *J* = 7.3 Hz), 1.93 – 1.83 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 141.6, 138.5, 128.5, 128.4, 127.7, 127.6, 125.9, 73.0, 68.8, 34.9, 31.5, 31.2, 29.9, 28.8 (one carbon was missing due to overlap); HRMS (ESI⁺) [M+H]⁺ calc'd for C₁₉H₂₅OS: 301.1621, found: 301.1619.

tert-Butyl (3-((3-phenylpropyl)thio)propyl)carbamate 3e: Prepared according to General Method B (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (119.1 mg, 0.385 mmol, 77.0% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.26 (2H, m), 7.20 – 7.17 (3H, m), 4.71 (1H, s), 3.22 – 3.17 (2H, m), 2.71 (2H, t, *J* = 7.6 Hz), 2.54 – 2.49 (4H, m), 1.93 – 1.86 (2H, m), 1.78 – 1.71 (2H, m), 1.44 (9H, s); ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 141.5, 128.5, 128.4, 126.0, 79.2, 39.7, 34.8, 31.4, 31.1, 29.8, 29.3, 28.5; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₂₇NNaO₂S: 332.1655, found: 332.1648.

(4-(4-Methoxyphenoxy)butyl)(3-phenylpropyl)sulfane 3f: Prepared according to General Method B (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (131.9 mg, 0.399 mmol, 79.8% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.30 (2H, m), 7.23 – 7.21 (3H, m), 6.86 (4H, s), 3.95 (2H, t, J = 6.1 Hz), 3.79 (3H, s), 2.76 (2H, t, J = 7.6 Hz), 2.63 – 2.55 (4H, m), 1.99 – 1.85 (4H, m), 1.83 – 1.75 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 153.2, 141.6, 128.5, 128.4, 126.0, 115.5, 114.7, 68.0, 55.8, 34.9, 31.8, 31.5, 31.2, 28.6, 26.3; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₂₆NaO₂S: 353.1546, found: 353.1549.

(4-(4-Iodophenoxy)butyl)(3-phenylpropyl)sulfane 3g: Prepared according to General Method B (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (184.8 mg, 0.433 mmol, 86.7% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (2H, d, J = 8.8 Hz), 7.30 – 7.25 (2H, m), 7.20 – 7.17 (3H, m), 6.65 (2H, d, J = 8.8 Hz), 3.92 (2H, t, J = 6.2 Hz), 2.72 (2H, t, J = 7.6 Hz), 2.58 – 2.51 (4H, m), 1.95 – 1.83 (4H, m), 1.79 – 1.70 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 141.6, 138.3, 128.6, 128.5, 126.0, 117.0, 82.7, 67.6, 34.9, 31.8, 31.5, 31.3, 28.4, 26.2; HRMS (FI) calc'd for C₁₉H₂₃OIS: 426.0506, found: 426.0509.

4-(4-((3-Phenylpropyl)thio)butoxy)benzonitrile 3h: Prepared according to **General Method B** (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (129.3 mg, 0.397 mmol, 79.5% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.54 (2H, d, J = 9.0 Hz), 7.29 – 7.25 (2H, m), 7.20 – 7.16 (3H, m), 6.90 (2H, d, J = 8.9 Hz), 3.99 (2H, t, J = 6.2 Hz), 2.71 (2H, t, J = 7.6 Hz), 2.57 (2H, t, J = 7.2 Hz), 2.52 (2H, t, J = 7.3 Hz), 1.94 – 1.86 (4H, m), 1.78 – 1.71 (2H, m); ¹³C **NMR** (101 MHz, CDCl₃) δ 162.2, 141.5, 133.9, 128.4, 128.3, 125.9, 119.3, 115.1, 103.7, 67.7, 34.8, 31.6, 31.4, 31.1, 28.0, 25.9; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₂₃NNaOS: 348.1393, found: 348.1381.

4-(4-((3-Phenylpropyl)thio)butoxy)benzaldehyde 3i: Prepared according to **General Method B** (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (159.4 mg, 0.485 mmol, 97.1% yield). ¹H

NMR (400 MHz, CDCl₃) δ 9.86 (1H, s), 7.81 (2H, d, J = 8.6 Hz), 7.29 – 7.25 (2H, m), 7.20 – 7.17 (3H, m), 6.97 (2H, d, J = 8.7 Hz), 4.04 (2H, t, J = 6.2 Hz), 2.72 (2H, t, J = 7.6 Hz), 2.58 (2H, t, J = 7.2 Hz), 2.53 (2H, t, J = 7.3 Hz), 1.95 – 1.87 (4H, m), 1.82 – 1.73 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 190.8, 164.1, 141.5, 132.0, 129.8, 128.5, 128.4, 126.0, 114.8, 67.8, 34.8, 31.7, 31.4, 31.2, 28.2, 26.1; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₂₄NaO₂S: 351.1389, found: 351.1389.

1-(4-(4-((3-Phenylpropyl)thio)butoxy)phenyl)ethan-1-one 3j: Prepared according to **General Method B** (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (150.3 mg, 0.439 mmol, 87.8% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (2H, d, *J* = 8.9 Hz), 7.29 – 7.24 (2H, m), 7.19 – 7.16 (3H, m), 6.89 (2H, d, *J* = 8.8 Hz), 4.01 (2H, t, *J* = 6.2 Hz), 2.71 (2H, t, *J* = 7.6 Hz), 2.57 (2H, t, *J* = 7.3 Hz), 2.54 – 2.51 (5H, m), 1.94 – 1.86 (4H, m), 1.79 – 1.72 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 196.7, 162.9, 141.5, 130.6, 130.2, 128.4, 128.4, 125.9, 114.1, 67.6, 34.8, 31.6, 31.4, 31.1, 28.2, 26.3, 26.0; HRMS (ESI⁺) [M+H]⁺ calc'd for C₂₁H₂₇O₂S: 343.1726, found: 343.1714.

Methyl 4-(4-((3-phenylpropyl)thio)butoxy)benzoate 3k: Prepared according to General Method B (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (145.0 mg, 0.404 mmol, 80.9% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (2H, d, J = 8.7 Hz), 7.29 – 7.23 (2H, m), 7.19 – 7.15 (3H, m), 6.88 (2H, d, J = 8.9 Hz), 3.99 (2H, t, J = 6.2 Hz), 3.86 (3H, s), 2.71 (2H, t, J = 7.6 Hz), 2.57 (2H, t, J = 7.2 Hz), 2.52 (2H, t, J = 7.3 Hz), 1.94 – 1.85 (2H, m), 1.78 – 1.71 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 162.8, 141.6, 131.6, 128.5, 128.4, 126.0, 122.5, 114.0, 67.6, 51.9, 34.9, 31.7, 31.4, 31.2, 28.3, 26.1; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₁H₂₆NaO₃S: 381.1495, found: 381.1499.

11-((3-Phenylpropyl)thio)undecan-1-ol 31: Prepared according to **General Method B** (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (135.5 mg, 0.420 mmol, 84.0% yield). **M.p.** = 33.4 – 34.1 °C . ¹**H NMR** (400 MHz, CDCl₃) δ 7.29 – 7.25 (2H, m), 7.19 – 7.17 (3H, m), 3.61 (2H, t, J = 6.7 Hz), 2.71 (2H, t, J = 7.6 Hz), 2.53 – 2.47 (4H, m), 1.94 – 1.86 (2H, m), 1.71 (1H, s), 1.59 – 1.52 (4H, m), 1.37 – 1.27 (14H, m); ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 128.5, 128.4, 126.0, 63.0, 34.9, 32.8, 32.1, 31.5, 31.3, 29.7, 29.6, 29.6, 29.6, 29.5, 29.3, 29.0, 25.8; **HRMS** (ESI⁺) [M+H]⁺ calc'd for C₂₀H₃₅OS: 323.2403, found: 323.2406.

4-((3-Phenylpropyl)thio)butyl (1*R*,2*S*,4*R*)-bicyclo[2.2.1]hept-5-ene-2-carboxylate **3m:** Prepared according to **General Method B** (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (129.1 mg, 0.391 mmol, 78.1% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.24 (2H, m), 7.20 – 7.17 (3H,m), 6.19 – 6.17 (1H, m), 5.92 – 5.90 (1H, m), 4.12 – 4.08 (2H, m), 3.19 (1H, s), 2.95 – 2.88 (2H, m), 2.72 (2H, t, *J* = 7.6 Hz), 2.58 – 2.50 (4H, m), 1.99 – 1.81 (5H, m), 1.44 – 1.39 (2H, m), 1.26 (1H, d, *J* = 7.9 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 141.5, 137.9, 132.3, 128.5, 128.4, 126.0, 62.8, 49.7, 45.8, 43.4, 42.6, 34.8, 31.4, 31.1, 29.2, 28.8, 28.5; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₂₆NaO₂S: 353.1546, found: 353.1551.

Pent-4-yn-1-yl 6-((3-phenylpropyl)thio)hexanoate 3n: Prepared according to **General Method B** (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (122.2 mg, 0.367 mmol, 73.5% yield). ¹H

NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (2H, m), 7.19 – 7.16 (3H, m), 4.16 (2H, t, J = 6.3 Hz), 2.71 (2H, t, J = 7.6 Hz), 2.52 – 2.47 (4H, m), 2.32 – 2.26 (4H, m), 1.97 (1H, s), 1.93 – 1.80 (4H, m), 1.66 – 1.54 (4H, m), 1.44 – 1.36 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 141.6, 128.5, 128.3, 125.9, 83.0, 69.1, 62.8, 34.8, 34.1, 31.8, 31.4, 31.2, 29.3, 28.3, 27.5, 24.5, 15.2; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₂₈NaO₂S: 355.1702, found: 355.1702.

3-((3-Phenylpropyl)thio)propyl furan-2-carboxylate 30: Prepared according to **General Method B** (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (125.0 mg, 0.411 mmol, 82.1% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (1H, dd, J = 3.8, 1.3 Hz), 7.53 (1H, dd, J = 5.0, 1.3 Hz), 7.29 – 7.24 (2H, m), 7.20 – 7.16 (3H, m), 7.10 – 7.08 (1H, m), 4.38 (2H, t, J = 6.2 Hz), 2.71 (2H, t, J = 7.6 Hz), 2.64 (2H, t, J = 7.3 Hz), 2.54 (2H, t, J = 7.3 Hz), 2.04 – 1.97 (2H, m), 1.95 – 1.88 (2H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 162.2, 141.5, 133.8, 133.5, 132.5, 128.5, 128.4, 127.8, 126.0, 63.8, 34.8, 31.5, 31.1, 28.9, 28.4; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₂₀NaO₃S: 327.1025, found: 327.1027.

3-((3-Phenylpropyl)thio)propyl thiophene-2-carboxylate 3p: Prepared according to **General Method B** (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow liquid (123.8 mg, 0.386 mmol, 77.3% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.55 (1H, d, J = 1.6 Hz), 7.29 – 7.25 (2H, m), 7.19 – 7.15 (4H, m), 6.49 – 6.48 (1H, m), 4.38 (2H, t, J = 6.3 Hz), 2.71 (2H, t, J = 7.6 Hz), 2.62 (2H, t, J = 7.3 Hz), 2.53 (2H, t, J = 7.3 Hz), 2.03 – 1.96 (2H, m), 1.94 – 1.87 (2H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 158.6, 146.3, 144.6, 141.4, 128.4, 128.4, 125.9, 117.9, 111.8, 63.5, 34.7, 31.4, 31.0, 28.7, 28.3; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₂₀NaO₂S₂: 343.0797, found: 343.0797.

3-(2-((3-Phenylpropyl)thio)ethyl)-1*H***-indole 3q:** Prepared according to General Method B (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (120.6 mg, 0.408 mmol, 81.6% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (1H, s), 7.57 (1H, d, *J* = 7.8 Hz), 7.30 – 7.25 (3H, m), 7.20 – 7.15 (4H, m), 7.13 – 7.09 (1H, m), 6.94 (1H, s), 3.02 (2H, t, *J* = 7.8 Hz), 2.84 (2H, t, *J* = 7.7 Hz), 2.69 (2H, t, *J* = 7.6 Hz), 2.56 (2H, t, *J* = 7.3 Hz), 1.94 – 1.87 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 136.3, 128.6, 128.5, 127.2, 126.0, 122.1, 121.7, 119.4, 118.8, 115.0, 111.3, 34.9, 32.7, 31.7, 31.3, 26.1. The spectral data match those previously reported⁸.

1-(4-((3-phenylpropyl)thio)butyl)-1*H***-indole 3r:** Prepared according to General Method B (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (130.2 mg, 0.402 mmol, 80.5% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (1H, d, J = 7.9 Hz), 7.31 (1H, d, J = 8.2 Hz), 7.28 – 7.24 (2H, m), 7.21 – 7.13 (4H, m), 7.10 – 7.07 (1H, m), 7.04 (1H, d, J = 3.2 Hz), 6.47 (1H, d, J = 3.1 Hz), 4.07 (2H, t, J = 7.0 Hz), 2.66 (2H, t, J = 7.6 Hz), 2.46 – 2.40 (4H, m), 1.93 – 1.87 (2H, m), 1.85 – 1.80 (2H, m), 1.57 – 1.50 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 141.6, 136.0, 128.7, 128.5, 128.4, 127.8, 126.0, 121.5, 121.1, 119.3, 109.4, 101.2, 46.0, 34.8, 31.6, 31.4, 31.2, 29.3, 26.9; HRMS (ESI⁺) [M+H]⁺ calc'd for C₂₁H₂₆NS: 324.1780, found: 324.1782.

2-(4-((3-Phenylpropyl)thio)butyl)isoindoline-1,3-dione 3s: Prepared according to **General Method B** (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (131.9 mg, 0.373 mmol, 74.6% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.84 – 7.82 (2H, m), 7.71 – 7.69 (2H, m), 7.29 – 7.25 (2H, m), 7.19 – 7.15 (3H, m), 3.69 (2H, t, *J* = 7.1 Hz), 2.70 (2H, t, *J* = 7.6 Hz), 2.56 – 2.48 (4H, m), 1.92 – 1.85 (2H, m), 1.82 – 1.75 (2H, m), 1.65 – 1.58 (2H, m); ¹³C **NMR** (101 MHz, CDCl₃) δ 168.4, 141.6, 134.0, 132.1, 128.5, 128.4, 125.9, 123.2, 37.5, 34.8, 31.5, 31.5, 31.2, 27.8, 26.9; **HRMS** (ESI⁺) [M+H]⁺ calc'd for C₂₁H₂₄NO₂S: 354.1522, found: 354.1512.

9-(4-((3-Phenylpropyl)thio)butyl)-9H-carbazole 3t: Prepared according to **General Method B** (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (141.5 mg, 0.379 mmol, 75.8% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 8.24 (2H, d, J = 7.8 Hz), 7.62 – 7.57 (2H, m), 7.51 (2H, d, J = 8.2 Hz), 7.43 – 7.32 (5H, m), 7.30 – 7.28 (2H, m), 4.38 (2H, t, J = 7.0 Hz), 2.78 (2H, t, J = 7.6 Hz), 2.60 – 2.52 (4H, m), 2.11 – 2.04 (2H, m), 2.00 – 1.92 (2H, m), 1.77 – 1.69 (2H, m); ¹³C **NMR** (101 MHz, CDCl₃) δ 141.5, 140.3, 128.5, 128.4, 125.9, 125.8, 122.9, 120.4, 118.9, 108.7, 42.5, 34.8, 31.7, 31.4, 31.1, 28.0, 27.2; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₂₅H₂₇NNaS: 396.1756, found: 396.1763.

(4-(4-Methoxyphenyl)butan-2-yl)(3-phenylpropyl)sulfane 3u: Prepared according to General Method B (3.00 equiv MgCl₂, 100 °C were used) (Eluent: 200:1 to 100:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (93.7 mg, 0.298 mmol, 59.6% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.26 (2H, m), 7.21 – 7.17 (3H, m), 7.10 (2H, d, J = 8.6 Hz), 6.82 (2H, d, J = 8.6 Hz),

3.78 (3H, s), 2.75 – 2.66 (5H, m), 2.52 (2H, t, J = 7.3 Hz), 1.92 – 1.86 (2H, m), 1.85 – 1.71 (2H, m), 1.29 (3H, d, J = 6.8 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 157.9, 141.8, 134.1, 129.4, 128.6, 128.5, 126.0, 113.9, 55.4, 39.3, 39.0, 35.1, 32.4, 31.5, 29.6, 21.7; HRMS (ESI⁺) [M+H]⁺ calc'd for C₂₀H₂₇OS: 315.1777, found: 315.1773.

5-(3-((3-Phenylpropyl)thio)butyl)benzo[*d*][1,3]dioxole 3v: Prepared according to General Method B (3.00 equiv MgCl₂, 100 °C were used) (Eluent: 200:1 to 100:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (113.9 mg, 0.347 mmol, 69.4% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (2H, m), 7.22 – 7.17 (3H, m), 6.72 (1H, d, *J* = 7.9 Hz), 6.68 (1H, d, *J* = 1.7 Hz), 6.63 (1H, dd, *J* = 7.9, 1.7 Hz), 5.92 – 5.91 (2H, m), 2.74 – 2.69 (3H, m), 2.68 – 2.64 (2H, m), 2.52 (2H, t, *J* = 7.3 Hz), 1.93 – 1.85 (2H, m), 1.83 – 1.69 (2H, m), 1.28 (3H, d, *J* = 6.7 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 145.7, 141.7, 135.9, 128.6, 128.5, 126.0, 121.3, 109.0, 108.3, 100.9, 39.3, 39.0, 35.1, 33.0, 31.5, 29.6, 21.7; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₂₄NaO₂S: 351.1389, found: 351.1384.

3-((3-Phenylpropyl)thio)butyl thiophene-2-carboxylate 3w: Prepared according to **General Method B** (3.00 equiv MgCl₂, 100 °C were used) (Eluent: 200:1 to 100:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (97.8 mg, 0.292 mmol, 58.5% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.83 (1H, dd, J = 3.7, 1.3 Hz), 7.56 (1H, dd, J = 5.0, 1.3 Hz), 7.32 – 7.29 (2H, m), 7.23 – 7.21 (3H, m), 7.13 – 7.11 (1H, m), 4.48 (2H, t, J = 6.4 Hz), 3.00 – 2.93 (1H, m), 2.76 (2H, t, J = 7.6 Hz), 2.60 (2H, t, J = 7.3 Hz), 2.02 – 1.93 (4H, m), 1.39 (3H, d, J = 6.8 Hz); ¹³C NMR (126 MHz, CDCl₃) δ 162.1, 141.5, 133.8, 133.4, 132.4, 128.5, 128.4, 127.8, 125.9, 62.9, 36.8, 35.8, 34.9, 31.3, 29.7, 21.8; HRMS (ESI⁺) [M+H]⁺ calc'd for C₁₈H₂₃O₂S₂: 335.1134, found: 335.1133.

3-((3-Phenylpropyl)thio)butyl benzoate 3x: Prepared according to **General Method B** (3.00 equiv MgCl₂, 100 °C were used) (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow liquid (100.1 mg, 0.305 mmol, 60.9% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.03 (2H, d, J = 7.0 Hz), 7.57 – 7.53 (1H, m), 7.44 – 7.40 (2H, m), 7.28 – 7.23 (2H, m), 7.19 – 7.15 (3H, m), 4.46 (2H, t, J = 6.4 Hz), 2.98 – 2.90 (1H, m), 2.71 (t, J = 7.6 Hz, 2H), 2.56 (t, J = 7.3 Hz, 2H), 2.04 – 1.94 (2H, m), 1.93 – 1.87 (2H, m), 1.35 (3H, d, J = 6.8 Hz); ¹³**C NMR** (101 MHz, CDCl₃) δ 166.6, 141.6, 133.0, 130.3, 129.6, 128.5, 128.5, 126.0, 62.8, 37.0, 36.0, 35.0, 31.4, 29.8, 21.8 (one carbon was missing due to overlap); **HRMS** (ESI⁺) [M+H]⁺ calc'd for C₂₀H₂₅O₂S: 329.1570, found: 329.1564.

2. General Method C:

$$R-Br + \frac{O_{O}O_{S}}{Ph^{S}S^{Ph}} \xrightarrow{Zn (3.00 \text{ equiv})} Ph^{S}R$$

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (98.1 mg, 1.50 mmol, 3.00 equiv) and *S*-phenyl benzenesulfonothioate (250 mg, 1.00 mmol, 2.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then aryl bromide (0.500 mmol, 1.00 equiv) and dry DMF (2.50 mL) was added under N₂ and the mixture was allowed to stir for 12 h at 80 °C. After cooling to room temperature, the mixture was diluted with NaCl aqueous solution (25.0 mL) and extracted with ethyl acetate (25.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with ethyl acetate (10.0 mL x 3). The combined organic layers were washed with H₂O (25.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography.

(4-Chlorophenethyl)(phenyl)sulfane 3y: Prepared according to General Method C (Eluent: 300:1 to 100:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (107.1 mg, 0.431 mmol, 86.1% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (2H, d, J = 6.8 Hz), 7.36 – 7.33 (2H, m), 7.31 (2H, d, J = 8.3 Hz), 7.27 – 7.22 (1H, m), 7.16 (2H, d, J = 8.3 Hz), 3.18 (2H, t, J = 8.2 Hz), 2.93 (2H, t, J =7.2 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 138.7, 136.1, 132.3, 130.0, 129.5, 129.1, 128.7, 126.3, 35.1, 35.0. Spectra were consistent with literature data¹.

1,6-Bis(phenylthio)hexane 3z: Prepared according to **General Method C** (2.00 mmol *S*-phenyl benzenesulfonothioate, 3.00 mmol zinc were used) (Eluent: 200:1 to 100:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (99.2 mg, 0.328 mmol, 65.6% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.29 (4H, m), 7.27 – 7.23 (4H, m), 7.16 – 7.12 (2H, m), 2.89 (4H, t, *J* = 7.3 Hz), 1.66 – 1.59 (4H, m), 1.45 – 1.38 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 136.9, 128.9, 128.9, 125.8, 33.5, 29.0, 28.4. Spectra were consistent with literature data⁹.

(3-(Benzyloxy)propyl)(phenyl)sulfane 3aa: Prepared according to General Method C (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (130.4 mg, 0.434 mmol, 86.8% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.29 (6H, m), 7.28 – 7.22 (3H, m), 7.15 – 7.11 (1H, m), 4.46 (2H, s), 3.55 (2H, t, *J* = 6.0 Hz), 3.02 (2H, t, *J* = 7.2 Hz), 1.95 – 1.88 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 138.4, 136.6, 129.0, 128.9, 128.4, 127.6, 127.6, 125.8, 73.0, 68.5, 30.4, 29.5. Spectra were consistent with literature data¹⁰.

tert-Butyl (3-(phenylthio)propyl)carbamate 3ab: Prepared according to General Method C (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (102.7 mg, 0.384 mmol, 76.9% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (2H, d, J = 6.9 Hz), 7.30 – 7.26 (2H, m), 7.20 – 7.16 (1H, m), 4.79 (1H, s), 3.27 – 3.22 (2H, m), 2.94 (2H, t, J = 7.2 Hz), 1.85 – 1.78 (2H, m), 1.45 (9H, s); ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 136.2, 129.2, 128.9, 126.0, 79.2, 39.4, 30.9, 29.4, 28.4. Spectra were consistent with literature data¹¹.

(4-(4-Methoxyphenoxy)butyl)(phenyl)sulfane 3ac: Prepared according to General Method C (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (127.2 mg, 0.441 mmol, 88.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (2H, d, J = 7.8 Hz), 7.27 – 7.23 (2H, m), 7.17 – 7.13 (1H, m), 6.82 – 6.78 (4H, m), 3.89 (2H, t, J = 6.0 Hz), 3.73 (3H, s), 2.96 (2H, t, J = 7.0 Hz), 1.91 – 1.84 (2H, m), 1.84 – 1.77 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 153.1, 136.7, 129.1, 128.9, 125.9, 115.5, 114.7, 67.9, 55.8, 33.4, 28.5, 25.9. Spectra were consistent with literature data¹.

(4-(4-Iodophenoxy)butyl)(phenyl)sulfane 3ad: Prepared according to General Method C (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (150.3 mg, 0.391 mmol, 78.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (2H, d, J = 8.8 Hz), 7.31 (2H, d, J = 7.5 Hz), 7.27 – 7.23 (2H, m), 7.17 – 7.13 (1H, m), 6.61 (2H, d, J = 8.8 Hz), 3.87 (2H, t, J = 6.1 Hz), 2.95 (2H, t, J = 7.0 Hz), 1.91 – 1.84 (2H, m), 1.82 – 1.75 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 138.2, 136.5, 129.2, 128.9, 125.9, 116.9, 82.7, 67.4, 33.3, 28.2, 25.7. Spectra were consistent with literature data¹.

4-(4-(Phenylthio)butoxy)benzonitrile 3ae: Prepared according to **General Method C** (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (105.8 mg, 0.409 mmol, 81.7% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (2H, d, J = 8.7 Hz), 7.32 (2H, d, J = 7.2 Hz), 7.28 – 7.25 (2H, m), 7.19 – 7.15 (1H, m), 6.88 (2H, d, J = 8.7 Hz), 3.98 (2H, t, J = 6.1 Hz), 2.97 (2H, t, J =7.1 Hz), 1.97 – 1.90 (2H, m), 1.85 – 1.78 (2H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 162.1, 136.3, 133.9, 129.1, 128.9, 126.0, 119.2, 115.1, 103.7, 67.6, 33.2, 27.9, 25.5; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₁₇NaNOS: 306.0923, found: 306.0915.

4-(4-(Phenylthio)butoxy)benzaldehyde 3af: Prepared according to **General Method C** (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (123.4 mg, 0.431 mmol, 86.2% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 9.85 (1H, s), 7.80 (2H, d, J = 8.7 Hz), 7.32 (2H, d, J = 7.0 Hz), 7.28 – 7.24 (2H, m), 7.18 – 7.14 (1H, m), 6.94 (2H, d, J = 8.8 Hz), 4.01 (2H, t, J = 6.1 Hz), 2.98 (2H, t, J = 7.1 Hz), 1.98 – 1.91 (2H, m), 1.86 – 1.78 (2H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 190.8, 163.9, 136.3, 131.9, 129.8, 129.1, 128.9, 125.9, 114.7, 67.6, 33.2, 28.0, 25.6. Spectra were consistent with literature data¹.

1-(4-(4-(Phenylthio)butoxy)phenyl)ethan-1-one 3ag: Prepared according to General Method C (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (124.8 mg, 0.416 mmol, 83.1% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (2H, d, J = 8.9 Hz), 7.33 (2H, d, J = 7.1 Hz), 7.29 – 7.25 (2H, m), 7.19 – 7.15 (1H, m), 6.89 (2H, d, J = 8.9 Hz), 4.02 (2H, t, J = 6.2 Hz), 2.99 (2H, t, J = 7.2 Hz), 2.54 (3H, s), 1.98 – 1.91 (2H, m), 1.87 – 1.79 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 196.8, 162.9, 136.4, 130.6, 130.3, 129.3, 129.0, 126.0, 114.2, 67.6, 33.4, 28.1, 26.4, 25.7. Spectra were consistent with literature data¹.

Methyl 4-(4-(phenylthio)butoxy)benzoate 3ah: Prepared according to General Method C (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (142.7 mg, 0.451 mmol, 90.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (2H, d, J = 8.5 Hz), 7.32 (2H, d, J = 7.3 Hz), 7.28 – 7.24 (2H, m), 7.18 – 7.13 (1H, m), 6.86 (2H, d, J = 8.5 Hz), 3.98 (2H, t, J = 6.1 Hz), 3.86 (3H, s), 2.97 (2H, t, J = 7.1 Hz), 1.96 – 1.89 (2H, m), 1.85 – 1.78 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 162.7, 136.4, 131.6, 129.2, 128.9, 126.0, 122.5, 114.1, 67.4, 51.9, 33.3, 28.1, 25.7. Spectra were consistent with literature data¹.

11-(Phenylthio)undecan-1-ol 3ai: Prepared according to **General Method C** (Eluent: 200:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (112.7 mg, 0.402 mmol, 80.4% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (2H, d, J = 7.3 Hz), 7.31 – 7.29 (2H, m), 7.19 – 7.16 (1H, m), 3.64 (2H, t, J = 6.7 Hz), 2.93 (2H, t, J = 7.4 Hz), 1.88 (1H, s), 1.70 – 1.63 (2H, m), 1.61 – 1.54 (2H, m), 1.45 – 1.40 (2H, m), 1.37 – 1.29 (12H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 137.1, 128.9, 128.8, 125.7, 63.0, 33.6, 32.8, 29.6, 29.6, 29.5, 29.5, 29.2, 29.2, 28.9, 25.8; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₂₈NaOS: 303.1753, found: 303.1751.

3-(Phenylthio)propyl (1*R*,2*S*,4*R*)-bicyclo[2.2.1]hept-5-ene-2-carboxylate 3aj: Prepared according to General Method C (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (117.1 mg, 0.406 mmol, 81.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (2H, d, *J* = 6.9 Hz), 7.33 – 7.29 (2H, m), 7.23 – 7.18 (1H, m), 6.22 – 6.20 (1H, m), 5.95 – 5.92 (1H, m), 4.15 (2H, td, *J* = 6.2, 2.0 Hz), 3.22 (1H, s), 3.00 (2H, t, *J* = 5.9 Hz), 2.98 – 2.95 (1H, m), 2.92 (1H, s), 1.99 – 1.94 (2H, m), 1.92 – 1.89 (1H, m), 1.47 – 1.44 (2H, m), 1.29 (1H, d, J = 7.6 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 137.8, 136.0, 132.3, 129.3, 128.9, 126.1, 62.5, 49.6, 45.7, 43.3, 42.5, 30.2, 29.2, 28.4. Spectra were consistent with literature data¹.

Pent-4-yn-1-yl 6-(phenylthio)hexanoate 3ak: Prepared according to **General Method C** (Eluent: 200:1 to 30:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (120.5 mg, 0.416 mmol, 83.1% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.20 (2H, m), 7.28 – 7.25 (2H, m), 7.18 – 7.14 (1H, m), 4.16 (2H, t, J = 6.3 Hz), 2.91 (2H, t, J = 7.3 Hz), 2.31 – 2.25 (4H, m), 1.97 (1H, t, J = 2.7 Hz), 1.87 – 1.81 (2H, m), 1.69 – 1.59 (4H, m), 1.49 – 1.41 (2H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.5, 136.7, 129.0, 128.9, 125.8, 83.0, 69.1, 62.8, 34.1, 33.4, 28.8, 28.2, 27.5, 24.5, 15.2; **HRMS** (ESI⁺) [M+H]⁺ calc'd for C₁₇H₂₃O₂S: 291.1413, found: 291.1415.

3-(Phenylthio)propyl furan-2-carboxylate 3al: Prepared according to **General Method C** (Eluent: 200:1 to 30:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (117.0 mg, 0.446 mmol, 89.2% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (1H, dd, J = 2.5, 1.3 Hz), 7.53 (1H, dd, J = 3.7, 1.3 Hz), 7.36 – 7.33 (2H, m), 7.19 – 7.14 (1H, m), 7.09 – 7.07 (1H, m), 4.39 (2H, t, J = 6.2 Hz), 3.04 (2H, t, J = 7.2 Hz), 2.09 – 2.02 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 135.9, 133.7, 133.5, 132.5, 129.4, 129.0, 127.8, 126.2, 63.5, 30.2, 28.4. Spectra were consistent with literature data¹.

3-(Phenylthio)propyl thiophene-2-carboxylatee 3am: Prepared according to **General Method C** (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (122.1 mg, 0.439 mmol, 87.7% yield). ¹H

NMR (400 MHz, CDCl₃) δ 7.57 – 7.56 (1H, m), 7.35 (2H, d, J = 7.2 Hz), 7.29 – 7.25 (2H, m), 7.19 – 7.16 (2H, m), 6.50 – 6.49 (1H, m), 4.40 (2H, t, J = 6.2 Hz), 3.04 (2H, t, J = 7.2 Hz), 2.09 – 2.03 (2H, m); ¹³C **NMR** (101 MHz, CDCl₃) δ 158.6, 146.4, 144.6, 135.9, 129.4, 129.0, 126.2, 118.0, 111.9, 63.3, 30.2, 28.4. Spectra were consistent with literature data¹.

3-(2-(Phenylthio)ethyl)-1*H***-indole 3an:** Prepared according to **General Method C** (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (112.9 mg, 0.446 mmol, 89.1% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (1H, s), 7.54 (1H, d, *J* = 7.8 Hz), 7.36 (2H, d, *J* = 7.2 Hz), 7.31 – 7.26 (3H, m), 7.20 – 7.15 (2H, m), 7.13 – 7.09 (1H, m), 6.97 (1H, s), 3.24 (2H, t, *J* = 7.3 Hz), 3.08 (2H, t, *J* = 7.7 Hz); ¹³**C NMR** (101 MHz, CDCl₃) δ 136.7, 136.3, 129.2, 129.0, 127.2, 126.0, 122.2, 121.9, 119.5, 118.7, 114.7, 111.3, 34.3, 25.4. Spectra were consistent with literature data¹.

1-(4-(Phenylthio)butyl)-1*H***-indole 3ao:** Prepared according to General Method C (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (118.5 mg, 0.421 mmol, 84.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (1H, d, J = 7.8 Hz), 7.27 (1H, d, J = 8.2 Hz), 7.25 – 7.22 (3H, m), 7.21 – 7.16 (2H, m), 7.14 – 7.11 (1H, m), 7.10 – 7.06 (1H, m), 6.97 (1H, d, J = 3.2 Hz), 6.45 (1H, d, J = 3.1 Hz), 4.01 (2H, t, J = 7.0 Hz), 2.81 (2H, t, J = 7.1 Hz), 1.93 – 1.86 (2H, m), 1.60 – 1.53 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 136.3, 135.9, 129.4, 129.0, 128.6, 127.7, 126.1, 121.5, 121.0, 119.3, 109.4, 101.1, 45.8, 33.3, 29.1, 26.4. Spectra were consistent with literature data¹.

2-(4-(Phenylthio)butyl)isoindoline-1,3-dione 3ap: Prepared according to **General Method C** (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (124.9 mg, 0.401 mmol, 80.2% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.82 – 7.79 (2H, m), 7.70 – 7.68 (2H, m), 7.29 (2H, d, J = 7.1 Hz), 7.25 – 7.21 (2H, m), 7.14 – 7.10 (1H, m), 3.68 (2H, t, J = 7.1 Hz), 2.94 (2H, t, J = 7.2 Hz), 1.86 – 1.79 (2H, m), 1.70 – 1.63 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 136.3, 133.9, 132.0, 129.3, 128.8, 125.9, 123.2, 37.3, 33.1, 27.6, 26.2. Spectra were consistent with literature data¹.

9-(4-(Phenylthio)butyl)-9*H***-carbazole 3aq:** Prepared according to General Method C (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (140.4 mg, 0.424 mmol, 84.7% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (2H, d, J = 7.7 Hz), 7.43 – 7.39 (2H, m), 7.30 (2H, d, J = 8.2 Hz), 7.23 – 7.17 (6H, m), 7.14 – 7.10 (1H, m), 4.19 (2H, t, J = 7.1 Hz), 2.80 (2H, t, J = 7.1 Hz), 1.97 – 1.90 (2H, m), 1.66 – 1.58 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 136.3, 129.5, 129.0, 126.1, 125.7, 122.9, 120.5, 118.9, 108.7, 42.5, 33.6, 28.0, 26.7. Spectra were consistent with literature data¹.

(2,3-Dihydro-1*H*-inden-2-yl)(phenyl)sulfane 3ar: Prepared according to General Method C (3.00 equiv MgCl₂ was used) (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (102.4 mg, 0.452 mmol, 90.5% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.39 (2H, d, J = 8.1 Hz), 7.31 – 7.27 (2H, m), 7.22 – 7.13 (5H, m), 4.13 – 4.06 (1H, m), 3.35 (2H, dd, J = 16.1, 7.5 Hz), 2.99 (2H, dd, J = 16.2, 5.9 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 141.6, 136.2,

130.6, 129.0, 126.8, 126.5, 124.6, 45.3, 40.3. Spectra were consistent with literature data¹.

Phenyl(4-phenylbutan-2-yl)sulfane 3as: Prepared according to **General Method C** (3.00 equiv MgCl₂ was used) (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (113.3 mg, 0.467 mmol, 93.5% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.33 (2H, m), 7.28 – 7.23 (4H, m), 7.21 – 7.15 (4H, m), 3.23 – 3.14 (1H, m), 2.84 – 2.71 (2H, m), 1.96 – 1.87 (1H, m), 1.85 – 1.76 (1H, m), 1.30 (3H, d, J = 6.7 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 141.8, 135.2, 132.1, 128.9, 128.6, 128.5, 126.8, 126.0, 42.6, 38.3, 33.3, 21.3. Spectra were consistent with literature data¹.

5-(3-(Phenylthio)butyl)benzo[*d*][1,3]dioxole 3at: Prepared according to General Method C (3.00 equiv MgCl₂ was used) (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (115.7 mg, 0.404 mmol, 80.8% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.26 (2H, d, *J* = 7.0 Hz), 7.19 – 7.15 (2H, m), 7.13 – 7.08 (1H, m), 6.62 (1H, d, *J* = 7.8 Hz), 6.55 (1H, s), 6.51 (1H, d, *J* = 7.9 Hz), 5.79 (2H, s), 3.12 – 3.03 (1H, m), 2.66 – 2.54 (2H, m), 1.82 – 1.73 (1H, m), 1.71 – 1.62 (1H, m), 1.20 (3H, d, *J* = 6.7 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 145.7, 135.5, 135.1, 132.1, 128.9, 126.8, 121.2, 108.9, 108.2, 100.8, 42.4, 38.5, 32.9, 21.3; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₁₈NaO₂S: 309.0920, found: 309.0912.

(4-(4-Methoxyphenyl)butan-2-yl)(phenyl)sulfane 3au: Prepared according to General Method C (3.00 equiv $MgCl_2$ was used) (Eluent: 200:1 to 50:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (113.0

mg, 0.415 mmol, 83.0% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (2H, d, J = 7.4 Hz), 7.27 – 7.23 (2H, m), 7.21 – 7.17 (1H, m), 7.07 (2H, d, J = 8.6 Hz), 6.81 (2H, d, J = 8.6 Hz), 3.76 (3H, s), 3.22 – 3.14 (1H, m), 2.78 – 2.65 (2H, m), 1.95 – 1.84 (1H, m), 1.81 – 1.72 (1H, m), 1.30 (3H, d, J = 6.7 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 157.9, 135.2, 133.7, 132.0, 129.4, 128.9, 126.8, 113.9, 55.3, 42.5, 38.5, 32.3, 21.3. Spectra were consistent with literature data¹.

3. <u>General Method D:</u>

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (98.1 mg, 1.50 mmol, 3.00 equiv) and methyl 4-(4-bromobutoxy)benzoate (287.2 mg, 1.00 mmol, 2.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then *S*-phenyl benzenesulfonothioate (0.500 mmol, 1.00 equiv) and dry DMF (2.50 mL) were added under N₂ and the mixture was allowed to stir for 12 h at 80 °C. After cooling to room temperature, the mixture was diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was diluted with H₂O (25.0 mL) and extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with H₂O (25.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography.

Methyl 4-(4-((3-phenylpropyl)thio)butoxy)benzoate 3k: Prepared according to General Method D (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (145.0 mg, 0.404 mmol, 80.9% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (2H, d, J = 8.8 Hz), 7.29 – 7.25 (2H, m), 7.18 – 7.16 (3H, m), 6.88 (2H, d, J = 8.9 Hz), 3.99 (2H, t, J = 6.2 Hz), 3.86 (3H, s), 2.71 (2H, t, ³³

J = 7.6 Hz, 2.56 (2H, t, J = 7.2 Hz), 2.52 (2H, t, J = 7.3 Hz), 1.94 - 1.85 (4H, m),1.81 - 1.71 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 162.8, 141.6, 131.6, 128.5, 128.4, 126.0, 122.5, 114.0, 67.6, 51.9, 34.8, 31.7, 31.4, 31.2, 28.2, 26.1; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₂₁H₂₆NaO₃S: 381.1495, found: 381.1499.

Methyl 4-(4-((4-(4-cyanophenoxy)butyl)thio)butoxy)benzoate 3av: Prepared according to General Method D (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (143.0 mg, 0.346 mmol, 69.2% yield). M.p. = 86.4 - 87.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (2H, d, J = 8.5 Hz), 7.51 (2H, d, J = 8.4 Hz), 6.89 - 6.85 (4H, m), 4.00 - 3.96 (4H, m), 3.84 (3H, s), 2.57 (4H, t, J = 7.2 Hz), 1.92 - 1.88 (4H, m), 1.82 - 1.74 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 162.7, 162.2, 134.0, 131.5, 122.4, 119.2, 115.1, 114.0, 103.7, 67.7, 67.5, 51.8, 31.7, 31.6, 28.2, 28.0, 26.0, 25.9; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₃H₂₇NNaO₄S: 336.1553, found: 436.1563.

Methyl 4-(4-((4-(4-formylphenoxy)butyl)thio)butoxy)benzoate 3aw: Prepared according to **General Method D** (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (146.2 mg, 0.351 mmol, 70.2% yield). **M.p.** = 80.3 – 80.7 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 9.82 (1H, s), 7.93 (2H, d, J = 8.7 Hz), 7.77 (2H, d, J = 8.6 Hz), 6.94 (2H, d, J = 8.4 Hz), 6.85 (2H, d, J = 8.8 Hz), 4.02 – 3.96 (4H, m), 3.83 (3H, s), 2.57 (4H, t, J = 7.2 Hz), 1.91 – 1.84 (4H, m), 1.79 – 1.71 (4H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 190.7, 166.7, 164.0, 162.7, 131.9, 131.5, 129.7, 122.4, 114.7, 114.0, 67.7, 67.5, 51.8, 31.6, 31.6, 28.2, 28.1, 26.0, 26.0; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₂₃H₂₈NaO₅S: 439.1550, found: 439.1546.

Methyl 4-(4-((4-(4-acetylphenoxy)butyl)thio)butoxy)benzoate 3ax: Prepared according to **General Method D** (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (156.3 mg, 0.363 mmol, 72.6% yield). **M.p.** = 80.1 - 80.5 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (2H, d, J = 8.4 Hz), 7.80 (2H, d, J = 8.4 Hz), 6.79 (4H, m), 3.93 – 3.89 (4H, m), 3.76 (3H, s), 2.50 (4H, t, J = 7.1 Hz), 2.43 (3H, s), 1.84 – 1.77 (4H, m), 1.72 – 1.64 (4H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 196.6, 166.7, 162.8, 162.6, 131.5, 130.5, 130.1, 122.3, 114.0, 113.9, 67.5, 67.4, 51.8, 31.6, 28.1, 26.3, 26.0 (three carbons were missing due to the overlap); **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₂₄H₃₀NaO₅S: 453.1706, found: 453.1719.

Dimethyl 4,4'-((thiobis(butane-4,1-diyl))bis(oxy))dibenzoate 3ay: Prepared according to General Method D (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (174.0 mg, 0.389 mmol, 77.9% yield). M.p. = 72.4 - 72.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (4H, d, J = 8.4 Hz), 6.85 (4H, d, J = 8.4 Hz), 3.98 (4H, t, J = 6.2 Hz), 3.84 (6H, s), 2.57 (4H, t, J = 7.1 Hz), 1.91 – 1.84 (4H, m), 1.79 – 1.71 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 162.7, 131.5, 122.4, 114.0, 67.5, 51.8, 31.7, 28.2, 26.1; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₄H₃₀NaO₆S: 469.1655, found: 469.1667.

Methyl 4-(4-((4-chlorophenethyl)thio)butoxy)benzoate 3az: Prepared according to General Method D (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (162.3 mg, 0.428 mmol, 85.7% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (2H, d, J = 8.9 Hz), 7.23 (2H, d, J = 8.4 Hz), 7.11 (2H, d, J = 8.4 Hz), 6.87 (2H, d, J = 8.9 Hz), 3.98 (2H, t, J = 6.2 Hz), 3.86 (3H, s), 2.85 – 2.81 (2H, m), 2.75 – 2.71 (2H, m), 2.57 (2H, t, J = 7.2 Hz), 1.92 – 1.83 (2H, m), 1.80 – 1.71 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 162.7, 138.9, 132.0, 131.5, 129.8, 128.5, 122.4, 114.0, 67.4, 51.8, 35.5, 33.4, 31.9, 28.1, 26.0; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₀H₂₃ClNaO₃S: 401.0949, found: 401.0949.

Methyl 4-(4-(cyclohexylthio)butoxy)benzoate 3aaa: Prepared according to General Method D (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (146.1 mg, 0.453 mmol, 90.6% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (2H, d, J = 8.8 Hz), 6.87 (2H, d, J = 8.9 Hz), 3.85 (2H, t, J = 6.3 Hz), 3.87 (3H, s), 2.65 – 2.62 (1H, m), 2.59 (2H, t, J = 7.3 Hz), 1.97 – 1.91 (2H, m), 1.91 – 1.85 (2H, m), 1.78 – 1.71 (4H, m), 1.62 – 1.55 (1H, m), 1.33 – 1.20 (5H, m); ¹³C NMR (101 MHz, CDCl₃) δ 166.9, 162.8, 131.6, 122.5, 114.1, 67.6, 51.9, 43.5, 33.8, 29.8, 28.3, 26.5, 26.2, 25.9; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₁₈H₂₆NaO₃S: 345.1495, found: 345.1507.

Methyl 4-(4-((6-((*tert*-butyldiphenylsilyl)oxy)hexyl)thio)butoxy)benzoate 3aab: Prepared according to General Method D (Eluent: 200:1 to 10:1 petroleum ether:
ethyl acetate) and the title compound was isolated as a colorless liquid (165.0 mg, 0.285 mmol, 57.0% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (2H, d, J = 8.8 Hz), 7.70 - 7.67 (4H, m), 7.45 - 7.37 (6H, m), 6.91 (2H, d, J = 8.8 Hz), 4.04 (2H, t, J =6.2 Hz), 3.89 (3H, s), 3.68 (2H, t, *J* = 6.4 Hz), 2.59 (2H, t, *J* = 7.2 Hz), 2.52 (2H, t, *J* = 7.4 Hz), 1.96 – 1.88 (2H, m), 1.83 – 1.74 (2H, m), 1.66 – 1.53 (4H, m), 1.43 – 1.35 (4H, m), 1.06 (9H, s); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 162.8, 135.6, 134.0, 131.6, 129.5, 127.6, 122.4, 114.0, 67.5, 63.8, 51.8, 32.4, 32.0, 31.7, 29.6, 28.6, 28.2, 26.9, 26.1, 25.4, 19.2; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₃₄H₄₆NaO₄SSi: 601.2778, found: 601.2780.

1-(tert-Butyl) 4-(3-((4-(4-(methoxycarbonyl)phenoxy)butyl)thio)propyl) piperidine-1,4-dicarboxylate 3aac: Prepared according to General Method D (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (164.8 mg, 0.323 mmol, 64.7% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (2H, d, J = 8.9 Hz), 6.84 (2H, d, J = 8.9 Hz), 4.13 (2H, t, J = 6.3 Hz), 3.97 (4H, t, J = 6.2 Hz), 3.82 (3H, s), 2.78 (2H, t, J = 12.5 Hz), 2.55 – 2.51 (4H, m), 2.42 – 2.36 (1H, m), 1.88 – 1.83 (6H, m), 1.75 – 1.70 (2H, m), 1.60 – 1.55 (2H, m), 1.40 (9H, s); ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 166.7, 162.6, 154.6, 131.5, 122.4, 114.0, 79.5, 67.4, 63.0, 51.7, 43.0, 41.0, 31.7, 28.6, 28.3, 28.1, 27.9, 25.9 (one carbon was missing due to overlap); **HRMS** (ESI⁺) $[M+Na]^+$ calc'd for C₂₆H₃₉NNaO₇S: 532.2339, found: 532.2344.

Methyl(R)-4-((6-benzyl-2,2-dimethyl-4,7-dioxo-3,8-dioxa-12-thia-5azahexadecan-16-yl)oxy)benzoate 3aad: Prepared according to General Method D

37

(Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (159.9 mg, 0.293 mmol, 58.6% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (2H, d, J = 8.8 Hz), 7.30 – 7.23 (3H, m), 7.14 (2H, d, J = 6.7 Hz), 6.89 (2H, d, J = 8.9 Hz), 5.05 (1H, d, J = 8.3 Hz), 4.59 – 4.54 (1H, m), 4.20 – 4.16 (2H, m), 4.02 (2H, t, J = 6.2 Hz), 3.87 (3H, s), 3.07 (2H, d, J = 6.3 Hz), 2.56 (2H, t, J = 7.2 Hz), 2.47 (2H, t, J = 7.2 Hz), 1.94 – 1.82 (4H, m), 1.78 – 1.73 (2H, m), 1.41 (9H, s); ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 166.9, 162.7, 155.1, 136.0, 131.0, 129.3, 128.6, 127.1, 122.5, 114.1, 79.9, 67.5, 63.9, 54.5, 51.9, 38.5, 31.7, 28.4, 28.3, 28.2, 26.0; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₉H₃₉NNaO₇S: 568.2339, found: 568.2353.

Methyl 4-(4-((4-(1H-indol-1-yl)butyl)thio)butoxy)benzoate 3aae: Prepared according to General Method D (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow liquid (167.2 mg, 0.406 mmol, 81.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (2H, d, J = 8.8 Hz), 7.72 (1H, d, J = 7.8 Hz), 7.41 (1H, d, J = 8.2 Hz), 7.31 – 7.27 (1H, m), 7.21 – 7.18 (1H, m), 7.14 (1H, d, J = 3.1 Hz), 6.95 (2H, d, J = 8.8 Hz), 6.57 (1H, d, J = 3.1 Hz), 4.15 (2H, t, J = 7.0 Hz), 4.00 (2H, t, J = 6.2 Hz), 3.95 (3H, s), 2.57 – 2.52 (4H, m), 2.02 – 1.95 (2H, m), 1.92 – 1.87 (2H, m), 1.80 – 1.73 (2H, m), 1.67 – 1.59 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 162.7, 135.8, 131.5, 128.5, 127.6, 122.3, 121.3, 120.9, 119.2, 114.0, 109.3, 101.0, 67.4, 51.7, 45.8, 31.6, 31.5, 29.1, 28.1, 26.8, 25.9; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₄H₂₉NNaO₃S: 434.1760, found: 434.1760.

Methyl 4-(4-((4-(1,3-dioxoisoindolin-2-yl)butyl)thio)butoxy)benzoate 3aaf: Prepared according to General Method D (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow liquid (153.9 mg, 0.349 mmol, 69.7% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (2H, d, J = 8.8 Hz), 7.75 – 7.72 (2H, m), 7.63 – 7.61 (2H, m), 6.81 (2H, d, J = 8.8 Hz), 3.94 (2H, t, J = 6.2 Hz), 3.79 (3H, s), 3.62 (2H, t, J = 7.0 Hz), 2.54 – 2.33 (4H, m), 1.85 – 1.79 (2H, m), 1.78 – 1.65 (4H, m), 1.60 – 1.53 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 166.6, 162.6, 133.8, 131.9, 131.4, 123.0, 122.2, 113.9, 67.4, 51.7, 37.3, 31.6, 31.3, 28.1, 27.7, 26.7, 26.0; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₄H₂₇NNaO₅S: 464.1502, found: 464.1496.

Methyl 4-(4-((4-(9*H*-carbazol-9-yl)butyl)thio)butoxy)benzoate 3aag: Prepared according to General Method D (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow liquid (173.1 mg, 0.375 mmol, 75.0% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (2H, d, *J* = 7.8 Hz), 7.95 (2H, d, *J* = 8.9 Hz), 7.44 – 7.40 (2H, M), 7.34 (2H, d, *J* = 8.2 Hz), 7.21 – 7.17 (2H, m), 6.81 (2H, d, *J* = 8.9 Hz), 4.22 (2H, t, *J* = 7.0 Hz), 3.86 – 3.83 (5H, m), 2.43 – 2.38 (4H, q, *J* = 7.2 Hz), 1.95 – 1.88 (2H, m), 1.78 – 1.71 (2H, m), 1.64 – 1.54 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 166.8, 162.7, 140.3, 131.5, 125.6, 122.8, 122.4, 120.3, 118.8, 114.0, 108.6, 67.4, 51.8, 42.5, 31.7, 31.7, 28.1, 28.0, 27.1, 26.0; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₈H₃₁NNaO₃S: 484.1917, found: 484.1912.

ate 3aah: Prepared according to General Method D (Eluent: 200:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (178.0 mg, 0.366 mmol, 73.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (2H, d, J = 8.8 Hz), 7.19 (2H, d, J = 8.1 Hz), 7.08 (2H, d, J = 8.2 Hz), 6.89 (2H, d, J = 8.9 Hz), 4.21 – 4.10 (2H, m), 4.05 – 3.94 (2H, t, J = 5.5 Hz), 3.86 (3H, s), 3.71 – 3.66 (1H, m), 2.50 (2H, t, J = 7.2 Hz), 2.45 – 2.11 (4H, m), 1.90 – 1.79 (5H, m), 1.77 – 1.68 (2H, m), 1.48 (3H, d, J = 7.4 Hz), 0.88 (6H, d, J = 6.8 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 166.7, 162.7, 140.5, 137.8, 131.6, 129.3, 127.1, 122.5, 114.0, 67.5, 63.1, 51.8, 45.1, 45.0, 31.7, 30.2, 28.7, 28.3, 28.2, 26.0, 22.4, 18.4; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₈H₃₈NaO₅S: 509.2332, found: 509.2334.

Methyl (*R*)-4-(4-((3-((2-(6-methoxynaphthalen-2-yl)propanoyl)oxy)propyl)thio) butoxy)benzoate 3aai: Prepared according to General Method D (Eluent: 200:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (176.0 mg, 0.345 mmol, 68.9% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (2H, d, *J* = 8.8 Hz), 7.69 – 7.65 (3H, m), 7.39 (1H, dd, *J* = 8.4, 1.9 Hz), 7.12 (1H, d, *J* = 8.9 Hz), 7.08 (1H, s), 6.86 (d, *J* = 8.9 Hz, 2H), 4.22 – 4.10 (2H, m), 3.91 (t, *J* = 6.2 Hz, 2H), 3.86 (6H, s), 3.85 – 3.83 (1H, m), 2.39 (4H, td, *J* = 7.4, 2.4 Hz), 1.87 – 1.81 (2H, m), 1.79 – 1.74 (2H, m), 1.64 – 1.59 (2H, m), 1.56 (3H, d, *J* = 7.1 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 166.8, 162.7, 157.6, 135.7, 133.7, 131.6, 129.2, 128.9, 127.1, 126.2, 125.9, 122.4, 119.0, 114.0, 105.6, 67.5, 63.2, 55.2, 51.8, 45.4, 31.7, 28.7, 28.3, 28.1, 25.9, 18.4; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₉H₃₄NaO₆S: 533.1968, found: 533.1970.

Methyl(E)-4-(4-((5-((3,7-dimethylocta-2,6-dien-1-yl)oxy)-5-

oxopentyl)thio)butoxy)benzoate 3aaj: Prepared according to **General Method D** (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (163.0 mg, 0.342 mmol, 68.4% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (2H, d, J = 8.8 Hz), 6.89 (2H, d, J = 8.9 Hz), 5.37 – 5.33 (1H, m), 5.10 – 5.07 (1H, m), 4.56 (2H, d, J = 7.2 Hz), 4.01 (2H, t, J = 6.2 Hz), 3.87 (3H, s), 2.57 (2H, t, J = 7.2 Hz), 2.52 (2H, t, J = 7.2 Hz), 2.32 (2H, t, J = 7.3 Hz), 2.14 – 2.04 (4H, m), 1.94 – 1.87 (2H, m), 1.78 – 1.72 (7H, m), 1.67 (3H, s), 1.59 (3H, m); ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 166.7, 162.7, 142.4, 132.0, 131.5, 123.5, 122.4, 119.2, 114.0, 67.5, 60.9, 51.7, 33.8, 32.1, 31.6, 31.5, 29.0, 28.2, 26.6, 26.0, 25.6, 24.1, 23.4, 17.6; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₂₇H₄₀NaO₅S: 499.2489, found: 499.2484.

Methyl4-(4-((3-((3-((4,5-diphenyloxazol-2-

yl)propanoyl)oxy)propyl)thio)butoxy)benzoate 3aak: Prepared according to General Method D (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (146.9 mg, 0.256 mmol, 51.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (2H, d, J = 8.8 Hz), 7.53 (2H, d, J = 6.7 Hz), 7.46 (2H, d, J = 6.4 Hz), 7.27 – 7.17 (6H, m), 6.77 (2H, d, J = 8.7 Hz), 4.12 (2H, t, J = 6.3 Hz), 3.87 (2H, t, J = 6.2 Hz), 3.75 (3H, s), 3.07 (2H, t, J = 7.4 Hz), 2.81 (2H, t, J = 7.4 Hz), 2.47 – 2.41 (4H, m), 1.84 – 1.72 (4H, m), 1.66 – 1.59 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 166.7, 162.7, 161.7, 145.3, 135.0, 132.4, 131.5, 128.9, 128.6, 128.5, 128.4, 128.0, 127.8, 126.4, 122.4, 114.0, 67.5, 63.3, 51.8, 31.7, 31.0, 28.6, 28.4,

28.2, 26.0, 23.5; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₃₃H₃₅NNaO₆S: 596.2077, found: 596.2079.

Methyl 4-(4-((3-((5-(2,5-dimethylphenoxy)-2,2-dimethylpentanoyl)oxy)propyl) thio)butoxy)benzoate 3aal: Prepared according to General Method D (Eluent: 200:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (225.5 mg, 0.425 mmol, 85.0% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (2H, d, J = 8.8 Hz), 7.01 (1H, d, J = 7.5 Hz), 6.89 (2H, d, J = 8.9 Hz), 6.66 (1H, d, J = 7.4 Hz), 6.62 (1H, s), 4.19 (2H, t, J = 6.2 Hz), 3.98 (2H, t, J = 6.2 Hz), 3.92 – 3.90 (2H, m), 3.88 (3H, s), 2.62 – 2.57 (4H, m), 2.32 (3H, s), 2.20 (3H, s), 1.97 – 1.88 (4H, m), 1.81 – 1.74 (6H, m), 1.25 (6H, s); ¹³C NMR (101 MHz, CDCl₃) δ 177.5, 166.7, 162.6, 156.8, 136.3, 131.5, 130.2, 123.3, 122.3, 120.6, 113.9, 111.9, 67.7, 67.4, 62.9, 51.7, 42.0, 37.0, 31.7, 28.7, 28.4, 28.1, 25.9, 25.1, 25.0, 21.3, 15.7; HRMS (ESI⁺) [M+Na]⁺ calc'd for C₃₀H₄₂NaO₆S: 553.2594, found: 553.2607.

Methyl 4-(4-((3-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)propyl)thio)butoxy)benzoate 3aam: Prepared according to General Method D (Eluent: 200:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (236.6 mg, 0.371 mmol, 74.1% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (2H, d, J = 8.8 Hz), 7.63 (2H, d, J = 8.4 Hz), 7.44 (2H, d, J= 8.5 Hz), 6.96 (1H, d, J = 2.5 Hz), 6.87 (3H, d, J = 9.0 Hz), 6.66 (1H, d, J = 9.0 Hz), 4.20 (2H, t, J = 6.2 Hz), 3.98 (2H, t, J = 4.8 Hz), 3.86 (3H, s), 3.82 (3H, s), 3.66 (2H, s), 2.51 – 2.47 (4H, m), 2.37 (3H, s), 1.92 – 1.82 (4H, m), 1.74 – 1.67 (2H, m); ¹³C **NMR** (101 MHz, CDCl₃) δ 170.7, 168.1, 166.7, 162.6, 156.0, 139.1, 135.8, 133.8, 131.5, 131.1, 130.7, 130.5, 129.0, 122.3, 115.9, 113.9, 112.5, 111.5, 101.2, 67.4, 63.5, 55.6, 51.8, 31.7, 30.3, 28.6, 28.3, 28.1, 25.9, 13.3; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₃₄H₃₆ClNNaO₇S: 316.0226, found: 316.0214.

Methyl 4-(4-((6-(((13*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-*6H*-cyclopenta[*a*]phenanthren-3-yl)oxy)-6-oxohexyl)thio)butoxy)benzoate 3aan: Prepared according to General Method D (Eluent: 200:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (226.3 mg, 0.382 mmol, 76.4% yield). M.p. = $81.0 - 81.6 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (2H, d, *J* = 8.4 Hz), 7.27 (1H, d, *J* = 8.7 Hz), 6.89 (2H, d, *J* = 8.4 Hz), 6.84 (1H, d, *J* = 7.7 Hz), 6.80 (1H, s), 4.01 (2H, t, *J* = 6.2 Hz), 3.86 (3H, s), 2.91 – 2.88 (2H, m), 2.61 – 2.53 (6H, m), 2.39 – 2.32 (1H, m), 2.31 – 2.22 (1H, m), 2.18 – 1.67 (13H, m), 1.63 – 1.37 (6H, m), 0.89 (3H, s); ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 166.7, 162.7, 148.5, 137.9, 137.3, 131.5, 126.3, 122.4, 121.5, 118.7, 114.0, 67.5, 51.8, 50.3, 47.8, 44.0, 37.9, 35.8, 33.8, 31.7, 31.6, 31.5, 29.3, 28.9, 28.2, 26.3, 26.0, 25.7, 24.1, 21.5, 13.8 (one carbon was missing due to overlap); HRMS (ESI⁺) [M+Na]⁺ calc'd for C₃₅H₄₄NaO₆S: 615.2751, found: 615.2748.

Methyl 4-(4-((5-oxo-5-(((R)-2,5,7,8-tetramethyl-2-((4S,8S)-4,8,12-trimethyltridecyl)chroman-6-yl)oxy)pentyl)thio)butoxy)benzoate 3aao: Prepared according to General Method D (Eluent: 200:1 to 5:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (256.8 mg, 0.341 mmol, 68.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (2H, d, J = 8.9 Hz), 6.88 (2H, d, J = 8.8 Hz), 4.01 43

(2H, t, J = 6.2 Hz), 3.87 (3H, s), 2.64 – 2.55 (8H, m), 2.09 (3H, s), 2.00 (3H, s), 1.96 (3H, s), 1.93 – 1.87 (4H, m), 1.82 – 1.70 (6H, m), 1.57 – 1.49 (3H, m), 1.45 – 1.34 (4H, m), 1.32 – 1.18 (11H, m), 1.16 – 1.10 (3H, m), 1.09 – 1.01 (3H, m), 0.87 – 0.84 (12H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 172.0, 166.8, 162.8, 149.4, 140.5, 131.6, 126.6, 124.9, 123.0, 122.5, 117.4, 114.1, 75.1, 67.6, 51.8, 39.4, 37.5, 37.5, 37.3, 33.6, 32.8, 32.7, 31.8, 31.7, 31.1, 29.3, 28.3, 28.0, 26.1, 24.8, 24.5, 24.3, 22.8, 22.7, 21.1, 20.6, 19.8, 19.7, 13.1, 12.2, 11.9; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₄₆H₇₂NaO₆S: 775.4942, found: 775.4934.

4. General Method E:

A 120 °C oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with manganese (82.4 mg, 1.50 mmol, 3.00 equiv) and aryl sodium benzene sulfonate (1.00 mmol, 2.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then alkyl bromide (0.500 mmol, 1.00 equiv), acetyl chloride (78.5 mg, 1.00 mmol, 2.00 equiv) and dry NMP (2.50 mL) was added under N₂ and the mixture was allowed to stir for 12 h at 80 °C. After cooling to room temperature, the mixture was diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was diluted with H₂O (25.0 mL) and extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with H₂O (25.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography.

(3-Phenylpropyl)(*p*-tolyl)sulfane 3aap: Prepared according to General Method E (Eluent: 200:1 to 100:1 petroleum ether: ethyl acetate) and the title compound was isolated as a yellow liquid (73.5 mg, 0.303 mmol, 60.6% yield). ¹H NMR (400 MHz,

CDCl₃) δ 7.27 – 7.20 (4H, m), 7.18 – 7.13 (3H, m), 7.06 (2H, d, J = 7.9 Hz), 2.85 (2H, t, J = 7.3 Hz), 2.72 (2H, t, J = 7.5 Hz), 2.29 (3H, s), 1.95 – 1.88 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 141.5, 136.1, 132.8, 130.1, 129.7, 128.6, 128.5, 126.0, 34.7, 33.7, 30.8, 21.1. Spectra were consistent with literature data¹².

(4-Chlorophenyl)(3-phenylpropyl)sulfane 3aaq: Prepared according to General Method E (Eluent: 200:1 to 100:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (61.0 mg, 0.232 mmol, 46.4% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (2H, m), 7.23 – 7.18 (5H, m), 7.15 (2H, d, J = 6.9 Hz), 2.90 – 2.83 (2H, t, J = 7.2 Hz), 2.73 (2H, t, J = 7.5 Hz), 1.97 – 1.89 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 141.2, 135.2, 131.8, 130.5, 129.1, 128.6, 128.5, 126.2, 34.7, 33.1, 30.6. Spectra were consistent with literature data¹³.

Phenyl(3-phenylpropyl)sulfane 3aar: Prepared according to **General Method E** (Eluent: 200:1 to 100:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (93.0 mg, 0.407 mmol, 81.4% yield). ¹H NMR (400 MHz, CDCl₃) δ 77.30 – 7.22 (6H, m), 7.19 – 7.12 (4H, m), 2.90 (2H, t, J = 7.2 Hz), 2.73 (2H, t, J = 7.5 Hz), 1.95 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 136.6, 129.1, 128.9, 128.6, 128.5, 126.1, 125.9, 34.9, 32.9, 30.7. Spectra were consistent with literature data¹.

11-(Phenylthio)undecan-1-ol 3ai: Prepared according to **General Method E** (Eluent: 200:1 to 100:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (119.6 mg, 0.426 mmol, 85.3% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (2H, d, J = 7.3 Hz), 7.31 – 7.29 (2H, m), 7.19 – 7.16 (1H, m), 3.64 (2H, t, J = 6.7 Hz), 2.93 (2H, t, J = 7.4 Hz), 1.88 (1H, s), 1.70 – 1.63 (2H, m), 1.61 – 1.54 (2H, m), 1.45 – 1.40 (2H, m), 1.37 – 1.29 (12H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 137.1,

128.9, 128.8, 125.7, 63.0, 33.6, 32.8, 29.6, 29.6, 29.5, 29.5, 29.2, 29.2, 28.9, 25.8; **HRMS** (ESI⁺) [M+Na]⁺ calc'd for C₁₇H₂₈NaOS: 303.1753, found: 303.1751.

3-(Phenylthio)propyl (1*R*,2*S*,4*R*)-bicyclo[2.2.1]hept-5-ene-2-carboxylate 3aaj: Prepared according to General Method E (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (111.9 mg, 0.388 mmol, 77.6% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (2H, d, *J* = 6.9 Hz), 7.33 – 7.29 (2H, m), 7.23 – 7.18 (1H, m), 6.22 – 6.20 (1H, m), 5.95 – 5.92 (1H, m), 4.15 (2H, td, *J* = 6.2, 2.0 Hz), 3.22 (1H, s), 3.00 (2H, t, *J* = 5.9 Hz), 2.98 – 2.95 (1H, m), 2.92 (1H, s), 1.99 – 1.94 (2H, m), 1.92 – 1.89 (1H, m), 1.47 – 1.44 (2H, m), 1.29 (1H, d, *J* = 7.6 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 137.8, 136.0, 132.3, 129.3, 128.9, 126.1, 62.5, 49.6, 45.7, 43.3, 42.5, 30.2, 29.2, 28.4. Spectra were consistent with literature data¹.

Pent-4-yn-1-yl 6-(phenylthio)hexanoate 3ak: Prepared according to **General Method E** (Eluent: 200:1 to 100:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (120.2 mg, 0.414 mmol, 82.8% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.20 (2H, m), 7.28 – 7.25 (2H, m), 7.18 – 7.14 (1H, m), 4.16 (2H, t, J = 6.3 Hz), 2.91 (2H, t, J = 7.3 Hz), 2.31 – 2.25 (4H, m), 1.97 (1H, t, J = 2.7 Hz), 1.87 – 1.81 (2H, m), 1.69 – 1.59 (4H, m), 1.49 – 1.41 (2H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.5, 136.7, 129.0, 128.9, 125.8, 83.0, 69.1, 62.8, 34.1, 33.4, 28.8, 28.2, 27.5, 24.5, 15.2; **HRMS** (ESI⁺) [M+H]⁺ calc'd for C₁₇H₂₃O₂S: 291.1413, found: 291.1415.

3-(2-(Phenylthio)ethyl)-1*H***-indole 3an:** Prepared according to **General Method E** (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was

isolated as a white solid (115.6 mg, 0.456 mmol, 91.3% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (1H, s), 7.54 (1H, d, J = 7.8 Hz), 7.36 (2H, d, J = 7.2 Hz), 7.31 – 7.26 (3H, m), 7.20 – 7.15 (2H, m), 7.13 – 7.09 (1H, m), 6.97 (1H, s), 3.24 (2H, t, J = 7.3 Hz), 3.08 (2H, t, J = 7.7 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 136.7, 136.3, 129.2, 129.0, 127.2, 126.0, 122.2, 121.9, 119.5, 118.7, 114.7, 111.3, 34.3, 25.4. Spectra were consistent with literature data¹.

9-(4-(Phenylthio)butyl)-9*H***-carbazole 3aq:** Prepared according to **General Method E** (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a white solid (135.6 mg, 0.409 mmol, 81.8% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.06 (2H, d, J = 7.7 Hz), 7.43 – 7.39 (2H, m), 7.30 (2H, d, J = 8.2 Hz), 7.23 – 7.17 (6H, m), 7.14 – 7.10 (1H, m), 4.19 (2H, t, J = 7.1 Hz), 2.80 (2H, t, J = 7.1 Hz), 1.97 – 1.90 (2H, m), 1.66 – 1.58 (2H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 140.4, 136.3, 129.5, 129.0, 126.1, 125.7, 122.9, 120.5, 118.9, 108.7, 42.5, 33.6, 28.0, 26.7. Spectra were consistent with literature data¹.

V. Synethetic applications of current method

1. <u>General Method F:</u> Modified synthesis of alkyl substitued thiosulfonates from S powder.

An oven-dried 25-mL glass schlenck, s equipped with a stirring bar, was charged with S powder (64.1 mg, 2.00 mmol, 2.00 equiv) and sodium benzenesulfinate (32.8 mg, 2.00 mmol, 2.00 equiv). The mixture was evacuated and backfilled with

nitrogen for three times. Then the dry DMF (5.00 mL) and alkyl bromide (1.00 mmol, 1.00 equiv) was added under N_2 atmosphere. The mixture was allowed to stir at room temperature for 12 h. The mixture was poured into water (25.0 mL) and extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography.

S-(3-phenylpropyl) benzenesulfonothioate 2a: Prepared according to General Method F (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (187.6 mg, 0.642 mmol, 64.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (2H, d, J = 7.2 Hz), 7.60 – 7.56 (1H, m), 7.50 – 7.46 (2H, m), 7.25 – 7.20 (2H, m), 7.18 – 7.14 (1H, m), 7.03 (2H, d, J = 6.8 Hz), 2.93 (2H, t, J = 7.3 Hz), 2.58 (2H, t, J = 7.4 Hz), 1.93 – 1.86 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 1402, 133.6 129.3, 128.4, 128.3, 126.8, 126.1, 35.2, 34.2, 30.1. Spectra were consistent with literature data³.

S-(4-chlorophenethyl) benzenesulfonothioate 2g: Prepared according to General Method F (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (214.1 mg, 0.684 mmol, 68.4% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (2H, d, J = 7.2 Hz), 7.65 – 7.61 (1H, m), 7.57 – 7.53 (2H, m), 7.20 (2H, d, J = 8.4 Hz), 7.00 (2H, d, J = 8.4 Hz), 3.20 (2H, t, J = 7.5 Hz), 2.87 (2H, t, J = 7.5 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 137.0, 133.8, 132.5, 129.9, 129.4, 128.7, 126.8, 37.0, 34.3. Spectra were consistent with literature data³.

S-(4-(4-acetylphenoxy)butyl) benzenesulfonothioate 2e: Prepared according to General Method F (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title

compound was isolated as a colorless liquid (307.2 mg, 0.843 mmol, 84.3% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.82 (4H, m), 7.57 – 7.53 (1H, m), 7.48 – 7.44 (2H, m), 6.78 (2H, d, J = 8.8 Hz), 3.86 (2H, t, J = 5.3 Hz), 3.00 (2H, t, J = 6.8 Hz), 2.45 (3H, s), 1.76 – 1.70 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 196.5, 162.4, 144.4, 133.6, 130.4, 130.0, 129.2, 126.6, 113.9, 67.0, 35.5, 27.5, 26.2, 25.3. Spectra were consistent with literature data³.

S-(4-(9*H*-carbazol-9-yl)butyl) benzenesulfonothioate 2n: Prepared according to General Method F (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (302.0 mg, 0.764 mmol, 76.4% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (2H, d, *J* = 7.7 Hz), 7.89 (2H, d, *J* = 7.2 Hz), 7.55 – 7.49 (3H, m), 7.43 – 7.40 (2H, m), 7.36 – 7.31 (4H, m), 4.16 (2H, t, *J* = 6.8 Hz), 2.92 (2H, t, *J* = 7.1 Hz), 1.83 – 1.76 (2H, m), 1.60 – 1.52 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 140.0, 133.5, 129.1, 126.6, 125.6, 122.6, 120.2, 118.9, 108.5, 41.9, 35.6, 27.6, 26.2. Spectra were consistent with literature data³.

2. Synthesis of 3a on 10.0 mmol scale:

An oven-dried 100-mL round-bottom flask, equipped with a stirring bar, was charged with zinc (1.96 g, 30.0 mmol, 3.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the dry DMF (50.0 mL), *S*-(3-phenylpropyl) benzenesulfonothioate (5.85 g, 20.0 mmol, 2.00 equiv) and (3-bromopropyl)benzene (1.99 g, 10.0 mmol, 1.00 equiv) were added under N₂ atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was diluted with water (50.0 mL) and ethyl acetate (25.0 mL). The mixture was filtered through a celite pad and the organic layers were $\frac{49}{49}$

separated. The aqueous layer was extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 200:1 to 100:1 petroleum ether: ethyl acetate). The product **3a** was isolated as a colorless liquid (2.09 g, 7.73 mmol, 77.3% yield). The spectral data match those previously reported¹.

3. Synthesis of (sulfonylbis(propane-3,1-diyl))dibenzene 6:

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (98.1 mg, 1.50 mmol, 3.00 equiv) and sodium benzenesulfonothioate (98.1 mg, 0.500 mmol, 1.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry DMF (2.50 mL) and 1,3-dibromopropan-2-yl benzoate (160.9 mg, 0.500 mmol, 1.00 equiv) were added under N_2 atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was diluted with water (25.0 mL) and extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 5), dried over Na_2SO_4 and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate). The product $\mathbf{6}$ was isolated as a colorless liquid (54.3 mg, 0.280 mmol, 56.0% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (2H, d, J = 6.9 Hz), 7.60 - 7.56 (1H, m), 7.47 - 7.42 (2H, m), 5.90 - 5.82 (1H, m), 3.65 – 3.61 (2H, m), 3.44 – 3.40 (2H, dd, J = 9.8, 7.8 Hz); ¹³C NMR (101 MHz, $CDCl_3$) δ 165.2, 133.4, 129.8, 129.6, 128.5, 68.7, 35.2. The spectral data match those previously reported⁸.

4. Synthesis of (sulfonylbis(propane-3,1-diyl))dibenzene 7

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with m-CPBA (304.5 mg, 1.50 mmol, 3.00 equiv) at 0 °C. The mixture was evacuated and backfilled with nitrogen for three times. Then the dry dichlormethane (2.50 mL) and bis(3-phenylpropyl)sulfane (135.2 g, 0.500 mmol, 1.00 equiv) was added under N₂ atmosphere. Then, the mixture was stirred at room temperature for 16 h. After the completion of the reaction, the mixture was poured into saturated sodium carbonate to quench, and extracted with dichloromethane (25.0 mL x 3). The combined organic layers were washed with H₂O (25.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 100:1 to 3:1 petroleum ether: ethyl acetate) to provide the desired product 7 as a white solid (146.2 mg, 0.483 mmol, 96.6% yield).¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (4H, m), 7.21 – 7.17 (2H, m), 7.13 (4H, d, J = 7.1 Hz), 2.90 – 2.80 (4H, t, J = 8.0 Hz), 2.71 (4H, t, J = 7.4 Hz), 2.12 – 2.04 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 139.8, 128.6, 128.4, 126.4, 51.7, 34.1, 23.3. The spectral data match those previously reported¹⁴.

5. Synthesis of (sulfinylbis(propane-3,1-diyl))dibenzene 8

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with bis(3-phenylpropyl)sulfane (135.2 g, 0.500 mmol, 1.00 equiv), NaIO₄ (128.4 mg, 0.600 mmol, 1.20 equiv) and MeOH:H₂O = 1:1 (5.00 mL) under air atmosphere. The mixture was stirred at 50 °C for 6 h. The mixture was diluted with H₂O (25.0 mL) and extracted with ethyl acetate (30.0 mL × 3). The combined organic layers were washed with H₂O (25.0 mL), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 100:1 to 1:1 petroleum ether: ethyl acetate) to provide the desired product **8** as a white solid (93.1 mg, 0.325 mmol, 65.0% isolated yield).¹**H NMR** (400 MHz,

CDCl₃) δ 7.30 – 7.27 (4H, m), 7.21 (2H, d, J = 7.2 Hz), 7.16 (4H, d, J = 6.9 Hz), 2.78 – 2.72 (4H, m), 2.69 – 2.53 (4H, m), 2.12 – 2.04 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 128.6, 128.5, 126.3, 51.6, 34.7, 24.2. The spectral data match those previously reported¹⁵.

VI. Mechanistic studies

1. Radical trapping experiments employing BHT and 9,10dihydroanthracene

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (19.6 mg, 0.300 mmol, 3.00 equiv) and BHT (44.1 mg, 0.200 mmol, 2.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the dry DMF (0.500 mL), *S*-(3-phenylpropyl) benzenesulfonothioate **2a** (58.4 mg, 0.200 mmol, 2.00 equiv) and (3-bromopropyl)benzene **1a** (19.9 mg, 0.100 mmol, 1.00 equiv) were added under N₂ atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation, the crude mixture was subjected to ¹H NMR spectroscopy in the presence of CH₂Br₂ (34.8 mg, 0.200 mmol). Crude ¹H NMR yield of **3a** is >99.0%.

Supplementary Fig. S1. BHT as the additive in the reductive coupling.

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (19.6 mg, 0.300 mmol, 3.00 equiv) and 9,10-dihydroanthracene (36.0 mg, 0.200 mmol, 2.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry DMF (0.500 mL), *S*-(3-phenylpropyl) benzenesulfonothioate **2a** (58.4 mg, 0.200 mmol, 2.00 equiv) and (3-bromopropyl)benzene **1a** (19.9 g, 0.100 mmol, 1.00 equiv) were added under N₂ atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation, the crude mixture was subjected to ¹H NMR spectroscopy in the presence of CH₂Br₂ (34.8 mg, 53)

0.200 mmol). Crude ¹H NMR yield of 3a is >99.0%.

Supplementary Fig. S2. 9,10-dihydroanthracene as the additive in the reductive coupling.

2. Radical ring-closed experiment employing 5-bromopent-1-ene

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (98.1 mg, 1.50 mmol, 3.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the dry DMF (2.50 mL), *S*-(3-phenylpropyl) benzenesulfonothioate **2a** (292.4 mg, 1.00 mmol, 2.00 equiv) and 5-bromopent-1-ene **9** (74.5 mg, 0.500 mmol, 1.00 equiv) were added under N_2 atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with saturated NaCl

aqueous solution (25.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 200:1 to 100:1 petroleum ether: ethyl acetate) to provide the desired product **10** as a colorless liquid (84.5 mg, 0.383 mmol, 76.6% yield). However, compound **11** was not observed. ¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.26 (2H, m), 7.20 – 7.16 (3H, m), 5.83 – 5.73 (1H, m), 5.05 – 4.96 (2H, m), 2.71 (2H, t, *J* = 7.6 Hz), 2.53 – 2.49 (4H, m), 2.17 – 2.11 (2H, m), 1.94 – 1.86 (2H, m), 1.70 – 1.62 (2H, m); ¹³**C NMR** (101 MHz, CDCl₃) δ 141.7, 137.9, 128.6, 128.5, 126.0, 115.3, 34.9, 32.9, 31.5, 31.3, 28.9 (one carbon was missing due to the overlap); **HRMS** (ESI⁺) [M+H]⁺ calc'd for C₁₄H₂₀S: 221.1350, found: 221.1350.

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (98.1 mg, 1.50 mmol, 3.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry DMF (2.50 mL), S-(3-phenylpropyl) benzenesulfonothioate 2a (292.4 mg, 1.00 mmol, 2.00 equiv) and 6-bromohex-1-ene 12 (81.5 mg, 0.500 mmol, 1.00 equiv) were added under N₂ atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 5), dried over Na_2SO_4 and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 200:1 to 100:1 petroleum ether: ethyl acetate) to provide the desired product 13 as a colorless liquid (88.2 mg, 0.376 mmol, 75.2% yield). However, compound 14 was not observed. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.26 (2H, m), 7.20 – 7.16 (3H, m), 5.84 – 5.74 (1H, m), 5.03 - 4.93 (2H, m), 2.71 (2H, t, J = 7.6 Hz), 2.53 - 2.48 (4H, m), 2.08 - 2.08

2.02 (2H, m), 1.93 - 1.86 (2H, m), 1.62 - 1.56 (2H, m), 1.51 - 1.43 (2H, m); ¹³C **NMR** (101 MHz, CDCl₃) δ 141.7, 138.6, 128.5, 128.4, 126.0, 114.7, 34.9, 33.4, 31.9, 31.5, 31.2, 29.2, 28.2; **HRMS** (ESI⁺) [M+H]⁺ calc'd for C₁₅H₂₂S: 235.1515, found: 235.1517.

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (98.1 mg, 1.50 mmol, 3.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the dry DMF (2.50 mL), S-(3phenylpropyl) benzenesulfonothioate 2a (292.4 mg, 1.00 mmol, 2.00 equiv) and (bromomethyl)cyclopropane 15 (67.5 mg, 0.500 mmol, 1.00 equiv) were added under N₂ atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 200:1 to 100:1 petroleum ether: ethyl acetate) to provide the desired product as a colorless liquid (81.7 mg, 0.396 mmol, 79.2% isolated yield). However, compound 17 was not observed. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.26 (2H, m), 7.20 – 7.16 (3H, m), 2.72 (2H, t, *J* = 7.6 Hz), 2.59 (2H, t, *J* = 7.3 Hz), 2.44 (2H, d, J = 6.9 Hz), 1.95 - 1.88 (2H, m), 1.01 - 0.91 (1H, m), 0.57 - 0.52 (2H, m),0.20 - 0.16 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 141.7, 128.5, 128.4, 125.9, 37.5, 35.0, 31.4, 31.4, 11.3, 5.4. Spectra were consistent with literature data⁸.

3. Radical ring-closed experiment employing S-(pent-4-en-1-yl) benzenesulfonothioate

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (98.1 mg, 1.50 mmol, 3.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry DMF (2.50 mL), (3-bromopropyl)benzene 1a (99.5 mg, 0.500 mmol, 1.00 equiv) and S-(pent-4-en-1-yl) benzenesulfonothioate 18 (242.4 mg, 1.00 mmol, 2.00 equiv) were added under N2 atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 5), dried over Na_2SO_4 and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 200:1 to 100:1 petroleum ether: ethyl acetate) to provide the desired product as a colorless liquid (89.4 mg, 0.405 mmol, 81.0% yield). However, compound 20, compound 21 and compound 22 were not observed. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (2H, m), 7.19 – 7.16 (3H, m), 5.82 – 5.72 (1H, m), 5.05 – 4.95 (2H, m), 2.71 (2H, t, J = 7.6 Hz), 2.52 - 2.48 (4H, m), 2.17 - 2.11 (2H, m), 1.93 - 1.86 (2H, m), 1.69 - 1.62 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 141.6, 137.9, 128.5, 128.4, 126.0, 115.2, 34.9, 32.9, 31.5, 31.5, 31.3, 28.9; **HRMS** (ESI⁺) [M+H]⁺ calc'd for C₁₄H₂₀S: 221.1350, found: 221.1358.

4. Electron paramagnetic resonance (EPR) study

Supplementary Fig. S3. Electron paramagnetic resonance (EPR) study.

To gain more insight into the possible radical intermediates, we carried out paramagnetic resonance (EPR) studies (X band, 10.0 GHz) by using 5,5-dimethylpyrroline N-oxide (DMPO) as free radical spin-trapping agent (**Supplementary Fig. S3**). In equation 1, an oven-dried 10 mL Schlenk tube equipped with a magnetic stir bar was charged with a mixture of **7a** (0.200 mmol), Zn (0.200 mmol), **2a** (0.1 mmol) followed by the addition of DMF (1.00 mL), the mixture was stirred for 5 min at RT, then 11.5 uL of DMPO (100 mM) was added to the mixture through syringe, after that, the mixture was stirred for 2 min, 20 uL of the mixture was transferred to a capillary tube, the tubes was charged into a EPR tube and then the mixture was transferred to a capillary tube, the tubes were charged into a EPR tube and then the mixture was transferred to a capillary tube, the tubes were charged into a EPR tube and then the mixture was transferred to a capillary tube, the tubes were charged into a EPR tube and then the mixture was measured.

The EPR experiment was taken on a JEOL JES X320 EPR instrument. Sulfurcentered radical measurement conditions: Frequency 9.222 MHz; Power 1 mW; Center Field 329.0 mT; Sweep Width 10 mT, Modulation Width 0.1 mT; Amplitude 8×100 ; Sweep time 1 min; Time constant 0.1 s.

5. Control experiments in absence of alkyl bromide at different

temperature

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (39.2 mg, 0.600 mmol, 3.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry DMF (0.500 mL), *S*-(3-phenylpropyl) benzenesulfonothioate **2a** (58.4 mg, 0.200 mmol, 2.00 equiv) were added under N₂ atmosphere. The mixture was allowed to stir at 0 °C for 0.5 h. The mixture was then diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation, the crude mixture was subjected to ¹H NMR spectroscopy in the presence of CH₂Br₂(34.8 mg, 0.200 mmol). Crude ¹H NMR yield of **23** is 86.0%.

Supplementary Fig. S4. Detection of thiol employing 2a.

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (39.2 mg, 0.600 mmol, 3.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry DMF (0.500 mL), *S*-(3-phenylpropyl) benzenesulfonothioate **2a** (58.4 mg, 0.200 mmol, 2.00 equiv) wereadded under N₂ atmosphere. The mixture was allowed to stir at 80 °C for 0.5 h. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation, the crude mixture was subjected to ¹H NMR spectroscopy in the presence of CH₂Br₂ (34.8 mg, 0.200 mmol). Crude yield of **22** is 20.0% ¹H NMR yield, and the ¹H NMR yield of **23** is 17.0%.

Supplementary Fig. S5. The detection of thiol employing reagent 2a.

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (39.2 mg, 0.600 mmol, 3.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the dry DMF (0.500 mL), *S*-(p-tolyl) benzenesulfonothioate **24** (52.9 mg, 0.200 mmol, 2.00 equiv) was added under N₂ atmosphere. The mixture was allowed to stir at 0 °C for 0.5 h. The mixture was then diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation, the crude mixture was subjected to ¹H NMR spectroscopy in the presence of CH₂Br₂ (34.8 mg, 0.200 mmol). Crude ¹H NMR yield of **26** is 35.0%, and compound **25** was not observed.

Supplementary Fig. S6. Detection of thiolphenol employing reagent 24.

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (39.2 mg, 0.600 mmol, 3.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry DMF (0.500 mL), disulfide **25** (49.6 mg, 0.200 mmol, 2.00 equiv) was added under N₂ atmosphere. The mixture was allowed to stir at 0 °C for 0.5 h. The mixture was then diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation, the crude mixture was subjected to ¹H NMR spectroscopy in the presence of CH₂Br₂ (34.8 mg, 0.200 mmol). Crude ¹H NMR yield of **26** is 38.0%, and compound **25** was not observed.

Supplementary Fig. S7. The detection of thiolphenol employing 25.

6. Observation of zinc thiolate

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (19.6 mg, 0.300 mmol, 1.50 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the d_6 -DMSO (0.500 mL), disulfide 27 (49.3 mg, 0.200 mmol, 2.00 equiv) was added under N₂ atmosphere. The mixture was stirred at 30 °C for 10 min. After cooling to room temperature, the crude mixture was subjected to ¹H NMR spectroscopy. A new set of peaks was observed with full conversion of the disulfide.

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

Supplementary Fig. S8. The detection of zinc thiolate employing disulfide 27.

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (19.6 mg, 0.300 mmol, 1.50 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the d_6 -DMSO (0.500 mL), *S*-(o-tolyl) benzenesulfonothioate **29** (52.8 mg, 0.200 mmol, 2.00 equiv) was added under N₂ atmosphere. The mixture was stirred at 30 °C for 10 min. After cooling to room temperature, the crude mixture was subjected to ¹H NMR spectroscopy. A new set of peaks with was observed with full conversion of the disulfide.

Supplementary Fig. S9. The detection of zinc thiolate employing 29.

7. Isolation of zinc thiolate

An oven-dried 50-mL glass schlenck, equipped with a stirring bar, was charged with zinc (0.981 g, 15.0 mmol, 3.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then dry DMF (10.0 mL), S-phenyl benzenesulfonothioate **2b** (1.25 g, 5.00 mmol, 1.00 equiv) was added under N_{2}_{64}

atmosphere. The mixture was stirred at 80 °C for 6 h. After the completion of the reaction, filtered and the solvent was removed by rotary evaporation. The mixture was evacuated and backfilled with nitrogen for three times. Then dry toluene (10.0 mL), TMEDA (0.872 g, 7.50 mmol, 1.50 equiv) were added under N₂ atmosphere. The mixture was stirred at room temperature for 24 h. The solvent was removed by rotary evaporation, the mixture was poured into water (25.0 mL) and dichloromethane (25.0 mL), filtered. extracted with dichloromethane (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation, the product **32** was isolated as a white solid (1.68 g, 4.20 mmol, 84.0% yield) which is a known compound. The structure was further confirmed by X-ray analysis. The spectral data match those previously reported¹.

Supplementary Fig. S10. The ¹H NMR of zinc thiolate 32.

8. The reactivity of Zinc thiolate in the reaction with alkyl bromide

1a.

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with TMEDA-ligated zinc thiolate (159.9 mg, 0.400 mmol, 2.00 equiv). It was evacuated and backfilled with nitrogen for three times. Then the DMF (1.00 mL) and (3-bromopropyl)benzene (39.8 mg, 0.200 mmol, 1.00 equiv) was added under N₂ atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with saturated NaCl aqueous solution (25.0 mL x 3), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation, the crude mixture was subjected to ¹H NMR

spectroscopy in the presence of CH_2Br_2 (34.8 mg, 0.200 mmol). Crude ¹H NMR yield of **3aar** is >99.0%.

Supplementary Fig. S12. The crude ¹H NMR of the reaction between Zinc thiolate and alkyl

bromide.

9. The observation of (PhSO₂)₂Zn.

$$\begin{array}{cccc} O & O & Zn (1.50 \text{ equiv}) \\ Ph^{-}S^{-}S^{-}Ph & d_{6}\text{-}DMSO (0.200 \text{ M}) \\ \textbf{2b} & 30 \,^{\circ}C, \, 10 \text{ min} \\ \end{array} Ph^{-}S^{-}Zn^{-}Ph & + (PhSO_{2})_{2}Zn^{-}S^{-}Ph \\ \textbf{2b} & 30 \,^{\circ}C, \, 10 \text{ min} \\ \textbf{30} & \textbf{31} \end{array}$$

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (19.6 mg, 0.300 mmol, 1.50 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the d_6 -DMSO (0.500 mL), S-phenyl benzenesulfonothioate **2b** (50.6 mg, 0.200 mmol, 1.00 equiv) was added under N₂ atmosphere. The mixture was stirred at 30 °C for 10 min. After cooling to room temperature, the crude mixture was subjected to ¹H NMR spectroscopy. A new set of peaks with was observed with full conversion of the disulfide.

^{12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0}

Supplementary Fig. S13. The observation of (PhSO₂)₂Zn.

10. The reactivity of TMEDA-ligated zinc thiolate 32

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with TMEDA-ligated zinc thiolate (159.9 mg, 0.400 mmol, 2.00 equiv) and bis(phenylsulfonyl)zinc (123.0 mg, 0.400 mmol, 2.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the DMF (1.00 mL) and (3-bromopropyl)benzene (39.8 mg, 0.200 mmol, 1.00 equiv) was added under N₂ atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with saturated NaCl aqueous solution (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation, the crude mixture was subjected to ¹H NMR

spectroscopy in the presence of CH_2Br_2 (34.8 mg, 0.200 mmol). Crude ¹H NMR yield of **3aar** is >99.0%.

Supplementary Fig. S14. The detection of zinc thiolate employing 3aar.

11. Chemo-selective formation of sulfide

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (39.2 mg, 0.600 mmol, 3.00 equiv) and 1,2-diphenyldisulfane (87.3 mg, 0.400 mmol, 2.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the DMF (1.00 mL) was added under N₂ atmosphere. The mixture was allowed to stir at 30 °C for 10 min. After cooling to room temperature, the (3-bromopropyl)benzene **1a** (39.8 mg, 0.200 mmol, 1.00 equiv) and sulfinate **31** (123.0 mg, 0.400 mmol, 2.00 equiv) was added under N₂ atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were

separated. The aqueous layer was extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation, the crude mixture was subjected to ¹H NMR spectroscopy in the presence of CH_2Br_2 (34.8 mg, 0.200 mmol). Crude ¹H NMR yield of **3aar** is 95.0%, and compound **33** was not observed.

Supplementary Fig. S15. Chemo-selective formation of sulfide 3aar.

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with bis(phenylsulfonyl)zinc **31** (307.6 mg, 1.00 mmol, 2.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the DMF (1.00 mL) and (3-bromopropyl)benzene **1a** (99.5 mg, 0.500 mmol, 1.00 equiv) was added under N_2 atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was poured into water (25.0 mL) and extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl

aqueous solution (25.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography (Eluent: 200:1 to 10:1 petroleum ether: ethyl acetate). The product was isolated as a white solid (71.2 mg, 0.273 mmol, 54.6% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (2H, d, J = 7.0 Hz), 7.65 – 7.61 (1H, m), 7.55 – 7.52 (2H, m), 7.28 – 7.24 (2H, m), 7.20 – 7.16 (1H, m), 7.09 (2H, d, J = 6.9 Hz), 3.09 – 3.05 (2H, m), 2.68 (2H, t, J = 7.5 Hz), 2.07 – 1.99 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 139.9, 139.0, 133.7, 129.3, 128.6, 128.4, 128.0, 126.4, 55.4, 34.0, 24.2. The spectral data match those previously reported¹⁶.

12. Chemo-selective formation of sulfide

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with zinc (39.2 mg, 0.600 mmol, 3.00 equiv). It was evacuated and backfilled with nitrogen for three times. Then dry DMF (1.00 mL), *S*-phenyl benzenesulfonothioate (50.6 mg, 0.200 mmol, 1.00 equiv) and (3-bromopropyl)benzene (39.8 mg, 0.200 mmol, 1.00 equiv) were added under N₂ atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the 3-bromopropyl)benzene (119.5 mg, 0.600 mmol, 3.00 equiv) were added under N₂ atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the 3-bromopropyl)benzene (119.5 mg, 0.600 mmol, 3.00 equiv) were added under N₂ atmosphere. The mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, the mixture was then diluted with saturated NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (10.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation, the crude mixture was subjected to ¹H NMR spectroscopy in the presence of CH₂Br₂ (34.8 mg, 0.200 mmol). Crude ¹H NMR yield of **3aar** is >99.0%, and the ¹H NMR

yield of 33 is 24.0%.

Supplementary Fig. S16. Two-step experiment to investigate the formation of active species.

13. Thiolation of optically pure secondary alkyl bromide:

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with *S*-(4-methoxyphenyl) benzenesulfonothioate **35** (280.4 mg, 1.00 mmol, 2.00 equiv), magnesium chloride (142.8 mg 1.50 mmol, 3.00 equiv) and zinc (98.1 mg 1.50 mmol, 3.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the DMF (2.50 mL) and (*R*)-(3-bromobutyl)benzene **34** (106.6 mg, 0.500 mmol, 1.00 equiv, 98% ee) was added under N₂ atmosphere. The mixture was stirred at 80 °C for 12 h. After cooling to room temperature, the mixture diluted with NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The
aqueous layer was extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation and the residue was purified by flash silica gel chromatography.

(*S*)-(4-phenylbutan-2-yl)(p-tolyl)sulfane 36: Prepared according to General Method C (3.00 equiv MgCl₂, 80 °C were used) (Eluent: 200:1 to 20:1 petroleum ether: ethyl acetate) and the title compound was isolated as a colorless liquid (102.8 mg, 0.401 mmol, 80.2% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.36 (2H, d, *J* = 8.5 Hz), 7.28 – 7.24 (2H, m), 7.18 – 7.15 (3H, m), 6.81 (2H, d, *J* = 8.8 Hz), 3.76 (3H, s), 3.04 – 3.95 (1H, m), 2.81 – 2.71 (2H, m), 1.91 – 1.70 (2H, m), 1.25 (3H, d, *J* = 6.9 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 141.9, 135.8, 128.5, 128.4, 125.9, 124.7, 114.4, 55.3, 43.9, 38.1, 33.2, 21.3. The spectral data match those previously reported¹. HPLC analysis: The enantiomeric excess (23% ee) was determined on a Lux® 5µm Cellulose-1 (5% iPrOH in hexane, 0.5 mL/min, 35 °C, γ = 254 nm), t_R (minor) = 10.30 min, t_R (major) = 9.83 min.

HPLC traces for compound **36**:

14. Competitive thiolation of alkyl bromide employing aryl and alkylsubstituted thiolsufonate 2a and 2b.:

An oven-dried 25-mL glass schlenck, equipped with a stirring bar, was charged with **2b** (25.0 mg, 0.10 mmol, 1.00 equiv), zinc (19.6 mg 0.30 mmol, 3.00 equiv). The mixture was evacuated and backfilled with nitrogen for three times. Then the DMF (1.00 mL), **2a** (29.2 mg, 0.100 mmol, 1.00 equiv) and **1a** (19.9 mg, 0.100 mmol, 1.00 equiv) was added under N₂ atmosphere. The mixture was stirred at 80 °C for 12 h. After cooling to room temperature, the mixture diluted with NaCl aqueous solution (15.0 mL) and ethyl acetate (15.0 mL). The mixture was filtered through a celite pad and the organic layers were separated. The aqueous layer was extracted with ethyl acetate (25.0 mL x 3). The combined organic layers were washed with saturated NaCl aqueous solution (25.0 mL x 5), dried over Na₂SO₄ and filtered. The solvent was removed by rotary evaporation, the crude mixture was subjected to ¹H NMR spectroscopy in the presence of CH₂Br₂ (34.8 mg, 0.200 mmol). Crude ¹H NMR yield of **3aar** is 54.0%.

Supplementary Fig. S17. The detection of 3a and 3aar.

VII. The results of other alkyl substrates.

We have tried the tertiary alkyl bromide, alkyl chloride and iodide. The results were summarized in Figure S1. The tertiary substrate such as 2-bromo-2-methylpropane failed to give the final product with the full recovery of 2-bromo-2-methylpropane and full conversion of the thiolating reagent even 120 °C was employed (Supplementary Fig. S18, eq 1-4). In addition, primary alkyl chloride could be applied in the reaction and the final product was isolated in 43.6% isolated yield (Supplementary Fig. S18, eq 5). Primary alkyl iodide gave the corresponding product in 40.0% ¹H NMR yields (Supplementary Fig. S18, eq 6).

Supplementary Fig. S18. Attempts employing tertiary alkyl bromide, alkyl chloride and iodide

VIII. Crystallographic data

Colorless crystals of **32** were slowly grown from methanol solution of the compound at 22 °C. For X-ray structure analyses, the oil-coated crystals were mounted onto a loop, and the diffraction data were collected on a Bruker Smart Apex II CCD diffractometer with graphite-monochromated Mo K α ($\lambda = 0.71073$ Å). An empirical (multi-scan) absorption correction was applied with the program SADABS. The structures were solved by Olex2 with the ShelXT solution program using the intrinsic phasing method and subsequently refined on F2 by using full-matrix least-squares techniques (SHELXL-2014). If not noted otherwise, all non-hydrogen atoms were refined anisotropically, and hydrogen atoms were located at calculated positions

or found in the ΔF map. Figures of the solid-state molecular structures were generated using XP as implemented in the SHELXTL program.

Supplementary Fig. 15. ORTEP drawing of 2321469 with 50% thermal ellipsoid.

Table 1 Crystal data and structure refinement for mo231102a.

Identification code	mo231102a
Empirical formula	$C_{18}H_{25}N_2S_2Zn$
Formula weight	398.89
Temperature/K	296.15
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	21.00(2)
b/Å	12.476(13)
c/Å	15.346(16)
$\alpha/^{\circ}$	90
β/°	90.41(2)
$\gamma^{\prime \circ}$	90
Volume/Å ³	4020(7)
Z	8
$\rho_{calc}g/cm^3$	1.318
μ/mm ⁻¹	1.430
F(000)	1672.0
Crystal size/mm ³	$0.15 \times 0.12 \times 0.12$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	1.94 to 61.212
Index ranges	-29 \leq h \leq 29, -17 \leq k \leq 17, -21 \leq l \leq 21
Reflections collected	64914
Independent reflections	11523 [$R_{int} = 0.0579, R_{sigma} = 0.0453$]
Data/restraints/parameters	11523/0/411
Goodness-of-fit on F ²	1.018
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0419, wR_2 = 0.0989$
Final R indexes [all data]	$R_1 = 0.0895, wR_2 = 0.1179$

Atom	x	у	Z	U(eq)
Zn(1)	8384.5(2)	7119.3(2)	5324.3(2)	44.78(9)
S (1)	8970.0(4)	8564.2(6)	4921.1(6)	72.6(2)
S(2)	7738.7(4)	6037.7(6)	4508.6(5)	61.65(19)
N(1)	8941.9(10)	6019.3(17)	6076.7(14)	52.0(5)
N(2)	7958.0(10)	7562.6(18)	6514.7(14)	54.2(5)
C(1)	9632.7(14)	6141(3)	5928(2)	89.8(11)
C(2)	8751(2)	4910(2)	5923(3)	106.2(14)
C(3)	8816.5(17)	6337(3)	6972.1(19)	80.6(10)
C(4)	8179.4(19)	6707(3)	7127(2)	92.7(11)
C(5)	7256.7(15)	7531(4)	6473(2)	90.6(11)
C(6)	8165(2)	8622(3)	6819(3)	102.7(13)
C(7)	9523.1(8)	8133.9(18)	4143.6(12)	64.7(8)
C(8)	9481.6(9)	7145.1(16)	3729.7(14)	72.8(9)
C(9)	9939.5(13)	6847.4(19)	3126.5(14)	96.8(13)
C(10)	10438.9(10)	7539(3)	2937.2(13)	107.1(16)
C(11)	10480.5(8)	8527(2)	3351.1(16)	112.6(16)
C(12)	10022.6(10)	8825.0(17)	3954.3(14)	84.6(11)
C(13)	7113.4(12)	6819(2)	4059.6(16)	50.7(6)
C(14)	7090.8(14)	7924(2)	4095.2(18)	60.3(7)
C(15)	6577.7(16)	8478(3)	3730(2)	78.7(10)
C(16)	6093.2(17)	7937(4)	3319(2)	86.8(12)
C(17)	6117.1(14)	6848(4)	3258(2)	81.1(11)
C(18)	6616.5(13)	6289(3)	3627.4(17)	64.2(8)
Zn(2)	6589.0(2)	2812.1(2)	6953.4(2)	47.29(9)
S(3)	5887.0(4)	1722.8(6)	7637.0(5)	64.4(2)
S(4)	7283.6(4)	4012.5(6)	7542.7(5)	65.4(2)
N(3)	6153.7(11)	3703(2)	5916.0(15)	64.9(6)
N(4)	6988.7(14)	1847(2)	5964.8(18)	80.6(8)
C(19)	6782(3)	737(4)	6016(4)	168(3)
C(20)	7684.3(19)	1864(4)	5972(3)	128.1(18)
C(21)	6739(4)	2338(7)	5175(3)	240(5)
C(22)	6403(3)	3190(4)	5133(2)	137(2)
C(23)	6343.5(17)	4848(3)	5914(2)	89.9(11)
C(24)	5455.2(15)	3669(4)	5954(3)	103.9(14)
C(25)	7846.0(12)	3338(2)	8207.3(16)	49.9(6)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for mo231102a. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

ciace of t	ne or mogonamsea			
Atom	x	У	Z	U(eq)
C(26)	8306.6(13)	3946(2)	8636.3(17)	58.2(7)
C(27)	8765.7(14)	3479(3)	9160(2)	71.0(8)
C(28)	8774.5(15)	2394(3)	9271(2)	77.2(9)
C(29)	8325.1(16)	1774(3)	8858(2)	75.1(9)
C(30)	7860.3(14)	2232(2)	8332(2)	63.1(7)
C(31)	5396.5(12)	2557(2)	8263.2(16)	52.7(6)
C(32)	5476.6(15)	3652(3)	8363(2)	70.2(8)
C(33)	5065.0(19)	4243(3)	8864(2)	90.7(11)
C(34)	4573.9(18)	3767(4)	9294(2)	92.1(11)
C(35)	4489.3(14)	2693(4)	9215(2)	81.4(10)
C(36)	4887.3(13)	2090(3)	8698.4(19)	64.9(8)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for mo231102a. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Table 3 Anis	otropic Displace	ment Par	rameters (Å ²	×10 ³) for	mo23	1102a.	The
Anisotropic	displacement	factor	exponent	takes	the	form:	-
$2\pi^{2}[h^{2}a^{*2}U_{11}+2]$	2hka*b*U ₁₂ +].						

Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Zn(1)	42.29(16)	49.84(17)	42.23(16)	1.37(12)	1.84(11)	0.20(12)
S(1)	76.0(5)	63.3(5)	78.9(5)	8.4(4)	22.6(4)	-13.8(4)
S(2)	62.7(4)	55.8(4)	66.1(4)	-7.0(3)	-18.4(3)	4.6(3)
N(1)	50.1(12)	53.9(13)	51.8(12)	0.8(10)	-9.6(10)	2.9(10)
N(2)	56.8(13)	55.8(13)	50.1(13)	-5.7(10)	12.5(10)	-2.5(11)
C(1)	53.6(18)	128(3)	88(2)	22(2)	-8.8(17)	17.9(19)
C(2)	118(3)	49.3(18)	150(4)	-7(2)	-71(3)	13(2)
C(3)	99(3)	93(2)	50.4(18)	11.7(17)	-2.7(17)	15(2)
C(4)	111(3)	110(3)	58(2)	14(2)	17.8(19)	13(2)
C(5)	62(2)	130(3)	80(2)	-21(2)	24.7(17)	-8(2)
C(6)	128(3)	79(2)	102(3)	-37(2)	40(2)	-19(2)
C(7)	50.0(16)	93(2)	51.2(16)	26.1(16)	2.5(12)	6.4(15)
C(8)	71(2)	92(2)	55.2(17)	22.7(17)	5.8(15)	24.1(17)
C(9)	101(3)	130(3)	60(2)	26(2)	6.5(19)	53(3)
C(10)	75(3)	176(4)	70(2)	46(3)	21(2)	49(3)
C(11)	55(2)	186(5)	97(3)	54(3)	11(2)	-1(3)
C(12)	57.8(18)	127(3)	69(2)	31(2)	-0.2(16)	-11.2(19)
C(13)	45.7(14)	68.3(17)	38.1(13)	2.3(12)	-0.4(10)	-3.7(12)
C(14)	56.4(16)	73(2)	51.9(16)	3.7(14)	0.5(13)	5.9(14)

Table 3 Anis	otropic Displace	ment Par	rameters (Å ²	×10 ³) for	mo23	1102a.	The
Anisotropic	displacement	factor	exponent	takes	the	form:	-
$2\pi^2 [h^2 a^{*2} U_{11} + 2]$	2hka*b*U ₁₂ +].						

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(15)	79(2)	93(2)	63.3(19)	10.3(18)	7.2(17)	30(2)
C(16)	60(2)	141(4)	59(2)	10(2)	-1.6(16)	29(2)
C(17)	43.6(16)	149(4)	50.7(17)	6(2)	-2.8(13)	-10(2)
C(18)	53.8(16)	92(2)	47.2(15)	3.1(15)	0.5(13)	-15.4(15)
Zn(2)	45.46(16)	52.85(18)	43.64(16)	-1.77(13)	5.36(12)	-6.82(13)
S(3)	73.4(5)	54.6(4)	65.4(4)	-1.1(3)	19.9(4)	-15.5(4)
S(4)	64.1(4)	50.8(4)	80.9(5)	7.8(4)	-18.5(4)	-12.5(3)
N(3)	61.8(15)	82.3(17)	50.7(13)	11.0(12)	-6.0(11)	-13.6(13)
N(4)	79.3(19)	90(2)	73.1(18)	-24.5(15)	20.1(14)	6.7(15)
C(19)	145(4)	118(4)	244(7)	-108(4)	84(4)	-32(3)
C(20)	88(3)	155(4)	142(4)	-50(3)	56(3)	-2(3)
C(21)	351(11)	326(10)	44(2)	-29(4)	-2(4)	215(9)
C(22)	232(6)	138(4)	43(2)	4(2)	-1(3)	54(4)
C(23)	84(2)	83(2)	102(3)	38(2)	-12(2)	-8.6(19)
C(24)	63(2)	139(4)	110(3)	44(3)	-31(2)	-21(2)
C(25)	50.3(14)	53.5(15)	45.8(14)	2.5(12)	4.2(11)	-9.5(12)
C(26)	58.9(16)	66.4(17)	49.2(15)	2.1(13)	2.0(12)	-14.8(14)
C(27)	58.9(18)	95(2)	58.4(18)	7.3(17)	-2.5(14)	-19.6(17)
C(28)	57.9(19)	101(3)	73(2)	23(2)	-0.5(16)	3.5(18)
C(29)	82(2)	64.2(19)	80(2)	21.7(17)	6.6(18)	6.5(17)
C(30)	67.2(18)	55.0(17)	67.1(18)	5.3(14)	1.0(15)	-9.8(14)
C(31)	51.6(15)	66.6(17)	40.0(13)	6.7(12)	0.7(11)	-6.5(13)
C(32)	76(2)	68.0(19)	67.4(19)	-5.5(15)	20.1(16)	-11.0(16)
C(33)	106(3)	75(2)	90(3)	-7(2)	26(2)	12(2)
C(34)	78(2)	116(3)	83(2)	0(2)	21.5(19)	24(2)
C(35)	48.2(17)	126(3)	70(2)	18(2)	13.3(15)	1.8(19)
C(36)	54.5(16)	85(2)	55.4(17)	12.7(15)	0.1(13)	-12.0(15)

Table 4 Bond Lengths for mo231102a.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Zn(1)	S (1)	2.2705(18)	Zn(2)	S(3)	2.2678(16)
Zn(1)	S(2)	2.2810(16)	Zn(2)	S(4)	2.2737(17)
Zn(1)	N(1)	2.137(2)	Zn(2)	N(3)	2.141(3)
Zn(1)	N(2)	2.114(3)	Zn(2)	N(4)	2.116(3)
S(1)	C(7)	1.755(2)	S(3)	C(31)	1.755(3)

Table 4 Bond Lengths for mo231102a.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S(2)	C(13)	1.771(3)	S(4)	C(25)	1.768(3)
N(1)	C(1)	1.478(4)	N(3)	C(22)	1.461(5)
N(1)	C(2)	1.460(4)	N(3)	C(23)	1.483(4)
N(1)	C(3)	1.456(4)	N(3)	C(24)	1.469(4)
N(2)	C(4)	1.494(4)	N(4)	C(19)	1.453(5)
N(2)	C(5)	1.474(4)	N(4)	C(20)	1.461(5)
N(2)	C(6)	1.466(4)	N(4)	C(21)	1.452(6)
C(3)	C(4)	1.436(5)	C(21)	C(22)	1.278(7)
C(7)	C(8)	1.3900	C(25)	C(26)	1.391(4)
C(7)	C(12)	1.3900	C(25)	C(30)	1.393(4)
C(8)	C(9)	1.3900	C(26)	C(27)	1.380(4)
C(9)	C(10)	1.3900	C(27)	C(28)	1.365(5)
C(10)	C(11)	1.3900	C(28)	C(29)	1.371(5)
C(11)	C(12)	1.3900	C(29)	C(30)	1.385(4)
C(13)	C(14)	1.381(4)	C(31)	C(32)	1.386(4)
C(13)	C(18)	1.399(4)	C(31)	C(36)	1.392(4)
C(14)	C(15)	1.394(4)	C(32)	C(33)	1.375(4)
C(15)	C(16)	1.371(5)	C(33)	C(34)	1.365(5)
C(16)	C(17)	1.363(5)	C(34)	C(35)	1.357(5)
C(17)	C(18)	1.378(5)	C(35)	C(36)	1.379(5)

Table 5 Bond Angles for mo231102a.

Atom	Atom Atom Atom		Angle/°	Atom	Atom	Angle/°	
S(1)	Zn(1)	S(2)	129.88(6)	S(3)	Zn(2)	S(4)	128.90(6)
N(1)	Zn(1)	S (1)	111.19(9)	N(3)	Zn(2)	S(3)	112.30(9)
N(1)	Zn(1)	S(2)	103.75(9)	N(3)	Zn(2)	S(4)	102.90(9)
N(2)	Zn(1)	S (1)	105.16(8)	N(4)	Zn(2)	S(3)	104.66(11)
N(2)	Zn(1)	S(2)	112.03(9)	N(4)	Zn(2)	S(4)	113.80(10)
N(2)	Zn(1)	N(1)	86.27(11)	N(4)	Zn(2)	N(3)	86.09(13)
C(7)	S (1)	Zn(1)	107.74(10)	C(31)	S(3)	Zn(2)	106.50(12)
C(13)	S(2)	Zn(1)	108.92(12)	C(25)	S(4)	Zn(2)	109.86(11)
C(1)	N(1)	Zn(1)	112.64(19)	C(22)	N(3)	Zn(2)	103.4(2)
C(2)	N(1)	Zn(1)	111.94(18)	C(22)	N(3)	C(23)	108.8(3)
C(2)	N(1)	C(1)	109.9(3)	C(22)	N(3)	C(24)	112.5(3)
C(3)	N(1)	Zn(1)	103.46(18)	C(23)	N(3)	Zn(2)	112.84(19)
C(3)	N(1)	C(1)	107.6(2)	C(24)	N(3)	Zn(2)	112.2(2)
C(3)	N(1)	C(2)	111.0(3)	C(24)	N(3)	C(23)	107.2(3)

Table 5 Bond Angles for mo231102a.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C(4)	N(2)	Zn(1)	102.98(19)	C(19)	N(4)	Zn(2)	112.5(2)
C(5)	N(2)	Zn(1)	112.64(19)	C(19)	N(4)	C(20)	108.2(4)
C(5)	N(2)	C(4)	108.3(3)	C(20)	N(4)	Zn(2)	112.8(2)
C(6)	N(2)	Zn(1)	112.60(19)	C(21)	N(4)	Zn(2)	102.4(3)
C(6)	N(2)	C(4)	110.7(3)	C(21)	N(4)	C(19)	110.0(5)
C(6)	N(2)	C(5)	109.4(3)	C(21)	N(4)	C(20)	110.8(5)
C(4)	C(3)	N(1)	114.7(3)	C(22)	C(21)	N(4)	126.1(4)
C(3)	C(4)	N(2)	114.3(3)	C(21)	C(22)	N(3)	121.6(4)
C(8)	C(7)	S(1)	122.85(14)	C(26)	C(25)	S(4)	118.2(2)
C(8)	C(7)	C(12)	120.0	C(26)	C(25)	C(30)	117.4(3)
C(12)	C(7)	S(1)	117.15(15)	C(30)	C(25)	S(4)	124.4(2)
C(7)	C(8)	C(9)	120.0	C(27)	C(26)	C(25)	121.8(3)
C(10)	C(9)	C(8)	120.0	C(28)	C(27)	C(26)	120.0(3)
C(9)	C(10)	C(11)	120.0	C(27)	C(28)	C(29)	119.6(3)
C(12)	C(11)	C(10)	120.0	C(28)	C(29)	C(30)	121.1(3)
C(11)	C(12)	C(7)	120.0	C(29)	C(30)	C(25)	120.2(3)
C(14)	C(13)	S(2)	124.0(2)	C(32)	C(31)	S(3)	125.0(2)
C(14)	C(13)	C(18)	117.7(3)	C(32)	C(31)	C(36)	116.9(3)
C(18)	C(13)	S(2)	118.2(2)	C(36)	C(31)	S(3)	118.0(2)
C(13)	C(14)	C(15)	120.4(3)	C(33)	C(32)	C(31)	120.9(3)
C(16)	C(15)	C(14)	120.7(4)	C(34)	C(33)	C(32)	121.2(4)
C(17)	C(16)	C(15)	119.6(3)	C(35)	C(34)	C(33)	119.0(3)
C(16)	C(17)	C(18)	120.3(3)	C(34)	C(35)	C(36)	120.7(3)
C(17)	C(18)	C(13)	121.2(3)	C(35)	C(36)	C(31)	121.2(3)

Table 6 Torsion Angles for mo231102a.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
Zn(1)	S(1)	C(7)	C(8)	13.61(14)	Zn(2)	S(3)	C(31)	C(32)	-5.2(3)
Zn(1)	S(1)	C(7)	C(12)	-165.71(9)	Zn(2)	S(3)	C(31)	C(36)	175.00(19)
Zn(1)	S(2)	C(13)	C(14)	9.3(2)	Zn(2)	S(4)	C(25)	C(26)	-179.04(18)
Zn(1)	S(2)	C(13)	C(18)	-171.93(18)	Zn(2)	S(4)	C(25)	C(30)	0.9(3)
Zn(1)	N(1)	C(3)	C(4)	35.2(4)	Zn(2)	N(3)	C(22)	C(21)	6.7(8)
Zn(1)	N(2)	C(4)	C(3)	35.8(4)	Zn(2)	N(4)	C(21)	C(22)	4.5(11)
S (1)	C(7)	C(8)	C(9)	-179.30(15)	S(3)	C(31)	C(32)	C(33)	179.6(3)
S (1)	C(7)	C(12)	C(11)	179.34(14)	S(3)	C(31)	C(36)	C(35)	178.8(2)
S(2)	C(13))C(14)	C(15)	-179.5(2)	S(4)	C(25)	C(26)	C(27)	-179.4(2)
S(2)	C(13)	C(18)	C(17)	-179.6(2)	S(4)	C(25)	C(30)	C(29)	179.2(2)

Table 6 Torsion Angles for mo231102a.

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
N(1) C	C(3)	C(4)	N(2)	-51.7(5)	N(4)	C(21)	C(22)	N(3)	-8.5(14)
C(1) N	J(1)	C(3)	C(4)	154.6(3)	C(19)	N(4)	C(21)	C(22)	124.4(10)
C(2) N	J(1)	C(3)	C(4)	-85.0(4)	C(20)	N(4)	C(21)	C(22)	-116.0(9)
C(5) N	J(2)	C(4)	C(3)	155.3(3)	C(23)	N(3)	C(22)	C(21)	126.9(8)
C(6) N	J(2)	C(4)	C(3)	-84.7(4)	C(24)	N(3)	C(22)	C(21)	-114.5(8)
C(7) C	C(8)	C(9)	C(10)	0.0	C(25)	C(26)	C(27)	C(28)	-0.2(5)
C(8) C	C(7)	C(12)	C(11)	0.0	C(26)	C(25)	C(30)	C(29)	-0.8(4)
C(8) C	C(9)	C(10)	C(11)	0.0	C(26)	C(27)	C(28)	C(29)	0.0(5)
C(9) C	(10)	C(11)	C(12)	0.0	C(27)	C(28)	C(29)	C(30)	-0.2(5)
C(10) C	(11)	C(12)	C(7)	0.0	C(28)	C(29)	C(30)	C(25)	0.6(5)
C(12) C	C(7)	C(8)	C(9)	0.0	C(30)	C(25)	C(26)	C(27)	0.6(4)
C(13) C	(14)	C(15)	C(16)	-1.1(5)	C(31)	C(32)	C(33)	C(34)	1.5(6)
C(14) C	(13)	C(18)	C(17)	-0.7(4)	C(32)	C(31)	C(36)	C(35)	-1.0(4)
C(14) C	(15)	C(16)	C(17)	-0.7(5)	C(32)	C(33)	C(34)	C(35)	-0.8(6)
C(15) C	(16)	C(17)	C(18)	1.6(5)	C(33)	C(34)	C(35)	C(36)	-0.8(6)
C(16) C	(17)	C(18)	C(13)	-0.9(5)	C(34)	C(35)	C(36)	C(31)	1.7(5)
C(18) C	(13)	C(14)	C(15)	1.7(4)	C(36)	C(31)	C(32)	C(33)	-0.6(5)

Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for mo231102a.

Atom	x	У	Z	U(eq)
H(1A)	9730.2	5934.01	5341.34	135
H(1B)	9863.76	5693.07	6328.44	135
H(1C)	9752.82	6875.69	6017.23	135
H(2A)	8299.68	4842.46	5997.85	159
H(2B)	8967.51	4450.34	6331.3	159
H(2C)	8861.94	4705.85	5340.55	159
H(3A)	8901.12	5730.28	7350.52	97
H(3B)	9111.68	6902.91	7132.91	97
H(4A)	8156.02	6979.07	7717.86	111
H(4B)	7890.92	6101.92	7082.23	111
H(5A)	7104.11	8115.92	6122.7	136
H(5B)	7087.87	7591.83	7050.73	136
H(5C)	7121.39	6865.25	6218.87	136
H(6A)	8620.71	8631.02	6876.24	154
H(6B)	7976.68	8770.36	7374.04	154
H(6C)	8033.88	9156.98	6405.77	154

Atom	x	у	z	U(eq)
H(8)	9147.42	6682.74	3856.35	87
H(9)	9911.65	6185.85	2849.55	116
H(10)	10745.26	7339.33	2533.59	128
H(11)	10814.65	8989.7	3224.43	135
H(12)	10050.43	9486.61	4231.24	101
H(14)	7419.75	8301.27	4364.21	72
H(15)	6563.79	9221.39	3766.44	94
H(16)	5750.27	8311.49	3081.95	104
H(17)	5794.73	6479.84	2966.41	97
H(18)	6623.36	5544.82	3588.52	77
H(19A)	6909.21	440.31	6567.76	253
H(19B)	6972.88	332.75	5554.33	253
H(19C)	6326.54	704.24	5960.52	253
H(20A)	7830.26	2593.02	5967.46	192
H(20B)	7840.22	1497.99	5466.68	192
H(20C)	7839.43	1511.98	6488.16	192
H(21)	6833.35	2000.88	4651.08	289
H(22)	6314.06	3491.36	4591.17	165
H(23A)	6203.71	5182.48	6442.32	135
H(23B)	6151.2	5201.77	5422.91	135
H(23C)	6798.56	4900.16	5875.11	135
H(24A)	5314.81	2936.82	5945.18	156
H(24B)	5279.62	4041.11	5459.77	156
H(24C)	5314.79	4007.29	6480.16	156
H(26)	8304.88	4686.23	8568.21	70
H(27)	9069.14	3904.41	9437.89	85
H(28)	9083.21	2076.39	9623.45	93
H(29)	8332.51	1034.38	8932.66	90
H(30)	7556.76	1800.01	8062.29	76
H(32)	5813.54	3993.29	8087.45	84
H(33)	5122.17	4979.69	8910.22	109
H(34)	4301.26	4172.05	9637.25	110
H(35)	4159.34	2359.39	9511.52	98
H(36)	4814.33	1357.95	8639.68	78

Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for mo231102a.

IX. References

- 1. Xu, Y.; Zhang, Y.; Liu, Y.; Sun, W.; Huang, J.; He, H.; Wu, Y.; Liu, W.; Ni, S.; Xiao, X.; Shao, S., *Sci. China. Chem.* **2023**. Doi: 10.1007/s11426-023-1795-9.
- Xing, S.; Zhu, Y.; Liu, W.; Liu, Y.; Zhang, J.; Zhang, H.; Wang, Y.; Ni, S.; Shao,
 X., Org. Lett. 2022, 24, 3378-3383.
- 3. Zhang, Y.; Fan, Q.; Ye, Z.; Xu, Y.; Cao, Y.; Liu, Y.; Liu, W.; Shao, X., *Cell. Rep. Phy Sci.* **2023**, *4*, 101696-101709.
- Zhang, J.; Jiang, M.; Wang, C.; Guo, K.; Li, Q.; Ma, C.; Ni, S.; Chen, G.; Zong,
 Y.; Lu, H.; Xu, L.; Shao, X., *Nat. Commun.* 2022, *13*, 7961-7970.
- 5. K., J.-d. A.; G., T. B., Org. Lett. 2011, 4, 2988-2991.
- 6. Wang, C.; Dong, G., J. Am. Chem. Soc. 2018, 140, 6057-6061.
- Mampuys, P.; Zhu, Y.; Sergeyev, S.; Ruijter, E.; Orru, R.; Van Doorslaer, S.;
 Maes, B., *Org.Lett.* 2016, 18, 2808-2811.
- 8. Fang, Y.; Rogge, T.; Ackermann, L.; Wang, S.; Ji, S., *Nat. Commun.* **2018**, *9*, 2240-2249.
- 9. Xu, H.; Liang, Y.; Zhou, X.; Feng, Y., Org. Biomol. Chem. 2012, 10, 2562-2568.
- 10. Jones, C.; Schley, N., Org. Biomol. Chem. 2019, 17, 1744-1748.
- 11. Kennemur, J.; Kortman, G.; Hull, K., J. Am. Chem. Soc. 2016, 138, 11914-11919.
- 12. B., P. R.; B., M. S., J. Am. Chem. Soc. 129, 3068-3069.
- 13. Saito, K.; Kondo, K.; Akiyama, T., Org. Lett. 2015, 17, 3366-3369.
- 14. Meng, Y.; Wang, M.; Jiang, X., CCS Chem. 2021, 3, 17-24.
- 15. Shi, R.; Hu, X., Angew. Chem. Int. Ed. 2019, 58, 7454-7458.
- 16. Yang, Y.; Li, Y.; Lv, G.; He, D.; Li, J., Org. Lett. 2022, 24, 5115-5119.

X. NMR spectra

40 30

10 0

