Supporting Information

Palladium-catalyzed asymmetric [4 + 3] cycloaddition of acyclic α , β -

unsaturated imines with trimethylenemethane donors: access to

chiral non-fused azepines

Ting-Peng Li,^a Shuixiu Su,^a Jia-Huan Shen,^b Meng Zang,^b Yang-Zi Liu,^a Quannan Wang,*^a and Wei-Ping

Deng*^{a,b}

^a Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004 China.

^b Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.

E-mail: wqn1991@zjnu.edu.cn, dengwp827@zjnu.edu.cn.

Contents

1.	General information	2
2.	General procedure for the asymmetric [4+3] cycloaddition	3
3.	Gram-scale preparation of compound 3a	12
4.	The X-Ray crystal structure	13
5.	References	14
6.	¹ H NMR and ¹³ C NMR spectra	15
7.	HPLC chromatograms	36

1. General information

¹H NMR spectra were recorded on a Bruker DPX 400 MHz or Bruker Ascend 600 MHz spectrometer in CDCl₃. Chemical shifts were reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The spectra are interpreted as: s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets, ddd = doublet of doublet of doublets, ddt = doublet of doublet of triplets, dtd = doublet of triplet of doublets, brs = broad singlet, coupling constant (s) J are reported in Hz and relative integrations are reported. ¹³C NMR spectra were recorded on a Bruker DPX 400 MHz or Bruker Ascend 600 MHz spectrometer in CDCl₃. Chemical shifts were reported in ppm with the internal chloroform signal at 77.16 ppm as a standard. ¹⁹F NMR spectra were recorded on a Bruker Ascend 600 MHz spectrometer in CDCl₃ and referenced relative to CFCl₃. Enantiomeric excesses were determined by analysis of HPLC traces, obtained by using Chiralpak IC column with n-hexane and i-propanol as solvents. (Chiralpak IC column was purchased from Daicel. *n*-hexane and *i*-propanol were purchased from Energy.) Melting points were obtained in open capillary tubes using SGW X-4 micro melting point apparatus which were uncorrected. Highresolution mass spectra (HRMS) were recorded on a Waters GCT Premier mass spectrometer using EI-TOF (electron ionization-time of flight) or on a JEOC AccuTOF LC-plus 4G mass spectrometer using ESI (electrospray ionization). Commercially available materials were used as received. Anhydrous CH2Cl2 was distilled from calcium hydride, anhydrous THF and toluene was distilled from sodium/benzophenone. $\alpha_{\beta}\beta$ -Unsaturated imines 1¹ and trimethylenemethane (TMM) donors 2^2 were prepared according to the literature procedure.

2. General procedure for the synthesis of products 3

General procedure A: To a flame-dried and N₂-purged Schlenk tube was added ligand L5 (10.8 mg, 0.022 mmol, 11 mol%), and Pd₂(dba)₃ (9.2 mg, 0.01 mmol, 5 mol%) and anhydrous 2-MeTHF (2.0 mL). The resulting solution was stirred for 0.5 h at room temperature. Then the reaction tube was moved to 0 °C. After 5 minutes, α,β -unsaturated imine 1 (0.2 mmol, 1.0 equiv) and trimethylenemethane (TMM) donor 2 (0.3 mmol, 1.5 equiv) was added sequentially. The resulting solution was stirred vigorously at 0 °C. Once starting material was consumed (monitored by TLC), the mixture was concentrated and purified by column chromatography (PE/EA/DCM = 6:1:1) to give the corresponding product **3**.

Methyl (*R*)-5-cyano-6-methylene-2-phenyl-1-tosyl-4,5,6,7-tetrahydro-1*H*-azepine-3carboxylate (3a): Following the general procedure **A**, compound **3a** was obtained as a white solid in 90% yield (79.0 mg) and 96% *ee*; $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 117-119 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.35–7.28 (m, 1H), 7.25–7.16 (m, 4H), 7.14–7.00 (m, 4H), 5.45 (s, 1H), 5.42 (s, 1H), 4.54–4.27 (m, 2H), 3.62– 3.49 (m, 1H), 3.42 (s, 3H), 2.99–2.94 (m, 1H), 2.88 (dd, *J* = 14.4, 8.9 Hz, 1H), 2.38 (s, 3H), ¹³C NMR (150 MHz, CDCl₃) δ 168.5, 150.1, 144.0, 137.6, 137.2, 136.1, 129.5(3C), 129.0(2C), 127.9(2C), 127.2(2C), 125.7, 119.2, 118.5, 55.2, 52.1, 33.2, 32.6, 21.6; HRMS (ESI-TOF) calcd for C₂₃H₂₃N₂O₄S [M+H]⁺: 423.1300, found: 423.1302. [α]_D²⁰= -117.8 (*c* = 0.2, CH₂Cl₂); HPLC (Chiralpak IC-H, *n*-hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm) t_R= 32.692 min (major), 38.709 min (minor).

Methyl (*R*)-5-cyano-6-methylene-2-(*p*-tolyl)-1-tosyl-4,5,6,7-tetrahydro-1*H*-azepine-3-carboxylate (3b), Following the general procedure A, compound 3b was obtained as a white solid in 84% yield (73.3 mg) and 96% *ee*; $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.:121-123 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 8.1 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.00 (s, 4H), 5.45 (s, 1H), 5.43 (s, 1H), 4.53 – 4.28 (m, 2H), 3.55 – 3.49 (m, 1H), 3.47 (s, 3H), 2.94 (dd, J = 14.5, 3.3 Hz, 1H), 2.85 (dd, J = 14.6, 8.6 Hz, 1H), 2.41 (s, 3H), 2.36 (s, 3H).; ¹³C NMR (150 MHz, CDCl₃) δ 168.6, 150.4, 143.9, 139.7, 137.6, 137.3, 133.2, 129.4(2C), 128.9(2C), 128.6(2C), 127.2(2C), 124.9, 119.2, 118.6, 55.2, 52.1, 33.2, 32.6, 21.6, 21.5; HRMS (ESI-TOF) calcd for C₂₄H₂₅N₂O₄S [M+H]⁺: 437.1530, found: 437.1528. [α]_D²⁰ = -101.0 (c = 0.2, CH₂Cl₂); HPLC (Chiralpak IC-H, *n*-hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm) t_R= 36.215 min (major), 41.963 min (minor).

Methyl (*R*)-5-cyano-6-methylene-2-(*m*-tolyl)-1-tosyl-4,5,6,7-tetrahydro-1*H*-azepine-3-carboxylate (3c): Following the general procedure A, compound 3c was obtained as a white solid in 82% yield (71.6 mg) and 97% *ee*; $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 138-140 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.18 (d, *J* = 8.0 Hz, 2H), 7.12 - 7.04 (m, 4H), 6.94 (d, *J* = 6.5 Hz, 1H), 6.72 (s, 1H), 5.44 (s, 1H), 5.42 (s, 1H), 4.46 - 4.31 (m, 2H), 3.59 - 3.52 (m, 1H), 3.42 (s, 3H), 3.00 (dd, *J* = 14.5, 3.3 Hz, 1H), 2.91 (dd, *J* = 14.6, 8.5 Hz, 1H), 2.36 (s, 3H), 2.13 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.6, 150.3, 143.8, 137.8, 137.4, 137.3, 135.5, 130.3, 129.4, 129.3 (2C), 127.8, 127.1(2C), 126.6, 125.4, 119.0, 118.6, 55.3, 52.1, 33.2, 32.7, 21.6, 21.2.; HRMS (ESI-TOF) calcd for C₂₄H₂₅N₂O₄S [M+H]⁺: 437.1530, found: 437.1528. [α]_D²⁰ = -88.7 (*c* = 0.4, CH₂Cl₂); HPLC (Chiralpak IC-H, *n*-hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm) t_R= 30.568 min (major), 36.801 min (minor).

Methyl (*R*)-5-cyano-2-(4-methoxyphenyl)-6-methylene-1-tosyl-4,5,6,7-tetrahydro-1*H*-azepine-3-carboxylate (3d): Following the general procedure A, compound 3d was obtained as a white solid in 88% yield (79.6 mg) and 95% *ee*; $R_f = 0.2$ (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 172-173 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.14 – 7.09 (m, 2H), 7.04 – 6.99 (m, 2H), 6.72 – 6.65 (m, 2H), 5.42 (d, *J* = 1.2 Hz, 1H), 5.41 (s, 1H), 4.48 – 4.28 (m, 2H), 3.79 (s, 3H), 3.51 – 3.48 (m, 1H), 3.46 (s, 3H), 2.90 (dd, *J* = 14.4, 3.3 Hz, 1H), 2.87 – 2.77 (m, 1H), 2.38 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.8, 160.8, 150.3, 143.9, 137.6, 137.4, 130.6(2C), 129.5(2C), 128.4, 127.2(2C), 124.0, 119.1, 118.6, 113.3(2C), 77.4, 77.2, 76.9, 55.4, 55.2, 52.1, 33.2, 32.6, 21.6; HRMS (ESI-TOF) calcd for C₂₄H₂₅N₂O₅S [M+H]⁺: 453.1479, found: 453.1483. [α]_D²⁰= -74.1 (*c* = 0.4, CH₂Cl₂); **HPLC** (Chiralpak IC-H, *n*-hexane/*i*-propanol = 70/30, flow rate = 1.0 mL/min, λ = 254 nm) t_R= 26.064 min (major), 31.149 min (minor).

Methyl (*R*)-2-(4-(tert-butyl)phenyl)-5-cyano-6-methylene-1-tosyl-4,5,6,7-tetrahydro-1*H*-azepine-3-carboxylate (3e): Following the general procedure **A**, compound 3e was obtained as a white solid in 73% yield (69.8 mg) and 97% *ee*; $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 119-120 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.18 – 7.15 (m, 2H), 7.14 – 7.12 (m, 2H), 7.04 (d, *J* = 8.0 Hz, 2H), 6.97 – 6.94 (m, 2H), 5.44 (d, *J* = 1.2 Hz, 1H), 5.42 (s, 1H), 4.48 – 4.31 (m, 2H), 3.56 (dd, *J* = 8.6, 4.6 Hz, 1H), 3.43 (s, 3H), 3.02 (dd, *J* = 14.4, 3.3 Hz, 1H), 2.94 (dd, *J* = 14.4, 8.6 Hz, 1H), 2.35 (s, 3H), 1.29 (s, 9H).; ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 152.6, 150.1, 143.5, 137.8, 137.4, 132.5, 129.3(2C), 128.7(2C), 127.1(2C), 125.2, 124.6(2C), 119.0, 118.5, 55.2, 52.0, 34.7, 33.2, 32.6, 31.3(3C), 21.5; HRMS (ESI-TOF) calcd for C₂₇H₃₁N₂O₄S [M+H]⁺: 479.1999, found: 479.2004. [α]_D²⁰ = -37.5 (*c* = 0.6, CH₂Cl₂); **HPLC** (Chiralpak IC-H, *n*-hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm) t_R= 31.497 min (major), 35.586 min (minor).

Methyl (*R*)-5-cyano-2-(3,5-dimethoxyphenyl)-6-methylene-1-tosyl-4,5,6,7tetrahydro-1*H*-azepine-3-carboxylate (3f): Following the general procedure **A**, compound 3f was obtained as a white solid in 83% yield (74.7 mg) and 97% *ee*; $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 119-120 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 8.3 Hz, 2H), 7.10 (d, *J* = 8.1 Hz, 2H), 6.91 (s, 1H), 6.64 (s, 2H), 5.46 (d, *J* = 9.0 Hz, 2H), 4.42 (s, 2H), 3.58 (d, *J* = 6.3 Hz, 1H), 3.47 (s, 3H), 3.10 – 2.89 (m, 2H), 2.40 (s, 3H), 2.17 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 168.7, 150.4, 143.6, 137.3, 137.2, 135.1, 131.2, 129.2, 127.1(2C), 126.8(2C), 124.0, 123.8, 118.8, 118.5, 55.3, 52.0, 33.2, 32.7, 21.5, 21.0; HRMS (ESI-TOF) calcd for C₂₅H₂₇N₂O₄S [M+H]⁺:451.1686, found: 451.1697. [α]_D²⁰= -73.5 (*c* = 0.3, CH₂Cl₂); HPLC (Chiralpak IC-H, *n*-hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm) t_R= 25.230 min (major), 29.476 min (minor).

Methyl (*R*)-5-cyano-2-(4-fluorophenyl)-6-methylene-1-tosyl-4,5,6,7-tetrahydro-1*H*azepine-3-carboxylate (3g): Following the general procedure **A**, compound 3g was obtained as a white solid in 70% yield (68.4 mg) and 95% *ee*; $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 108-110 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.25 (m, 2H), 7.18 – 7.14 (m, 2H), 7.11 – 7.08 (m, 2H), 6.93 – 6.85 (m, 2H), 5.46 (d, *J* = 1.2 Hz, 1H), 5.44 (s, 1H), 4.45 – 4.37 (m, 2H), 3.57 – 3.52 (m, 1H), 3.48 (s, 3H), 2.95 (dd, *J* = 14.4, 3.4 Hz, 1H), 2.89 (dd, *J* = 14.5, 8.7 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 163.4 (d, *J*_{C-F} = 250.3 Hz), 149.2, 144.3, 137.4, 137.2, 132.2 (d, *J*_{C-F} = 3.3 Hz), 131.0 (d, *J*_{C-F} = 8.6 Hz), 129.8, 129.6, 127.1, 126.5, 125.6, 119.5, 118.5, 115.0 (d, *J*_{C-F} = 22.0 Hz), 55.1, 52.3, 33.1, 32.5, 21.6; ¹⁹F NMR(565 MHz, CDCl₃) δ -110.66. HRMS (ESI-TOF) calcd for C₂₄H₂₂FN₂O₄S [M+H]⁺: 441.1279, found: 441.1283. [α]_D²⁰ = -40.0 (*c* = 0.1, CH₂Cl₂); HPLC (Chiralpak IC-H, *n*hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm) t_R= 29.526 min (major), 32.782 min (minor).

Methyl (*R*)-2-(4-chlorophenyl)-5-cyano-6-methylene-1-tosyl-4,5,6,7-tetrahydro-1Hazepine-3-carboxylate (3h). Following the general procedure A, compound 3h was obtained as a colorless oil in 68% yield (62.0 mg) and 89% *ee*; R_f = 0.4 (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (m, 2H), 7.19 – 7.12 (m, 4H), 7.07 – 7.01 (m, 2H), 5.51 – 5.40 (m, 2H), 4.42 (s, 2H), 3.55 (dd, J = 8.3, 3.6 Hz, 1H), 3.49 (s, 3H), 3.03 – 2.83 (m, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 149.1, 144.3, 137.4, 137.2, 135.7, 134.6, 130.4(2C), 129.6(2C), 128.2(2C), 127.1(2C), 126.0, 119.5, 118.4, 55.2, 52.4, 33.1, 32.5, 21.7. HRMS (ESI-TOF) calcd for C₂₃H₂₂ClN₂O₄S [M+H]⁺: 457.0983, found: 457.0991; [α]_D²⁰= -153.7 (*c* = 0.1, CH₂Cl₂); HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 85/15, flow rate = 0.7 mL/min, λ = 254 nm) t_R=21.618 min (major), 24.773 min (minor).

Methyl (*R*)-2-(4-bromophenyl)-5-cyano-6-methylene-1-tosyl-4,5,6,7-tetrahydro-1*H*azepine-3-carboxylate (3i): Following the general procedure A, compound 3i was obtained as a white solid in 46% yield (46.0 mg) and 90% *ee*; $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 154-155 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.30 – 7.25 (m, 2H), 7.24 – 7.20 (m, 2H), 7.12 (d, J = 8.4 Hz, 2H), 6.94 – 6.91 (m, 2H), 5.43 (s, 1H), 5.41 (s, 1H), 4.38 (s, 2H), 3.57 – 3.50 (m, 1H), 3.46 (s, 3H), 2.93 (dd, J = 14.4, 3.4 Hz, 1H), 2.87 (dd, J = 14.5, 8.6 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) 167.9, 149.0, 144.2, 137.3, 137.1, 134.9, 131.0(2C), 130.5 (2C), 129.5(2C), 127.0(2C), 125.9, 123.8, 119.4, 118.4, 55.1, 52.2, 32.9, 32.4, 21.6; HRMS (ESI-TOF) calcd for C₂₃H₂₂BrN₂O₄S [M+H]⁺: 501.0478, found: 501.0483. [α]_D²⁰ = -94.2 (c = 0.1, CH₂Cl₂); HPLC (Chiralpak IC-H, *n*-hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm) t_R= 26.563 min (major), 30.749 min (minor).

Methyl (*R*)-5-cyano-6-methylene-2-(naphthalen-2-yl)-1-tosyl-4,5,6,7-tetrahydro-1*H*azepine-3-carboxylate (3j): Following the general procedure **A**, compound **3**j was obtained as a yellow solid in 71% yield (76.5 mg) and 91% *ee*; $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 134-137 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, *J* = 8.1 Hz, 1H), 7.67 (d, *J* = 8.5 Hz, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.52 (m, 1H), 7.47 (d, *J* = 7.2 Hz, 1H), 7.44 (s, 1H), 7.25 – 7.20 (m, 1H), 7.13 (d, *J* = 8.2 Hz, 2H), 6.84 (d, *J* = 8.1 Hz, 2H), 5.51 (s, 1H), 5.50 (s, 1H), 4.54 (s, 2H), 3.67 - 3.58 (m, 1H), 3.41 (s, 3H), 3.14 – 2.98 (m, 2H), 2.23 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 150.4, 143.8, 137.8, 137.3, 133.5, 132.9, 132.5, 129.2(2C), 128.7, 128.4, 127.6, 127.4, 127.0, 126.9(2C), 126.5, 126.2, 125.6, 119.1, 118.5, 55.4, 52.1, 33.2, 32.7, 21.4; HRMS (ESI-TOF) calcd for C₂₇H₂₅N₂O₄S [M+H]⁺: 473.1530, found: 473.1536. [α]_D²⁰ = -102.5 (*c* = 0.3, CH₂Cl₂); **HPLC** (Chiralpak IC-H, *n*-hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm) t_R= 27.384 min (major), 28.818 min (minor).

Methyl (*R*)-5-cyano-2-(furan-2-yl)-6-methylene-1-tosyl-4,5,6,7-tetrahydro-1*H*azepine-3-carboxylate (3k): Following the general procedure A, compound 3k was obtained as a yellow solid in 79% yield (65.1 mg) and 93% *ee*; $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 93-95 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.55 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 1.7 Hz, 1H), 7.30 – 7.27 (m, 2H), 6.55 (d, *J* = 3.5 Hz, 1H), 6.41 (dd, *J* = 3.5, 1.7 Hz, 1H), 5.42 (s, 1H), 5.41 (s, 1H), 4.43 (s, 1H), 4.28 (s, 1H), 3.69 (s, 3H), 3.41 (s, 1H), 2.72 – 2.66 (m, 1H), 2.62 – 2.50 (m, 1H), 2.45 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.1, 148.5, 144.3, 144.0, 137.8, 137.0, 137.0, 129.7(2C), 127.4(2C), 125.1, 119.5, 118.3, 114.1, 111.7, 54.3, 52.4, 33.1, 32.3, 21.6; HRMS (ESI-TOF) calcd for C₂₁H₂₁N₂O₅S [M+H]⁺: 413.1166, found: 413.1173. $[\alpha]_D{}^{20} = -48.5$ (c = 0.6, CH₂Cl₂); **HPLC** (Chiralpak IC-H, *n*-hexane/*i*-propanol = 70/30, flow rate = 0.7 mL/min, $\lambda = 254$ nm) t_R= 27.740 min (major), 31.326 min (minor).

Methyl (*R*)-5-cyano-6-methylene-2-(thiophen-2-yl)-1-tosyl-4,5,6,7-tetrahydro-1*H*-azepine-3-carboxylate (3l): Following the general procedure **A**, compound 3l was obtained as a yellow solid in 77% yield (65.9 mg) and 88% *ee*; $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 107-108 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, J = 8.2 Hz, 2H), 7.33 (dd, J = 5.1, 1.2 Hz, 1H), 7.18 (d, J = 8.0 Hz, 2H), 7.01 (dd, J = 3.7, 1.2 Hz, 1H), 6.90 (dd, J = 5.0, 3.6 Hz, 1H), 5.44 (s, 1H), 5.42 (s, 1H), 4.41 (br, 1H), 4.29 (br, 1H), 3.56 (s, 3H), 3.48 (s, 1H), 2.83 (dd, J = 14.4, 3.3 Hz, 1H), 2.73 (br, 1H), 2.40 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 144.1, 142.0, 138.3, 137.2, 129.9, 129.6(2C), 128.8, 127.2(2C), 126.8, 126.6, 119.5, 118.3, 54.5, 52.4, 33.0, 32.6, 21.6; HRMS (ESI-TOF) calcd for C₂₁H₂₁N₂O₄S₂ [M+H]⁺:429.0937, found: 429.0944. [α]_D²⁰= -51.6 (c = 0.2, CH₂Cl₂); HPLC (Chiralpak IC-H, *n*-hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm) t_R= 31.441 min (major), 35.151 min (minor).

Ethyl (*R*)-5-cyano-6-methylene-2-phenyl-1-tosyl-4,5,6,7-tetrahydro-1*H*-azepine-3carboxylate (3m): Following the general procedure A, compound 3m was obtained as a white solid in 88% yield (76.8 mg) and 95% *ee*; R_f = 0.4 (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 128-129 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.35 – 7.30 (m, 1H), 7.25 – 7.17 (m, 4H), 7.14 – 7.09 (m, 4H), 5.47 (d, J = 1.3 Hz, 1H), 5.44 (d, J = 1.0 Hz, 1H), 4.52 – 4.34 (m, 2H), 3.96 – 3.86 (m, 2H), 3.56 (d, J = 6.7 Hz, 1H), 3.06 – 2.86 (m, 2H), 2.40 (s, 3H), 0.84 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.1, 149.9, 143.9, 137.7, 137.1, 136.2, 129.5(2C), 129.4, 129.1(2C), 127.8(2C), 127.2(2C), 126.0, 119.0, 118.6, 61.3, 55.2, 33.2, 32.6, 21.6, 13.5; HRMS (ESI-TOF) calcd for C₂₄H₂₅N₂O₄S [M+H]⁺: 437.1530, found: 437.1535. [α]_D²⁰ = -76.1 (c = 0.3, CH₂Cl₂); HPLC (Chiralpak IC-H, *n*-hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, $\lambda = 254$ nm) t_R= 33.345 min (major), 37.913 min (minor).

tert-Butyl (*R*)-5-cyano-6-methylene-2-phenyl-1-tosyl-4,5,6,7-tetrahydro-1*H*-azepine-3-carboxylate (3n): Following the general procedure A, compound 3n was obtained as a white solid in 86% yield (79.9 mg) and 96% *ee*; $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 107-109 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.31 – 7.27 (m, 1H), 7.20 – 7.14 (m, 4H), 7.10 – 7.05 (m, 4H), 5.41 (s, 1H), 5.40 (s, 1H), 4.45 – 4.21 (m, 2H), 3.62 – 3.44 (m, 1H), 3.02 – 2.76 (m, 2H), 2.36 (s, 3H), 1.09 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 167.1, 148.8, 143.7, 138.0, 137.3, 136.5, 129.4(2C), 129.3(2C), 129.1, 127.8(2C), 127.7, 127.1(2C), 118.9, 118.6, 81.9, 55.1, 33.2, 32.6, 27.4(3C), 21.6; HRMS (ESI-TOF) calcd for C₂₆H₂₉N₂O₄S [M+H]⁺: 465.1843, found: 465.1840. [α]_D²⁰ = -138.2 (*c* = 0.7, CH₂Cl₂); HPLC (Chiralpak IC-H, *n*-hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm) t_R= 20.162 min (major), 26.798 min (minor).

Phenyl (*R*)-5-cyano-6-methylene-2-phenyl-1-tosyl-4,5,6,7-tetrahydro-1*H*-azepine-3carboxylate (30): Following the general procedure A, compound 30 was obtained as a white solid in 68% yield (65.9 mg) and 93% *ee*; $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 126-128 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.40 – 7.36 (m, 1H), 7.28 – 7.22 (m, 8H), 7.17 – 7.11 (m, 3H), 6.70 – 6.64 (m, 2H), 5.50 (d, *J* = 1.2 Hz, 1H), 5.49 (s, 1H), 4.55 (d, *J* = 14.7 Hz, 1H), 4.45 (d, *J* = 14.7 Hz, 1H), 3.67 (dd, *J* = 7.1, 3.5 Hz, 1H), 3.17 – 3.02 (m, 2H), 2.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 166.8, 151.6, 150.3, 144.1, 137.5, 137.2, 136.1, 129.9, 129.6(2C), 129.5(2C), 129.3(2C), 128.2(2C), 127.2(2C), 126.0, 124.9, 121.1(2C), 119.7, 118.5, 55.2, 33.3, 33.0, 21.6; HRMS (ESI-TOF) calcd for C₂₈H₂₅N₂O₄S [M+H]⁺: 485.1530, found: 485.1533. [α]_D²⁰= -66.7 (*c* = 0.3, CH₂Cl₂); HPLC (Chiralpak IC-H, *n*-hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm) t_R= 35.724 min (major), 40.839 min (minor).

Methyl (*R*)-5-cyano-6-methylene-1-(methylsulfonyl)-2-phenyl-4,5,6,7-tetrahydro-1*H*-azepine-3-carboxylate (3p): Following the general procedure **A**, compound **3p** was obtained as a white solid in 40% yield (27.7 mg) and 93% *ee*; $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 83-85 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.38 (m, 3H), 7.32 – 7.29 (m, 2H), 5.48 (s, 1H), 5.40 (s, 1H), 4.42 – 4.30 (m, 2H), 3.71 – 3.63 (m, 1H), 3.46 (s, 3H), 3.20 – 3.16 (m, 1H), 3.16 – 3.12 (m, 1H), 2.49 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 167.9, 149.8, 137.9, 136.0, 129.9, 128.9(2C), 128.3(2C), 126.2, 118.9, 118.4, 54.8, 52.1, 41.8, 33.3, 32.8; HRMS (ESI-

TOF) calcd for $C_{17}H_{19}N_2O_4S$ [M+H]⁺: 347.1060, found: 347.1062. [α]_D²⁰ = -77.0 (*c* = 0.1, CH₂Cl₂); **HPLC** (Chiralpak IC-H, *n*-hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm) t_R=28.455 min (major), 30.833 min (minor).

Methyl (*R*)-5-benzoyl-6-methylene-2-phenyl-1-tosyl-4,5,6,7-tetrahydro-1*H*-azepine-3-carboxylate (3q): Following the general procedure A, compound 3q was obtained as a yellow solid in 72% yield (77.2 mg) and 87% *ee*; R_f = 0.4 (petroleum ether/EtOAc/DCM = 6/1/1, v/v/v); m.p.: 99-100 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.94 (m, 2H), 7.61 – 7.56 (m, 1H), 7.48 (dd, *J* = 8.3, 7.0 Hz, 2H), 7.30 – 7.27 (m, 3H), 7.24 – 7.18 (m, 2H), 7.16 – 7.12 (m, 4H), 5.29 (s, 1H), 5.02 (s, 1H), 4.66 – 4.46 (m, 3H), 3.38 (s, 3H), 2.97 – 2.85 (m, 2H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 169.0, 146.2, 143.5, 133.4, 129.5, 129.4(2C), 129.2, 129.0(2C), 128.9, 128.8(2C), 128.7(2C), 128.1, 127.8(2C), 127.5, 127.2(2C), 126.5, 110.9, 51.8, 47.7, 42.4, 37.4, 21.6; HRMS (ESI-TOF) calcd for C₂₉H₂₈NO₅S [M+H]⁺: 502.1683, found: 502.1689; [α]_D²⁰ = -30.7 (*c* = 0.2, CH₂Cl₂); HPLC (Chiralpak IC-H, *n*-hexane/*i*-propanol = 70/30, flow rate = 0.7 mL/min, λ = 254 nm) t_R=12.445 min (major), 18.648 min (minor).

Methyl (*R*)-5-((diphenylmethylene)amino)-6-methylene-2-phenyl-1-tosyl-4,5,6,7tetrahydro-1*H*-azepine-3-carboxylate (3r): Following the general procedure A, compound 3r was obtained as a yellow solid in 68% yield (72 mg) and 87% *ee*;, $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 12/1/1, v/v/v and tol:acetone=20:1,v/v); m.p.: 78-81 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.56 – 7.53 (m, 2H), 7.49 – 7.44 (m, 3H), 7.39 – 7.36 (m, 2H), 7.36 – 7.30 (m, 2H), 7.30 – 7.24 (m, 4H), 7.22 (d, *J* = 7.1 Hz, 2H), 7.14 (dd, *J* = 7.5, 1.9 Hz, 4H), 5.17 (s, 1H), 4.91 (s, 1H), 4.69 (br, 1H), 4.40 (br, 1H), 4.08 – 3.98 (m, 1H), 3.35 (s, 3H), 2.68 (dd, *J* = 13.4, 7.1 Hz, 1H), 2.44 (dd, *J* = 13.3, 3.1 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 167.2, 147.4, 144. 7, 143.4, 134.0, 137.7, 136.4, 130.2, 129.4(2C), 128.9(3C), 128.6(4C), 128.6, 128.1(3C), 127.8(2C), 127.6(2C), 127.4(2C), 117.0, 62.1, 54.2, 51.7, 36.3, 21.7. HRMS (ESI-TOF) calcd for C₃₅H₃₃N₂O₄S [M+H]⁺: 577.2156, found: 577.2157. [α]_D²⁰ = -59.3 (*c* = 0.4, CH₂Cl₂); **HPLC** (Chiralpak IC-H, *n*hexane/*i*-propanol = 80/20, flow rate = 1.0 mL/min, λ = 254 nm) t_R=17.435 min (major), 19.757 min (minor).

Methyl (*R*)-5-((diphenylmethylene)amino)-2-(furan-2-yl)-6-methylene-1-tosyl-4,5,6,7-tetrahydro-1H-azepine-3-carboxylate (3s): Following the general procedure **A**, compound **3s** was obtained as a colorless oil in 53% yield (60 mg) and 84% *ee*; $R_f = 0.4$ (petroleum ether/EtOAc/DCM = 12/1/1, v/v/v); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.2 Hz, 2H), 7.58 – 7.52 (m, 2H), 7.49 – 7.43 (m, 3H), 7.43 – 7.33 (m, 2H), 7.27 (dd, *J* = 16.4, 8.2 Hz, 4H), 7.16 – 7.06 (m, 2H), 6.56 (dd, *J* = 3.4, 0.8 Hz, 1H), 6.45 (dd, *J* = 3.4, 1.9 Hz, 1H), 5.11 (s, 1H), 4.85 (s, 1H), 4.63 (d, *J* = 14.0 Hz, 1H), 4.38 (br, 1H), 3.92 (dd, *J* = 7.3, 2.6 Hz, 1H), 3.56 (s, 3H), 2.48 (dd, *J* = 13.6, 7.3 Hz, 1H), 2.42 (s, 3H), 2.15 (dd, *J* = 13.6, 2.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 167.2, 150.2, 144.5, 143.7, 143.4, 139.4, 137.8, 136.4, 136.0, 130.3, 129.6(2C), 128.6(4C), 128.6, 128.0(2C), 127.6(2C), 127.6(2C), 127.3, 116.8, 112.5, 111.7, 61.8, 53.5, 51.9, 36.2, 21.7. HRMS (ESI-TOF) calcd for C₃₃H₃₁N₂O₅S [M+H]⁺: 567.1948, found: 567.1979. [α]_D²⁰= -113.1 (*c* = 0.6, CH₂Cl₂); HPLC (Chiralpak IA, *n*-hexane/*i*-propanol = 80/20, flow rate = 0.9 mL/min, λ = 254 nm) t_R=7.970 min (major), 19.937 min (minor).

3 Gram-scale preparation of compound 3a

To a flame-dried and N₂-purged round-bottom flask was added ligand L5 (162 mg, 0.33 mmol, 11 mol%), and Pd₂(dba)₃ (138 mg, 0.15 mmol, 5 mol%) and anhydrous 2-Me-THF (30.0 mL). The resulting solution was stirred for 0.5 h at room temperature. Then the reaction tube was moved to 0 °C. After 5 minutes, α,β -unsaturated imine **1a** (3 mmol, 1.0 equiv) and trimethylenemethane (TMM) donor **2a** (4.5 mmol, 1.5 equiv) was added sequentially. The resulting solution was stirred vigorously at 0 °C. Once starting material was consumed (monitored by TLC), the mixture was concentrated and purified by column chromatography (PE/EA/DCM = 6:1:1, v/v/v) to give the desired product **3a** as a light yellow solid (1.16 g, 89%, 93% ee).

To a solution of **3r** (27.8 mg, 0.05 mmol, 87% ee) in DCM (1 mL) and MeOH (1 mL) was added 6M HCl (20 eq.) at 0 °C, the resulting solution was stirred for 2 h at room temperature. Once starting material was consumed (monitored by TLC), the sodium bicarbonate saturated solution was added at 0 °C to adjust pH > 8. Then the mixture extracted with EA (3 times). The organic phase was concentrated and residue was purified by column chromatography (EA, R_f = 0.1) to give the desired product **4** as a yellow oil (16 mg, 80% yield, 88% ee). ¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.24 (m, 3H), 7.22 – 7.17 (m, 2H), 7.15 – 7.08 (m, 4H), 5.21 – 5.14 (m, 2H), 4.52 (d, *J* = 13.9 Hz, 1H), 4.26 (d, *J* = 13.9 Hz, 1H), 3.66 – 3.57 (m, 1H), 3.42 (s, 3H), 2.68 (dd, *J* = 14.0, 3.6 Hz, 1H), 2.53 (dd, *J* = 13.9, 8.1 Hz, 1H), 2.38 (s, 3H), 1.97 (br, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.6, 147.2, 143.4, 137.4, 136.9, 129.3(2C), 128.9, 128.8(2C), 127.7(2C), 127.67, 127.2(2C), 115.6, 53.5, 51.9, 51.6, 37.0, 21.5. **HRMS** (ESI-TOF) calcd for C₂₂H₂₄N₂O₄S [M+H]⁺: 413.1530, found: 413.1526. [α]_D²⁰ = -100.8 (*c* = 0.1, CH₂Cl₂); **HPLC** (Chiralpak IF, *n*-hexane/*i*-propanol = 70/30, flow rate = 0.7 mL/min, λ = 254 nm) t_R=27.238 min (major), 35.031 min (minor).

4 The X-Ray crystal structure

The crystal of enantiopure 3a was obtained through slow vapor diffusion of *n*-hexane into the ethyl acetate solution of 3a. The structure and absolute configuration (*R*) of 3a were then determined by X-ray crystallographic analysis (Figure S1).

Fig S1. The X-ray structure of (*R*)-**3a** with thermal ellipsoids at the 30% probability level (CCDC 2322002)

Table S1. Crystal data and structure refinement	t for 2023042501_0m.	
Identification code	data_2023042501_0m	
Empirical formula	C23 H22 N2 O4 S	
Formula weight	494.04	
Temperature	120(2) K	
Wavelength	1.54178 Å	
Crystal system	monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 6.4786(6) Å	a = 90°.
	b = 13.3933(12) Å	b = 101.591(3)°.
	c = 12.7182(12) Å	g = 90°.
Volume	1081.05(17) Å ³	
Z	2	
Density (calculated)	1.298 Mg/m ³	
Absorption coefficient	1.594 mm ⁻¹	
F(000)	444	

		,	
systal data and structure re	efinement for 202	23042501_0m.	

Crystal size	0.260 x 0.250 x 0.23 mm ³
Theta range for data collection	3.547 to 68.492°.
Index ranges	-7<=h<=7, -14<=k<=16, -15<=l<=14
Reflections collected	14460
Independent reflections	3873 [R(int) = 0.0337]
Completeness to theta = 67.679°	99.5 %
Absorption correction	multi-scan
Max. and min. transmission	0.7531 and 0.6189
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3873 / 25 / 291
Goodness-of-fit on F ²	1.107
Final R indices [I>2sigma(I)]	R1 = 0.0295, wR2 = 0.0839
R indices (all data)	R1 = 0.0301, wR2 = 0.0849
Extinction coefficient	0.041(6)
Largest diff. peak and hole	0.278 and -0.420 e.Å ⁻³

5 References

- H. Liu, Q. Zhang, L. Wang and X. Tong, PPh₃-catalyzed reactions of alkyl propiolates with Ntosylimines: A facile synthesis of alkyl 2-[aryl(tosylimino)methyl]acrylate and an insight into the reaction mechanism, *Chem. Eur. J.*, 2010, 16, 1968–1972.
- 2. B. M. Trost and G. Mata, Enantioselective palladium-catalyzed [3+2] cycloaddition of trimethylenemethane and fluorinated ketones, *Angew. Chem., Int. Ed.*, 2018, **57**, 12333–12337.

6 ¹H NMR and ¹³C NMR spectra

¹H NMR of 3g in CDCl₃ (600 MHz)

¹H NMR of **3h** in CDCl₃ (400 MHz)

 7
 7
 7
 228

 7
 7
 7
 7
 28

 7
 7
 7
 7
 16

 7
 7
 7
 7
 16
 7
 16

 7
 7
 7
 7
 16
 7
 17
 16
 17
 17
 16
 17
 17
 16
 17
 17
 16
 17
 17
 16
 17
 17
 16
 17
 17
 16
 17
 17
 16
 17
 17
 16
 17
 17
 16
 17
 17
 16
 17
 17
 16
 17
 17
 16
 17
 17
 16
 17
 17
 16
 16
 17
 17
 16
 17
 16
 17
 16
 17
 17
 17
 16
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17

¹H NMR of **3i** in CDCl₃ (600 MHz)

7.33

¹H NMR of **30** in CDCl₃ (400 MHz)

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

 1740

¹H NMR of **3q** in CDCl₃ (400 MHz)

¹H NMR of **4** in CDCl₃ (400 MHz) 1 Ts Ph. MeO₂C ŃΗ₂ ⋏⋏ ii ii X F96.0 F76.0 1.10₄ 2.954 1.00[⊥] 0.99[⊥] 3.00[⊥] 2.031 3.45 1.97∰ 3.93⁄∄ 1.92₌ 5.0 4.5 f1 (ppm) 3.5 7.5 7.0 3.0 2.5 2.0 1.5 1.0 -1.(10.0 9.5 9.0 8.5 8.0 6.5 6.0 5.5 4.0 0.5 0.0 -0.5 ¹³C NMR of 4 in CDCl₃ (100 MHz) — 169.60 53.52 51.91 51.64 — 21.54 Τş Ph MeO₂C NH₂ 00 100 90 f1 (ppm) 70 0 -1 190 180 170 160 150 140 130 120 110 80 60 50 40 30 20 10

7 HPLC chromatograms

Τş Ph MeO₂C ĆN mAU b 254nm, 4nm PDAMulti 400-37. 33. 300-200-100-0-10 20 30 40 0 min <Peak table> PDA Ch1 254nm Peak Area Height Area% Ren.time 20305396 409660 49.681 33.520 1

HPLC chromatogram of compound **3a** (96% ee)

mAU

2

Total

20565792

40871188

361224

770884

50.319

100.000

37.429

Peak	Area	Height	Area%	Ren.time
1	9776892	174503	97.907	32.692
2	209003	3025	2.093	38.709
Total	9985895	177528	100.000	

HPLC chromatogram of compound **3b** (96% *ee*)

mAU

<Peak table> PDA Ch1 254nm

Peak	Area	Height	Area%	Ren.time
1	5261274	82908	49.883	36.276
2	5285965	69048	50.117	41.559
Total	10547238	151955	100.000	

mAU

<Peak table> PDA Ch1 254nm

Peak	Area	Height	Area%	Ren.time
1	9425823	148110	97.905	36.215
2	201660	2719	2.095	41.963
Total	9627483	150830	100.000	

HPLC chromatogram of compound 3c (97% ee)

Total

10905707

199904

100.000

HPLC chromatogram of compound 3d (95% ee)

mAU

<Peak table> PDA Ch1 254nm

Peak	Area	Height	Area%	Ren.time
1	5004196	99542	50.145	26.117
2	4975273	79511	49.855	30.870
Total	9979468	179053	100.000	

mAU

<Peak table> PDA Ch1 254nm

Peak	Area	Height	Area%	Ren.time
1	10941202	218741	97.753	26.064
2	251500	3843	2.247	31.149
Total	11192702	222585	100.000	

HPLC chromatogram of compound 3e (97% ee)

PDA Ch1 254nm

Peak	Area	Height	Area%	Ren.time
1	2550812	45080	98.499	31.497
2	38875	676	1.501	35.586
Total	2589687	45755	100.000	

HPLC chromatogram of compound **3f** (97% *ee*)

100-100-100-100-100-5 10 15 20 25 30 35 40 min <Peak table>

PDA Ch1 254nm

200-

Peak	Area	Height	Area%	Ren.time
1	15125816	330444	98.742	25.230
2	192743	4283	1.258	29.476
Total	15318559	334727	100.000	

HPLC chromatogram of compound 3g (95% ee)

ſ	Peak	Area	Height	Area%	Ren.time
Γ	1	26787712	594406	49.939	29.537
	2	26853414	546997	50.061	32.763
	Total	53641127	1141403	100.000	

mAU

<Peak table>
PDA Ch1 254nm

Peak	Area	Height	Area%	Ren.time
1	43110545	961119	97.375	29.526
2	1162067	22328	2.625	32.782
Total	44272612	983447	100.000	

HPLC chromatogram of compound **3h** (89% ee)

Peak	Area	Height	Area%	Ren.time
1	7215265	211670	50.108	21.650
2	7184163	180325	49.892	24.747
Total	14399428	391995	100.000	

mAU

<Peak table>
PDA Ch1 254nm

Peak	Area	Height	Area%	Ren.time
1	4296878	126615	94.517	21.618
2	249289	6242	5.483	24.773
Total	4546167	132857	100.000	

HPLC chromatogram of compound 3i (90% ee)

Peak	Area	Height	Area%	Ren.time
1	6287914	137437	95.169	26.563
2	319201	5413	4.831	30.749
Total	6607115	142850	100.000	

HPLC chromatogram of compound 3j (91%ee)

Peak	Area	Height	Area%	Ren.time
1	6175804	82052	50.295	44.033
2	6103423	62357	49.705	52.644
Total	12279226	144409	100.000	

PDA Ch1	PDA Ch1 254nm					
Peak	Area	Height	Area%	Ren.time		
1	3336416	44236	95.730	43.287		
2	148807	1609	4.270	52.402		
Total	3485223	45845	100.000			

HPLC chromatogram of compound 3k (93% ee)

mAU

<Peak table> PDA Ch1 254nm

Peak	Area	Height	Area%	Ren.time
1	5452786	122446	49.493	27.933
2	5564440	110818	50.507	31.138
Total	11017225	233264	100.000	

mAU

Peak	Area	Height	Area%	Ren.time
1	35789367	784140	96.449	27.740
2	1317756	26671	3.551	31.326
Total	37107124	810811	100.000	

HPLC chromatogram of compound **3l** (88% *ee*)

mAU

<Peak table>
PDA Ch1 254nm

Peak	Area	Height	Area%	Ren.time
1	2991616	62059	49.900	31.513
2	3003574	54669	50.100	35.102
Total	5995191	116728	100.000	

PDA Ch1 Peak	254nm Area	Height	Area%	Ren.time
1	8076394	167325	94.039	31.441
2	511925	9225	5.961	35.151
Total	8588319	176551	100.000	

HPLC chromatogram of compound **3m** (95% ee)

•	57001015	1115050	11.100	55.515
2	1509389	25586	2.545	37.913
Total	59311032	1169436	100.000	

HPLC chromatogram of compound **3n** (96% ee)

35 min

PDA Ch1 254nm

Peak	Area	Height	Area%	Ren.time
1	10442458	292770	98.032	20.162
2	209647	4508	1.968	26.798
Total	10652105	297277	100.000	

HPLC chromatogram of compound **30** (93% *ee*)

mAU

Peak	Area	Height	Area%	Ren.time
1	14911720	255465	50.257	35.990
2	14759444	229040	49.743	40.831
Total	29671164	484505	100.000	

PDA Ch	1 254nm			
Peak	Area	Height	Area%	Ren.time
1	121050572	1986875	96.397	35.724
2	4524054	68157	3.603	40.839
Total	125574626	2055032	100.000	

HPLC chromatogram of compound **3p** (93% *ee*)

Peak	Area	Height	Area%	Ren.time
1	56592594	1411355	96.724	28.455
2	1916861	30084	3.276	30.833
Total	58509455	1441439	100.000	

HPLC chromatogram of compound **3q** (87% ee)

Peak	Area	Height	Area%	Ren.time
1	12527993	525711	93.666	12.445
2	847125	23840	6.334	18.648
Total	13375117	549551	100.000	

HPLC chromatogram of compound 3r (87% ee)

Peak	Area	Height	Area%	Ren.time
1	2312183	70643	52.203	17.443
2	2117003	56249	47.797	19.748
Total	4429185	126892	100.000	

mAU

PDACh Peak	Area	Height	Area%	Ren.time
1	7102925	216857	93.564	17.435
2	488601	13053	6.436	19.757
Total	7591527	229910	100.000	

HPLC chromatogram of compound 3s (84% ee)

2	1548610	35698	8.129	19.529
Total	19051192	1113812	100.000	

HPLC chromatogram of compound 4 (88% ee)

mAU

<Peak table>

Peak	Area	Height	Area%	Ren.time
1	818749	9299	49.987	28.030
2	819184	8499	50.013	35.030
Total	1637934	17798	100.000	

<Peak table> PDA Ch1 254nm

Peak	Area	Height	Area%	Ren.time
1	15999562	215743	94.190	27.238
2	986991	10793	5.810	35.031
Total	16986552	226537	100.000	