Supporting information for:

Iron-Catalyzed Nitrene Transfer Reaction of Nitrosobenzenes with

N-Acyloxyamides for Accessing N-Acyl Azoxy Molecules

Weimin Huang, Haobo Yan, Qianqian Wang, Jianhui Chen,* Yanshu Luo, and Yuanzhi Xia*

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China *E-mail: cjh@wzu.edu.cn (JC); xyz@wzu.edu.cn (YX)

Table of Content:

Entry	Content	Page	
Ι	General Information	S2	
Π	Procedures for the Synthesis of Stating Materials		
III	Iron-Catalyzed Nitrene Transfer Reaction of Nitrosobenzenes with	S11	
	N-Acyloxyamides for Accessing N-Acyl Azoxy Molecules		
IV	Gram-scale Reaction		
V	Further Derivatizations	S28	
VI	NMR Spectra	S30	

I. General Information

Unless otherwise noted, all the solvents and commercially available chemicals were used as received. NMR spectra were recorded on a Bruker-400 instrument or Bruker-500 instrument. ¹H NMR chemical shifts were referenced to tetramethylsilane signal (0 ppm), ¹³C NMR chemical shifts were referenced to the solvent resonance (77.00 ppm, CDCl₃). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, q = quadruplet. Melting points (M.p.) were obtained using WRS-1B melting point apparatus (Laboratory Devices, Shanghai Shenguang CO.; LTD.). High-resolution mass spectra (HRMS) were recorded on a Bruker micrTOF-Q II or an Agilent 6200 series TOF instrument. For reactions that require heating, an aluminium heating block was used as the heating source.

II. Procedures for the Synthesis of Starting Materials

$$Ar \leftarrow CI \qquad \underbrace{NH_2OH \cdot HCI}_{EA/H_2O(2/1)} \leftarrow \underbrace{tBu \leftarrow CI}_{THF, NEt_3} \qquad Ar \leftarrow N \\ H \leftarrow N$$

General procedures for the synthesis of N-Acyloxyamides: According to a previously reported method,¹ a 250 mL round bottom flask was charged with K₂CO₃ (20 mmol, 2 equiv.), ethyl acetate (EA) (40 mL) and water (20 mL), added with hydroxylamine hydrochloride (20 mmol, 2 equiv.), cooled in an ice water bath, added drop wise with acyl chloride (10 mmol). Then the resulting solution was stirred at room temperature overnight. The organic phase was separated and the aqueous phase was extracted with EA (40 mL x 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude hydroxamic acid were added with THF (40 mL) and Et₃N (26 mmol, 1.3 equiv.), cooled in an ice water bath, then stirred for a while followed by dropwise addition of PivCl (10 mmol, 1 equiv). After stirring overnight, the reaction mixture was added with EA (40 mL), water (20 mL) and HCl (1 M, 1 mL). The organic layer was separated and dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA) (8:1) to give the desired product *N*-acyloxyamides **1**.

¹ X. Zhang, B. Lin, J. Chen, J. Chen, Y. Luo, Y. Xia, Org. Lett., 2021, 23, 819.

N-(**Pivaloyloxy**)**benzamide** (1**a**).¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 4.3800 g, 19.7 mmol, 99% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.40 (br, 1H), 7.83-7.83 (m, 2H), 7.60-7.55 (m, 1H), 7.50-7.45 (m, 2H), 1.39 (s, 9H).

4-Methyl-*N***-(pivaloyloxy)benzamide** (1b).¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 2.3314 g, 8.9 mmol, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.29 (br, 1H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.26 (s, 2H), 2.41 (s, 3H), 1.37 (s, 9H).

4-(tert-butyl)-*N***-(pivaloyloxy)benzamide (1c)**.² White solid was obtained by silica gel column chromatography with PE/EA (8:1). 2.6058 g, 9.4 mmol, 94% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.40 (br, 1H), 7.76 (d, *J* = 6.6 Hz, 2H), 7.47 (d, *J* = 6.6 Hz, 2H), 1.36 (s, 9H), 1.33 (s, 9H).

N-(**Pivaloyloxy**)-[1,1'-biphenyl]-4-carboxamide (1d).¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 1.4553 g, 4.9 mmol, 49% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.60 (br, 1H), 7.88 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 7.5 Hz, 2H), 7.49-7.43 (m, 2H), 7.42-7.35 (m, 1H), 1.37 (s, 9H).

4-Methoxy-*N***-(pivaloyloxy)benzamide (1e)**.¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 1.7892 g, 7.1 mmol, 71% yield. ¹H NMR (400 MHz, CDCl₃) δ

² H. Wang, F. Glorius, Angew. Chem. Int. Ed., 2012, 51, 7318.

9.26 (br, 1H), 7.79 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H), 1.36 (s, 9H).

4-Fluoro-*N***-(pivaloyloxy)benzamide (1f)**.¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 2.2601 g, 9.7 mmol, 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.36 (br, 1H), 7.85-7.82 (m, 2H), 7.16-7.12 (m, 2H), 1.39 (s, 9H).

4-Chloro-N-(pivaloyloxy)benzamide (1g).² White solid was obtained by silica gel column chromatography with PE/EA (8:1). 2.0012 g, 7.8 mmol, 78% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.32 (br, 1H), 7.75 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 8.5 Hz, 2H), 1.35 (s, 9H).

4-Bromo-*N***-(pivaloyloxy)benzamide (1h)**.¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 2.4683 g, 8.22 mmol, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.33 (br, 1H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.61 (d, *J* = 8.4 Hz, 2H), 1.36 (s, 9H).

4-Iodo-*N***-(pivaloyloxy)benzamide (1i).**¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 3.0189 g, 8.7 mmol, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 1.36 (s, 9H).

N-(**pivaloyloxy**)-4-(**trifluoromethoxy**)**benzamide** (1j).¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 1.6165 g, 5.3 mmol, 53% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.33 (s, 1H), 7.86 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 1.36 (s, 9H).

4-(*N*,*N*-**dipropylsulfamoyl**)-*N*-(**pivaloyloxy**)**benzamide** (1**k**).³ Light yellow transparent oil was obtained by silica gel column chromatography with PE/EA (8:1). 0.4377 g, 2 mmol, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (br, 1H), 7.89 (d, *J* = 8.4 Hz, 2H), 7.82 (d, *J* = 8.4 Hz, 2H), 3.27-2.85 (m, 4H), 1.74-1.43 (m, 4H), 1.36 (s, 9H), 0.86 (t, *J* = 7.4 Hz, 6H).

N-(**pivaloyloxy**)-4-(**trifluoromethyl**)**benzamide** (11).¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 2.5653 g, 9.0 mmol, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.35 (br, 1H), 7.93 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H), 1.37 (s, 9H).

4-((Pivaloyloxy)carbamoyl)phenyl acetate (1m).² White solid was obtained by silica gel column chromatography with PE/EA (8:1). 0.8960 g, 3.2 mmol, 32% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.36 (s, 1H), 8.12 (s, 2H), 7.87 (d, *J* = 8.5 Hz, 2H), 3.95 (s, 3H), 1.37 (s, 9H).

4-Nitro-*N***-(pivaloyloxy)benzamide (1n)**.¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 2.0482 g, 7.7 mmol, 77% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.38 (br, 1H), 8.32 (d, *J* = 8.0 Hz, 2H), 7.99 (d, *J* = 8.0 Hz, 2H), 1.30 (s, 9H).

³ R. Wang, Y. Chen, B. Fei, J. Hu, J. Chen, Y. Luo, Y. Xia, Org. Lett., 2023, 25, 2970-2974.

3-Methoxy-*N***-(pivaloyloxy)benzamide (10).**¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 1.8581 g, 7.4 mmol, 74% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.63 (br, 1H), 7.35-7.27 (m, 3H), 7.17-6.94 (m, 1H), 3.82 (s, 3H), 1.35 (s, 9H).

3-Fluoro-*N***-(pivaloyloxy)benzamide (1p)**.¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 1.4914 g, 6.2 mmol, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.57 (br, 1H), 7.59-7.49 (m, 2H), 7.44-7.39 (m, 1H), 7.28-7.24 (m, 1H), 1.35 (s, 9H).

3-Chloro-*N***-(pivaloyloxy)benzamide (1q)**.¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 1.2876 g, 5.1 mmol, 51% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.54 (br, 1H), 7.78 (s, 1H), 7.66 (d, *J* = 7.2 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 8.0 Hz, 1H), 1.35 (s, 9H).

3-Bromo-*N***-(pivaloyloxy)benzamide (1r)**.¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 2.3200 g, 10 mmol, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.35 (br, 1H), 7.96 (s, 1H), 7.74-7.68 (m, 2H), 7.36-7.32 (m, 1H), 1.36 (s, 9H).

2-Fluoro-*N***-(pivaloyloxy)benzamide (1s)**.¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 1.2582 g, 5.4 mmol, 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.82 (br, 1H), 8.12-8.08 (m, 1H), 7.57-7.52 (m, 1H), 7.33-7.29 (m, 1H), 7.20-7.15 (m, 1H), 1.38 (s, 9H).

2-Chloro-*N***-(pivaloyloxy)benzamide (1t).**¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 1.9392 g, 7.4 mmol, 74% yield. ¹H NMR (500 MHz, CDCl₃) 89.85 (br, 1H), 7.73 (s, 1H), 7.44 (s, 2H), 7.35 (s, 1H), 1.36 (s, 9H).

2,4-Dichloro-*N***-(pivaloyloxy)benzamide (1u).**² White solid was obtained by silica gel column chromatography with PE/EA (8:1). 1.7408 g, 6.0 mmol, 60% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.59 (br, 1H), 7.67 (s, 1H), 7.46 (s, 1H), 7.27 (d, *J* = 8.5 Hz, 1H), 1.34 (s, 9H).

3,4,5-trimethoxy-*N***-(pivaloyloxy)benzamide (1v).** White solid was obtained by silica gel column chromatography with PE/EA (8:1). 0.8547 g, 2.75 mmol, 69% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.55 (br, 1H), 7.05 (s, 2H), 3.89 (s, 9H), 1.37 (s, 9H).

N-(**pivaloyloxy**)-1-naphthamide (1w).² White solid was obtained by silica gel column chromatography with PE/EA (8:1). 1.8701 g, 6.9 mmol, 69% yield. ¹H NMR (500 MHz, CDCl₃) δ 9.08 (br, 1H), 8.36 (d, *J* = 7.2 Hz, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 7.88 (d, *J* = 7.1 Hz, 1H), 7.76 (d, *J* = 5.8 Hz, 1H), 7.69-7.52 (m, 2H), 7.48 (d, *J* = 7.6 Hz, 1H), 1.38 (s, 9H).

N-(**pivaloyloxy**)-2-naphthamide (1x).² White solid was obtained by silica gel column chromatography with PE/EA (8:1). 1.9783 g, 7.3 mmol, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.50 (br, 1H), 8.37 (s, 1H), 8.04-7.72 (m, 4H), 7.69-7.46 (m, 2H), 1.38 (s, 9H).

N-(**pivaloyloxy**)**thiophene-2-carboxamide (1y).**² White solid was obtained by silica gel column chromatography with PE/EA (8:1). 1.1179 g, 4.9 mmol, 49% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.38 (br, 1H), 7.91-7.61 (m, 1H), 7.64-7.40 (m, 1H), 7.12-7.10 (m, 1H), 1.36 (s, 9H).

N-(**pivaloyloxy**)**furan-2-carboxamide** (1z).¹ White solid was obtained by silica gel column chromatography with PE/EA (8:1). 1.3101 g, 6.2 mmol, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.43 (br, 1H), 7.50 (s, 1H), 7.23 (d, *J* = 3.2 Hz, 1H), 6.55 (d, *J* = 1.6 Hz, 1H), 1.36 (s, 9H).

General procedures for the synthesis of nitrosobenzene. According to a previously reported method,⁴ a 50 mL round bottom flask was charged with boronic acid (2 mmol, 1 eq) and MeOH (enough MeOH to give a free-flowing) under N₂, added dropwisely with KHF₂ (6.6 M in H₂O, 3.3 equiv) at 0 °C. Then the reaction was stirred at rt for 30 min, concentrated, and dissolved in a minimal amount of acetone (10 mL). The addition of Et₂O (60 mL) led to the precipitation of the white solid. After filtration, crude organotriflfluoroborates was obtained. Then a 50 mL round bottom flask was charged with crude organotriflfluoroborate (2 mmol) in CH₃CN (6 mL), added with NOBF₄ (2.1 mmol, 1.05 equiv.) in one portion. The reaction was stirred open to air at room temperature until the reaction mixture became homogeneous, added with H₂O (40 mL) and CH₂Cl₂ (20 mL). The resulted solution was separated, and the aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were combined and dried over Na₂SO₄, fifiltered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA) (20:1) to give the desired product nitrosobenzene **2**.

⁴ G. Molander, L. Cavalcanti, J. Org. Chem., 2012, 77, 4402-4413.

1-Methyl-4-nitrosobenzene (2b).⁴ Green oil was obtained by silica gel column chromatography with PE/EA (10:1). 0.2033 g, 1.68 mmol, 84% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 2.44 (s, 3H).

1-Isopropyl-4-nitrosobenzene (2c).⁴ Green oil was obtained by silica gel column chromatography with PE/EA (10:1). 0.2525 g, 1.56 mmol, 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 3.25-2.75 (m, 1H), 1.31 (d, J = 8.9 Hz, 6H).

4-Nitroso-1,1'-biphenyl (2d).⁴ Green solid was obtained by silica gel column chromatography with PE/EA (10:1). 0.3001 g, 1.84 mmol, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.2 Hz, 2H), 7.86 (d, *J* = 8.2 Hz, 2H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.56-7.51 (m, 2H), 7.49-7.47 (m, 1H).

1-Methoxy-4-nitrosobenzene (2e).⁴ Green oil was obtained by silica gel column chromatography with PE/EA (10:1). 0.2033 g, 1.68 mmol, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 2H), 7.03 (d, J = 8.4 Hz, 2H), 3.96 (s, 3H).

1-Chloro-4-nitrosobenzene (2f).⁴ Yellow solid was obtained by silica gel column chromatography with PE/EA (10:1). 0.2452 g, 1.74 mmol, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 8.8 Hz, 2H).

1-(4-nitrosophenyl)ethan-1-one (2g).⁴ Yellow solid was obtained by silica gel column chromatography with PE/EA (10:1). 0.2712 g, 1.82 mmol, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 6.8 Hz, 2H), 7.97 (d, J = 6.8 Hz, 2H), 2.70 (s, 3H).

N-(4-nitrosophenyl)acetamide (2h).⁴ Green solid was obtained by silica gel column chromatography with PE/EA (4:1). 0.2657 g, 1.62 mmol, 81% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 10.66 (br, 1H), 7.95-7.89 (m, 4H), 2.15 (s, 3H).

3-Nitrosobenzamide (2i).⁴ Green solid was obtained by silica gel column chromatography with PE/EA (4:1). 0.2160 g, 1.44 mmol, 72% yield. ¹H NMR (400 MHz, DMSO-d₆) δ 8.47 (br, 1H), 8.36 (d, *J* = 8.0 Hz, 2H), 8.07 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.72 (br, 1H).

1-Methoxy-2-nitrosobenzene (2j).⁴ Green oil was obtained by silica gel column chromatography with PE/EA (20:1). 0.1810 g, 1.5 mmol, 75% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.61-7.58 (m, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.17-7.14 (m, 1H), 6.29 (d, *J* = 8.0 Hz, 1H), 3.35 (s, 3H).

1-Bromo-2-nitrosobenzene (2k).⁴ Green solid was obtained by silica gel column chromatography with PE/EA (20:1). 0.3275 g, 1.78 mmol, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 8.0 Hz, 1H), 7.58-7.54 (m, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 6.28 (d, *J* = 8.0 Hz, 1H).

2,4-Difluoro-1-nitrosobenzene (21).⁴ Green solid was obtained by silica gel column chromatography with PE/EA (20:1). 0.2574 g, 1.8 mmol, 90% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 4.0 Hz, 2H), 7.22-7.19 (m, 1H).

III. Iron-Catalyzed Nitrene Transfer Reaction of Nitrosobenzenes with N-Acyloxyamides for Accessing N-Acyl Azoxy Molecules

General Procedures for Iron-Catalyzed Nitrene Transfer Reaction of Nitrosobenzene with *N*-Acyloxyamides: To a 10 mL Schlenk flask under air atmosphere, **1a** (0.20 mmol), **2a** (0.60 mmol), FeCl₂·4H₂O (0.02 mmol, 10 mol%), 1,2-dichloroethane (1 mL) were added in sequence. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure and concentrated and purified by silica gel PE/EA (10:1) flash column chromatography to give the desired product **3**.

(*Z*)-2-benzoyl-1-phenyldiazene 1-oxide (3a). Prepared according to the general procedure using 0.0443 g (0.2 mmol) of 1a, 0.0642 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0402 g (0.18 mmol, 89% yield) of 3a as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 8.0 Hz, 2H), 7.87 (d, *J* = 8.0 Hz, 2H), 7.66 (d, *J* = 7.2 Hz, 2H), 7.55 (d, *J* = 7.6 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 177.5, 146.4, 134.5, 133.4, 131.2, 129.5, 129.2, 129.1, 122.6.

(*Z*)-2-(4-methylbenzoyl)-1-phenyldiazene 1-oxide (3b). Prepared according to the general procedure using 0.0470 g (0.2 mmol) of 1b, 0.0639 g (0.60 mmol) of 2a, 0.0039 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0307 g (0.13 mmol, 64% yield) of **3b** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 8.2 Hz, 2H), 7.87 (d, *J* = 8.0 Hz, 2H), 7.68-7.64 (m, 1H), 7.57-7.53 (m, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 146.5, 145.7, 133.3, 129.8, 129.6, 129.2, 128.5, 122.6, 21.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₂N₂O₂ 241.0972, Found 241.0970.

(*Z*)-2-(4-(tert-butyl)benzoyl)-1-phenyldiazene 1-oxide (3c). Prepared according to the general procedure using 0.0554 g (0.2 mmol) of 1c, 0.0640 g (0.60 mmol) of 2a, 0.0037 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0372 g (0.12 mmol, 66% yield) of 3c as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 8.0 Hz, 2H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.57-7.53 (m, 1H), 7.53-7.51 (m, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 158.6, 146.4, 133.3, 129.5, 129.2, 128.4, 126.1, 122.6, 35.4, 31.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₉N₂O₂ 283.1442, Found 283.1440.

(Z)-2-([1,1'-biphenyl]-4-carbonyl)-1-phenyldiazene 1-oxide (3d). Prepared according to the general procedure using 0.0594 g (0.2 mmol) of 1d, 0.0642 g (0.60 mmol) of 2a, 0.0040 g (0.02mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was

purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0327 g (0.11 mmol, 54% yield) of **3d** as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.33 (d, *J* = 7.5 Hz, 2H), 8.05 (d, *J* = 8.5 Hz, 2H), 7.71 (d, *J* = 8.5 Hz, 2H), 7.68-7.65 (m, 1H), 7.61 (m, 2H), 7.60-7.57 (m, 2H), 7.52-7.43 (m, 1H), 7.42-7.39 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 177.3, 147.3, 146.5, 139.7, 133.4, 130.1, 129.9, 129.2, 129.1, 128.5, 127.7, 127.4, 122.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₅N₂O₂ 303.1129, Found 303.1133.

(*Z*)-2-(4-methoxybenzoyl)-1-phenyldiazene 1-oxide (3e). Prepared according to the general procedure using 0.0502 g (0.2 mmol) of 1e, 0.0642 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂:4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (5:1) as the eluent to give 0.0327 g (0.17 mmol, 64% yield) of 3e as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 7.6 Hz, 2H), 7.95 (d, *J* = 9.0 Hz, 2H), 7.82-7.60 (m, 1H), 7.56 (d, *J* = 7.6 Hz, 2H), 6.96 (d, *J* = 9.0 Hz, 2H), 3.88 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 164.7, 146.5, 133.2, 131.9, 129.2, 123.8, 122.6, 114.4, 55.6. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₂N₂NaO₃ 279.0741, Found 279.0746.

(Z)-2-(4-fluorobenzoyl)-1-phenyldiazene 1-oxide (3f). Prepared according to the general procedure using 0.0478 g (0.2 mmol) of 1f, 0.0642 g (0.60 mmol) of 2a, 0.0039 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0405 g (0.17 mmol, 83% yield) of 3f as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.30 (d, *J* = 8.4 Hz, 2H), 8.03-8.01 (m, 2H), 7.69-7.66 (m, 1H), 7.58-7.55 (m, 2H), 7.15-7.18 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 176.1, 167.6, 165.6, 146.4, 133.5, 132.3 (d, *J* = 9.7 Hz), 129.0, 127.7, 122.6, 116.4, (d, *J* = 22.4 Hz).

¹⁹F NMR (471 MHz, CDCl₃) δ -102.24. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₀FN₂O₂ 245.0721, Found 245.0721.

(Z)-2-(4-chlorobenzoyl)-1-phenyldiazene 1-oxide (3g). Prepared according to the general procedure using 0.0521 g (0.2 mmol) of 1g, 0.0643 g (0.60 mmol) of 2a, 0.0038 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0395 g (0.15 mmol, 76% yield) of 3g as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.29 (d, *J* = 8.4 Hz, 2H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.69-7.66 (m, 1H), 7.57-7.54 (m, 2H), 7.46 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 176.3, 146.4, 141.1, 133.5, 130.8, 129.8, 129.3, 122.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₀ClN₂O₂ 261.0426, Found 261.0421.

(Z)-2-(4-bromobenzoyl)-1-phenyldiazene 1-oxide (3h). Prepared according to the general procedure using 0.0600 g (0.2 mmol) of 1h, 0.0645 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0387 g (0.128 mmol, 64% yield) of **3h** as a yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.29 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.69-7.66 (m, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.58-7.55 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 146.4, 133.6 132.4, 130.9, 130.2, 129.9, 129.3, 122.6. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₉BrN₂NaO₂ 326.9740, Found 326.9741.

(Z)-2-(4-iodobenzoyl)-1-phenyldiazene 1-oxide (3i). Prepared according to the general procedure using 0.0769 g (0.2 mmol) of 1i, 0.0642 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O

and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0395 g (0.11 mmol, 56% yield) of **3i** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.0 Hz, 2H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.74-7.71 (m, 3H), 7.62-7.59 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 176.9, 146.4, 138.4, 133.6, 130.7, 130.4, 129.2, 124.9, 122.6, 115.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₀IN₂O₂ 352.9782, Found 352.9788.

(*Z*)-1-phenyl-2-(4-(trifluoromethoxy)benzoyl)diazene 1-oxide (3j). Prepared according to the general procedure using 0.0478 g (0.2 mmol) of 1j, 0.0641 g (0.60 mmol) of 2a, 0.0041 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0256 g (0.08 mmol, 41% yield) of 3j as a yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.30 (d, *J* = 8.0 Hz, 2H), 8.05 (d, *J* = 8.6 Hz, 2H), 7.70-7.67 (m, 1H), 7.59-7.56 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 175.9, 153.6, 146.4, 133.5, 131.6, 129.6, 129.3, 122.6, 120.7 (q, *J* = 46.1 Hz). HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₉F₃N₂NaO₃ 333.00458, Found 333.0461.

(Z)-2-(4-(*N*, *N*-dipropylsulfamoyl) benzoyl)-1-phenyldiazene 1-oxide (3k). Prepared according to the general procedure using 0.0769 g (0.2 mmol) of 1k, 0.0642 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0326 g (0.20 mmol, 42% yield) of 3k as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 8.0 Hz, 2H), 8.11 (d, *J* = 8.0 Hz, 2H), 8.02-7.84 (m, 2H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.60-7.56 (m, 2H), 3.10 (t, *J* = 6.8 Hz, 4H), 1.56 (dd, *J* = 13.6, 7.2 Hz, 4H), 0.87 (t, *J* = 6.4 Hz, 6H). ¹³C NMR (101 MHz,

$$\begin{split} & \text{CDCl}_3)\,\delta\,175.9,\,146.4,\,145.4,\,134.1,\,130.1,\,129.4,\,127.6,\,122.6,\,50.1,\,22.0,\,11.2.\,\text{HRMS}\,\text{(ESI)}\,\text{m/z}; \\ & [\text{M}+\text{H}]^+\,\text{Calcd for }C_{19}\text{H}_{24}\text{N}_3\text{O}_4\text{S}\,390.1483,\,\text{Found}\,390.1484. \end{split}$$

(Z)-1-phenyl-2-(4-(trifluoromethyl)benzoyl)diazene 1-oxide (31). Prepared according to the general procedure using 0.0579 g (0.2 mmol) of 11, 0.0642 g (0.60 mmol) of 2a, 0.0039 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0329 g (0.11 mmol, 56% yield) of 3l as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 8.0 Hz, 2H), 8.10 (d, *J* = 8.0 Hz, 2H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.71-7.68 (m, 2H), 7.59-7.55 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 176.2, 146.3, 135.7, 135.6 (q, *J* = 32.8 Hz), 134.4, 133.7, 129.8, 129.3, 126.1 (q, *J* = 32.8 Hz), 124.5 (q, *J* = 32.8 Hz), 122.6. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₉F₃N₂NaO₂ 317.0509, Found 317.0511.

(Z)-2-(4-(methoxycarbonyl)benzoyl)-1-phenyldiazene 1-oxide (3m). Prepared according to the general procedure using 0.0533 g (0.2 mmol) of 1m, 0.0640 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (5:1) as the eluent to give 0.0328 g (0.15mmol, 75% yield) of **3m** as a yellow solid. ¹H NMR (500 MHz, DMSO-d₆) δ 8.18 (d, *J* = 7.8 Hz, 2H), 8.02-7.97 (m, 4H), 7.71-7.69 (m, 1H), 7.60-7.57 (m, 2H), 3.77 (s, 3H). ¹³C NMR (126 MHz, DMSO-d₆) δ 177.2, 165.8, 146.1, 135.3, 134.6, 134.2, 130.6, 130.3, 130.0, 122.9, 53.1. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₂N₂NaO₄ 307.0690, Found 307.0694.

(Z)-2-(4-nitrobenzoyl)-1-phenyldiazene 1-oxide (3n). Prepared according to the general procedure using 0.0533 g (0.2 mmol) of 1n, 0.0643 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0238 g (0.88 mmol, 44% yield) of **3n** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.34-8.30 (m, 4H), 8.17 (d, *J* = 8.6 Hz, 2H), 7.73-7.70 (m, 1H), 7.61-7.57 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 151.1, 146.3, 136.5, 134.0, 130.5, 129.4, 124.2, 122.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₀IN₃O₄ 272.0666, Found 272.0666.

(Z)-2-(3-methoxybenzoyl)-1-phenyldiazene 1-oxide (3o). Prepared according to the general procedure using 0.0769 g (0.2 mmol) of 1o, 0.0639 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂:4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0357 g (0.13 mmol, 64%) of 3o as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.0 Hz, 2H), 7.68-7.64 (m, 1H), 7.57-7.52 (m, 4H), 7.40-7.36 (m, 1H), 7.23-7.09 (m, 1H), 3.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 160.1, 146.4, 133.4, 132.5, 130.1, 129.2, 122.6, 122.0, 121.2, 113.6, 55.6. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₂N₂NaO₃ 279.0741, Found 279.0744.

(Z)-2-(3-fluorobenzoyl)-1-phenyldiazene 1-oxide (3p). Prepared according to the general procedure using 0.0479 g (0.2 mmol) of 1p, 0.0642 g (0.60 mmol) of 2a, 0.0041 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0201 g (0.08 mmol, 41% yield) of **3p** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 8.0 Hz, 1H), 8.12 (s, 1H),

7.91 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.70-7.67 (m, 1H), 7.58-7.55 (m, 1H), 7.39-7.36 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 164.1, 161.7, 146.4, 133.6, 130.7 (d, J = 7.7 Hz), 129.3, 125.3 (d, J = 2.9 Hz), 122.6, 121.6 (d, J = 23.0 Hz), 116.2 (d, J = 23.0 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -111.12. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₀FN₂O₂ 245.0721, Found 245.0724.

(Z)-2-(3-chlorobenzoyl)-1-phenyldiazene 1-oxide (3q). Prepared according to the general procedure using 0.0521 g (0.2 mmol) of 1q, 0.0644 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0390 g (0.15 mmol, 75% yield) of 3q as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, *J* = 7.6 Hz, 2H), 7.96 (s, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.70-7.66 (m, 1H), 7.60-7.56 (m, 3H), 7.45-7.41 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 176.1, 146.4, 135.3, 134.4, 133.6, 133.1, 130.3, 129.4, 129.3, 127.5, 122.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₀ClN₂O₂ 261.0426, Found 261.0418.

(Z)-2-(3-bromobenzoyl)-1-phenyldiazene 1-oxide (3r). Prepared according to the general procedure using 0.0600 g (0.2 mmol) of 1r, 0.0642 g (0.60 mmol) of 2a, 0.0038 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0390 g (0.13 mmol, 64% yield) of 3r as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 8.0 Hz, 2H), 8.12 (s, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.70-7.67 (m, 1H), 7.59- 7.55 (m, 2H), 7.39-7.35 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.3, 148.0, 134.8, 134.5, 132.0, 130.8, 129.9, 129.1, 128.4, 125.4, 114.6. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₉BrN₂NaO₂ 327.9740, Found 327.9734.

(Z)-2-(2-fluorobenzoyl)-1-phenyldiazene 1-oxide (3s). Prepared according to the general procedure using 0.0480 g (0.2 mmol) of 1s, 0.0642 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0317 g (0.13 mmol, 65% yield) of 3s as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.0 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.74-7.64 (m, 2H), 7.60-7.56 (m, 2H), 7.53-7.43 (m, 2H), 7.34 (d, *J* = 8.0, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.2, 164.1, 161.7, 146.4, 133.5 (m), 130.8, 129.3, 125.2, 122.6, 121.7 (d, *J* = 7.7 Hz), 116.2 (d, *J* = 7.7 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -111.04. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₉FN₂NaO₂ 267.0541, Found 267.0549.

(Z)-2-(2-chlorobenzoyl)-1-phenyldiazene 1-oxide (3t). Prepared according to the general procedure using 0.0521 g (0.2 mmol) of 1t, 0.0642 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂:4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0369 g (0.14 mmol, 71% yield) of **3t** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 8.0 Hz, 2H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.67-7.64 (m, 1H), 7.56-7.53 (m, 2H), 7.50-7.43 (m, 2H), 7.40-7.37 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 146.3, 133.9, 133.4, 132.1, 131.3, 129.2, 127.1, 122.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₃H₁₀ClN₂O₂ 261.0426, Found 261.0428.

(Z)-2-(2,4-dichlorobenzoyl)-1-phenyldiazene 1-oxide (3u). Prepared according to the general procedure using 0.0578 g (0.2 mmol) of 1u, 0.0642 g (0.60 mmol) of 2a, 0.0039 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with

EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0417 g (0.14 mmol, 71% yield) of **3u** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.0 Hz, 2H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.69-7.65 (m, 1H), 7.56-7.53 (m, 2H), 7.49 (s, 1H), 7.37 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 146.2, 139.9, 134.9, 133.6, 133.0, 131.2, 129.7, 129.2, 127.6, 122.7. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₈Cl₂N₂NaO₂ 316.9856, Found 316.9849.

(Z)-1-phenyl-2-(3,4,5-trimethoxybenzoyl)diazene 1-oxide (3v). Prepared according to the general procedure using 0.0543 g (0.2 mmol) of 1v, 0.0641 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂:4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0300 g (0.09 mmol, 47% yield) of **3v** as a yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 8.30 (d, *J* = 7.1 Hz, 2H), 7.68 (s, 1H), 7.58 (d, *J* = 6.7 Hz, 2H), 7.26 (s, 2H), 3.94 (s, 2H), 3.91 (s, 3H), 3.89 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 176.7, 153.5, 146.5, 144.0, 133.4, 129.3, 126.3, 122.6, 106.9, 61.0, 56.4. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₈Cl₂N₂NaO₂ 339.0952, Found 339.0949.

(Z)-2-(1-naphthoyl)-1-phenyldiazene 1-oxide (3w). Prepared according to the general procedure using 0.0543 g (0.2 mmol) of 1w, 0.0642 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0159 g (0.06 mmol, 29% yield) of **3w** as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.14 (d, *J* = 8.4 Hz, 1H), 8.31 (d, *J* = 8.4 Hz, 2H), 8.10-8.07 (m, 2H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.73-7.70 (m, 1H), 7.68-7.64 (m, 1H), 7.63-7.58 (m, 1H), 7.57-7.53 (m, 2H), 7.49-7.46 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 178.8, 146.3, 135.3,

134.0, 133.3, 131.3, 130.9, 129.2, 128.9, 128.8, 127.9, 126.9, 125.8, 124.5. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₃N₂O₂ 277.0972, Found 277.0966.

(Z)-2-(2-naphthoyl)-1-phenyldiazene 1-oxide (3x). Prepared according to the general procedure using 0.0543 g (0.2 mmol) of 1x, 0.0639 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂.4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0308 g (0.12 mmol) of 3x as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.35 (d, *J* = 8.0 Hz, 2H), 8.04 (d, *J* = 8.5 Hz, 1H), 7.93 (d, *J* = 8.5 Hz, 2H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.70-7.67 (m, 1H), 7.65 -7.50 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 146.5, 136.3, 133.4, 132.5, 131.7, 129.8, 129.3, 129.2, 1291, 128.6, 128.0, 127.1, 124.4, 122.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₃N₂O₂ 277.0972, Found 277.0978.

(Z)-1-phenyl-2-(thiophene-2-carbonyl)diazene 1-oxide (3y). Prepared according to the general procedure using 0.0455 g (0.2 mmol) of 1y, 0.0644 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0343 g (0.15 mmol, 74% yield) of **3y** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.0, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.69-7.65 (m, 1H), 7.57-7.53 (m, 2H), 7.5 (s, 1H), 7.16 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 170.7, 146.7, 136.6, 135.4, 134.6, 133.5, 129.2, 128.6, 122.7. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₉N₂O₂S 233.0380, Found 233.0380.

(Z)-2-(furan-2-carbonyl)-1-phenyldiazene 1-oxide (3z). Prepared according to the general procedure using 0.0423 g (0.2 mmol) of 1z, 0.0642 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0341 g (0.20 mmol, 79% yield) of 3z as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.29 (d, *J* = 8.0 Hz, 2H), 7.66 (s, 2H), 7.57-7.54 (m, 2H), 7.34 (s, 1H), 7.27 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 148.1, 146.9, 146.6, 133.5, 129.2, 122.7, 120.6, 112.8. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₁H₉N₂O₃ 217.0608, Found 217.0609.

(Z)-2-benzoyl-1-(p-tolyl) diazene 1-oxide (3aa). Prepared according to the general procedure using 0.0443 g (0.2 mmol) of 1a, 0.0727 g (0.60 mmol) of 2a, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0333 g (0.14 mmol, 69% yield) of 3aa as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, *J* = 8.4 Hz, 2H), 8.10-7.88 (m, 2H), 7.64-7.61 (m, 1H), 7.50-7.47 (m, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 2.48 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 177.6, 144.4, 134.4, 131.4, 129.7, 129.5, 129.0, 122.5, 21.5. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₂N₂NaO₂ 263.0791, Found 263.0789.

(Z)-2-benzoyl-1-(4-isopropylphenyl) diazene 1-oxide (3ab). Prepared according to the general procedure using 0.0442 g (0.2 mmol) of 1a, 0.0896 g (0.60 mmol) of 2b, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0343 g (0.13 mmol, 64% yield) of **3ab** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.0 Hz, 1H), 7.98 (d, *J* =

8.0 Hz, 1H), 7.64-7.61 (m, 1H), 7.50-7.47 (m, 1H), 7.39 (d, J = 8.0 Hz, 1H), 3.04 (dt, J = 13.7, 6.8 Hz, 1H), 1.31 (d, J = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 155.1, 134.4, 131.4, 129.5, 128.9, 127.2, 122.7, 34.2, 23.7. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₆N₂NaO₂ 291.1104, Found 291.1099.

(Z)-1-([1,1'-biphenyl]-4-yl)-2-benzoyldiazene 1-oxide (3ac). Prepared according to the general procedure using 0.0442 g (0.2 mmol) of 1a, 0.1086 g (0.60 mmol) of 2c, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0336 g (0.20 mmol, 55% yield) of 3ac as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 8.6 Hz, 2H), 8.00 (d, *J* = 7.6 Hz, 2H), 7.74 (d, *J* = 8.6 Hz, 2H), 7.65-7.61 (m, 3H), 7.51-7.48 (m, 4H), 7.45-7.41 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 177.5, 146.4, 145.4, 139.1, 134.5, 131.3, 129.5, 129.1, 129.0, 128.7, 127.7, 127.4, 123.1. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₁₅N₂O₂ 303.1129, Found 303.1136.

(Z)-2-benzoyl-1-(4-methoxyphenyl) diazene 1-oxide (3ad). Prepared according to the general procedure using 0.0442 g (0.2 mmol) of 1a, 0.0822 g (0.60 mmol) of 2d, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (5:1) as the eluent to give 0.0390 g (0.20 mmol, 76% yield) of 3ad as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, *J* = 9.2 Hz, 2H), 7.99 (d, *J* = 7.4 Hz, 2H), 7.62-7.58 (m, 1H), 7.51-7.47 (m, 2H), 6.99 (d, *J* = 9.2 Hz, 2H), 3.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.5, 163.7, 139.6, 134.4, 131.5, 129.5, 129.0, 124.6, 114.0, 55.9. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₃N₂O₃ 257.0921, Found 257.0924.

(Z)-2-benzoyl-1-(4-chlorophenyl) diazene 1-oxide (3ae). Prepared according to the general procedure using 0.0443 g (0.2 mmol) of 1a, 0.0848 g (0.60 mmol) of 2e, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0370 g (0.20 mmol, 71% yield) of **3ae** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 9.6, 2.3 Hz, 2H), 8.13-7.84 (m, 2H), 7.66-7.62 (m, 1H), 7.57-7.44 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 177.1, 144.8, 139.9, 134.7, 131.1, 129.5, 129.4, 129.1, 124.0. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₉ClN₂NaO₂ 283.0245, Found 283.0244.

(Z)-1-(4-acetylphenyl)-2-benzoyldiazene 1-oxide (3af). Prepared according to the general procedure using 0.0444 g (0.2 mmol) of 1a, 0.0896 g (0.60 mmol) of 2f, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (5:1) as the eluent to give 0.0407 g (0.20 mmol, 76% yield) of 3af as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.39 (d, *J* = 8.4 Hz, 2H), 8.12 (d, *J* = 8.4 Hz, 2H), 7.98 (d, *J* = 8.4 Hz, 2H), 7.66-7.63 (m, 1H), 7.52-7.49 (m, 2H), 2.69 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.4, 177.0, 149.0, 140.6, 134.7, 132.8, 129.5, 129.2, 129.1, 122.9, 26.9. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₂N₂NaO₃ 291.0741, Found 291.0739.

(Z)-1-(4-acetamidophenyl)-2-benzoyldiazene 1-oxide (3ag). Prepared according to the general procedure using 0.0442 g (0.2 mmol) of 1a, 0.0984 g (0.60 mmol) of 2g, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (3:1) as the eluent to give 0.0442 g (0.20 mmol 78%

yield) of **3ag** as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 9.1 Hz, 2H), 7.98 (d, *J* = 7.4 Hz, 2H), 7.85 (br, 1H), 7.70 (d, *J* = 9.1 Hz, 2H), 7.62 (d, *J* = 7.4 Hz, 1H), 7.51-7.46 (m, 2H), 2.24 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.2, 169.4, 135.5, 133.4, 132.2, 132.0, 129.3, 128.6, 128.1, 127.4, 41.8. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₅H₁₃N₃NaO₃ 306.0850, Found 306.0849.

(Z)-2-benzoyl-1-(3-carbamoylphenyl)diazene 1-oxide (3ah). Prepared according to the general procedure using 0.0442 g (0.2 mmol) of 1a, 0.0902 g (0.60 mmol) of 2h, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (2:1) as the eluent to give 0.0420 g (0.20 mmol, 78% yield) of 3ah as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 8.42 (d, *J* = 8.0 Hz, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 2H), 7.66-7.62 (m, 2H), 7.51-7.45 (m, 2H), 6.65 (br, 1H), 6.36 (br, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 179, 167.6, 146.5, 134.8, 132.4, 130.9, 130.1, 129.8, 129.5, 129.1, 128.4, 125.8, 121.4, 121.4. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₁N₃NaO₃ 292.0693, Found 292.0699.

(Z)-2-benzoyl-1-(2-methoxyphenyl)diazene 1-oxide (3ai). Prepared according to the general procedure using 0.0442 g (0.2 mmol) of 1a, 0.0902 g (0.60 mmol) of 2i, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0389 g (0.16 mmol, 81% yield) of 3ai as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.05-7.97 (m, 2H), 7.86 (d, *J* = 7.7 Hz, 1H), 7.72-7.60 (m, 1H), 7.53-7.50 (m, 2H), 7.48-7.45 (m, 1H), 7.37-7.35 (m, 2H), 2.58 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 177.0, 147.6, 134.5, 132.3, 131.4, 129.5, 129.0, 126.8, 123.8, 19.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₄H₁₃N₂O₂ 241.0972, Found 241.0974.

(Z)-2-benzoyl-1-(2-bromophenyl)diazene 1-oxide (3aj). Prepared according to the general procedure using 0.0443 g (0.2 mmol) of 1a, 0.1122 g (0.60 mmol) of 2j, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0515 g (0.20 mmol, 85% yield) of 3aj as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 7.6 Hz, 2H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.68-7.66 (m, 1H), 7.51-7.47 (m, 3H), 7.43-7.39 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 176.3, 148.0, 134.8, 134.5, 132.0, 130.8, 129.9, 129.1, 128.4, 125.4, 114.6. HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₉BrN₂NaO₂ 326.9740, Found 326.9739.

(Z)-2-benzoyl-1-(2,4-difluorophenyl)diazene 1-oxide (3ak). Prepared according to the general procedure using 0.0443 g (0.2 mmol) of 1a, 0.0858 g (0.60 mmol) of 2k, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0221 g (0.20 mmol, 42% yield) of **3ak** as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.10 (s, 1H), 7.82 (d, *J* = 7.6 Hz, 2H), 7.57-7.54 (m, 1H), 7.49-7.46 (m, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 6.61-6.57 (m, 1H). ¹³C NMR (126 MHz, DMSO) δ 161.2, 159.5 (d, *J* = 14.5 Hz), 157.5(d, *J* = 14.5 Hz), 135.4 (t, *J* = 13.4 Hz), 129.5, 127.6, 124.2, 122.3, 98.5(d, *J* = 8.0 Hz), 98.4 (d, *J* = 8.0 Hz), 95.0 (t, *J* = 25.6 Hz). HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₃H₈F₂N₂NaO₂ 285.0447, Found 285.0450.

(Z)-2-(4-(tert-butyl)benzoyl)-1-(4-methoxyphenyl)diazene 1-oxide (3al). Prepared according to the general procedure using 0.0594 g (0.2 mmol) of 1d, 0.0822 g (0.60 mmol) of 2d, 0.0040 g (0.02

mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA filtered and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (5:1) as the eluent to give 0.0518 g (0.20 mmol, 83% yield) of **3al** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.4 Hz, 2H), 7.91 (d, *J* = 7.2 Hz, 2H), 7.49 (d, *J* = 7.2 Hz, 2H), 6.98 (d, *J* = 8.4 Hz, 2H), 3.90 (s, 3H), 1.33 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 163.6, 158.3, 129.4, 126.0, 124.6, 114.0, 55.8, 35.3, 31.0. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₁N₂O₃ 313.1547, Found 313.1547.

Substrate scope of N-OR amides.

O Ph N ^{OR²} R ¹ 1aa-1ad	 + Ph ^{_N} _O <u>FeCI</u> DCI 2a	₂ ^{•4H} ₂O (10 mol%) E, 80 °C, air, 12 h	0 0 Ph N ^{∽ N} + 3a
O Ph N ^{-OAc} H 1aa , 71%	0 Ph ↓ N OMe 1ab, 53%	Ph N OH H 1ac , n.r.	O Ph N ^{OPiv} CH ₃ 1ad, n.r.

Prepared according to the general procedure using 0.0358 g (0.2 mmol) of **1aa**, 0.0642 g (0.60 mmol) of **2a**, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, the reaction mixture was diluted with EA, filtered, and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (10:1) as the eluent to give 0.0321 g (0.14 mmol, 71% yield) of **3a** as a yellow oil.

Prepared according to the general procedure using 0.0302 g (0.2 mmol) of **1ab**, 0.0642 g (0.60 mmol) of **2a**, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h, added with EA (5 mL) to dilute, the reaction mixture was diluted with EA, filtered, and concentrated under reduced pressure. The resulted residue was purified by flash column chromatography on silica gel PE/EA (1:10) as the eluent to give 0.0240 g (0.14 mmol, 53% yield) of **3a** as a yellow oil.

Prepared according to the general procedure using 0.0275 g (0.2 mmol) of **1ac**, 0.0642 g (0.60 mmol) of **2a**, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h. the reaction was monitored by ¹H NMR and no desired product was observed.

Prepared according to the general procedure using 0.0471 g (0.2 mmol) of **1ad**, 0.0642 g (0.60 mmol) of **2a**, 0.0040 g (0.02 mmol) of FeCl₂·4H₂O and 1 mL of DCE. After stirring at 80 °C for 12 h. the reaction was monitored by ¹H NMR and no desired product was observed.

IV. Gram-Scale Reaction.

$$Ph \stackrel{O}{H} \stackrel{OPiv}{H} + Ph \stackrel{N \circ O}{\longrightarrow} O \stackrel{FeCl_{2} \cdot 4H_{2}O}{DCE, 80 °C, 12 h} \stackrel{O}{\longrightarrow} O \stackrel{O}{\longrightarrow} Ph \stackrel{N \circ Ph}{\longrightarrow} Ph$$
1a 2a 3a, 1.07 g, 79% yield

A 25 mL Schlenk flask was charged with 1.33 g (6 mmol) of **1a**, 1.93 g (18 mmol), 0.0120 g $FeCl_2$ ·4H₂O. The reaction mixture was stirred at 80 °C for 12 h, added with EA to dilute, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography using solution PE/EA (10:1) as the eluent to give 1.07 g (4.74 mmol, 79% yield) of **3a** as a yellow oil.

V. Further Derivatizations.

A 10 mL Schlenk flask was charged with 0.0452 (0.20 mmol) of **3a**, 0.0508 g (0.20 mmol) of I₂, 0.0183 g (0.48 mmol) of NaBH₄ and (1 mL) THF under nitrogen atmosphere. The reaction mixture was stirred at reflux for 12 h, added with EA to dilute, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography using solution PE/EA (4:1) as the eluent to give 0.0349 g (0.20 mmol, 82% yield) of **4** as a white solid.⁵ ¹H NMR (400 MHz, DMSO-d₆) δ 10.36 (s, 1H), 7.93-7.90 (m, 3H), 7.58-7.50 (m, 1H), 7.50 (m, 2H), 7.15-7.13 (m, 2H), 6.80 (d, *J* = 7.7 Hz, 2H), 6.74-6.70 (m, 1H).

Prepared according to a previously reported procedure,⁶ a 10 mL Schlenk flask was charged with

⁵ R. Liu, Z. Li, S. Liu, J. Zheng, B. Cheng, R. Yu, H. Geng, J. Agric. Food Chem., 2023, 71, 6803-6817.

⁶ Y. Yan, Z. Zhang, Y. Wan, G. Zhang, M. Ma, Q. Liu, J. Org. Chem., 2017, 82, 7957-7963.

0.0512 g (0.20 mmol) of **3e**, 0.0080 g (0.04 mmol) of FeCl₂·4H₂O, 1 mL (0.2 M) of MeCN. The reaction mixture was stirred at 100 °C for 12 h, added with EA to dilute, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography using solution PE/EA (2:1) as the eluent to give 0.0154 g (0.20 mmol, 57% yield) of **5** as a white solid. ¹H NMR (400 MHz, DMSO-d₆) δ 9.90 (s, 1H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.30-7.26 (m, 2H), 7.04-7.00 (m, 1H), 2.04 (s, 3H).

Prepared according to a previously reported procedure,⁶ a 10 mL Schlenk flask was charged with 0.0512 g (0.20 mmol) of **3e**, 0.0080 g (0.04 mmol) of FeCl₂·4H₂O, 1 mL (0.2 M) of 2-methoxyacetonitrile. The reaction mixture was stirred at 100 °C for 12 h, added with EA (5 mL) to dilute, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography using solution PE/EA (2:1) as the eluent to give 0.0168 g (0.20 mmol, 51% yield) of **6** as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.25 (br, 1H), 7.57 (d, *J* = 6.5 Hz, 2H), 7.34 (s, 2H), 7.13 (s, 1H), 4.02 (s, 2H), 3.51 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 167.6, 137.1, 129.1, 124.5, 119.8, 72.1, 59.3.

VI. NMR Spectra

S**69**

