Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information for

Regioselective electrochemical cascade C-H sulfonylation-bromination of indolizines to access difunctionalized indolizines

Wenxuan Jiang, Xiang Liu*, Chuanying Zhu, Meiyi Chen, Weidan Li, Hua Cao*

School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. of China

E-mail: liux96@gdpu.edu.cn; caohua@gdpu.edu.cn

1. General considerations	S-2
2. Experimental procedures and characterization data	S-3
2.1 Experimental procedures	S-3
2.2 Characterization data	S-5
3. NMR spectra for new compounds	S-16
4. X-ray crystallographic data	S-47
5. References	S-49

Table of Contents:

1. General considerations

Unless otherwise noted, commercial reagents were purchased from Adamas, Alfa, Aladdin, TCI, *J&K* or Macklin and used without further purification. All reactions were carried out using oven-dried glassware and all reactions proceeded without special care. Column chromatography was performed on 200-300 mesh silica gel (Huanghai, China).

¹H, ¹⁹F and ¹³C{¹H} NMR spectra were recorded on an Bruker Ascend 400 MHz spectrometer at ambient temperature. ¹H NMR spectra are referred to the TMS signal ($\delta = 0$ ppm) and ¹³C NMR spectra are referred to the residual solvent signal ($\delta = 77.16$ ppm). Data for ¹H NMR are reported as follows: chemical shifts (δ ppm), multiplicities (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz), integration.

The instrument for electrolysis is ElectraSyn 2.0 Package (IKA), the anode electrode is vitreous carbon plate (52 mm×8 mm×2 mm) and cathodic electrode was platinum plate (52 mm×8 mm×2 mm); And MS-3610DS (MAISHENG), carbon plate (10 mm×10 mm×3 mm) and cathodic electrode was platinum plate (10 mm×10 mm×0.1 mm). The data of HRMS was carried out on Agilent 7250 GC/QTOF. Melting point were recorded using a SGW X-4 Melting Point Apparatus. X-ray diffraction data were collected on SuperNova, Dual, Cu at zero, AtlasS2.

2. Experimental procedures and characterization data

2.1 Experimental procedures

Synthesis of compounds 1 according to the following procedure¹:

As exemplified for 1a:

$$R_{1} \stackrel{\text{(i)}}{\swarrow} N + Br \stackrel{\text{(i)}}{\longrightarrow} R_{2} \xrightarrow{(1) \text{ acetone, } 60 °C, 5 h} R_{1} \stackrel{\text{(i)}}{\longrightarrow} R_{1} \stackrel{\text{(i)}}{\longrightarrow} R_{2}$$

A solution of 2-picoline (0.93 g, 10 mmol, 1.0 equiv) and 2-bromoacetophenone (1.99 g, 10 mmol, 1.0 equiv) in acetone (50 mL) were added to a 100 mL round bottom flask and heated with a heating mantle for 5 hours to 60 °C. The precipitate obtained by filtration separation was redissolved in 20 mL of hot water (60 °C). Then, K_2CO_3 (2.76 g, 20 mmol, 2.0 equiv) was added and heated at 60 °C for 5 hours. After filtration and drying in vacuo, a white solid compound **1a** was obtained without further purification.

2-Phenylindolizine (1a)

1H), 6.68-6.60 (m, 1H), 6.45 (t, *J* = 6.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 135.3, 133.6, 129.4, 128.7, 126.5, 126.2, 125.0, 119.0, 117.3, 110.5, 109.2, 96.6.

Indolizine derivatives **1** were known compounds and synthesized according to the known procedures, and their NMR data were in agreement with those described in the literature.^{1,2}

Synthesis of products 3 and 4 according to the following procedure:

As exemplified for 3a:

2-Phenylindolizine (0.3 mmol, 1.0 equiv), Sodium *p*-tolylsulfinate (0.6 mmol, 2 equiv), KBr (1.2 mmol), Cs_2CO_3 (0.3 mmol), S_8 (0.75 mmol, 2.5 equiv), CH₃CN (4 mL) and H₂O (1 mL) were placed in a 10 mL undivided electrolytic cell with a vitreous carbon plate anode (52 mm×8 mm×2 mm) and a platinum plate cathode (52 mm×8 mm×2 mm). The electrolysis was carried out at room temperature under a constant current of 10 mA for 10 hours. Then, the resulting solution was quenched with 10 mL brine and extracted

with ethyl acetate (3×10 mL). The extract was dried with Na₂SO₄. The solvent was removed with a rotary evaporator. The pure product **3a** was obtained by preparative TLC on silica gel (petroleum ether: ethyl acetate = 8: 1).

Synthesis of products 6 and 7 according to the following procedure:

As exemplified for 6a:

$$\begin{array}{c} H \\ N \\ 1a \\ H \end{array} + \begin{array}{c} O \\ S \\ ONa \\ 2a \end{array} \xrightarrow{(1) C(+) | Pt(-), 8 mA} \\ MeCN:H_2O = 4:1 \\ NH_4I, 5 h \end{array} \xrightarrow{NH_4SCN} \\ \begin{array}{c} (2) C(+) | Pt(-), 10 mA \\ MeCN, Bu_4NBF_4, 10 h \\ 6a \\ Ts \end{array} \xrightarrow{N} \\ \begin{array}{c} O \\ ONa \\ Fa \\ Ts \end{array}$$

2-Phenylindolizine (0.5 mmol, 1.0 equiv), Sodium *p*-tolylsulfinate (1.0 mmol, 2 equiv), NH₄I (2.0 mmol, 4 equiv), CH₃CN (4 mL) and H₂O (1 mL) were placed in a 10 mL undivided electrolytic cell with a vitreous carbon plate anode (52 mm×8 mm×2 mm) and a platinum plate cathode (52 mm×8 mm×2 mm). The electrolysis was carried out at room temperature under a constant current of 8 mA for 5 hours. Then, the resulting solution was quenched with 10 mL brine and extracted with ethyl acetate (3×10 mL). The extract was dried with Na₂SO₄. The solvent was removed with a rotary evaporator. The pure product **5a** was obtained by preparative TLC on silica gel (petroleum ether: ethyl acetate = 8: 1).

5a (0.2 mmol, 1.0 equiv), NH₄SCN (0.6 mmol, 3 equiv), Bu₄NBF₄ (0.8 mmol), and CH₃CN (5 mL) were placed in a 10 mL undivided electrolytic cell with a vitreous carbon plate anode (52 mm×8 mm×2 mm) and a platinum plate cathode (52 mm×8 mm×2 mm). The electrolysis was carried out at room temperature under a constant current of 10 mA for 10 hours. Then, the resulting solution was quenched with 10 mL brine and extracted with ethyl acetate (3×10 mL). The extract was dried with Na₂SO₄. The solvent was removed with a rotary evaporator. The pure product **6a** was obtained by preparative TLC on silica gel (petroleum ether: ethyl acetate = 4: 1).

General procedure for cyclic voltammetry

Cyclic voltammetry was performed in a three-electrode cell connected to a schlenk line under nitrogen at room temperature. The working electrode was a steady vitreous carbon plate electrode, the counter electrode was a platinum plate. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution, and separated from reaction by a salt bridge. Then 10 mL electrolyte solution containing 0.05 M n-Bu₄NPF₆

the mixed solvent of MeCN and H₂O was poured into electrochemical cell. The concentration of samples was 0.01 M. The scan rate was 0.1 V/s, ranging from 0 V to 2.0 V.

2.2 Characterization data

1-Bromo-2-phenyl-3-tosylindolizine (3a)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3a**. Yellow solid (82.9 mg, 65%), mp 135.2-136.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.18 (d, J = 7.2 Hz, 1H), 7.54 (d, J = 8.9 Hz, 1H), 7.45 (d, J = 7.1 Hz, 5H), 7.37 – 7.31 (m, 2H), 7.14 (t, J = 9.1 Hz, 3H), 6.87 (t, J = 7.0 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 139.4, 135.6, 134.0, 131.8, 130.9, 129.5, 128.3, 127.5, 126.3, 125.9, 123.3, 117.8, 116.5, 113.9, 91.7, 21.5. HRMS (GC/QTOF)

m/z: $[M]^+$ calcd for $C_{21}H_{16}BrNO_2S$, 425.0085; found 425.0076.

1-Bromo-7-methyl-2-phenyl-3-tosylindolizine (3b)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3b**. Green solid (60.6 mg, 46%), mp 132.6-133.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.06 (d, J = 7.3 Hz, 1H), 7.47 – 7.40 (m, 5H), 7.36 – 7.31 (m, 2H), 7.29 (s, 1H), 7.12 (d, J = 8.1 Hz, 2H), 6.70 (d, J = 6.3 Hz, 1H), 2.39 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.3, 177.1, 143.8, 141.2, 139.8, 134.6, 132.1, 131.1, 129.6, 128.4, 127.6, 126.3, 125.5, 116.7, 116.2, 21.6, 21.2. HRMS (GC/QTOF) m/z: [M]⁺ calcd

for C₂₂H₁₈BrNO₂S, 439.0242; found 439.0247.

1-Bromo-7-methoxy-2-phenyl-3-tosylindolizine (3c)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3c**. Green solid (49.1 mg, 36%), mp 136.6-137.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.04 (d, *J* = 7.6 Hz, 1H), 7.46 – 7.42 (m, 4H), 7.40 (s, 1H), 7.36 – 7.32 (m, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 6.72 (s, 1H), 6.58 (d, *J* = 6.4 Hz, 1H), 3.89 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.7, 137.5, 132.1, 131.1, 131.0, 129.9, 129.6, 129.6, 128.7, 128.4, 127.6, 127.6, 126.2, 108.9, 97.8, 94.7, 55.8, 21.6.

HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₂H₁₈BrNO₃S, 455.0191; found 455.0196.

1-Bromo-8-methyl-2-phenyl-3-tosylindolizine (3d)

113.4, 100.0, 91.3, 21.6, 21.0. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₂H₁₈BrNO₂S, 439.0242; found 439.0250.

1,8-Dibromo-2-phenyl-3-tosylindolizine (3e)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3e**. Green solid (69.3 mg, 46%), mp 140.7-141.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.24 (d, *J* = 7.2 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 7.2 Hz, 5H), 7.35 (d, *J* = 7.3 Hz, 1H), 7.24 (s, 1H), 7.15 (d, *J* = 8.1 Hz, 2H), 6.66 (t, *J* = 7.2 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 138.9, 137.5, 133.3, 132.2, 130.9, 129.7, 128.7, 128.5, 128.2, 127.9, 127.7, 126.6, 125.5, 113.2, 112.3, 21.7. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₁H₁₅Br₂NO₂S, 502.9190; found 502.9189.

1-Bromo-6-ethyl-2-phenyl-3-tosylindolizine (3f)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3f**. Yellow solid (82.9 mg, 61%), mp 139.2-140.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 7.48 (s, 1H), 7.45 (d, *J* = 7.3 Hz, 5H), 7.34 – 7.30 (m, 2H), 7.13 (d, *J* = 8.1 Hz, 2H), 7.05 (d, *J* = 9.1 Hz, 1H), 2.69 (q, *J* = 7.5 Hz, 2H), 2.33 (s, 3H), 1.30 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 139.6, 135.3, 133.3, 132.2, 131.1, 130.0, 129.5, 128.3, 127.6, 126.4, 125.6, 123.1,

117.4, 116.2, 91.4, 26.4, 21.6, 15.2. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₃H₂₀BrNO₂S, 453.0398; found 453.0395.

1-Bromo-2-(2-fluorophenyl)-3-tosylindolizine (3g)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3g**. Green solid (83.5 mg, 63%), mp 143.5-144.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.01 (d, *J* = 7.2 Hz, 1H), 7.56 (t, *J* = 9.4 Hz, 3H), 7.51 – 7.43 (m, 1H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.28 (d, *J* = 8.2 Hz, 1H), 7.21 – 7.10 (m, 4H), 6.86 (t, *J* = 6.8 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.4, 158.9, 144.2, 139.0, 134.2, 133.2, 130.7 (d, *J* = 8.0 Hz), 129.7, 129.5, 126.5, 125.7, 123.5 (d, *J* = 3.5 Hz),

123.3, 120.1 (d, J = 15.9 Hz), 118.0, 116.9, 115.4 (d, J = 21.7 Hz), 114.1, 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.37 - -112.49 (m). HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₁H₁₅BrFNO₂S, 442.9991; 442.9988.

4-(1-Bromo-3-tosylindolizin-2-yl)benzonitrile (3h)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3h**. Green solid (105.3 mg, 78%), mp 136.8-137.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.11 (d, *J* = 7.2 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 9.0 Hz, 1H), 7.52 – 7.43 (m, 4H), 7.19 (t, *J* = 8.3 Hz, 3H), 6.93 (t, *J* = 7.0 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 139.0, 137.1, 134.3, 133.4, 131.9, 131.4, 129.8, 126.2, 125.8, 123.9, 118.9, 118.1, 116.6, 114.6, 112.2, 91.3, 21.6. HRMS (GC/QTOF) m/z: [M]⁺ calcd for

C₂₂H₁₅BrN₂O₂S, 450.0038; found 450.0043.

1-Bromo-2-(4-methoxyphenyl)-3-tosylindolizine (3i)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3i**. Green solid (95.6 mg, 70%), mp 139.5-140.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.17 (d, *J* = 7.2 Hz, 1H), 7.53 (d, *J* = 8.9 Hz, 1H), 7.44 (d, *J* = 8.2 Hz, 2H), 7.28 (d, *J* = 8.5 Hz, 2H), 7.16 – 7.10 (m, 3H), 6.99 (d, *J* = 8.5 Hz, 2H), 6.85 (t, *J* = 6.9 Hz, 1H), 3.89 (s, 3H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 143.9, 139.6, 135.5, 134.1, 132.4,

129.6, 126.3, 126.1, 124.0, 123.4, 117.9, 116.5, 113.9, 113.1, 92.0, 55.3, 21.6. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₂H₁₈BrNO₃S, 455.0191; found 455.0183.

1-Bromo-2-(4-fluorophenyl)-3-tosylindolizine (3j)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3j**. Green solid (75.6 mg, 57%), mp 139.2-140.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.17 (d, *J* = 7.2 Hz, 1H), 7.61 (q, *J* = 8.4, 5.5 Hz, 1H), 7.54 (d, *J* = 9.0 Hz, 1H), 7.44 (d, *J* = 8.2 Hz, 2H), 7.35 – 7.29 (m, 2H), 7.16 – 7.12 (m, 3H), 7.08 (t, *J* = 8.6 Hz, 1H), 6.88 (t, *J* = 7.0 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 164.2, 161.7, 144.1, 139.4, 134.6, 134.1, 132.9 (d, *J* = 8.2

Hz), 129.7, 127.8 (d, J = 3.3 Hz), 126.3, 126.0, 123.6, 118.0, 114.8, 114.6, 114.1, 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.28. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₁H₁₅BrFNO₂S, 442.9991; found 442.9992.

1-Bromo-2-(4-chlorophenyl)-3-tosylindolizine (3k)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3k**. Green solid (71.4 mg, 52%), mp 138.4-139.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.15 (d, J = 7.2 Hz, 1H), 7.54 (d, J = 9.0 Hz, 1H), 7.48 – 7.40 (m, 4H), 7.28 (d, J = 8.3 Hz, 2H), 7.16 (t, J = 6.5 Hz, 3H), 6.89 (t, J = 7.0 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 139.4, 134.6, 134.4, 134.2, 132.4, 130.4, 129.7, 127.9, 126.3, 126.0, 123.6, 118.0, 116.7, 114.2, 91.7, 21.6. HRMS

 $(GC/QTOF) m/z: [M]^+$ calcd for $C_{21}H_{15}BrClNO_2S$, 458.9695; found 458.9698.

1-Bromo-2-(3-fluorophenyl)-3-tosylindolizine (3l)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **31**. Red solid (55.7 mg, 42%), mp 136.3-137.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.16 (d, *J* = 7.2 Hz, 1H), 7.55 (d, *J* = 9.0 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.45 – 7.37 (m, 1H), 7.15 (t, *J* = 8.0 Hz, 5H), 7.00 (d, *J* = 9.5 Hz, 1H), 6.89 (t, *J* = 7.0 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.3, 160.8, 144.2, 139.3, 134.1, 129.7, 129.1 (d, *J* = 8.5 Hz), 127.0 (d, *J* = 3.0 Hz), 126.4, 126.2, 126.0, 123.6, 118.0, 115.5, 115.3, 114.2, 104.3, 91.6, 21.6. HRMS (GC/QTOF) m/z: [M]⁺

calcd for C₂₁H₁₅BrFNO₂S, 442.9991; found 442.9983.

1-Bromo-2-(3-chlorophenyl)-3-tosylindolizine (3m)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3m**. Green solid (72.8 mg, 53%), mp 139.3-140.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.18 (d, J = 7.2 Hz, 1H), 7.55 (d, J = 9.9 Hz, 1H), 7.49 – 7.35 (m, 5H), 7.17 (q, J = 7.0, 5.5 Hz, 4H), 6.90 (t, J = 7.0 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 139.3, 134.1, 134.0, 133.8, 133.5, 130.8, 129.7, 129.4, 128.9, 128.6, 126.4, 126.0, 123.6, 118.0, 116.9, 114.2, 91.5, 21.6. HRMS (GC/QTOF) m/z:

 $[M]^+$ calcd for $C_{21}H_{15}BrClNO_2S$, 458.9695; found 458.9687.

1-Bromo-2-(3-bromophenyl)-3-tosylindolizine (3n)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3n**. Green solid (87.3 mg, 58%), mp 132.3-133.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.19 (d, J = 7.2 Hz, 1H), 7.58 (d, J = 6.4 Hz, 1H), 7.54 (d, J = 8.9 Hz, 1H), 7.46 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 2.9 Hz, 3H), 7.17 (d, J = 7.9 Hz, 3H), 6.90 (t, J = 7.0 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 139.3, 134.0, 133.8, 133.6, 131.4, 129.9, 129.7, 129.7, 129.2, 126.4, 126.1, 123.6, 121.5, 118.0,

117.2, 114.3, 91.6, 21.7. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₁H₁₅Br₂NO₂S, 502.9190; found 502.9182.

1-Bromo-2-(3,4-difluorophenyl)-3-tosylindolizine (30)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **30**. Green solid (91.1 mg, 66%), mp 109.6-110.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.15 (d, *J* = 7.2 Hz, 1H), 7.54 (d, *J* = 9.0 Hz, 1H), 7.48 (d, *J* = 8.2 Hz, 2H), 7.24 (d, *J* = 10.2 Hz, 1H), 7.19 – 7.12 (m, 4H), 7.11 – 7.06 (m, 1H), 6.90 (t, *J* = 7.0 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.8 (d, *J* = 7.8 Hz), 150.8 (d, *J* = 11.5 Hz), 149.3 (d, *J* = 7.7 Hz), 148.4 (d, *J* = 11.2 Hz),

144.4, 139.3, 134.1, 133.3, 129.8, 127.6 (dd, J = 6.2, 3.7 Hz), 126.3, 126.0, 123.7, 120.2 (d, J = 17.9 Hz), 118.1, 116.6 (d, J = 18.0 Hz), 114.4, 91.7, 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -137.81 - -137.98 (m), -138.26 - -138.42 (m). HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₁H₁₄BrF₂NO₂S, 460.9897; found 460.9899.

1-Bromo-2-(4-chlorophenyl)-8-methyl-3-tosylindolizine (3p)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3p**. Green solid (80.7 mg, 57%), mp 116.3-117.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.04 (d, *J* = 7.1 Hz, 1H), 7.49 (d, *J* = 8.2 Hz, 2H), 7.42 (d, *J* = 8.3 Hz, 2H), 7.24 (d, *J* = 8.3 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 6.83 (d, *J* = 6.8 Hz, 1H), 6.72 (t, *J* = 7.1 Hz, 1H), 2.79 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 139.2, 135.0, 134.5, 132.9, 132.4, 131.9, 131.2, 129.7, 129.6, 129.4, 127.9, 127.8, 126.4, 124.2, 113.7, 21.6,

20.9. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₂H₁₇BrClNO₂S, 472.9852; found 472.9858.

1-Bromo-6-ethyl-2-(4-fluorophenyl)-3-tosylindolizine (3q)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3q**. Green solid (79.1 mg, 56%), mp 110.1-110.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.97 (s, 1H), 7.48 – 7.41 (m, 3H), 7.34 – 7.28 (m, 2H), 7.16 – 7.12 (m, 4H), 7.06 (d, *J* = 9.1 Hz, 1H), 2.69 (q, *J* = 7.5 Hz, 2H), 2.34 (s, 3H), 1.30 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.0, 139.5, 136.6, 132.9, 132.9, 130.3, 129.6, 129.4, 128.0, 127.7, 126.3, 125.8, 123.1, 117.4, 114.8, 114.6, 26.4, 21.6,

15.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.50. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₃H₁₉BrFNO₂S, 471.0304; found 471.0303.

1-Bromo-6-ethyl-2-(3-fluorophenyl)-3-tosylindolizine (3r)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **3r**. Green solid (84.8 mg, 60%), mp 108.6-109.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 7.50 – 7.44 (m, 3H), 7.43 – 7.37 (m, 1H), 7.15 (t, *J* = 8.9 Hz, 4H), 7.06 (d, *J* = 9.1 Hz, 1H), 7.00 (d, *J* = 9.5 Hz, 1H), 2.70 (q, *J* = 7.5 Hz, 2H), 2.34 (s, 3H), 1.30 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2, 160.8, 144.1, 136.6, 130.3, 129.6, 129.1 (d, *J* = 8.4 Hz), 127.7, 127.0

(d, J = 2.9 Hz), 126.4, 125.8, 123.0, 118.2, 117.9, 117.5, 115.3 (d, J = 21.0 Hz), 26.4, 21.6, 15.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.97. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₃H₁₉BrFNO₂S, 471.0304; found 471.0310.

1-Bromo-2-phenyl-3-(phenylsulfonyl)indolizine (4a)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **4a**. Green solid (89.8 mg, 73%), mp 146.4-147.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.20 (d, *J* = 7.2 Hz, 1H), 7.55 (d, *J* = 8.1 Hz, 3H), 7.45 (d, *J* = 6.0 Hz, 4H), 7.33 (t, *J* = 7.3 Hz, 4H), 7.15 (t, 1H), 6.88 (t, *J* = 7.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.4, 135.9, 134.3, 133.0, 131.8, 131.0, 130.6, 129.0, 128.5, 127.6, 126.3, 126.1, 123.6, 118.0, 114.1, 91.9. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₀H₁₄BrNO₂S,

410.9929; found 410.9921.

1-Bromo-3-((4-fluorophenyl)sulfonyl)-2-phenylindolizine (4b)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **4b**. Green solid (89.9 mg, 70%), mp 150.1-150.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.21 (d, *J* = 7.2 Hz, 1H), 7.58 – 7.49 (m, 3H), 7.47 – 7.42 (m, 3H), 7.32 – 7.28 (m, 2H), 7.19 – 7.14 (m, 1H), 7.00 – 6.95 (m, 2H), 6.92 – 6.87 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.5, 164.0, 138.5 (d, *J* = 3.1 Hz), 135.8, 134.3, 131.7, 131.0, 129.1 (d, *J* = 9.5 Hz), 128.6, 127.7, 126.0, 123.7, 118.0, 116.1 (d, *J* = 22.6 Hz), 114.2, 91.9. ¹⁹F NMR (376 MHz, CDCl₃) δ

-104.50. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₀H₁₃BrFNO₂S, 428.9834; found 428.9832.

1-Bromo-3-((4-chlorophenyl)sulfonyl)-2-phenylindolizine (4c)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **4c**. Green solid (78.6 mg, 59%), mp 186.6-187.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.20 (d, *J* = 7.2 Hz, 1H), 7.66 (d, *J* = 7.4 Hz, 1H), 7.56 (d, *J* = 8.9 Hz, 1H), 7.48 – 7.43 (m, 5H), 7.32 – 7.27 (m, 3H), 7.17 (t, 1H), 6.90 (t, *J* = 6.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.9, 139.6, 136.0, 134.5, 131.6, 131.1, 129.2, 128.9, 128.6, 127.8, 127.7, 126.1, 123.8, 118.1, 114.3, 92.1. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₀H₁₃BrClNO₂S, 444.9539; found 444.9533.

1-Bromo-3-((3-chloro-4-fluorophenyl)sulfonyl)-2-phenylindolizine (4d)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **4d**. Green solid (105.3 mg, 76%), mp 122.3-122.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.24 (d, *J* = 7.2 Hz, 1H), 7.57 (d, *J* = 9.0 Hz, 1H), 7.49 – 7.45 (m, 3H), 7.42 (s, 1H), 7.40 – 7.35 (m, 1H), 7.30 – 7.27 (m, 2H), 7.21 – 7.16 (m, 1H), 7.04 (t, *J* = 8.5 Hz, 1H), 6.95 – 6.90 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.0, 159.4, 139.5 (d, *J* = 3.8 Hz), 136.1, 134.6, 131.4, 131.0, 129.5, 128.8, 127.8, 126.8 (d, *J* = 8.6 Hz), 126.1, 124.0, 122.1 (d, *J* = 18.8 Hz), 118.1, 117.1 (d, *J* = 22.4 Hz), 114.5, 92.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -106.80. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₀H₁₂BrClFNO₂S, 462.9445; found 462.9439.

1-Bromo-3-(methylsulfonyl)-2-phenylindolizine (4e)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford 4e. Green solid (71.0 mg, 68%), mp 121.6-122.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.12 (d, J = 7.2 Hz, 1H), 7.61 (d, J = 9.0 Hz, 1H), 7.46 (d, J = 5.3 Hz, 5H), 7.19 (t, J = 7.8 Hz, 1H), 6.89 (t, J = 6.9 Hz, 1H), 2.92 (s,

3H). ¹³C NMR (101 MHz, CDCl₃) δ 135.3, 134.0, 131.7, 130.8, 128.7, 128.0, 126.2, 123.5, 118.0, 116.0, 114.1, 91.4, 45.3. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₁₅H₁₂BrNO₂S, 348.9772; found 348.9781.

1-Bromo-3-(ethylsulfonyl)-2-phenylindolizine (4f)

Preparative TLC on silica gel (eluent: PE/EA = 8/1, v/v) to afford **4f**. Green solid (68.4 mg, 63%), mp 106.8-107.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.14 (d, *J* = 7.2 Hz, 1H), 7.58 (t, 2H), 7.45 (d, *J* = 2.9 Hz, 4H), 7.18 (t, 1H), 6.87 (t, *J* = 7.0 Hz, 1H), 2.94 (q, *J* = 7.4 Hz, 2H), 1.11 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 136.0, 133.5, 131.7, 130.9, 128.7, 128.7, 128.2, 127.8, 126.3, 123.5, 118.0, 114.0,

51.4, 7.3. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₁₆H₁₄BrNO₂S, 362.9929; found 362.9932.

2-Phenyl-1-thiocyanato-3-tosylindolizine (6a)

Preparative TLC on silica gel (eluent: PE/EA = 4/1, v/v) to afford **6a**. Yellow solid (67.0 mg, 83%), mp 223.9-224.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.29 (d, *J* = 7.2 Hz, 1H), 7.83 (d, *J* = 8.9 Hz, 1H), 7.51 – 7.45 (m, 5H), 7.40 – 7.37 (m, 1H), 7.36 – 7.32 (m, 2H), 7.16 (d, *J* = 8.2 Hz, 2H), 7.07 – 7.03 (m, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.6, 140.7, 138.8, 138.5, 130.9, 130.8, 129.8, 128.9, 127.8, 126.9, 126.6, 126.0, 119.4, 117.4, 115.1, 111.2, 91.1, 21.6. HRMS (GC/QTOF) m/z: [M]⁺ calcd for

 $C_{22}H_{16}N_2O_2S_2$, 404.0653; found 404.0655.

7-Methyl-2-phenyl-1-thiocyanato-3-tosylindolizine (6b)

Preparative TLC on silica gel (eluent: PE/EA = 4/1, v/v) to afford **6b**. Black solid (68.5 mg, 82%), mp 226.3-226.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.16 (d, *J* = 7.3 Hz, 1H), 7.58 (s, 1H), 7.51 – 7.43 (m, 5H), 7.37 – 7.32 (m, 2H), 7.15 (d, *J* = 8.2 Hz, 2H), 6.88 (dd, *J* = 7.3, 1.8 Hz, 1H), 2.48 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 140.9, 139.1, 139.0, 137.5, 130.9, 130.9, 129.7, 128.8, 127.8, 126.5, 126.3, 118.5, 117.7, 115.8, 111.5, 89.4, 21.6, 21.4. HRMS (GC/QTOF) m/z: [M]⁺

calcd for C₂₃H₁₈N₂O₂S₂, 418.0810; found 418.0813.

2-(3-Fluorophenyl)-1-thiocyanato-3-tosylindolizine (6c)

Preparative TLC on silica gel (eluent: PE/EA = 4/1, v/v) to afford **6c**. Green liquid (67.5 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 9.26 (d, *J* = 7.2 Hz, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.48 – 7.43 (m, 3H), 7.41 – 7.36 (m, 1H), 7.24 – 7.17 (m, 3H), 7.16 – 7.13 (m, 1H), 7.09 – 7.02 (m, 2H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.2, 160.8, 144.8, 139.0 (d, *J* = 2.2 Hz), 138.5 (d, *J* = 9.9 Hz), 132.8 (d, *J* = 8.5 Hz), 129.8, 129.4 (d, *J* = 8.4 Hz), 126.7, 126.7 (d, *J* = 3.1 Hz), 126.6,

126.1, 119.4, 117.9 (d, J = 22.6 Hz), 117.3, 115.9 (d, J = 20.9 Hz), 115.3, 110.9, 90.9, 21.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.10 (td, J = 9.0, 5.9 Hz). HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₂H₁₅FN₂O₂S₂, 422.0559; found 422.0562.

2-Phenyl-1-(phenylselanyl)-3-tosylindolizine (7a)

Preparative TLC on silica gel (eluent: PE/EA = 5/1, v/v) to afford **7a**. Green solid (90.5 mg, 90%), mp 177.8-178.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.23 (d, *J* = 7.2 Hz, 1H), 7.73 (d, *J* = 8.9 Hz, 1H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.41 – 7.33 (m, 3H), 7.24 – 7.21 (m, 2H), 7.15 (d, *J* = 8.0 Hz, 3H), 7.10 – 7.07 (m, 2H), 7.02 – 6.98 (m, 2H), 6.94 – 6.89 (m, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 141.8, 139.5, 139.4, 133.3, 133.1, 131.0, 129.6, 129.0, 129.0, 128.1, 127.2, 126.5, 126.4, 126.0, 124.3, 119.2, 117.7, 114.2, 99.5, 21.6. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₇H₂₁NO₂SSe, 503.0458;

found 503.0452.

2-(3-Bromophenyl)-1-(phenylselanyl)-3-tosylindolizine (7b)

Preparative TLC on silica gel (eluent: PE/EA = 5/1, v/v) to afford **7b**. Yellow oil (102.0 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 9.24 (d, *J* = 7.2 Hz, 1H), 7.76 (d, *J* = 8.9 Hz, 1H), 7.50 (d, *J* = 8.5 Hz, 3H), 7.24 – 7.16 (m, 5H), 7.15 (d, *J* = 1.5 Hz, 1H), 7.12 – 7.08 (m, 3H), 7.02 – 6.98 (m, 2H), 6.94 (td, *J* = 7.0, 1.4 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 139.7, 139.4, 135.2, 133.6, 132.9, 131.0, 129.8, 129.7, 129.4, 129.1, 128.8, 126.5, 126.4, 126.3, 124.4, 121.2, 119.3, 118.0, 114.4, 99.6, 21.7. HRMS (GC/QTOF) m/z: [M]⁺

calcd for C₂₇H₂₀BrNO₂SSe, 580.9563; found 580.9559.

1-(Methylselanyl)-2-phenyl-3-tosylindolizine (7c)

Preparative TLC on silica gel (eluent: PE/EA = 5/1, v/v) to afford 7c. Yellow oil (74.9 mg, 85%). ¹H NMR (400 MHz, CDCl₃) δ 9.18 (d, *J* = 7.2 Hz, 1H), 7.80 (d, *J* = 8.9 Hz, 1H), 7.49 (d, *J* = 8.2 Hz, 2H), 7.44 (d, *J* = 5.4 Hz, 3H), 7.34 – 7.29 (m, 2H), 7.13 (d, *J* = 7.7 Hz, 3H), 6.87 (t, *J* = 6.9 Hz, 1H), 2.33 (s, 3H), 1.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.8, 141.0, 139.7, 138.7, 133.6, 131.0, 129.5, 128.0, 127.3, 126.5, 126.2, 123.5, 119.3, 113.8, 104.4, 101.1, 21.6, 9.6. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₂H₁₉NO₂SSe, 441.0302; found 441.0311.

2-Phenyl-1-(p-tolylthio)-3-tosylindolizine (7d)

Preparative TLC on silica gel (eluent: PE/EA = 6.5/1, v/v) to afford **7d**. Green solid (75.9 mg, 81%), mp 190.6-191.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.24 (d, *J* = 7.2 Hz, 1H), 7.69 (d, *J* = 8.9 Hz, 1H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.41 – 7.31 (m, 3H), 7.30 – 7.21 (m, 2H), 7.18 – 7.11 (m, 3H), 6.97 – 6.87 (m, 3H), 6.78 (d, *J* = 8.2 Hz, 2H), 2.35 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 141.5, 139.5, 139.1, 135.0, 134.8, 132.1, 131.0, 129.6, 129.5, 128.1, 127.2, 126.5, 126.4, 126.4, 124.3, 118.2, 117.4, 114.3, 102.9, 21.6, 20.9. HRMS (GC/QTOF) m/z: [M]⁺ calcd for C₂₈H₂₃NO₂S₂, 469.1170; found 469.1180.

3. NMR spectra for new compounds

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **3a**

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **3b**

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **3e**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **3h**

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **3**I

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S-29

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4a

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **4b**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 4c

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) spectrum of compound **4d**

¹H NMR (400 MHz, CDCl₃), ¹³C NMR (100 MHz, CDCl₃) spectrum of compound 6c

S-46

4. X-ray crystallographic data

Figure S1 X-ray single crystal structure of **3i** (displacement ellipsoids are drawn at the 50% probability level)

Single crystals of **3i** were grown by slow evaporation of its DCM/PE solution. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC number: 2305723).

Table S1	Crystal	data a	nd structure	refinement	for 3i
----------	---------	--------	--------------	------------	--------

Identification code	Т3
Empirical formula	$C_{22}H_{18}BrNO_3S$
Formula weight	456.34
Temperature/K	170.0(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.6263(11)
b/Å	10.0825(12)
c/Å	10.7578(10)
$\alpha/^{\circ}$	78.197(9)
β/°	80.281(9)
$\gamma/^{\circ}$	85.359(10)
Volume/Å ³	1006.2(2)
Ζ	2
$\rho_{calc}g/cm^3$	1.506
μ/mm^{-1}	2.169

F(000)	464.0
Crystal size/mm ³	0.14 imes 0.12 imes 0.1
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	3.916 to 49.998
Index ranges	$-11 \le h \le 11, -11 \le k \le 11, -12 \le l \le 9$
Reflections collected	7103
Independent reflections	3543 [$R_{int} = 0.0597$, $R_{sigma} = 0.0778$]
Data/restraints/parameters	3543/0/255
Goodness-of-fit on F ²	1.069
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0484, wR_2 = 0.1089$
Final R indexes [all data]	$R_1 = 0.0623, wR_2 = 0.1204$
Largest diff. peak/hole / e Å-3	0.71/-0.44

Table S2 Bond Lengths for 3i

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C8	1.873(4)	C7	C8	1.400(5)
S 1	01	1.435(3)	C7	C9	1.480(5)
S 1	O2	1.425(2)	C9	C10	1.378(5)
S 1	C6	1.727(4)	C9	C14	1.384(5)
S 1	C16	1.757(4)	C10	C11	1.381(5)
03	C12	1.367(4)	C11	C12	1.377(5)
03	C15	1.432(5)	C12	C13	1.369(5)
N1	C1	1.389(5)	C13	C14	1.384(5)
N1	C5	1.385(5)	C16	C17	1.395(5)
N1	C6	1.404(4)	C16	C21	1.377(5)
C1	C2	1.398(5)	C17	C18	1.365(5)
C1	C8	1.383(5)	C18	C19	1.393(6)
C2	C3	1.360(6)	C19	C20	1.391(6)
C3	C4	1.401(6)	C19	C22	1.495(6)
C4	C5	1.354(5)	C20	C21	1.384(6)
C6	C7	1.390(5)			

Table S3 Bond Angles for 3i

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	S 1	C6	108.64(16)	C1	C8	Br1	123.1(3)
01	S 1	C16	107.88(17)	C1	C8	C7	110.1(3)
O2	S 1	O1	119.39(15)	C7	C8	Br1	126.8(3)
O2	S 1	C6	107.24(17)	C10	C9	C7	119.8(3)
O2	S 1	C16	108.29(16)	C10	C9	C14	118.8(3)
C6	S 1	C16	104.42(18)	C14	C9	C7	121.2(3)
C12	03	C15	116.8(3)	C9	C10	C11	120.8(3)
C1	N1	C6	109.2(3)	C12	C11	C10	119.9(4)
C5	N1	C1	120.4(3)	O3	C12	C11	124.7(3)
C5	N1	C6	130.5(3)	O3	C12	C13	115.3(3)
N1	C1	C2	119.4(3)	C13	C12	C11	120.0(3)
C8	C1	N1	106.4(3)	C12	C13	C14	120.1(3)
C8	C1	C2	134.2(4)	C13	C14	C9	120.4(4)
C3	C2	C1	120.4(4)	C17	C16	S 1	118.9(3)
C2	C3	C4	118.9(4)	C21	C16	S 1	121.0(3)
C5	C4	C3	122.0(4)	C21	C16	C17	120.0(4)

Atom Atom Atom		Atom	Angle/°	Atom Atom Atom	Angle/°
C4	C5	N1	119.0(4)	C18 C17 C16	120.1(4)
N1	C6	S 1	122.4(3)	C17 C18 C19	121.0(4)
C7	C6	S 1	127.9(3)	C18 C19 C22	120.9(4)
C7	C6	N1	107.6(3)	C20 C19 C18	118.2(4)
C6	C7	C8	106.8(3)	C20 C19 C22	120.9(4)
C6	C7	C9	129.6(3)	C21 C20 C19	121.2(4)
C8	C7	С9	123.6(3)	C16 C21 C20	119.4(3)

5. References

(a) L. Teng, X. Liu, P. Guo, Y. Yu and H. Cao, *Org. Lett.*, 2020, 22, 3841-3845; (b) J. Zhou, X. Shi, H. Zheng, G. Chen, C. Zhang, X. Liu and H. Cao, *Org. Lett.*, 2022, 24, 3238-3243.
W. Kim, H. Y. Kim and K. Oh, *J. Org. Chem.*, 2021, 86, 15973-15991.