Supporting Information

Ru(II)-Catalyzed Cascade *cis* Carbohalogenation and Cyclization of Alkyne-tethered Cyclohexadienones for Tetrasubstituted Alkenes

Xiaoli Huang, Cui Yi, Ruji Xiong, Meiqi Bai, Yuhai Tang, Silong Xu and Yang Li* Email: <u>vanglee@mail.xjtu.edu.cn</u>

School of Chemistry and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

Contents

1. General methods
2. Synthesis of substrates
3. Optimization of reaction conditions
4. General procedure for the <i>cis</i> Carbohalogenation
a) General procedure for the <i>cis</i> carbochlorination
b) General procedure for the <i>cis</i> carbobromination4
c) General procedure for the <i>cis</i> carboiodination
d) General procedure for the <i>cis</i> carbooxygenation5
5. Characterization data
a) Characterization data for compounds 2
b) Characterization data for compounds 3 12
c) Characterization data for compounds 4 19
d) Characterization data for compounds 5
6. Determination the configuration of product 2a and 3n via NOE
 Scale-up synthesis and synthetic transformations
 7. Scale-up synthesis and synthetic transformations
 7. Scale-up synthesis and synthetic transformations
 7. Scale-up synthesis and synthetic transformations
 7. Scale-up synthesis and synthetic transformations
 7. Scale-up synthesis and synthetic transformations
7. Scale-up synthesis and synthetic transformations.347.1 General procedure for Scale-up synthesis of compound 2a.347.2 General procedure for Scale-up synthesis of compound 5a.357.3 Procedure for synthesis of compound 2a-1357.4 Procedure for synthesis of compound 5a-1367.5 Procedure for synthesis of compound 6366.6 Procedure for synthesis of compound 738
7. Scale-up synthesis and synthetic transformations. 34 7.1 General procedure for Scale-up synthesis of compound 2a. 34 7.2 General procedure for Scale-up synthesis of compound 5a. 35 7.3 Procedure for synthesis of compound 2a-1 35 7.4 Procedure for synthesis of compound 5a-1 36 7.5 Procedure for synthesis of compound 6 36 8. Crystal structural data 40
7. Scale-up synthesis and synthetic transformations
7. Scale-up synthesis and synthetic transformations. 34 7.1 General procedure for Scale-up synthesis of compound 2a. 34 7.2 General procedure for Scale-up synthesis of compound 5a. 35 7.3 Procedure for synthesis of compound 2a-1 35 7.4 Procedure for synthesis of compound 5a-1 36 7.5 Procedure for synthesis of compound 6 36 6.6 Procedure for synthesis of compound 7 38 8. Crystal structural data 40 8.1 Crystal structural data 2g 40 8.2 Crystal structural data 3g 41 8.3 Crystal structural data 4e 43 8.4 Crystal structural data 5e 44 9. References 45

1. General methods

All reactions and manipulations involving air-sensitive compounds were performed using standard Schlenk techniques. Melting points were measured on an SGW_@X-4B apparatus and uncorrected. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker AV400 or JNM-ECZ400S/L1 400 MHz spectrometers. Chemical shifts (δ values) were reported in ppm with internal TMS (¹H NMR), CDCl₃ (¹³C NMR), DMSO-d₆ (¹³C NMR) or external CF₃CO₂H (¹⁹F NMR) as references, respectively. HRMS (ESI) were determined on Agilent Technologies 6224 TOF LC/MS. IR spectra were measured on a NICOLET iS10 spectrometer. Single crystal X-ray diffraction date was recorded on Bruker D8 Venture or Bruker SMART CCD diffractometers. Column chromatography was performed on silica gel (200-300 mesh) using a mixture of petroleum ether (60-90 °C)/ethyl acetate as the eluent.

2. Synthesis of substrates

Alkyne-tethered cyclohexadienones 1 were synthesized according to the literature^[1, 2] and all data were in agreement with those reported^[1, 2].

3. Optimization of reaction conditions

Table S1 Optimization of the reaction conditions of cis carbobromination^a

			()		
 Entry	catalyst	solvent	halide source	yield $3a^f(\%)$	
 1^b	$[RuCl_2(p-cymene)]_2$	Toluene	"Et ₄ NBr	73 (>20:1)	
2	Ru(OAc) ₂ (<i>p</i> -cymene)	Toluene	"Et4NBr	83 (>20:1)	
3	Ru(OAc) ₂ (<i>p</i> -cymene)	Toluene	ⁿ Bu ₄ NBr	85 (>20:1)	
4	Ru(OAc) ₂ (<i>p</i> -cymene)	Toluene	ⁿ Heptyl ₄ NBr	81 (>20:1)	
5^c	Ru(OAc) ₂ (<i>p</i> -cymene)	Toluene	ⁿ Bu ₄ NBr	79 (>20:1)	
6^d	Ru(OAc) ₂ (<i>p</i> -cymene)	Toluene	ⁿ Bu ₄ NBr	76 (>20:1)	
7^e	Ru(OAc) ₂ (<i>p</i> -cymene)	Toluene	ⁿ Bu ₄ NBr	66 (>20:1)	
8	Ru(OAc) ₂ (<i>p</i> -cymene)	Dioxane	ⁿ Bu ₄ NBr	52 (>20:1)	
9	Ru(OAc) ₂ (<i>p</i> -cymene)	MeCN	ⁿ Bu ₄ NBr	NR	
10	Ru(OAc) ₂ (<i>p</i> -cymene)	THF	ⁿ Bu ₄ NBr	86 (>20:1)	
11	Ru(OAc) ₂ (<i>p</i> -cymene)	PhCl	ⁿ Bu ₄ NBr	91 (>20:1)	
12	Ru(OAc) ₂ (<i>p</i> -cymene)	EtOH	"Bu ₄ NB	49 (>20:1)	

^{*a*} Reaction conditions: Ru(OAc)₂(*p*-cymene) (10 mol%), **1a** (0.1 mmol), halide source (2.0 equiv), HOAc (20.0 equiv), solvent (1.0 mL) at 100 °C under N₂ for 24 h; ^{*b*} [RuCl₂(*p*-cymene)]₂ (5 mol%); ^{*c*} HOAc (10.0 equiv); ^{*d*}^{*n*}Bu₄NBr (1.5 equiv); ^{*e*}^{*n*}Bu₄NBr (3.0 equiv); ^{*f*}All *E/Z* ratios were determinded by ¹H NMR.

	Ph —	[Ru ^{ll}] Cat	• • • • • • • • • • • • • • • • • • •	
Entry	catalyst	solvent	halide source	yield $4a^f$ (%)
1^b	[RuI ₂ (p-cymene)] ₂	Toluene	ⁿ Et ₄ NI	53 (>20:1)
2^b	[RuI ₂ (p-cymene)] ₂	Toluene	ⁿ Bu ₄ NI	72 (>20:1)
3^b	[RuI ₂ (p-cymene)] ₂	Toluene	ⁿ Heptyl ₄ NI	67 (>20:1)
4	Ru(OAc) ₂ (p-cymene)	Toluene	ⁿ Bu ₄ NI	91 (>20:1)
5^c	Ru(OAc) ₂ (p-cymene)	Toluene	ⁿ Bu ₄ NI	58 (>20:1)
6^d	Ru(OAc) ₂ (p-cymene)	Toluene	ⁿ Bu ₄ NI	79 (>20:1)
7^e	Ru(OAc) ₂ (p-cymene)	Toluene	ⁿ Bu ₄ NI	75 (>20:1)
8	Ru(OAc) ₂ (p-cymene)	Dioxane	ⁿ Bu ₄ NI	80 (>20:1)
9	Ru(OAc) ₂ (p-cymene)	MeCN	ⁿ Bu ₄ NI	NR
10	Ru(OAc) ₂ (p-cymene)	THF	ⁿ Bu ₄ NI	74 (>20:1)
11	Ru(OAc) ₂ (p-cymene)	PhCl	ⁿ Bu ₄ NI	74 (>20:1)

Table S2 Optimization of the reaction conditions of cis carboiodination^a

^{*a*} Reaction conditions: Catalyst (10 mol%), **1a** (0.1 mmol), halide source (2.0 equiv), HOAc (20.0 equiv), solvent (1.0 mL) at 100 °C under N₂ for 48 h; ^{*b*} [RuI₂(p-cymene)]₂ (5 mol%); ^{*c*} HOAc (10.0 equiv); ^{*d*} ^{*n*}Bu₄NI (1.5 equiv); ^{*e*} ^{*n*}Bu₄NI (3.0 equiv); ^{*f*}All *E/Z* ratios were determined by ¹H NMR.

Table S3 Optimization of the reaction conditions of cis carbooxygenation^a

	O O D D Ph 1a	RuCp*(cod)Cl (10 mol%	O O O O O O O O O O O O O O O O O O O	
Entry	Solvent	Additive	T (°C)	yield $5a^d$ (%)
1	DCE	AgOAc	40	53 (>20:1)
2	DCE	AgOAc	60	90 (>20:1)
3	DCE	AgOAc	80	80 (>20:1)
4	PhCl	AgOAc	60	77 (>20:1)
5	Dioxane	AgOAc	60	88 (>20:1)
6	MeCN	AgOAc	60	11 (>20:1)
7	Toluene	AgOAc	60	41 (>20:1)
8	EtOH	AgOAc	60	17 (>20:1)
9	THF	AgOAc	60	92 (>20:1)
10^{b}	THF	AgOAc	60	83 (>20:1)
11 ^c	THF	AgOAc	60	80 (>20:1)
12	THF	NaOAc	60	79 (>20:1)

^{*a*} Reaction conditions: RuCp*(cod)Cl (10 mol%), **1a** (0.1 mmol), additive (0.5 equiv), HOAc (20.0 equiv), solvent (1.0 mL) at 60 °C under N₂ for 15 h; ^{*b*} AgOAc (0.2 equiv); ^{*c*} HOAc (10.0 equiv); ^{*d*} All *E/Z* ratios were determinded by ¹H NMR.

4. General procedure for the *cis* Carbohalogenation

a) General procedure for the cis carbochlorination

A sealed tube (25 mL) charged with a stir bar was added [RuCl₂(*p*-cymene)]₂ (6.2 mg, 0.01 mmol, 5 mol%), alkynes **1** (0.20 mmol, 1.0 equiv) and "Bu₄NF·3H₂O (126.2 mg, 0.40 mmol, 2.0 equiv) or BnEt₃NCl (91.1 mg, 0.40 mmol, 2.0 equiv). The tube was purged three times by vacuum and N₂, then anhydrous DCE (4.0 mL, 0.05 M) or PhCl (4.0 mL, 0.05 M) was added. At last, glacial HOAc (229 μ L, 4.0 mmol, 20.0 equiv) was added and the resulted mixture was stirred and heated at 100 °C in an oil bath for 48 or 24 h. Upon completion, the reaction mixture was cooled to room temperature, and quenched with aqueous saturated NaHCO₃ and then extracted with EtOAc (20 mL × 3), and then dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography using petroleum ether/ethyl acetate mixture as the eluent, which afforded the carbochlorination products **2**.

b) General procedure for the *cis* carbobromination

A sealed tube (25 mL) charged with a stir bar was added $Ru(OAc)_2(p$ -cymene) (7.1 mg, 0.02 mmol, 10 mol%), alkynes **1** (0.20 mmol, 1.0 equiv) and "Bu₄NBr (128.9 mg, 0.40 mmol, 2.0 equiv). The tube was purged three times by vacuum and N₂, then anhydrous PhCl (2.0 mL, 0.1 M) was added. At last, glacial HOAc (229 µL, 4.0 mmol, 20.0 equiv)

was added and the resulted mixture was stirred and heated at 100 °C in an oil bath for 24 h. Upon completion, the reaction mixture was cooled to room temperature, and quenched with aqueous saturated NaHCO₃ and then extracted with EtOAc (20 mL × 3), and then dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography using petroleum ether/ethyl acetate mixture as the eluent, which afforded carbobromination products **3**.

c) General procedure for the *cis* carboiodination

A sealed tube (25 mL) charged with a stir bar was added [Ru(OAc)₂(*p*-cymene)] (7.1 mg, 0.02 mmol, 10 mol%), alkynes 1 (0.20 mmol, 1.0 equiv) and "Bu₄NI (147.7 mg, 0.40 mmol, 2.0 equiv). The tube was purged three times by vacuum and N₂, then anhydrous toluene (2.0 mL, 0.1 M) was added. At last, glacial HOAc (229 μ L, 4.0 mmol, 20.0 equiv) was added and the resulted mixture was stirred and heated at 100 °C in an oil bath for 48 h. Upon completion, the reaction mixture was cooled to room temperature, and quenched with aqueous saturated NaHCO₃ and then extracted with EtOAc (20 mL × 3), and then dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography using petroleum ether/ethyl acetate mixture as eluent, which afforded carboiodination products **4**.

d) General procedure for the *cis* carbooxygenation

A sealed tube (25 mL) charged with a stir bar was added RuCp*(cod)Cl (7.6 mg, 0.02 mmol, 10 mol%), alkynes **1** (0.20 mmol, 1.0 equiv) and AgOAc (16.7 mg, 0.1 mmol, 0.5 equiv). The tube was purged three times by vacuum and N₂, then anhydrous THF

(2.0 mL, 0.1 M) was added. At last, glacial HOAc (229 μ L, 4.0 mmol, 20.0 equiv) was added and the resulted mixture was stirred and heated at 60 °C in an oil bath for 15 h. Upon completion, the reaction mixture was cooled to room temperature, and quenched with aqueous saturated NaHCO₃ and then extracted with EtOAc (20 mL × 3), and then dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography using petroleum ether/ethyl acetate mixture as eluent, which afforded carbooxygenation products **5**.

5. Characterization data

a) Characterization data for compounds 2

(*E*)-3-(chloro(phenyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)-one, 2a

Light yellow solid, 47.2 mg, 86% yield, PE : EtOAc = 5:1, M.p. 79 – 81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.30 (m, 3H), 7.30 – 7.28 (m, 2H), 6.56 (dd, *J* = 10.1, 0.8 Hz, 1H), 6.14 (d, *J* = 10.1 Hz, 1H), 4.38 (dd, *J* = 13.2, 1.9 Hz, 1H), 4.23 (d, *J* = 13.1 Hz, 1H), 3.33 – 3.28 (m, 2H), 2.74 – 2.68 (m, 1H), 1.55 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 149.8, 139.0, 137.8, 130.4, 129.1, 128.5, 127.9, 126.4, 79.8, 69.6, 49.1, 36.4, 24.0 ppm; FTIR (neat) v 3027, 1680, 1489, 1091, 1009, 766 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₆ClO₂⁺: 275.0833, Found: 275.0831 (M+H⁺).

(*E*)-3-(chloro(*p*-tolyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(*4H*)-one, 2b

Light yellow semisolid, 52.5 mg, 91% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.13 (m, 4H), 6.55 (d, *J* = 10.5 Hz, 1H), 6.13 (d, *J* = 10.5 Hz, 1H), 4.37

 $(dd, J = 13.1, 1.8 Hz, 1H), 4.22 (d, J = 13.1 Hz, 1H), 3.33 - 3.27 (m, 2H), 2.70 (dd, J = 17.9, 7.5 Hz, 1H), 2.35 (s, 3H), 1.54 (s, 3H) ppm; {}^{13}C NMR (100 MHz, CDCl₃) <math>\delta$ 197.5, 149.8, 139.1, 138.3, 135.0, 130.4, 129.1, 127.8, 126.5, 79.7, 69.6, 49.0, 36.3, 24.0, 21.3 ppm; FTIR (neat) υ 2846, 1677, 1450, 1121, 1045, 809, 717 cm⁻¹; HRMS (ESI) m/z: Calcd. C₁₇H₁₈ClO₂⁺: 289.0990, Found: 289.0974 (M+H⁺).

(*E*)-3-(chloro(4-fluorophenyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(*4H*)-one, 2c

Light yellow semisolid, 29.8 mg, 51% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.26 (m, 2H), 7.07 – 7.01 (m, 2H), 6.55 (dd, *J* = 10.3, 1.0 Hz, 1H), 6.14 (d, *J* = 10.3 Hz, 1H), 4.34 (dd, *J* = 13.1, 2.0 Hz, 1H), 4.19 (d, *J* = 13.1 Hz, 1H), 3.32 – 3.29 (m, 2H), 2.70 (dd, *J* = 17.7, 7.3 Hz, 1H), 1.55 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 162.8 (d, *J* = 249.6 Hz), 149.8, 139.2, 134.0 (d, *J* = 2.9 Hz), 130.5, 129.9 (d, *J* = 8.5 Hz), 125.4, 115.6 (d, *J* = 21.7 Hz), 79.9, 69.5, 49.1, 36.3, 24.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.1 ppm; FTIR (neat) v 2924, 1682, 1600, 1506, 1229, 1091, 834 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₄ClFO₂Na⁺: 315.0559, Found: 315.0570 (M+Na⁺).

(*E*)-3-(chloro(4-chlorophenyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(*4H*)-one, 2d

Light yellow solide, 47.5 mg, 77% yield, PE : EtOAc = 5:1, M.p. 97 – 99 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.5 Hz, 2H), 7.23 (d, *J* = 8.5 Hz, 2H), 6.56 (d, *J* = 10.8 Hz, 1H), 6.14 (d, *J* = 10.8 Hz, 1H), 4.35 (dd, *J* = 13.2, 1.9 Hz, 1H), 4.20 (d, *J* = 13.2 Hz, 1H), 3.33 – 3.28 (m, 2H), 2.70 (dd, *J* = 17.6, 7.3 Hz, 1H), 1.55 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 149.8, 139.8, 136.2, 135.0, 130.5, 129.3, 128.8,

125.3, 79.9, 69.5, 49.2, 36.3, 24.0 ppm; FTIR (neat) υ 2920, 1681, 1488, 1091, 1042, 858, 745 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₄Cl₂O₂Na ⁺: 331.0263, Found: 331.0275 (M+Na⁺).

(*E*)-3-((4-bromophenyl)chloromethylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(*4H*)-one, 2e

Light yellow solid, 50 mg, 71% yield, PE : EtOAc = 5:1, M.p. 99 – 101 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.47 (m, 2H), 7.18 – 7.15 (m, 2H), 6.55 (dd, *J* = 10.3, 0.9 Hz, 1H), 6.14 (d, *J* = 10.3 Hz, 1H), 4.34 (dd, *J* = 13.2, 2.0 Hz, 1H), 4.19 (d, *J* = 13.2 Hz, 1H), 3.33 – 3.28 (m, 2H), 2.70 (dd, *J* = 17.7, 7.3 Hz, 1H), 1.55 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 149.8, 139.8, 136.7, 131.7, 130.5, 129.5, 125.3, 123.3, 79.9, 69.5, 49.2, 36.3, 23.9 ppm; FTIR (neat) υ 3336, 2921, 1678, 1478, 1388, 1092, 1011, 835, cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₅BrClNO₂⁺: 352.9939, Found: 352.9947 (M+H⁺).

(*E*)-methyl 4-(chloro(7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(*2H*)ylidene)methyl)benzoate, 2f

Off-white solide, 49.8 mg, 75% yield, PE : EtOAc = 5:1, M.p. 118 – 119 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 8.01 (m, 2H), 7.38 – 7.36 (m, 2H), 6.57 (d, *J* = 10.2 Hz, 1H), 6.15 (d, *J* = 10.2 Hz, 1H), 4.39 (dd, *J* = 13.3, 1.8 Hz, 1H), 4.22 (d, *J* = 13.3 Hz, 1H), 3.93 (s, 3H), 3.34 – 3.29 (m, 2H), 2.76 – 2.70 (m, 1H), 1.56 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 166.4, 149.7, 141.9, 140.9, 130.5, 129.7, 127.9, 125.3, 79.8, 69.4, 52.4, 49.3, 36.3, 23.9 ppm; FTIR (neat) υ 2918, 1720, 1665, 1276, 1078, 864, 769, cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₁₈ClO₄⁺: 333.0888, Found: 333.0894 (M+H⁺). (*E*)-3-(chloro(4-nitrophenyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzo-

furan-5(4H)-one, 2g

Light yellow solid, 40.8 mg, 64% yield, PE : EtOAc = 5:1, M.p. 189 – 190 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.24 – 8.21 (m, 2H), 7.49 – 7.47 (m, 2H), 6.57 (dd, *J* = 10.3, 0.9 Hz, 1H), 6.17 (d, *J* = 10.3 Hz, 1H), 4.39 (dd, *J* = 13.3, 1.9 Hz, 1H), 4.22 (d, *J* = 13.3 Hz, 1H), 3.35 – 3.30 (m, 2H), 2.77 – 2.70 (m, 1H), 1.58 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 149.6, 147.8, 143.8, 142.7, 130.6, 128.9, 124.2, 123.8, 80.0, 69.4, 49.6, 36.3, 23.9 ppm; FTIR (neat) υ 2918, 1680, 1508, 1345, 1117, 1012, 864 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₄ClNO₄Na⁺: 342.0504, Found: 342.0516 (M+Na⁺). (*E*)-3-(chloro(3-chlorophenyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(*4H*)-one, 2h

Yellow liquid, 31.4 mg, 51% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.27 (m, 2H), 7.16 (dt, *J* = 6.6, 1.9 Hz, 1H), 6.56 (d, *J* = 10.3 Hz, 1H), 6.15 (d, *J* = 10.3 Hz, 1H), 4.36 (dd, *J* = 13.2, 1.8 Hz, 1H), 4.22 (d, *J* = 13.2 Hz, 1H), 3.31 – 3.27 (m, 2H), 2.71 (dd, *J* = 18.3, 7.8 Hz, 1H), 1.55 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 149.8, 140.4, 139.5, 134.5, 130.5, 129.8, 129.3, 128.1, 126.1, 124.9, 79.9, 69.5, 49.2, 36.3, 24.0 ppm; FTIR (neat) υ 3359, 2928, 1681, 1565, 1411, 1217, 1041, 868, 785 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₄Cl₂O₂Na⁺: 331.0263, Found: 331.0276 (M+Na⁺).

(*E*)-3-(chloro(thiophen-3-yl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(*4H*)-one, 2i

Light yellow semisolid, 25.8 mg, 46% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.25 (dd, *J* = 2.9, 1.1 Hz, 1H), 7.09 (dd, *J* = 5.1, 1.2 Hz, 1H), 6.59 (d, *J* = 10.2 Hz, 1H), 6.12 (d, *J* = 10.2 Hz, 1H), 4.46 (s, 2H), 3.34 (t, *J* = 5.5 Hz, 1H), 3.21 (dd, *J* = 16.7, 5.5 Hz, 1H), 2.72 (dd, *J* = 16.7, 6.3 Hz, 1H), 1.53 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.5, 149.5, 138.6, 138.3, 130.4, 127.0, 126.0, 124.7, 121.6, 79.5, 69.8, 49.3, 36.5, 24.1 ppm; FTIR (neat) v 3055, 1682, 1420, 1264, 1041, 895, 731 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₄H₁₃ClSO₂Na⁺: 303.0217, Found: 303.0207 (M+Na⁺).

(*E*)-3-(chloro(thiophen-2-yl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(*4H*)-one, 2j

Red-brown semisolid, 37.6 mg, 67% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.07 (dd, *J* = 3.8, 0.9 Hz, 1H), 7.03 (dd, *J* = 5.1, 3.8 Hz, 1H), 6.60 (d, *J* = 10.2 Hz, 1H), 6.11 (d, *J* = 10.2 Hz, 1H), 4.61 (d, *J* = 13.8 Hz, 1H), 4.53 (dd, *J* = 13.8, 2.1 Hz, 1H), 3.38 (td, *J* = 6.3, 1.8 Hz, 1H), 3.12 (dd, *J* = 16.6, 6.3 Hz, 1H), 2.73 (dd, *J* = 16.6, 6.2 Hz, 1H), 1.52 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 149.1, 140.4, 138.5, 130.3, 127.5, 127.4, 127.2, 120.0, 79.4, 69.9, 49.9, 36.5, 24.2 ppm; FTIR (neat) υ 3055, 1680, 1414, 1264, 1040, 816, 732 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₄H₁₃ClO₂SNa⁺: 303.0217, Found: 303.0228 (M+Na⁺). (*E*)-3-(1-chloroethylidene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(*4H*)-one, 2k

Light yellow liquid, 33.1 mg, 78% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 6.54 (d, J = 10.2 Hz, 1H), 6.04 (d, J = 10.2 Hz, 1H), 4.41 (d, J = 12.8 Hz, 1H), 4.24 (d, J = 12.8 Hz, 1H), 3.17 – 3.11 (m, 2H), 2.62 (dd, J = 18.3, 7.7 Hz, 1H), 2.00 (s, 3H), 1.48 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.8, 149.6, 135.8, 130.1, 123.0, 80.1, 68.9, 48.1, 36.6, 23.90, 23.88 ppm; FTIR (neat) υ 2987, 1702, 1609, 1499, 1264, 896, 731 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₁H₁₄ClO₂⁺: 213.0677, Found: 213.0696 (M+H⁺).

(*E*)-3-(chloro(phenyl)methylene)-7a-ethyl-2,3,3a,7a-tetrahydrobenzofuran-5(*4H*)-one, 2l

Light yellow liquid, 37.4 mg, 65% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 5H), 6.58 (dd, *J* = 10.2, 0.8 Hz, 1H), 6.21 (d, *J* = 10.2 Hz, 1H), 4.37 (dd, *J* = 13.1, 2.1 Hz, 1H), 4.21 (d, *J* = 13.1 Hz, 1H), 3.42 – 3.39 (m, 1H), 3.27 (dd, *J* = 16.9, 4.2 Hz, 1H), 2.70 (dd, *J* = 16.9, 6.8 Hz, 1H), 1.87 – 1.83 (m, 2H), 1.05 (t, *J* = 7.5 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 148.9, 139.5, 137.8, 131.3, 129.1, 128.5, 127.9, 126.3, 82.2, 69.3, 46.8, 36.9, 30.8, 8.3 ppm; FTIR (neat) v 2934, 1682, 1491, 1381, 1054, 858, 758 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₇H₁₈ClO₂⁺: 289.0990, Found: 289.0984 (M+H⁺).

(*E*)-3-(chloro(phenyl)methylene)-7a-isopropyl-2,3,3a,7a-tetrahydrobenzofuran-5(*4H*)-one, 2m

Light yellow liquid, 52.5 mg, 87% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.32 (m, 3H), 7.30 – 7.26 (m, 2H), 6.57 (dd, *J* = 10.4, 0.8 Hz, 1H), 6.27 (d, *J* = 10.4 Hz, 1H), 4.33 (dd, *J* = 12.9, 1.9 Hz, 1H), 4.19 (d, *J* = 12.9 Hz, 1H), 3.48 – 3.46 (m, 1H), 3.23 (dd, *J* = 17.2, 3.6 Hz, 1H), 2.70 (dd, *J* = 17.2, 7.2 Hz, 1H), 2.12 – 2.04 (m, 1H), 1.05 (dd, *J* = 11.5, 6.9 Hz, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 147.6, 140.2, 137.8, 132.0, 129.1, 128.4, 128.0, 126.1, 84.3, 68.8, 44.8, 37.9, 35.7, 17.5, 17.1 ppm; FTIR (neat) υ 3058, 1683, 1464, 1386, 1221, 1053, 888, 786 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₂₀ClO₂⁺: 303.1146, Found: 303.1144 (M+H⁺).

(E)-3-(chloro(phenyl)methylene)-7,7a-dimethyl-2,3,3a,7a-tetrahydrobenzo-

Off-white solid, 46.7 mg, 81% yield, PE : EtOAc = 5:1, M.p. 103 – 104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 6.04 (s, 1H), 4.22 – 4.14 (m, 2H), 3.44 (dd, J = 17.1, 3.5 Hz, 1H), 3.29 – 3.28 (m, 1H), 2.68 (dd, J = 17.1, 6.4 Hz, 1H), 2.00 (s, 3H), 1.57 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 160.2, 138.8, 138.0, 129.3, 129.0, 128.5, 127.9, 126.3, 82.3, 69.6, 50.1, 36.1, 22.5, 18.2 ppm; FTIR (neat) υ 2919, 1667, 1443, 1171, 1098, 1021, 760 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₇H₁₈ClO₂⁺: 289.0990, Found: 289.0991 (M+H⁺).

(*E*)-3-(1-chloro-3-phenylprop-2-yn-1-ylidene)-7a-methyl-2,3,3a,7a-tetrahydroben zofuran-5(4*H*)-one, 20

Light yellow liquid, 25.2 mg, 42% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.43 (m, 2H), 7.37 – 7.32 (m, 3H), 6.58 (d, *J* = 10.3 Hz, 2H), 6.08 (d, *J* = 10.2 Hz, 2H), 4.64 (d, *J* = 14.6 Hz, 1H), 4.43 (dd, *J* = 14.6, 2.2 Hz, 1H), 3.28 – 3.19 (m, 2H), 2.67 (dd, *J* = 16.0, 5.4 Hz, 1H), 1.53 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 149.5, 148.2, 131.8, 130.3, 129.5, 128.6, 121.6, 106.7, 95.1, 84.0, 80.8, 70.6, 48.9, 36.1, 23.8 ppm; FTIR (neat) v 2912, 1687, 1375, 1245, 1095, 903, 723 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₁₅ClNaO₂⁺: 321.0653, Found: 321.0659 (M+Na⁺)

b) Characterization data for compounds 3

(*E*)-3-(bromo(phenyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(*4H*)-one, 3a

Light yellow semisolid, 58.3 mg, 91% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.26 (m, 5H), 6.56 (dd, *J* = 10.2, 0.7 Hz, 1H), 6.14 (d, *J* = 10.2 Hz, 1H), 4.32 (dd, *J* = 13.2, 1.7 Hz, 1H), 4.16 (d, *J* = 13.2 Hz, 1H), 3.31 – 3.25 (m, 2H), 2.71 (td, *J* = 8.4, 5.6 Hz, 1H), 1.54 (s, 3H) ppm; ¹³C NMR (400 MHz, CDCl₃) δ 197.4, 149.6, 142.1, 139.5, 130.3, 129.1, 128.5, 128.3, 116.7, 79.5, 69.8, 50.7, 36.5, 24.3 ppm; FTIR (neat) v 3358, 2920, 1678, 1444, 1091, 1007, 854 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₅BrO₂⁺: 341.0148, Found: 341.0158 (M+Na⁺).

(*E*)-3-(bromo(*p*-tolyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(*4H*)-one, 3b

Off-white solide, 60.4 mg, 91% yield, PE : EtOAc = 5:1, M.p. 106 – 108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.12 (m, 4H), 6.56 (d, *J* = 10.2 Hz, 1H), 6.13 (d, *J* = 10.2 Hz, 1H), 4.32 (dd, *J* = 13.2, 1.6 Hz, 1H), 4.16 (d, *J* = 13.2 Hz, 1H), 3.30 – 3.23 (m, 2H), 2.70 (dt, *J* = 14.6, 4.3 Hz, 1H), 2.34 (s, 3H), 1.53 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 149.6, 141.5, 139.1, 136.6, 130.3, 129.1, 128.2, 116.9, 79.5, 69.8, 50.7, 36.4, 24.2, 21.3 ppm; FTIR (neat) υ 2923, 1696, 1406, 1370, 1279, 1069, 1026, 951, 865, 781 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₇H₁₈BrO₂⁺: 333.0485, Found: 333.0484 (M+H⁺).

(*E*)-3-(bromo(4-fluorophenyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(*4H*)-one, 3c

Light yellow liquid, 41.0 mg, 61% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.25 (m, 2H), 7.05 – 7.00 (m, 2H), 6.56 (d, *J* = 10.2 Hz, 1H), 6.14 (d, *J* = 10.2 Hz, 1H), 4.29 (dd, *J* = 13.2, 1.8 Hz, 1H), 4.13 (d, *J* = 13.2 Hz, 1H), 3.30 – 3.24 (m, 2H), 2.70 (dd, *J* = 16.0, 5.7 Hz, 1H), 1.54 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 162.7 (d, J = 249.9 Hz), 149.5, 142.5, 135.6 (d, J = 3.1 Hz), 130.4, 130.3 (d, J = 8.5 Hz), 115.6 (d, J = 21.9 Hz), 79.7, 69.7, 50.7, 36.4, 24.2 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.2 ppm; FTIR (neat) v 2972, 1680, 1504, 1228, 1088, 1012, 857, 720 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₅BrFO₂⁺: 337.0234, Found: 337.0236 (M+H⁺). (*E*)-3-(bromo(4-chlorophenyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzo-furan-5(4*H*)-one, 3d

Off-white solid, 50.0 mg, 71% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.28 (m, 2H), 7.25 – 7.17 (m, 2H), 6.53 (dd, *J* = 10.2, 0.8 Hz, 1H), 6.11 (d, *J* = 10.2 Hz, 1H), 4.27 (dd, *J* = 13.2, 1.8 Hz, 1H), 4.11 (d, *J* = 13.2 Hz, 1H), 3.29 – 3.20 (m, 2H), 2.68 (dd, *J* = 15.9, 5.6 Hz, 1H), 1.52 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 149.5, 142.9, 137.9, 135.0, 130.4, 129.7, 128.8, 115.3, 79.7, 69.7, 50.8, 36.4, 24.2 ppm; FTIR (neat) v 2968, 1690, 1486, 1279, 1070, 1030, 951, 865, 761 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₄BrClO₂Na⁺: 374.9758, Found: 374.9770 (M+Na⁺). (*E*)-3-(bromo(4-bromophenyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(*4H*)-one, 3e

Light yellow solid, 62.9 mg, 79% yield, PE : EtOAc = 5:1, M.p. 129 – 131 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.45 (m, 2H), 7.17 – 7.13 (m, 2H), 6.55 (dd, *J* = 10.3, 0.7 Hz), 6.13 (d, *J* = 10.3 Hz, 1H), 4.29 (dd, *J* = 13.2, 1.8 Hz, 1H), 4.13 (d, *J* = 13.2 Hz, 1H), 3.30 – 3.23 (m, 2H), 2.70 (dd, *J* = 15.8, 5.5 Hz, 1H), 1.54 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 149.5, 142.9, 138.3, 131.7, 130.4, 129.9, 123.2, 115.3, 79.6, 69.7, 50.7, 36.3, 24.2 ppm; FTIR (neat) v 2924, 1696, 1482, 1391, 1279, 1068, 1027, 951, 863, 759 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₄Br₂O₂Na⁺: 418.9253, Found: 418.9256 (M+Na⁺). (E)-methyl 4-(bromo(7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2H)

-ylidene)methyl)benzoate, 3f

Off-white solid, 59.4 mg, 79% yield, PE : EtOAc = 5:1, M.p. 103 – 105 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.99 (m, 2H), 7.37 – 7.35 (m, 2H), 6.57 (d, *J* = 10.3 Hz, 1H), 6.15 (d, *J* = 10.3 Hz, 1H), 4.33 (dd, *J* = 13.3, 1.7 Hz, 1H), 4.14 (d, *J* = 13.3 Hz, 1H), 3.92 (s, 3H), 3.31 – 3.27 (m, 2H), 2.75 – 2.69 (m, 1H), 1.55 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 166.4, 149.5, 143.7, 143.6, 130.5, 130.4, 129.8, 128.4, 115.4, 79.6, 69.7, 52.4, 50.9, 36.3, 24.2 ppm; FTIR (neat) v 2850, 1720, 1671, 1434, 1279, 1110, 1015, 965, 841, 764 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₁₈BrO₄⁺: 377.0383, Found: 377.0390 (M+H⁺).

(*E*)-3-(bromo(4-nitrophenyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzo furan-5(4*H*)-one, 3g

Off-white solid, 52.3 mg, 72% yield, PE : EtOAc = 5:1, M.p. 178 – 180 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.19 (m, 2H), 7.48 – 7.46 (m, 2H), 6.58 (dd, *J* = 10.2, 0.5 Hz, 1H), 6.16 (d, *J* = 10.2 Hz, 1H), 4.33 (dd, *J* = 13.3, 1.7 Hz, 1H), 4.14 (d, *J* = 13.3 Hz, 1H), 3.33 – 3.27 (m, 2H), 2.73 (dd, *J* = 18.4, 8.1 Hz, 1H), 1.57 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 149.4, 147.7, 145.41, 145.37, 130.5, 129.4, 123.8, 113.7, 79.8, 69.6, 51.0, 36.3, 24.1 ppm; FTIR (neat) υ 2962, 1678, 1591, 1506, 1343, 1259, 1088, 1010, 840, 798, 753 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₅BrNO₄⁺: 364.0179, Found: 364.0170 (M+H⁺).

(*E*)-3-(bromo(3-chlorophenyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzo furan-5(4*H*)-one, 3h

Off-white solid, 46.6 mg, 66% yield, PE : EtOAc = 5:1, M.p. 123 – 125 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.27 (m, 3H), 7.16 – 7.13 (m, 1H), 6.56 (d, *J* = 10.3 Hz, 1H), 6.14 (d, *J* = 10.3 Hz, 1H), 4.31 (d, *J* = 13.3 Hz, 1H), 4.15 (d, *J* = 13.3 Hz, 1H), 3.30 – 3.23 (m, 2H), 2.74 – 2.67 (m, 1H), 1.54 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 149.5, 143.5, 141.1, 134.4, 130.4, 129.8, 129.2, 128.5, 126.5, 114.8, 79.64, 69.7, 50.8, 36.3, 24.2 ppm; FTIR (neat) v 3055, 2978, 1681, 1564, 1412, 1265, 1091, 897 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₄BrClNO₂Na⁺: 374.9758, Found: 374.9766 (M+Na⁺).

(*E*)-3-(bromo(thiophen-3-yl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzo furan-5(4*H*)-one, 3i

Reddish brown semi-solid, 44.4 mg, 64% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, *J* = 5.1, 3.0 Hz, 1H), 7.22 (dd, *J* = 3.0, 1.3 Hz, 1H), 7.10 (dd, *J* = 5.1, 1.3 Hz, 1H), 6.58 (dd, *J* = 10.2, 0.6 Hz, 1H), 6.12 (d, *J* = 10.2 Hz, 1H), 4.43 (dd, *J* = 13.3, 1.8 Hz, 1H), 4.37 (d, *J* = 13.3 Hz, 1H), 3.27 (td, *J* = 5.9, 1.0 Hz, 1H), 3.19 (dd, *J* = 16.5, 5.9 Hz, 1H), 2.72 (dd, *J* = 16.5, 6.2 Hz, 1H), 1.52 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 149.4, 141.7, 139.8, 130.3, 127.7, 125.9, 125.0, 111.3, 79.2, 70.0, 51.1, 36.5, 24.3 ppm; FTIR (neat) υ 3355, 2969, 1675, 1410, 1371, 1137, 1069, 1020, 953, 885, 837, 800, 751 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₄H₁₃BrNaO₂S⁺: 346.9712, Found: 346.9723 (M+Na⁺).

(*E*)-3-(bromo(phenyl)methylene)-7a-ethyl-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)-one, 3j

Off-white solid, 50.3 mg, 76% yield, PE : EtOAc = 5:1, M.p. 75 – 76 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 5H), 6.58 (dd, *J* = 10.4, 0.6 Hz, 1H), 6.20 (d, *J* = 10.4 Hz, 1H), 4.32 (dd, *J* = 13.1, 1.9 Hz, 1H), 4.14 (d, *J* = 13.1 Hz, 1H), 3.34 – 3.31 (m, 1H), 3.24 (dd, *J* = 16.8, 5.0 Hz, 1H), 2.71 (dd, *J* = 16.8, 6.7 Hz, 1H), 1.85 (q, *J* = 7.6 Hz, 2H), 1.03 (t, *J* = 7.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 148.6, 142.6, 139.4, 131.2, 129.0, 128.5, 128.4, 116.6, 82.0, 69.5, 48.5, 37.0, 30.9, 8.3 ppm; FTIR (neat) υ 3355, 2965, 1681, 1444, 1385, 1079, 1015, 867, 760 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₇H₁₇BrNaO₂⁺: 355.0304, Found: 355.0314 (M+Na⁺).

(*E*)-3-(bromo(phenyl)methylene)-7a-isopropyl-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)-one, 3k

Off-white solid, 46.5 mg, 67% yield, PE : EtOAc = 5:1, M.p. 75 – 76 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 5H), 6.58 (d, *J* = 10.4 Hz, 2H), 6.27 (d, *J* = 10.4 Hz, 2H), 4.27 (dd, *J* = 12.9, 1.8 Hz, 1H), 4.12 (d, *J* = 12.9 Hz, 1H), 3.40 – 3.38 (m, 1H), 3.22 (dd, *J* = 17.1, 4.2 Hz, 1H), 2.70 (dd, *J* = 17.1, 7.2 Hz, 1H), 2.09 – 2.04 (m, 1H), 1.06 (d, *J* = 7.0 Hz, 3H), 1.03 (d, *J* = 6.9 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 147.4, 143.2, 139.3, 132.0, 129.0, 128.5, 116.7, 84.2, 69.1, 46.6, 38.0, 35.6, 17.5, 17.2 ppm; FTIR (neat) v 2965, 1676, 1445, 1387, 1119, 1058, 866, 785 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₂₀BrO₂⁺: 347.0641, Found: 347.0640 (M+H⁺).

(*E*)-7a-benzyl-3-(bromo(phenyl)methylene)-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)-one, 3l

Light yellow liquid, 49.8 mg, 63% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.22 (m, 10H), 6.55 (d, *J* = 10.4 Hz, 1H), 6.14 (d, *J* = 10.3 Hz, 1H), 4.32 (dd, *J* = 13.1, 1.9 Hz, 1H), 4.16 (d, *J* = 13.1 Hz, 1H), 3.41 – 3.38 (m, 1H), 3.16 –3.11 (m, 2H), 3.05 (d, *J* = 13.6 Hz, 1H), 2.31 (dd, *J* = 16.8, 6.7 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 148.2, 142.0, 139.3, 135.2, 131.1, 130.4, 129.0, 128.6, 128.5, 128.4, 127.3, 116.7, 82.0, 69.7, 48.9, 44.7, 36.6 ppm; FTIR (neat) υ 2920, 1682, 1492, 1443, 1170, 1042, 1014, 848, 759 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₂₂H₁₉BrNaO₂⁺: 417.0461, Found: 417.0468 (M+Na⁺).

(*E*)-3-(bromo(phenyl)methylene)-7a-phenyl-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)-one, 3m

Off-white semi-solid, 38.8 mg, 51% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.46 (m, 2H), 7.44 – 7.40 (m, 2H), 7.38 – 7.30 (m, 4H), 7.28 – 7.25 (m, 2H), 6.62 (d, *J* = 10.2 Hz, 1H), 6.32 (d, *J* = 10.2 Hz, 1H), 4.50 (dd, *J* = 13.2, 2.0 Hz, 1H), 4.35 (d, *J* = 13.2 Hz, 1H), 3.58 – 3.55 (m, 1H), 3.32 (dd, *J* = 16.7, 5.2 Hz, 1H), 2.84 (dd, *J* = 16.8, 6.4 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 147.9, 141.6, 141.0, 139.3, 130.8, 129.1, 129.0, 128.5, 128.4, 125.3, 116.6, 83.2, 70.1, 52.4, 36.3 ppm; FTIR (neat) υ 2918, 2850, 1686, 1445, 1261, 1019, 797, 762 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₂₁H₁₈BrO₂⁺: 381.0485, Found: 381.0493 (M+H⁺).

(*E*)-3-(1-bromoethylidene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)-one, 3n

Light yellow liquid, 40.0 mg, 78% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 6.56 (d, *J* = 10.2 Hz, 1H), 6.05 (d, *J* = 10.2 Hz, 1H), 4.42 (d, *J* = 12.8 Hz, 1H), 4.28 (d, *J* = 12.8 Hz, 1H), 3.08 – 3.02 (m, 2H), 2.64 (dd, *J* = 18.8, 8.3 Hz, 1H), 2.19 (s, 3H), 1.47 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 149.1, 139.1, 130.1, 113.3, 79.6, 69.0, 49.9, 36.7, 26.3, 24.2 ppm; FTIR (neat) v 2944, 2830, 1450, 1374, 1275, 1167, 1022, 824 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₁H₁₄BrO₂⁺: 257.0172, Found: 257.0178 (M+H⁺).

c) Characterization data for compounds 4

(*E*)-3-(iodo(phenyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)one, 4a

Light yellow solid, 66.6 mg, 91% yield, PE : EtOAc = 5:1, M.p. 72 – 74 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.22 (m, 5H), 6.58 (d, *J* = 10.2 Hz, 1H), 6.12 (d, *J* = 10.2 Hz, 1H), 4.37 (dd, *J* = 13.5, 1.5 Hz, 1H), 4.17 (d, *J* = 13.4 Hz, 1H), 3.16 – 3.10 (m, 2H), 2.73 (dd, *J* = 18.9, 8.7 Hz, 1H), 1.52 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 149.3, 148.5, 142.8 130.2, 128.7, 128.6, 128.2, 92.0, 78.9, 69.3, 53.6, 36.8, 24.6 ppm; FTIR (neat) υ 2924, 1679, 1443, 1370, 1279, 1070, 1024, 952, 852, 722 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₆IO₂⁺: 367.0189, Found: 367.0199 (M+H⁺).

(*E*)-3-(iodo(p-tolyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)one, 4b

Off-white solid, 69.2 mg, 91% yield, PE : EtOAc = 5:1, M.p. 150 – 152. ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.11 (m, 4H), 6.57 (d, *J* = 10.2 Hz, 1H), 6.12 (d, *J* = 10.2 Hz, 1H), 4.37 (dd, *J* = 13.4, 1.6 Hz, 1H), 4.17 (d, *J* = 13.4 Hz, 1H), 3.15 – 3.09 (m, 2H), 2.72 (dd, *J* = 18.4, 8.3 Hz, 1H), 2.33 (s, 3H), 1.51 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 149.3, 147.9, 139.9, 138.7, 130.1, 129.2, 128.1, 92.4, 78.8, 69.3, 53.6, 36.8, 24.6, 21.3 ppm; FTIR (neat) υ 2922, 1685, 1370, 1278, 1069, 1022, 952, 857, 777 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₇H₁₈IO₂⁺: 381.0346, Found: 381.0346 (M+H⁺). (*E*)-3-((4-fluorophenyl)iodomethylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzo-furan-5(4*H*)-one, 4c

Light yellow solid, 49.2 mg, 64% yield, PE : EtOAc = 5:1, M.p. 118 – 120 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.20 (m, 2H), 7.02 – 6.98 (m, 2H), 6.57 (d, *J* = 10.2 Hz, 1H), 6.12 (d, *J* = 10.2 Hz, 1H), 4.34 (dd, *J* = 13.4, 1.7 Hz, 1H), 4.15 (d, *J* = 13.4 Hz, 1H), 3.16 – 3.12 (m, 2H), 2.71 (dd, *J* = 18.3, 8.2 Hz, 1H), 1.52 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 162.4 (d, *J* = 249.2 Hz), 149.2, 149.0, 138.9 (d, *J* = 3.1 Hz), 130.1 (d, *J* = 14.4 Hz), 130.0, 115.6 (d, *J* = 21.7 Hz), 90.5, 79.0, 69.2, 53.6, 36.7, 24.5 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.8 ppm; FTIR (neat) υ 2926, 1687, 1504, 1372, 1278, 1229, 1070, 1028, 952, 862, 735 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₅INO₄⁺: 406.9915, Found: 406.9924 (M+Na⁺).

(*E*)-3-((4-chlorophenyl)iodomethylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)-one, 4d

Off-white solid, 58.4 mg, 73% yield, PE : EtOAc = 5:1, M.p. 172 - 174 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.25 (m, 2H), 7.16 – 7.13 (m, 2H), 6.55 (d, *J* = 10.2 Hz, 1H), 6.10 (d, *J* = 10.2 Hz, 1H), 4.31 (dd, *J* = 13.5, 1.6 Hz, 1H), 4.13 (d, *J* = 13.5 Hz, 1H), 3.14 – 3.08 (m, 2H), 2.69 (dd, *J* = 18.3, 8.2 Hz, 1H), 1.49 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 149.3, 149.2, 141.2, 134.5, 130.2, 129.5, 128.8, 90.2, 79.0, 69.2, 53.6, 36.7, 24.5 ppm; FTIR (neat) υ 2924, 1689, 1484, 1370, 1279, 1209, 1070, 1025, 952, 893, 854, 821, 744 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₄ClINaO₂⁺: 422.9619, Found: 422.9620 (M+Na⁺).

(*E*)-3-((4-bromophenyl)iodomethylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)-one, 4e

Light yellow solid, 59.6 mg, 67% yield, PE : EtOAc = 5:1, M.p. $174 - 176 \,^{\circ}$ C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 - 7.43 (m, 2H), 7.12 - 7.09 (m, 2H), 6.57 (d, *J* = 10.2 Hz, 1H), 6.12 (d, *J* = 10.2 Hz, 1H), 4.33 (dd, *J* = 13.5, 1.6 Hz, 1H), 4.15 (d, *J* = 13.5 Hz, 1H), 3.16 - 3.10 (m, 2H), 2.71 (dd, *J* = 18.4, 8.3 Hz, 1H), 1.52 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 149.3, 149.2, 141.7, 131.7, 130.2, 129.8, 122.8, 90.2, 79.0, 69.2, 53.6, 36.7, 24.5 ppm; FTIR (neat) υ 2922, 1686, 1481, 1390, 1330, 1278, 1052, 1023, 952, 892, 852, 818 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₅BrIO₂⁺: 444.9295, Found: 444.9304 (M+H⁺).

(*E*)-Methyl 4-(iodo(7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*)ylidene)methyl)benzoate, 4f

Off-white solid, 61.1 mg, 72% yield, PE : EtOAc = 5:1, M.p. 129 – 131 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 6.58 (d, J = 10.2 Hz, 1H), 6.13 (d, J = 10.2 Hz, 1H), 4.36 (dd, J = 13.5, 1.6 Hz, 1H), 4.14 (d, J = 13.5 Hz, 1H), 3.92 (s, 3H), 3.16 – 3.13 (m, 2H), 2.73 (dd, J = 18.3, 8.3 Hz, 1H), 1.53 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 166.3, 149.8, 149.1, 146.9, 130.2, 130.2, 129.8, 128.2, 90.1, 79.0, 69.2, 53.6, 52.34, 36.6, 24.5 ppm; FTIR (neat) v 2927, 1723, 1682, 1434, 1278, 1109, 1017, 955, 857, 729 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₁₇INaO₄⁺: 447.0064, Found: 447.0076 (M+Na⁺).

(*E*)-3-(iodo(4-nitrophenyl)methylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)-one, 4g

Light yellow solid, 60.0 mg, 73% yield, PE : EtOAc = 5:1, M.p. 163 – 165 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.18 (m, 2H), 7.43 – 7.40 (m, 2H), 6.58 (d, *J* = 10.3 Hz, 1H), 6.15 (d, *J* = 10.3 Hz, 1H), 4.35 (dd, *J* = 13.6, 1.7 Hz, 1H), 4.14 (d, *J* = 13.6 Hz, 1H), 3.19 – 3.14 (m, 2H), 2.73 (dd, *J* = 18.2, 8.1 Hz, 1H), 1.55 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 151.2, 149.1, 148.8, 147.5, 130.3, 129.3, 123.9, 88.1, 79.2, 69.2, 53.6, 36.5, 24.4 ppm; FTIR (neat) v 2921, 1686, 1510, 1342, 1276, 1110, 1027, 830, 729 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₅INO₄⁺: 412.0040, Found: 412.0051 (M+H⁺).

(*E*)-3-((3-chlorophenyl)iodomethylene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)-one, 4h

Light yellow semi-solid, 51.2 mg, 64% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.22 (m, 3H), 7.12 – 7.09 (m, 1H), 6.58 (d, *J* = 10.2 Hz, 1H), 6.13 (d, *J* = 10.2 Hz, 1H), 4.35 (dd, *J* = 13.6, 1.6 Hz, 1H), 4.17 (d, *J* = 13.6 Hz, 1H), 3.15 – 3.09 (m, 2H), 2.72 (dd, *J* = 18.4, 8.3 Hz, 1H), 1.52 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 149.7, 149.1, 144.3, 134.3, 130.2, 129.9, 128.8, 128.2, 126.3, 89.4, 79.0, 69.2, 53.6, 36.6, 24.5 ppm; FTIR (neat) υ 2971, 1679, 1562, 1408, 1278, 1174, 1115, 1040, 907, 727 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₅ClIO₂⁺: 400.9800, Found: 400.9808 (M+H⁺).

(*E*)-7a-ethyl-3-(iodo(phenyl)methylene)-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)one, 4i

Light yellow liquid, 56.2 mg, 74% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.22 (m, 5H), 6.59 (d, *J* = 10.3 Hz, 1H), 6.19 (d, *J* = 10.3 Hz, 1H), 4.37 (dd, *J* = 13.4, 1.7 Hz, 1H), 4.14 (d, *J* = 13.3 Hz, 1H), 3.21 (td, *J* = 6.5, 1.4 Hz, 1H), 3.08 (dd, *J* = 16.6, 6.4 Hz, 1H), 2.73 (dd, *J* = 16.6, 6.7 Hz, 1H), 1.82 (q, *J* = 7.5 Hz, 2H), 1.02 (t, *J* = 7.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.5, 148.9, 148.2, 142.7, 131.1, 128.7, 128.5, 128.2, 92.1, 81.4, 68.9, 51.5, 37.3, 31.0, 8.4 ppm; FTIR (neat) v 2927, 1681, 1442, 1384, 1173, 1033, 932, 857, 757 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₇H₁₈IO₂⁺: 381.0346, Found: 381.0356 (M+H⁺).

(*E*)-3-(iodo(phenyl)methylene)-7a-isopropyl-2,3,3a,7a-tetrahydrobenzofuran--5(4*H*)-one, 4j

Off-white solid, 29.9 mg, 38% yield, PE : EtOAc = 5:1, 87 – 89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.21 (m, 5H), 6.59 (d, *J* = 10.4 Hz, 1H), 6.25 (d, *J* = 10.4 Hz, 1H), 4.31 (dd, *J* = 13.1, 1.7 Hz, 1H), 4.12 (d, *J* = 13.1 Hz, 1H), 3.29 – 3.26 (m, 1H), 3.08 (dd, *J* = 16.9, 5.4 Hz, 1H), 2.72 (dd, *J* = 16.9, 7.2 Hz, 1H), 2.06 (hept, *J* = 6.9 Hz, 1H), 1.03 (dd, *J* = 15.9, 6.9 Hz, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.7, 149.4, 147.0, 142.6, 131.8, 128.7, 128.5, 128.4, 92.5, 83.7, 68.6, 49.8, 38.4, 35.5, 17.32, 17.26 ppm; FTIR (neat) v 2962, 1676, 1386, 1274, 1116, 1017, 857, 760 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₁₉INaO₂⁺: 417.0322, Found: 417.0332 (M+Na⁺).

(*E*)-7a-benzyl-3-(iodo(phenyl)methylene)-2,3,3a,7a-tetrahydrobenzofuran-5(4*H*)one, 4k

Light yellow semi-solid, 34.3 mg, 39% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.24 (m, 8H), 7.18 – 7.16 (m, 2H), 6.59 (d, *J* = 10.3 Hz, 1H), 6.12 (d, *J* = 10.3 Hz, 1H), 4.39 (dd, *J* = 13.4, 1.7 Hz, 1H), 4.18 (d, *J* = 13.4 Hz, 1H), 3.31 (td, *J* = 6.6, 1.4 Hz, 1H), 3.12 (d, *J* = 13.7 Hz, 1H), 3.03 (d, *J* = 13.7 Hz, 1H), 2.97 (dd, *J* = 6.6, 1.4 Hz, 1H), 3.12 (d, *J* = 13.7 Hz, 1H), 3.03 (d, *J* = 13.7 Hz, 1H), 2.97 (dd, *J* = 6.6, 1.4 Hz, 1H), 3.12 (d, *J* = 13.7 Hz, 1H), 3.03 (d, *J* = 13.7 Hz, 1H), 3.03 (d, *J* = 13.7 Hz, 1H), 3.03 (d, *J* = 13.7 Hz, 1H), 3.04 (d, *J* = 13.7 Hz, 1H), 3.05 (d, J = 13.7

16.6, 6.7 Hz, 1H), 2.42 (dd, J = 16.6, 6.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 148.3, 148.0, 142.6, 135.2, 130.9, 130.5, 128.7, 128.5, 128.2, 127.4, 92.2, 81.4, 69.2, 51.8, 45.0, 36.9 ppm; FTIR (neat) υ 2915, 1681, 1492, 1386, 1265, 1043, 810 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₂₂H₂₀IO₂⁺: 443.0502, Found: 443.0512 (M+H⁺).

3-(1-iodoethylidene)-7a-methyl-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one, (*E*)-4l and (*Z*)- 4l

Following the general procedure, **41** was isolated by silica gel flash chromatography (petroleum ether/ethyl acetate = 5:1) as a E/Z mixture (E/Z = 3/1), Light yellow liquid, 38 mg, 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.59 (d, J = 10.2 Hz, 1H), 6.59 (d, J = 10.2 Hz, 0.32H), 6.05 (d, J = 10.2 Hz, 1H), 6.04 (d, J = 10.2 Hz, 0.32H), 4.51 (d, J = 13.1 Hz, 1H), 4.45 – 4.41 (m, 1H), 4.28 (dd, J = 13.9, 1.3 Hz, 0.35H), 4.25 – 4.21 (m, 0.33H), 3.13 – 3.09 (m, 0.35H), 2.97 – 2.94 (m, 1H), 2.84 (dd, J = 16.2, 8.4 Hz, 1H), 2.76 – 2.71 (m, 0.31H), 2.68 (dd, J = 16.2, 6.0 Hz, 1H), 2.58 – 2.54 (m, 0.33H), 2.54 – 2.53 (m, 1H), 2.40 (d, J = 1.3 Hz, 3H), 1.44 (s, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.6, (197.2), (149.5), 148.6, 145.5, (145.2), 130.0, (129.7), (88.8), 87.9, (81.2), 78.7, (77.0), 68.3, 53.2, (48.0), (38.2), 37.0, 30.7, (30.0), 24.6, (24.3) ppm; FTIR (neat) υ 2923, 1677, 1449, 1372, 1284, 1182, 1089, 805 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₁H₁₄IO₂⁺: 305.0033, Found: 305.0042 (M+H⁺).

d) Characterization data for compounds 5

(*E*)-(7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*)-ylidene)(phenyl) methyl acetate, 5a

Yellow-brown liquid, 54.8 mg, 92% yield, PE : EtOAc = 2:1. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.30 (m, 3H), 7.22 – 7.19 (m, 2H), 6.58 (dd, *J* = 10.2, 1.1 Hz, 1H),

6.08 (d, J = 10.3 Hz, 1H), 4.49 (s, 2H), 3.20 (t, J = 4.8 Hz, 1H), 2.88 (dd, J = 16.6, 4.8 Hz, 1H), 2.64 (dd, J = 16.6, 6.0 Hz, 1H), 2.26 (s, 3H), 1.51 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 168.7, 150.2, 140.7, 135.0, 130.1, 130.0, 128.8, 128.6, 126.7, 79.7, 68.2, 47.1, 37.0, 23.6, 20.9 ppm; FTIR (neat) υ 2970, 1758, 1446, 1372, 1197, 1027, 891, 773 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₁₈O₄Na⁺: 321.1097, Found: 321.1105 (M+Na⁺).

((*E*)-7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*)-ylidene)(phenyl)me thyl propionate, 5a'

Light yellow liquid, 50.2 mg, 80% yield, PE : EtOAc = 2:1. ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.29 (m, 3H), 7.21 – 7.19 (m, 2H), 6.58 (dd, *J* = 10.3, 1.1 Hz, 1H), 6.07 (d, *J* = 10.3 Hz, 1H), 4.50 (d, *J* = 1.3 Hz, 2H), 3.21 – 3.18 (m, 1H), 2.87 (dd, *J* = 16.6, 4.9 Hz, 1H), 2.62 (dd, *J* = 16.6, 6.0 Hz, 1H), 2.55 (q, *J* = 7.6 Hz, 2H), 1.51 (s, 3H), 1.23 (t, *J* = 7.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 172.1, 150.2, 140.8, 135.1, 130.1, 130.0, 128.7, 128.6, 126.7, 79.6, 68.2, 47.1, 37.1, 27.6, 23.7, 9.2 ppm; FTIR (neat) υ 2956, 1746, 1675, 1434, 1356, 1021, 776 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₉H₂₀NaO₄⁺: 335.1254, Found: 335.1251 (M+Na⁺). (*(E)*-7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*)-ylidene)(phenyl)me thyl benzoate, 5a''

Light yellow liquid, 58.4 mg, 81% yield, PE : EtOAc = 2:1. ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.19 (m, 2H), 7.67 – 7.63 (m, 1H), 7.54 – 7.50 (m, 2H), 7.36 – 7.26 (m, 5H), 6.58 (dd, *J* = 10.3, 1.2 Hz, 1H), 6.08 (dd, *J* = 10.2, 0.7 Hz, 1H), 4.62 (dd, *J* = 13.3, 0.5 Hz, 1H), 4.55 (dd, *J* = 13.3, 2.1 Hz, 1H), 3.28 – 3.26 (m, 1H), 2.94 (ddd, *J* = 16.7, 4.6, 0.8 Hz, 1H), 2.58 (dd, *J* = 16.7, 5.9 Hz, 1H), 1.52 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 164.3, 150.3, 140.8, 134.9, 134.0, 130.4, 130.4, 130.2, 128.9, 128.9,

128.8, 128.7, 126.7, 79.8, 68.3, 47.4, 37.2, 23.5 ppm; FTIR (neat) υ 2927, 1733, 1682, 1450, 1244, 1094, 712 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₂₃H₂₀NaO₄⁺: 383.1254, Found: 383.1250 (M+Na⁺).

(*E*)-(7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*)-ylidene)(*p*-tolyl) methyl acetate, 5b

Light yellow solid, 58.0 mg, 93% yield, PE : EtOAc = 2:1, M.p. 96 – 97 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (d, J = 8.1 Hz, 2H), 7.09 (d, J = 8.3 Hz, 2H), 6.58 (dd, J = 10.2, 1.1 Hz, 1H), 6.07 (d, J = 10.2 Hz, 1H), 4.48 (s, 2H), 3.2 – 3.18 (m, 1H), 2.87 (dd, J = 16.7, 4.8 Hz, 1H), 2.63 (dd, J = 16.6, 6.0 Hz, 1H), 2.33 (s, 3H), 2.24 (s, 3H), 1.50 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 168.7, 150.2, 140.8, 138.8, 132.1, 130.1, 129.3, 126.6, 79.6, 68.2, 47.0, 37.1, 23.6, 21.4, 21.0 ppm; FTIR (neat) υ 2921, 1755, 1690, 1369, 1279, 1200, 1079, 1027, 889, 818 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₉H₂₀NaO₄⁺: 335.1254, Found: 335.1256 (M+Na⁺).

(*E*)-(4-methoxyphenyl)(7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*) -ylidene)methyl acetate, 5c

Light yellow solid, 46.6 mg, 71% yield, PE : EtOAc = 2:1, M.p. 105 – 107 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 6.57 (d, *J* = 10.3 Hz, 1H), 6.07 (d, *J* = 10.2 Hz, 1H), 4.47 (s, 2H), 3.79 (s, 3H), 3.18 (t, *J* = 5.2 Hz, 1H), 2.87 (dd, *J* = 16.6, 4.7 Hz, 1H), 2.62 (dd, *J* = 16.6, 5.9 Hz, 1H), 2.24 (s, 3H), 1.50 (s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 168.7, 159.7, 150.2, 140.6, 130.1, 128.5, 128.1, 127.4, 113.9, 79.6, 68.2, 55.4, 47.0, 37.0, 23.6, 21.0 ppm; FTIR (neat) υ 2929, 1753, 1680, 1606, 1511, 1444, 1370, 1206, 1175, 1097, 1030, 869 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₉H₂₀NaO₅⁺: 351.1203, Found: 351.1209 (M+Na⁺). (*E*)-(4-fluorophenyl)(7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*) -ylidene)methyl acetate, 5d

Light yellow solid, 53.1 mg, 84% yield, PE : EtOAc = 2:1, M.p. 77 – 79 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.17 (m, 2H), 7.06 – 7.00 (m, 2H), 6.57 (dd, *J* = 10.2, 1.1 Hz, 1H), 6.08 (d, *J* = 10.2 Hz, 1H), 4.43 (d, *J* = 1.1 Hz, 2H), 3.19 (t, *J* = 4.7 Hz, 1H), 2.87 (dd, *J* = 16.6, 4.6 Hz, 1H), 2.64 (dd, *J* = 16.6, 5.9 Hz, 1H), 2.25 (s, 3H), 1.51 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 168.6, 162.6 (d, *J* = 249.3 Hz), 150.2, 139.9, 131.2 (d, *J* = 3.2 Hz), 130.2, 130.0, 128.7 (d, *J* = 8.4 Hz), 115.7 (d, *J* = 21.9 Hz), 79.8, 68.0, 47.1, 37.0, 23.5, 20.9 ppm; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.4 ppm; FTIR (neat) υ 2921, 1750, 1669, 1508, 1370, 1200, 1129, 1097, 1061, 1044, 1017, 836, 793 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₁₇FNaO₄⁺: 339.1003, Found: 339.1008 (M+Na⁺).

(*E*)-(4-chlorophenyl)(7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*) -ylidene)methyl acetate, 5e

White solid, 51.8 mg, 78% yield, PE : EtOAc = 2:1, M.p. 138 – 139 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.30 (m, 2H), 7.16 – 7.12 (m, 2H), 6.57 (dd, *J* = 10.3, 1.2 Hz, 1H), 6.08 (d, *J* = 10.3 Hz, 1H), 4.44 (d, *J* = 1.2 Hz, 2H), 3.20 – 3.17 (m, 1H), 2.87 (dd, *J* = 16.7, 4.6 Hz, 1H), 2.64 (dd, *J* = 16.7, 6.0 Hz, 1H), 2.25 (s, 3H), 1.51 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 168.6, 150.1, 139.8, 134.6, 133.5, 130.7, 130.2, 128.9, 128.1, 79.8, 68.0, 47.2, 37.0, 23.5, 20.9 ppm; FTIR (neat) υ 2979, 2845, 1761, 1682, 1493, 1371, 1192, 1094, 1037, 872, 828 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₁₇ClNaO₄⁺: 355.0708, Found: 355.0714 (M+Na⁺).

(*E*)-(4-bromophenyl)(7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*) -ylidene)methyl acetate, 5f

Light yellow solid, 63.2 mg, 84% yield, PE : EtOAc = 2:1, M.p. 152 – 154 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.45 (m, 2H), 7.09 – 7.06 (m, 2H), 6.57 (dd, *J* = 10.3, 1.2 Hz, 1H), 6.08 (dd, *J* = 10.3, 0.5 Hz, 1H), 4.44 (d, *J* = 1.2 Hz, 2H), 3.20 – 3.17 (m, 1H), 2.86 (dd, *J* = 16.7, 4.6 Hz, 1H), 2.64 (dd, *J* = 16.6, 6.0 Hz, 1H), 2.25 (s, 3H), 1.51 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 168.6, 150.1, 139.8, 133.9, 131.8, 130.8, 130.2, 128.3, 122.9, 79.8, 68.0, 47.2, 36.9, 23.5, 20.9 ppm; FTIR (neat) v 2923, 1756, 1680, 1490, 1371, 1193, 1093, 1038, 871, 825 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₁₇BrNaO₄⁺: 399.0202, Found: 399.0209 (M+Na⁺).

(*E*)-methyl 4-(acetoxy(7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*) -ylidene)methyl)benzoate, 5g

White solid, 50.8 mg, 71% yield, PE : EtOAc = 2:1, M.p. 152 – 154 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 8.00 (m, 2H), 7.28 – 7.26 (m, 2H), 6.59 (dd, *J* = 10.3, 1.1 Hz, 1H), 6.09 (d, *J* = 10.2 Hz, 1H), 4.54 – 4.46 (m, 2H), 3.92 (s, 3H), 3.22 (t, *J* = 5.2 Hz, 1H), 2.88 (dd, *J* = 16.6, 4.6 Hz, 1H), 2.66 (dd, *J* = 16.6, 6.0 Hz, 1H), 2.28 (s, 3H), 1.52 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 168.5, 166.4, 150.1, 139.9, 139.2, 132.2, 130.2, 130.1, 129.8, 126.5, 79.7, 68.0, 52.3, 47.3, 37.0, 23.5, 20.8 ppm; FTIR (neat) v 2835, 1764, 1715, 1701, 1376, 1286, 1202, 1113, 1094, 1016, 862, 752 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₂₀H₂₀NaO₆⁺: 379.1152, Found:379.1154 (M+Na⁺). (*E*)-(3-chlorophenyl)(7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*) -ylidene)methyl acetate, 5h

Light yellow solid, 43.8 mg, 66% yield, PE : EtOAc = 2:1, M.p. 113 - 115 °C. ¹H NMR

(400 MHz, CDCl₃) δ 7.29 – 7.27 (m, 2H), 7.19 – 7.18 (m, 1H), 7.10 – 7.08 (m, 1H), 6.58 (dd, J = 10.3, 1.2 Hz, 1H), 6.09 (dd, J = 10.2, 0.5 Hz, 1H), 4.47 (d, J = 1.3 Hz, 2H), 3.20 – 3.18 (m, 1H), 2.86 (dd, J = 16.7, 4.7 Hz, 1H), 2.64 (dd, J = 16.6, 6.0 Hz, 1H), 2.26 (s, 3H), 1.52 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 168.6, 150.1, 139.4, 136.8, 134.6, 131.4, 130.2, 129.9, 128.9, 126.8, 125.0, 79.8, 68.0, 47.2, 37.0, 23.5, 20.9 ppm; FTIR (neat) υ 2926, 1754, 1678, 1593, 1562, 1476, 1371, 1175, 1037, 880, 726 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₁₇ClNaO₄⁺: 355.0708, Found: 355.0708 (M+Na⁺).

(*E*)-(7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*)-ylidene)(thiophen-2-yl)methyl acetate, 5i

Red-brown solid, 53.2 mg, 88% yield, PE : EtOAc = 2:1, M.p. 84 – 87 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (dd, J = 5.1, 1.1 Hz, 1H), 7.03 (dd, J = 5.1, 3.7 Hz, 1H), 6.89 (dd, J = 3.7, 0.6 Hz, 1H), 6.60 (dd, J = 10.3, 1.1 Hz, 1H), 6.05 (dd, J = 10.3, 0.6 Hz, 1H), 4.73 (d, J = 13.8 Hz, 1H), 4.51 (dd, J = 13.8, 2.4 Hz, 1H), 3.17 (td, J = 4.9, 1.1 Hz, 1H), 2.90 (ddd, J = 16.6, 5.1, 0.7 Hz, 1H), 2.61 (dd, J = 16.6, 5.8 Hz, 1H), 2.31 (s, 3H), 1.51 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 168.5, 150.2, 137.6, 135.5, 130.1, 129.6, 127.6, 126.3, 125.5, 80.0, 68.5, 47.6, 36.9, 23.4, 20.9 ppm; FTIR (neat) v 2926, 1750, 1685, 1418, 1371, 1192, 1090, 1042, 1005, 837, 718 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₆NaSO₄⁺: 327.0662, Found: 327.0664 (M+Na⁺).

(*E*)-(7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*)-ylidene)(thiophen-3-yl)methyl acetate, 5j

Light yellow solid, 43.9 mg, 72% yield, PE : EtOAc = 2:1, M.p. 86 – 88 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, J = 5.1, 3.0 Hz, 1H), 7.11 (dd, J = 3.0, 1.2 Hz, 1H), 6.95 (dd, J = 5.1, 1.3 Hz, 1H), 6.58 (dd, J = 10.2, 1.1 Hz, 1H), 6.05 (dd, J = 10.2, 0.5 Hz,

1H), 4.64 (d, J = 13.5 Hz, 1H), 4.50 (dd, J = 13.3, 2.3 Hz, 1H), 3.16 (td, J = 4.9, 1.0 Hz, 1H), 2.89 (ddd, J = 16.5, 5.0, 0.5 Hz, 1H), 2.62 (dd, J = 16.6, 5.8 Hz, 1H), 2.29 (s, 3H), 1.51 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 168.6, 150.1, 136.7, 136.0, 130.1, 129.4, 126.3, 125.6, 123.2, 79.8, 68.3, 47.3, 37.0, 23.5, 20.9 ppm; FTIR (neat) υ 2971, 1758, 1678, 1370, 1187, 1097, 1037, 885, 846, 782, 733 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₆H₁₆NaSO₄⁺: 327.0662, Found: 327.0664 (M+Na⁺).

(*E*)-1-(7a-methyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*)-ylidene)ethyl acetate, 5k

Light yellow liquid, 34.0 mg, 72% yield, PE : EtOAc = 2:1. ¹H NMR (400 MHz, CDCl₃) δ 6.53 (dd, *J* = 10.3, 1.4 Hz, 1H), 6.00 (dd, *J* = 10.2, 0.9 Hz, 1H), 4.44 – 4.40 (m, 1H), 4.23 – 4.19 (m, 1H), 3.00 – 2.97 (m, 1H), 2.90 (ddd, *J* = 16.5, 4.2, 0.9 Hz, 1H), 2.54 (dd, *J* = 16.5, 5.6 Hz, 1H), 2.18 (s, 3H), 1.79 – 1.78 (m, 3H), 1.48 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 168.7, 150.6, 139.0, 129.9, 126.5, 80.6, 67.7, 46.2, 37.0, 23.2, 21.0, 18.1 ppm; FTIR (neat) v 3359, 2929, 1719, 1679, 1498, 1374, 1187, 1156, 1016, 939, 868 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₃H₁₄O₄Na⁺: 259.0941, Found: 259.0946 (M+Na⁺).

(*E*)-(7a-ethyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*)-ylidene)(phenyl) methyl acetate, 5l

Light yellow liquid, 56.9 mg, 92% yield, PE : EtOAc = 2:1. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 3H), 7.21 – 7.19 (m, 2H), 6.61 (dd, *J* = 10.3, 1.0 Hz, 1H), 6.14 (d, *J* = 10.2 Hz, 1H), 4.51 (dd, *J* = 13.2, 2.0 Hz, 1H), 4.46 (d, *J* = 13.2 Hz, 1H), 3.27 (dd, *J* = 5.8, 5.1 Hz, 1H), 2.86 (dd, *J* = 16.7, 5.0 Hz, 1H), 2.63 (dd, *J* = 16.7, 6.2 Hz, 1H), 2.25 (s, 3H), 1.84 – 1.79 (m, 2H), 1.02 (t, *J* = 7.5 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 168.7, 149.3, 140.7, 134.9, 130.9, 130.5, 128.7, 128.6, 126.6, 82.0, 67.9, 44.6, 37.4, 30.1, 20.9, 8.2 ppm; FTIR (neat) υ 2969, 1758, 1682, 1370, 1200, 1030, 895 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₉H₂₀NaO₄⁺: 335.1254, Found: 335.1258 (M+Na⁺).

(*E*)-(7a-isopropyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*)-ylidene)(phenyl) methyl acetate, 5m

Light yellow solid, 54.8 mg, 84% yield, PE : EtOAc = 2:1, M.p. 84 – 86 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.29 (m, 3H), 7.20 – 7.17 (m, 2H), 6.61 (dd, *J* = 10.4, 1.0 Hz, 1H), 6.22 (d, *J* = 10.5 Hz, 1H), 4.49 (dd, *J* = 13.1, 1.9 Hz, 1H), 4.42 (d, *J* = 13.1 Hz, 1H), 3.36 (t, *J* = 5.5 Hz, 1H), 2.83 (dd, *J* = 17.0, 4.5 Hz, 1H), 2.64 (dd, *J* = 17.0, 6.7 Hz, 1H), 2.26 (s, 3H), 2.09 – 2.03 (m, 1H), 1.06 (d, *J* = 7.0 Hz, 3H), 1.01 (d, *J* = 6.9 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.5, 168.7, 148.0, 140.5, 134.9, 131.8, 131.3, 128.7, 128.6, 126.6, 84.1, 67.6, 42.5, 38.2, 35.0, 21.0, 17.4, 17.3 ppm; FTIR (neat) v 2924, 1754, 1682, 1493, 1368, 1200, 1043, 899, 785 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₂₀H₂₂NaO₄⁺: 349.1410, Found: 349.1414 (M+Na⁺).

(*E*)-(7a-benzyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*)-ylidene)(phenyl) methyl acetate, 5n

Light yellow liquid, 68.8 mg, 92% yield, PE : EtOAc = 2:1. ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 5H), 7.26 – 7.23 (m, 3H), 7.20 – 7.17 (m, 2H), 6.54 (dd, *J* = 10.3, 1.2 Hz, 1H), 6.09 (d, *J* = 10.4 Hz, 1H), 4.49 (d, *J* = 1.5 Hz, 2H), 3.31 (t, *J* = 4.7 Hz, 1H), 3.09 (dd, *J* = 33.7, 13.8 Hz, 2H), 2.76 (dd, *J* = 16.8, 4.4 Hz, 1H), 2.31 (dd, *J* = 16.8, 6.1 Hz, 1H), 2.23 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 168.7, 148.9, 140.8, 135.3, 135.0, 131.0, 130.4, 129.8, 128.8, 128.6, 128.5, 127.2, 126.6, 82.0, 68.0, 45.2, 43.8, 37.0, 20.9 ppm; FTIR (neat) υ 3029, 2917, 1762, 1683, 1495, 1369, 1201, 1038, 897 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₂₄H₂₂NaO₄⁺: 397.1410, Found: 397.1411 (M+H⁺). (*E*)-(5-oxo-7a-phenyl-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*)-ylidene)(phenyl) methyl acetate, 50

White solid, 71.5 mg, 99% yield, PE : EtOAc = 2:1, M.p. 62 – 64 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.46 (m, 2H), 7.42 – 7.28 (m, 6H), 7.22 – 7.20 (m, 2H), 6.66 (dd, *J* = 10.2, 1.3 Hz, 1H), 6.31 (dd, *J* = 10.3, 0.5 Hz, 1H), 4.72 – 4.68 (m, 2H), 3.47 (t, *J* = 5.1 Hz, 1H), 2.90 (ddd, *J* = 16.7, 4.4, 0.6 Hz, 1H), 2.70 (dd, *J* = 16.7, 5.9 Hz, 1H), 2.20 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 168.6, 148.2, 140.6, 140.2, 134.9, 131.1, 129.5, 128.9, 128.8, 128.6, 128.5, 126.7, 125.4, 83.5, 68.6, 49.1, 36.6, 20.9 ppm; FTIR (neat) v 2851, 1757, 1686, 1369, 1201, 1042, 897, 761 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₂₃H₂₀NaO₄⁺: 383.1254, Found: 383.1264 (M+Na⁺).

(*E*)-(7,7a-dimethyl-5-oxo-3a,4,5,7a-tetrahydrobenzofuran-3(2*H*)-ylidene)(phenyl) methyl acetate, 5p

Off-white solid, 44.3 mg, 71% yield, PE:EtOAc = 2:1, M.p. 148 – 150 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.27 (m, 3H), 7.20 – 7.17 (m, 2H), 5.98 – 5.97 (m, 1H), 4.45 (d, *J* = 13.5 Hz, 1H), 4.29 (dd, *J* = 13.2, 2.3 Hz, 1H), 3.19 – 3.16 (m, 1H), 2.95 (ddd, *J* = 16.9, 3.6, 0.8 Hz, 1H), 2.64 (dd, *J* = 16.9, 6.0 Hz, 1H), 2.26 (s, 3H), 1.98 (d, *J* = 1.3 Hz, 3H), 1.54 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 168.7, 160.8, 140.6, 135.1, 129.8, 128.9, 128.7, 128.6, 126.7, 82.2, 68.0, 48.3, 36.7, 22.2, 21.0, 18.1 ppm; FTIR (neat) υ 2918, 1752, 1660, 1444, 1367, 1216, 1112, 1062, 1020, 909, 779, cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₉H₂₀NaO₄⁺: 335.1254, Found: 335.1258 (M+Na⁺).

6. Determination the configuration of product 2a and 3n via NOE

To confirm the relative configuration of the carbon-carbon double bond in product 2a, a 2D-NOE spectrum was then collected as shown in Figure *S1*. The NOE signal is found between the H atom of methylene group (-OCH₂-) and the H atom of the phenyl ring,

which confirmed the relative configuration of the carbon-carbon double bond in product **2a** as drawn in Figure *S1*

Figure S1 2D-NOE spectrum of product 2a

Figure S2 2D-NOE spectrum of product 3n

To confirm the relative configuration of the carbon-carbon double bond in product 3n, a 2D-NOE spectrum was then collected as shown in Figure S2. The NOE signal is found between the H atom of methylene group (-OCH₂-) and the H atom of methyl group on double bond, which confirmed the relative configuration of the carbon-carbon double bond in product 3n as drawn in Figure S2

7. Scale-up synthesis and synthetic transformations

7.1 General procedure for Scale-up synthesis of compound 2a

A sealed Schlenk tube (250 mL) charged with a stir bar was added [RuCl₂(*p*-cymene)]₂ (153 mg, 0.25 mmol, 5 mol%), alkynes **1** (1.19 g, 5.0 mmol, 1.0 equiv), and then ^{*n*}Bu₄NF·3H₂O (3.16 g, 10.0 mmol, 2.0 equiv). The tube was purged three times by vacuum and N₂, then anhydrous DCE (100 mL, 0.05 M) was added. At last, glacial HOAc (5.7 mL, 100.0 mmol, 20.0 equiv) was added and the resulted mixture was stirred and heated at 100 °C in an oil bath for 48. Upon completion, the reaction mixture was cooled to room temperature, and quenched with aqueous saturated NaHCO₃ and then extracted with EtOAc (100 mL × 3), and then dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography using petroleum ether/ethyl acetate mixture as eluent, affording product 2a with 71% yield.

7.2 General procedure for Scale-up synthesis of compound 5a

A sealed Schlenk tube (100 mL) charged with a stir bar was added RuCp*(cod)Cl (76 mg, 0.2 mmol, 10 mol%), 1, 6-enyne **1** (476 mg, 2.0 mmol, 1.0 equiv) and AgOAc (167 mg, 1.0 mmol, 0.5 equiv). The tube was purged three times by vacuum and N₂, then anhydrous THF (20.0 mL, 0.1 M) was added. At last, glacial HOAc (2.3 mL, 40.0 mmol, 20.0 equiv) was added and the resulted mixture was stirred and heated at 60 °C in an oil bath for 15 h. Upon completion, the reaction mixture was cooled to room temperature, and quenched with aqueous saturated NaHCO₃ and then extracted with EtOAc (40 mL × 3), and then dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography using petroleum ether/ethyl acetate mixture as eluent, affording product **5a** with 83% yield.

7.3 Procedure for synthesis of compound 2a-1

A sealed tube (25 mL) charged with a stir bar was added **2a** (54.8 mg, 0.2 mmol) and *p*-toluenesulfonic acid monohydrate (228.2 mg, 1.2 mmol) and DCM/acetone (2.0 mL, 1/1, v/v). The mixture was stirred 24 h at room temperature. Then it was quenched by aqueous saturated NaHCO₃ (30 mL), extracted with EtOAc (20 mL × 3), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 2/1) to afford **2a-1**.^[3] White solid, 42.2 mg, 77% yield, PE : EtOAc = 2:1, M.p. 101 – 103 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.17 (s, 1H), 7.56 – 7.53 (m, 2H), 7.49 – 7.41 (m, 3H), 7.03 (d, *J* = 8.1 Hz, 1H), 6.64 – 6.59 (m, 2H), 4.96 (t, *J* = 5.5 Hz, 1H), 4.07 (dd, *J* = 11.8, 5.3 Hz, 1H), 4.00 (dd, *J* = 11.8, 5.7 Hz, 1H), 2.19 (s, 3H) ppm; ¹³C NMR (400 MHz, DMSO-*d*₆) δ 155.0, 140.0, 139.3, 137.5, 130.54, 130.49, 128.9, 128.4, 125.4, 115.1, 114.2, 62.4, 18.1 ppm; FTIR (neat) v 3349, 3175, 1606, 1452, 1234, 1019, 888, 736 cm⁻¹; HRMS
(ESI) m/z: Calcd. For C₁₆H₁₅ClO₂Na⁺: 297.0653, Found: 297.0657 (M+Na⁺).

7.4 Procedure for synthesis of compound 5a-1

A sealed tube (25 mL) charged with a stir bar was added **5a** (59.6 mg, 0.2 mmol) and *p*-toluenesulfonic acid monohydrate (228.2 mg, 1.2 mmol) and DCM/acetone (2.0 mL, 1/1, v/v). The mixture was stirred 24 h at room temperature. Then it was quenched by aqueous saturated NaHCO₃ (30 mL), extracted with EtOAc (20 mL × 3), dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography (petroleum ether/EtOAc = 2/1) to afford **5a-1**.^[3]

2-(5-hydroxy-2-methylphenyl)-1-phenylprop-2-en-1-one, 5a-1^[4]

Colorless liquid, 43.6 mg, 92% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.88 (m, 2H), 7.58 – 7.54 (m, 1H), 7.46 – 7.42 (m, 2H), 6.98 (d, *J* = 8.2 Hz, 1H), 6.73 (d, *J* = 2.7 Hz, 1H), 6.69 (dd, *J* = 8.2, 2.7 Hz, 1H), 5.98 (dd, *J* = 17.7, 1.0 Hz, 2H), 5.73 (s, 1H), 2.10 (s, 3H) ppm; ¹³C NMR (400 MHz, CDCl₃) δ 197.1, 154.0, 149.0, 139.2, 137.20, 132.9, 131.4, 130.0, 128.5, 128.4, 127.5, 117.0, 115.6, 19.6 ppm.

7.5 Procedure for synthesis of compound 6

Following the general procedure of the above carbohalogenations, *p*-toluenesulfonic acid monohydrate (380 mg, 2.0 mmol, 10.0 equiv) was directly added into the reaction mixture after it was cooled to room temperature, and the resulted mixture was stirred at room temperature for 48 h. Upon completion, the reaction mixture was quenched with aqueous saturated NaHCO₃ and extracted with EtOAc (20 mL \times 3), and then dried over anhydrous Na₂SO₄, then filtered and concentrated in vacuo. The residue was purified by column chromatography using petroleum ether/ethyl acetate mixture as the eluent to

afford product 6.

(E)-3-(1-chloro-3-hydroxy-1-phenylprop-1-en-2-yl)-4-methylphenyl acetate, 6a

Colorless liquid, 41.2 mg, 65% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz,CDCl₃) δ 7.49 – 7.46 (m, 2H), 7.44 – 7.39 (m, 3H), 7.12 (d, *J* = 8.2 Hz, 1H), 6.74 (dd, *J* = 8.2, 2.7 Hz, 1H), 6.67 (d, *J* = 2.7 Hz, 1H), 4.99 (bs, 1H), 4.74 (d, *J* = 12.0 Hz, 1H), 4.69 (d, *J* = 12.0 Hz, 1H), 2.29 (s, 3H), 1.94 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 153.7, 139.1, 137.5, 135.7, 133.3, 131.3, 129.4, 129.0, 128.7, 128.2, 115.2, 115.1, 65.4, 20.9, 18.4 ppm; FTIR (neat) υ 2925, 1734, 1445, 1377, 1230, 1028, 743, 697 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₁₇ClO₃Na⁺:339.0758, Found: 339.0772 (M+Na⁺). (*E*)-3-(1-bromo-3-hydroxy-1-phenylprop-1-en-2-yl)-4-methylphenyl acetate, 6b

Colorless liquid, 43.8 mg, 61% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz,CDCl₃) δ 7.46 – 7.34 (m, 5H), 7.11 (d, *J* = 8.2 Hz, 1H), 6.74 (dd, *J* = 8.2, 2.7 Hz, 1H), 6.66 (d, *J* = 2.7 Hz, 1H), 5.28 (bs, 1H), 4.69 (d, *J* = 12.1 Hz, 1H), 4.64 (d, *J* = 12.0 Hz, 1H), 2.30 (s, 3H), 1.92 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 153.7, 140.8, 139.1, 136.6, 131.3, 129.2, 129.0, 128.6, 127.8, 127.6, 115.1, 65.0, 20.9, 18.4 ppm; FTIR (neat) υ 2971, 1669,1495, 1378, 1083, 876, 730 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₁₇BrO₃Na⁺: 383.0253, Found: 383.0234 (M+Na⁺).

(E)-3-(3-hydroxy-1-iodo-1-phenylprop-1-en-2-yl)-4-methylphenyl acetate, 6c

Colorless liquid, 43.1 mg, 53% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz,CDCl₃) δ 7.38 – 7.37 (m, 4H), 7.34 – 7.28 (m, 1H), 7.12 (d, *J* = 8.2 Hz, 1H), 6.75 (dd, *J* = 8.2, 2.7 Hz, 1H), 6.61 (d, *J* = 2.7 Hz, 1H), 5.07 (bs, 1H), 4.66 (d, *J* = 12.1 Hz, 1H), 4.61 (d, J = 12.1 Hz), 2.30 (s, 3H), 1.90 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 153.7, 144.1, 143.1, 142.6, 131.5, 128.8, 128.6, 128.5, 127.4, 115.22, 115.19, 106.9, 63.3, 20.9, 18.4 ppm; FTIR (neat) υ 2923, 1599, 1498, 1230, 1176, 1024, 825 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₈H₁₇IO₃Na⁺: 431.0115, Found: 431.0097 (M+Na⁺).

6.6 Procedure for synthesis of compound 7

A sealed tube (25 mL) charged with a stir bar was added **3a** (95.7 mg, 0.3 mmol, 1.0 equiv) and MeOH (8.0 mL), then followed by conc. H₂SO₄ (45 μ L, 0.9 mmol, 3.0 equiv) at 0 °C. The reaction mixture was stirred at room temperature for 4 h and quenched with aqueous saturated NaHCO₃, which was extracted with EtOAc (30 mL× 3). The organic phase was combined, dried with anhydrous Na₂SO₄, and then evaporated under reduced pressure. The residue was purified by silica gel chromatography to afford the product **3a-1** in 67% yield.^[5]

A sealed tube (25 mL) charged with a stir bar was added Pd(PPh₃)₄ (6.9 mg, 0.006 mmol, 3 mol%), **3a-1** (66.5 mg, 0.20 mmol, 1.0 equiv) and Me₄NBr (3.1 mg, 0.02 mmol, 0.1 equiv). The tube was purged three times by vacuum and N₂, then anhydrous toulene (2.0 mL, 0.1 M) and 2 mol/L K₂CO₃ (0.4 mL) was added. The resulted mixture was heated at 90 °C in an oil bath and stirred for 12 h. Upon completion, the reaction mixture was cooled to room temperature, and extracted with EtOAc (20 mL × 3), and then dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography using petroleum ether/ethyl acetate mixture as eluent to afford product 7^[6].

(E)-3-bromo-2-(5-methoxy-2-methylphenyl)-3-phenylprop-2-en-1-ol, 3a-1

Colorless liquid, 66.8 mg, 67%, PE : EtOAc = 5:1. ¹H NMR (400 MHz,CDCl₃) δ 7.50

-7.48 (m, 2H), 7.43 -7.33 (m, 3H), 7.19 (d, J = 8.4 Hz, 1H), 6.83 (dd, J = 8.4, 2.7 Hz, 1H), 6.74 (d, J = 2.7 Hz, 1H), 4.25 (d, J = 12.3 Hz, 1H), 4.17 (d, J = 12.3 Hz, 1H), 3.82 (s, 3H), 2.32 (s, 3H), 1.53 (bs, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 141.1, 140.7, 139.4, 131.4, 129.1, 129.0, 128.5, 127.9, 125.0, 113.8, 113.5, 63.9, 55.5, 18.4 ppm; FTIR (neat) v 2921, 1743, 1603, 1495, 1407, 1290, 1216, 1045 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₁₇H₂₁BrNO₂⁺: 350.0750, Found: 350.0732 (M+NH₄⁺).

(E)-2-(5-methoxy-2-methylphenyl)-3-phenyl-3-(p-tolyl)prop-2-en-1-ol, 7a

Colorless liquid, 56.4 mg, 82% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz,CDCl₃) δ 7.39 – 7.28 (m, 5H), 6.97 (d, *J* = 8.4 Hz, 1H), 6.84 – 6.79 (m, 5H), 6.69 (dd, *J* = 8.4, 2.8 Hz, 1H), 4.40 (dd, *J* = 12.0, 5.5 Hz, 1H), 4.31 (dd, *J* = 12.0, 6.6 Hz, 1H), 3.77 (s, 3H), 2.19 (s, 3H), 2.07 (s, 3H), 1.45 (t, *J* = 6.3 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 142.8, 142.2, 140.6, 139.0, 136.8, 136.4, 131.3, 129.9, 129.8, 128.7, 128.4, 128.3, 127.4, 115.4, 112.9, 65.7, 55.4, 21.3, 19.0 ppm; FTIR (neat) v 2869, 1643, 1497, 1406, 1225, 1051, 887 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₂₄H₂₅O₂⁺:345.1849, Found: 345.1856 (M+H⁺).

(*E*)-2-(5-methoxy-2-methylphenyl)-3-(4-methoxyphenyl)-3-phenylprop-2-en-1-ol, 7b

Colorless liquid, 62.8 mg, 87% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz,CDCl₃) δ 7.39 – 7.28 (m, 5H), 6.96 (d, J = 8.4 Hz, 1H), 6.84 – 6.81 (m, 2H), 6.68 (dd, J = 8.4, 2.8 Hz, 1H), 6.57 – 6.53 (m, 2H), 4.39 (d, J = 12.0 Hz, 1H), 4.29 (d, J = 12.0 Hz, 1H), 3.77 (s, 3H), 3.67 (s, 3H), 2.05 (s, 3H), 1.50 (bs, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 157.6, 142.4, 142.2, 140.7, 136.3, 134.4, 131.4, 131.2, 129.9, 128.7, 128.4, 127.4, 115.3, 112.8, 112.8, 65.8, 55.4, 55.1, 19.0 ppm; FTIR (neat) 2886, 1740, 1382, 1316, 1232, 1087, 881 cm⁻¹; HRMS (ESI) m/z: Calcd. For C₂₄H₂₅O₃⁺:361.1798, Found: 361.1801 (M+H⁺).

(E)-2-(5-methoxy-2-methylphenyl)-3-(4-nitrophenyl)-3-phenylprop-2-en-1-ol, 7c

Colorless liquid, 54.6 mg, 73% yield, PE : EtOAc = 5:1. ¹H NMR (400 MHz,CDCl₃) δ 7.91 – 7.87 (m, 2H), 7.43 – 7.31 (m, 5H), 7.11 – 7.07 (m, 2H), 6.99 (d, *J* = 8.4 Hz, 1H), 6.80 (d, *J* = 2.7 Hz, 1H), 6.72 (dd, *J* = 8.4, 2.7 Hz, 1H), 4.44 (dd, *J* = 12.2, 4.6 Hz, 1H), 4.36 (dd, *J* = 12.1, 5.5 Hz, 1H), 3.77 (s, 3H), 2.08 (s, 3H), 1.52 (t, *J* = 5.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 148.9, 146.3, 140.9, 140.5, 140.4, 139.3, 131.7, 130.7, 129.9, 128.8, 128.2, 128.1, 122.9, 115.5, 113.3, 65.3, 55.5, 18.9 ppm; FTIR (neat) 2920, 2320, 2079, 1644, 1510, 1344, 1053, 858 ppm; HRMS (ESI) m/z: Calcd. For C₂₃H₂₂NO₄⁺: 376.1543, Found: 376.1544 (M+H⁺).

8. Crystal structural data

8.1 Crystal structural data 2g

Single crystal of compound **2g** was obtained by recrystallization from ethyl acetate and petroleum ether. The structure was shown in *Figure S3*. X-ray diffractional data and the refinement were shown in *Table S4*.

Figure S3 X-ray single crystal structure of **2g**. Displacement ellipsoids are drawn at the 25% probability level.

Table S4 Crystal data and structure refinement for substrate 2g

	2g
Empirical formula	$C_{32}H_{28}Cl_2N_2O_8$
Formula weight	639.46
Temperature	300.0 K

Wavelength	0.71073 Å
Crystal system space group	triclinic P-1
Unit cell dimensions	a = 8.7268 (3) Å, b = 8.8198(3) Å, c = 9.8887(3) Å, $\alpha = 94.7650(10)^{\circ}$ $\beta = 107.4040(10)^{\circ}$ $\gamma = 93.8140(10)^{\circ}$
Volume	720.42(4) Å ³
Z, Calculated density	$1, 1.474 \text{ Mg/m}^3$
Absorption coefficient	0.283 mm^{-1}
F(000)	332.0
Crystal size	$0.26\times0.24\times0.2~mm^3$
Theta range for data collection	4.342 to 55.012 °
Limiting indices	$-11 \le h \le 11,$ $-11 \le k \le 11,$ $-12 \le 1 \le 12$
Reflections collected / unique	$\begin{array}{l} 17022 \ / 3325 \ [R_{int} = 0.0295, \ R_{sigma} = \\ 0.0228] \end{array}$
Completeness to theta $= 29.00$	100 %
Data / restraints / parameters	3325/0/200
Goodness-of-fit on F^2	1.059
Final R indices [I>2sigma(I)]	$R_1 = 0.0380, wR_2 = 0.0962$
R indices (all data)	$R_1 = 0.0437, wR_2 = 0.1010$
Largest diff. peak and hole	0.21 and -0.34e·Å ⁻³

CIF files of **2g** can be obtained from the Cambridge Crystallographic Data Centre using deposition numbers 2083884. Copies of the data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [e-mail: <u>deposit@ccdc.cam.ac.uk</u>, fax: +44 (1223) 336 033].

8.2 Crystal structural data 3g

Single crystal of compound **3g** was obtained by recrystallization from ethyl acetate and petroleum ether. The structure was shown in *Figure S4*. X-ray diffractional data and the refinement were shown in *Table S5*.

Figure S4 X-ray single crystal structure of 3g. Displacement ellipsoids are drawn at

the 50% probability level.

	3g
Empirical formula	$C_{32}H_{28}Br_2N_2O_8$
Formula weight	728.38
Temperature	296.15 K
Wavelength	0.71073 Å
Crystal system	triclinic
space group	P-1
Unit cell dimensions	$a = 8.708(2) \text{ Å}, \\b = 8.801(2) \text{ Å}, \\c = 9.811(3) \text{ Å}, \\\alpha = 93.879(4)^{\circ} \\\beta = 106.094(3)^{\circ} \\\gamma = 92.492(3)^{\circ}$
Volume	719.3(3) Å ³
Z, Calculated density	1, 1.681 Mg/m ³
Absorption coefficient	2.876 mm ⁻¹
F(000)	368.0
Crystal size	$0.26 \times 0.24 \times -0.2 \text{ mm}^3$
Theta range for data collection	4.336 to 51.124 °
Limiting indices	$-10 \le h \le 10,$ $-10 \le k \le 10,$ $-11 \le 1 \le 11$
Reflections collected / unique	7121/2668 [$R_{int} = 0.0255$, $R_{sigma} = 0.0293$]
Completeness to theta $= 29.00$	100 %
Data / restraints / parameters	2668/0/200
Goodness-of-fit on F^2	1.045
Final R indices [I>2sigma(I)]	$R_1 = 0.0265, wR_2 = 0.0692$
R indices (all data)	$R_1 = 0.0317, wR_2 = 0.0715$
Largest diff. peak and hole	0.69/-0.52 e·Å ⁻³

Table S5 Crystal data and structure refinement for substrate 3g

CIF files of **3g** can be obtained from the Cambridge Crystallographic Data Centre using deposition numbers 2105850. Copies of the data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [e-mail: <u>deposit@ccdc.cam.ac.uk</u>, fax: +44 (1223) 336 033].

8.3 Crystal structural data 4e

Single crystal of compound **4e** was obtained by recrystallization from ethyl acetate and petroleum ether. The structure was shown in *Figure S5*. X-ray diffractional data and the refinement were shown in *Table S6*.

Figure S5 X-ray single crystal structure of 4e. Displacement ellipsoids are drawn at

the 50% probability level.

	4e
Empirical formula	$C_{128}H_{112}Br_8I_8O_{16}$
Formula weight	3560.65
Temperature	296.15K
Wavelength	0.71073 Å
Crystal system space group	orthorhombic Pbca
Unit cell dimensions	$a = 10.6516(15) \text{ Å}, \\b = 8.2155(12) \text{ Å}, \\c = 34.902(5) \text{ Å}, \\\alpha = 90^{\circ} \\\beta = 90^{\circ} \\\gamma = 90^{\circ}$
Volume	3054.2(8) Å ³
Z, Calculated density	1, 1.936 Mg/m ³
Absorption coefficient	4.712 mm ⁻¹
F(000)	1712.0
Crystal size	$0.26 \times 0.22 \times 0.2 \text{ mm}^3$
Theta range for data collection	4.48 to 50.924 °

Table S6 Crystal data and structure refinement for substrate 4e

Limiting indices	$\begin{array}{l} -12 \leqslant h \leqslant 12, \\ -9 \leqslant k \leqslant 9, \\ -41 \leqslant 1 \leqslant 33 \end{array}$
Reflections collected / unique	$\begin{array}{l} 17202/2691 \; [R_{int} = 0.0272, R_{sigma} = \\ 0.0218] \end{array}$
Completeness to theta $= 29.00$	96%
Data / restraints / parameters	2691/0/182
Goodness-of-fit on F^2	1.239
Final R indices [I>2sigma(I)]	$R_1 = 0.0356, wR_2 = 0.0760$
R indices (all data)	$R_1 = 0.0416, wR_2 = 0.0777$
Largest diff. peak and hole	0.95/-1.01 e·Å ⁻³

CIF files of **4e** can be obtained from the Cambridge Crystallographic Data Centre using deposition numbers 2111667. Copies of the data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [e-mail: <u>deposit@ccdc.cam.ac.uk</u>, fax: +44 (1223) 336 033].

8.4 Crystal structural data 5e

Single crystal of compound **5e** was obtained by recrystallization from ethyl acetate and petroleum ether. The structures were shown in *Figure S6*. X-ray diffractional data and the refinement were shown in *Table S7*.

Figure S6 X-ray single crystal structure of 5e. Displacement ellipsoids are drawn at

the 25% probability level.

Table S7 Crystal data and structure refinement for substrate 5
--

	5e
Empirical formula	$C_{144}H_{136}Cl_8O_{36}$
Formula weight	2662.12
Temperature	300.0 K
Wavelength	0.71073 Å
-	

Crystal system space group	monoclinic C2/c
Unit cell dimensions	a = 32.6039(12) Å, b = 7.5419(3) Å, c = 13.9954(4)Å, $\alpha = 90^{\circ}$ $\beta = 110(10)^{\circ}$
Volume	$\gamma = 90$ 3222.6(2)Å ³
Z, Calculated density	$1, 1.372 \text{ Mg/m}^3$
Absorption coefficient	0.255 mm^{-1}
F(000)	1392.0
Crystal size	$0.26 \times 0.24 \times -0.2 \text{ mm}^3$
Theta range for data collection	5.564 to 54.99 °
Limiting indices	$\begin{array}{l} -42 \leqslant h \leqslant 41, \\ -9 \leqslant k \leqslant 9, \\ -18 \leqslant 1 \leqslant 18 \end{array}$
Reflections collected / unique	$\begin{array}{l} 18713/3690 \; [R_{int} = 0.0613, R_{sigma} = \\ 0.0409] \end{array}$
Completeness to theta $= 29.00$	100%
Data / restraints / parameters	3690/0/210
Goodness-of-fit on F^2	1.025
Final R indices [I>2sigma(I)]	$R_1 = 0.0514, wR_2 = 0.1110$
R indices (all data)	$R_1 = 0.0914, wR_2 = 0.1350$
Largest diff. peak and hole	0.27/-0.32 e·Å ⁻³

CIF files of **5e** can be obtained from the Cambridge Crystallographic Data Centre using deposition numbers 2155999. Copies of the data can be obtained, free of charge, on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [e-mail: <u>deposit@ccdc.cam.ac.uk</u>, fax: +44 (1223) 336 033].

9. References

- Mallick, R. K.; Vangara, S.; Kommu, N.; Guntreddi, T. Sahoo, A. K.; Lewis aciddriven Meyer-Schuster-type rearrangement of yne-dienone. *J. Org. Chem.* 2021, *86*, 7059.
- (2) Singh, A.; Shukla, R. K.; Volla, C. M. R. Palladium-catalyzed highly diastereo-

selective cascade dihalogenation of alkyne-tethered cyclohexadienones via Umpolung of palladium enolate. *Chem. Commun.* **2019**, *55*, 13442.

- (3) Tan, Y. X.; Tang, X. Q.; Liu, P.; Kong, D. S.; Chen, Y. L.; Tian, P.; Lin, G. Q. CuH-Catalyzed asymmetric intramolecular reductive coupling of zllenes to enones. *Org. Lett.* 2018, 20, 248.
- (4) Nair, A. M., Halder I., Sharma R., and Volla, C. M. R. Water Mediated rearrangement of alkynyl cyclohexadienones: access tometa-alkenylated phenols. *Org. Lett.* **2021**, *23*, 1840.
- (5) Jiang, Y. Q.; Li, P. F.; Wang, J. J.; Zhao, J.; Li, Y.; Zhang, Y. W.; Chang, J. B.; Liu,
 B. X.; Li, X. W.; Rh(III)-catalyzed coupling of acrylic acids and ynenones via olefinic C–H activation and Michael addition. *Org. Lett.* 2020, 22, 438.
- (6) Qin, M. M.; Wu, Z. B.; Zhang, J. R.; Xing, X. Y.; Zhu, L. N.; Zhong, Y. Q.; Guo, Y. R.; Zhao; G. J.; The aggregation-induced emission of Methyl-bis-(4-triphenylvinylbenzyl)-amine in solution with torsional and locked stacking effects. *J. Mol. Liq.* 2021, *339*, 116626.

10. NMR spectra of new compounds

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

¹³C NMR (100 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

0900000000000000000000000000000000000	111111111111111111111111111111111111111	45 41 35 35 35 35	222 222 222 232 232 232 232 232 232 232	22	00
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	o o oo oo	44444	en en en en mini or or or	_:	0
	Ker V	She	SKY		



33333333333333333333333333333333333333	553 252 19	334 331 16 12	522 72 72 72 72 73 72 72 73 72 72 72 72 72 72 72 72 72 72 72 72 72	0334123333333	00
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00000	4.4.	n'n'n'n'n'n'n'n'n		-0.


---0.00

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

33333333333333333333333333333333333333	08 93 93 93	20	22334 = 22334 = 22334 = 233344 = 233334 = 233334 = 233334 = 23334 = 233334 = 23334 = 23334 = 23334 = 23334 = 23334 = 23334 = 23334 = 23334 = 23334 = 23334 = 23334 = 23334 = 23334 = 23334 = 23334 = 23334 = 23334 = 23334 = 2333334	00
		$\zeta_{4.}^{4.}$		-0.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

-0.00

--2. 10

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

