Supporting Information

Nickel/Photoredox-Catalyzed Carbonylative Transformations of α-

Phosphorus-, α-Sulfur-, α-Boron-Substituted Alkyl Halides

Le-Cheng Wang ^{a,b} and Xiao-Feng Wu ^{*a,b}

^{a.} Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, China. E-mail: xwu2020@dicp.ac.cn

^{b.} Leibniz-Institut für Katalyse e.V., 18059 Rostock, Germany. E-mail: Xiao-Feng.Wu@catalysis.de

Contents

1. General Information	S1
2. Synthesis of the Starting Materials	S2
3. Optimization of the Reaction Conditions	S3
Table S1. Optimization of the Reaction Conditions	S3
Table S2. Control reactions	S4
Table S3. Research on other methods and alkyl halides	S5
4. General Procedure	S5
General procedure for carbonylation of α -bromo alkyl phosphates with nucleophiles	S5
General procedure for carbonylation of α -bromo alkyl phosphates with alkyl bromides	S5
General procedure for four-component carbonylation of vinyl phosphonate	S5
General procedure for 1 mmol scale synthesis	S6
5. Synthetic applications.	S7
Synthesis of Wittig-Horner reagent	S7
Synthesis of P-ligand	S8
6. Mechanism Studies	S8
7. Competition between primary and second α -phosphate halides	S9
8. Testing the reactivity of 3-iodopropanol	S9
9. Spectroscopic Data of Products	S11
10. References	S47
11. Spectra Data for the Compounds	S48

1. General Information

Reagents, solvents, and analytical methods:

Unless otherwise noted, all reactions were carried out under carbon monoxide or nitrogen atmosphere. The reagents were ordered from Adamas-beta®, Energy Chemical, Sigma-Aldrich, Bidepharm and used without purification. All solvents were dried by standard techniques and distilled prior to use. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (bp. 60–90 °C), dichloromethane and ethyl acetate as eluent. All NMR spectra were recorded at ambient temperature using Bruker Avance III 400 MHz NMR (¹H, 400 MHz; ¹³C {1H}, 101 MHz, ¹⁹F 376 MHz), Bruker AVANCE III HD 700 MHz NMR spectrometers (¹H, 700 MHz; ¹³C{1H}, 176 MHz). 1H NMR chemical shifts are reported relative to TMS and were referenced via residual proton resonances of the corresponding deuterated solvent (CDCl₃: 7.26 ppm; d₆-DMSO: 2.50 ppm) whereas 13C{1H} NMR spectra are reported relative to TMS via the carbon signals of the deuterated solvent (CDCl₃: 77.0 ppm; d₆-DMSO: 39.5 ppm. Data for ¹H are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, br = broad), coupling constant (Hz), and integration. All ¹³C NMR spectra were broad-band ¹H decoupled. All reactions were monitored by GC-FID or NMR analysis. HRMS data was obtained with Micromass HPLC-Q-TOF mass spectrometer (ESI-TOF) or Agilent 6540 Accurate-MS spectrometer (Q-TOF).

NOTE: Carbon monoxide should only be handled in a well-ventilated fume hood. The laboratory should be well-equipped with a CO detector and alarm system.

Figure S1. Photochemical Setup

2. Synthesis of the Starting Materials

List of *a*-Heteroatom Phosphorus and Sulfur Alkyl Halides

$$R_{1}CHO + H \xrightarrow{O}_{\substack{H \\ OR_{2}}}^{O} \underbrace{Et_{3}N, DCM, r.t.}_{OR_{2}} \xrightarrow{OH}_{R_{1}} \xrightarrow{OPh_{3}, CBr_{4}}_{toluene, reflux} \xrightarrow{R_{1}}_{R_{2}O} \xrightarrow{Ph_{3}, CBr_{4}}_{r_{2}OR_{2}}$$

Preparation of α -Bromophosphonates

According to the reported literature, α -bromophosphonates (**RM1-RM13**) were conveniently synthesized in gram scale.^[1-3]

$$R_{1}CHO + H \stackrel{H}{\xrightarrow{H}} Ar \xrightarrow{Et_{3}N, DCM, r.t.} R_{1} \stackrel{OH}{\xrightarrow{\mu'}} Ar \xrightarrow{PBr_{3}, DCM} R_{1} \stackrel{Br}{\xrightarrow{\mu'}} Ar$$

Preparation of α-Bromoalkyldiarylphosphine Oxides

According to the reported literature, α -bromoalkyldiarylphosphine oxides (**RM14-RM19**) were conveniently synthesized in gram scale.^[2-3]

Preparation of α -Bromosulfones

According to the reported literature, α -bromosulfones (**RM20-RM24**) were conveniently synthesized in gram scale.^[4]

3. Optimization of the Reaction Conditions

Table S1. Optimization of the Reaction Conditions

Ph	$Ph \underbrace{\begin{array}{c} Br \\ Ph \\ Eto \\ 1a \end{array}}^{O} + PhNH_2 + CO$		Ni(acac) ₂ (5 mol%), L1 (6 mol%) <u>4</u> -CzIPN (1 mol%), KI (10 mol%) Cs ₂ CO ₃ (1.5 equiv.), MeCN (2 mL) 24 h, blue LEDs (30 W)		(EtO)₂P ≤0 Ph → → → NHPh + 3a		Ph Eto OEt by-product (5-30%)	
Entry	1a eq.	2a eq.	Catlyst	Ligand	PC	Base	Solcent	Yield %
1	1.2	1	Ni(acac) ₂	L1	4-CzIPN	Cs ₂ CO ₃	MeCN	68
2	1.2	1	NiBr ₂ ·DME	L1	4-CzIPN	Cs ₂ CO ₃	MeCN	17
3	1.2	1	Ni(TMHD) ₂	L1	4-CzIPN	Cs ₂ CO ₃	MeCN	36
4	1.2	1	Ni(OTf)2	L1	4-CzIPN	Cs ₂ CO ₃	MeCN	10
5	1.2	1	NiI ₂	L1	4-CzIPN	Cs ₂ CO ₃	MeCN	8
6	1.2	1	Ni(hfac) ₂	L1	4-CzIPN	Cs ₂ CO ₃	MeCN	13
7	1.2	1	CuBr·DME	L1	4-CzIPN	Cs ₂ CO ₃	MeCN	0
8	1.2	1	Co(acac) ₂	L1	4-CzIPN	Cs ₂ CO ₃	MeCN	0
9	1.2	1	Ni(acac) ₂	L2-L18	4-CzIPN	Cs ₂ CO ₃	MeCN	0-20
10	1.2	1	Ni(acac) ₂	L1	Acr-Mes ⁺ ClO ₄ ⁻	Cs ₂ CO ₃	MeCN	2
11	1.2	1	Ni(acac) ₂	L1	fac-Ir(ppy) ₃	Cs ₂ CO ₃	MeCN	59
12	1.2	1	Ni(acac) ₂	L1	Ru(bpy) ₃ Cl ₂ 6H ₂ O	Cs ₂ CO ₃	MeCN	17
13	1.2	1	Ni(acac) ₂	L1	4-CzIPN	Na ₂ CO ₃	MeCN	53
14	1.2	1	Ni(acac) ₂	L1	4-CzIPN	K ₃ PO ₄	MeCN	62
15	1.2	1	Ni(acac) ₂	L1	4-CzIPN	K ₂ HPO ₄	MeCN	24
16	1.2	1	Ni(acac) ₂	L1	4-CzIPN	KOMe	MeCN	4

17	1.2	1	Ni(acac) ₂	L1	4-CzIPN	DiPEA	MeCN	0
18	1.2	1	Ni(acac) ₂	L1	4-CzIPN	NEt ₃	MeCN	0
19	1.2	1	Ni(acac) ₂	L1	4-CzIPN	Cs_2CO_3	PhCF ₃	62
20	1.2	1	Ni(acac) ₂	L1	4-CzIPN	Cs_2CO_3	THF	10
21	1.2	1	Ni(acac) ₂	L1	4-CzIPN	Cs ₂ CO ₃	DMAc	0
22	1.2	1	Ni(acac) ₂	L1	4-CzIPN	Cs_2CO_3	DCE	0
23	1.2	1	Ni(acac) ₂	L1	4-CzIPN	Cs ₂ CO ₃	Toluene	5
23	1.2	1	Ni(acac) ₂	L1	4-CzIPN	Cs ₂ CO ₃	Dioxane	8
23	1.5	1	Ni(acac) ₂	L1	4-CzIPN	Cs ₂ CO ₃	MeCN	75
23	1	1.2	Ni(acac) ₂	L1	4-CzIPN	Cs ₂ CO ₃	MeCN	54
23	1	1.5	Ni(acac) ₂	L1	4-CzIPN	Cs ₂ CO ₃	MeCN	60
24 ^b	1.2	1	Ni(acac) ₂	L1	4-CzIPN	Cs ₂ CO ₃	MeCN	60
25 ^c	1.2	1	Ni(acac) ₂	L1	4-CzIPN	Cs ₂ CO ₃	MeCN	87
26 ^d	1.2	1	Ni(acac) ₂	L1	4-CzIPN	Cs_2CO_3	MeCN	93

Reaction conditions: **1a** (1.2 mL), **2a** (0.2 mmol), Ni(acac)₂ (5 mol%), **L1** (6 mol%), 4-CzIPN (1 mol%), Cs₂CO₃ (1.5 equiv.), CO (10 bar), 30W blue LEDs, 18-25 °C, 24 h. isolated yields. ^{*b*}1 bar CO. ^{*c*}KI (1 equiv.). ^{*d*}KI (10 mol%).

Br J	Ni(acac) ₂ (5 mol%), L1 (6 mol%) 4-CzIPN (1 mol%), KI (10 mol%)	(EtO)₂₽ ^{≈O}
Ph EtO 1a	+ PNNH ₂ + CO Cs ₂ CO ₃ (1.5 equiv.), MeCN (2 mL) 24 h, blue LEDs (30 W) 2a	Ph NHPh 3a
Entry	Variation from standard conditions	Yield %
1	none	93
2	Without Ni(acac) ₂	0
3	Without L1	0
4	Without 4-CzIPN	0
5	Without Cs ₂ CO ₃	0
6	Without light	0

Reaction conditions: **1a** (1.2 mL), **2a** (0.2 mmol), Ni(acac)₂ (5 mol%), **L1** (6 mol%), 4-CzIPN (1 mol%), Cs₂CO₃ (1.5 equiv.), CO (10 bar), 30W blue LEDs, 18-25 °C, 24 h. isolated yields.

Table S3. Research on other methods and alkyl halides

Reaction conditions: **1a** (1.2 mL), **2a** (0.2 mmol), Ni(acac)₂ (5 mol%), **L1** (6 mol%), 4-CzIPN (1 mol%), Cs₂CO₃ (1.5 equiv.), CO (10 bar), 30W blue LEDs, 18-25 °C, 24 h. isolated yields.

4. General Procedure

General procedure for carbonylation of α -bromo alkyl phosphates with nucleophiles

A 4 mL screw-cap vial was charged with Ni(acac)₂ (2.6 mg, 5 mol%), **L1** (4.0 mg, 6 mol%), 4-CzIPN (1.6 mg, 1 mol%), KI (3.3 mg, 10 mol%), Cs₂CO₃ (97.7 mg, 1.5 equiv.), and a stirring bar. The vial was closed by PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and connected with atmosphere with a needle. The vial was evacuated under vacuum and recharged with nitrogen for three times. After MeCN (2 mL), α -bromo alkyl phosphate (1.2 equiv.), and nucleophiles (0.2 mmol) were added with a syringe under nitrogen atmosphere. The vials (usually 8) were placed on an alloy plate, which was transferred into an autoclave with two inserted quartz-glass windows. After the autoclave was flushed three times, it was pressurised with 10 bar of CO and then irradiated with 30 W blue LEDs at 18-25 °C for 24 h. After completed, the reaction mixture was directly purified by column chromatographyon silica gel using petroleum ether and ethyl acetate to afford the corresponding product.

General procedure for carbonylation of α -bromo alkyl phosphates with alkyl bromides

A 4 mL screw-cap vial was charged with Ni(acac)₂ (2.6 mg, 5 mol%), L1 (4.0 mg, 6 mol%), 4-CzIPN (1.6 mg, 1 mol%), KI (3.3 mg, 10 mol%), Cs₂CO₃ (228.0 mg, 1.5 equiv.), and a stirring bar. The vial was closed by PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and connected with atmosphere with a needle. The vial was evacuated under vacuum and recharged with nitrogen for three times. After MeCN (2 mL), α -bromo alkyl phosphate (1.2 equiv.), and alkyl bromides (0.2 mmol) were added with a syringe under nitrogen atmosphere. The vials (usually 8) were placed on an alloy plate, which was transferred into an autoclave with two inserted quartz-glass windows. After the autoclave was flushed three times, it was pressurised with 10 bar of CO and then irradiated with 30 W blue LEDs at 18-25 °C for 24 h. After completed, the reaction mixture was directly purified by column chromatographyon silica gel using petroleum ether and ethyl acetate to afford the corresponding product.

General procedure for four-component carbonylation of vinyl phosphonate

A 4 mL screw-cap vial was charged with Ni(acac)₂ (2.6 mg, 5 mol%), L1 (4.0 mg, 6 mol%), 4-Ir(ppy)₃ (1.3 mg, 1 mol%), Cs₂CO₃ (97.7 mg, 1.5 equiv.), and a stirring bar. The vial was closed by PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and connected with atmosphere with a needle. The vial was evacuated under vacuum and recharged with nitrogen for three times. After MeCN (2 mL), vinyl phosphonate (1.5 equiv.), alcohols (0.2 mmol) and alkyl iodides (2.5 equiv.) were added with a syringe under nitrogen atmosphere. The vials (usually 8) were placed on an alloy plate, which was transferred into an autoclave with two inserted quartz-glass windows. After the autoclave was flushed three times, it was pressurised with 10 bar of CO and then irradiated with 30 W blue LEDs at 18-25 °C for 24 h. After completed, the reaction mixture was directly purified by column chromatographyon silica gel using petroleum ether and ethyl acetate to afford the corresponding product.

General procedure for 1 mmol scale synthesis

A 20 mL screw-cap vial was charged with Ni(acac)₂ (13 mg, 5 mol%), **L1** (20 mg, 6 mol%), 4-CzIPN (8 mg, 1 mol%), KI (16.5 mg, 10 mol%), Cs₂CO₃ (488.5 mg, 1.5 equiv.), and a stirring bar. The vial was closed by PTFE/white rubber septum and phenolic cap and connected with atmosphere with a needle. The vial was evacuated under vacuum and recharged with nitrogen for three times. After MeCN (10 mL), α -bromo alkyl phosphate (400.8 mg, 1.2 equiv.), and aniline (93.1 mg, 1 mmol) were added with a syringe under nitrogen atmosphere. The vial was placed on an alloy plate, which was transferred into an autoclave with two inserted quartz-glass windows. After the autoclave was flushed three times, it was pressurised with 10 bar of CO and then irradiated with 30 W blue LEDs at 18-25 °C for 24 h. After completed, the reaction mixture was directly purified by column chromatographyon silica gel using petroleum ether and ethyl acetate to afford the corresponding product (0.27 g).

5. Synthetic applications.

Synthesis of Wittig-Horner reagent

A 4 mL screw-cap vial was charged with Ni(acac)₂ (2.6 mg, 5 mol%), L1 (4.0 mg, 6 mol%), 4-CzIPN (1.6 mg, 1 mol%), Cs₂CO₃ (97.7 mg, 1.5 equiv.), and a stirring bar. The vial was closed by PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and connected with atmosphere with a needle. The vial was evacuated under vacuum and recharged with nitrogen for three times. After PhCF₃ (2 mL), α -iodide alkyl phosphate (1.2 equiv.) and ethanol (0.2 mmol) were added with a syringe under nitrogen atmosphere. The vial was placed on an alloy plate, which was transferred into an autoclave with two inserted quartz-glass windows. After the autoclave was flushed three times, it was pressurised with 10 bar of CO and then irradiated with 30 W blue LEDs at 18-25 °C for 24 h. After completed, the reaction mixture was directly purified by column chromatographyon silica gel using petroleum ether and ethyl acetate to afford the corresponding Wittig-Horner reagent **10**.

Synthesis of P-ligand

A 4 mL screw-cap vial was charged with Ni(acac)₂ (2.6 mg, 5 mol%), L1 (4.0 mg, 6 mol%), 4-CzIPN (1.6 mg, 1 mol%), KI (3.3 mg, 10 mol%), Cs₂CO₃ (97.7 mg, 1.5 equiv.), and a stirring bar. The vial was closed by PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and connected with atmosphere with a needle. The vial was evacuated under vacuum and recharged with nitrogen for three times. After MeCN (2 mL), α -bromo alkyl phosohine oxide (1.2 equiv.) and aniline (0.2 mmol) were added with a syringe under nitrogen atmosphere. The vials were placed on an alloy plate, which was transferred into an autoclave with two inserted quartz-glass windows. After the autoclave was flushed three times, it was pressurised with 10 bar of CO and then irradiated with 30 W blue LEDs at 18-25 °C for 24 h. After completed, the reaction mixture was directly purified by column chromatographyon silica gel using petroleum ether and ethyl acetate to afford the corresponding product **5s**.

According to the reported literature,^[9] the diphenylphosphine oxide (83.8 mg, 0.25 mmol) and $Cu(OTf)_2$ (9 mg, 10 mol%) were added in a 10 mL schlenk tube at room temperature. TMDS (66.7 mg, 0.5 mmol) and toluene (2 mL) were added under argon flow. The reaction mixture was stirred for 2 h at 100 °C. After completed, the reaction mixture was directly purified by column chromatographyon silica gel using petroleum ether and ethyl acetate to afford the corresponding ligand **11**.

6. Mechanism Studies

Radical chain mechanism studies

A 4 mL screw-cap vial was charged with Ni(acac)₂ (2.6 mg, 5 mol%), L1 (4.0 mg, 6 mol%), 4-CzIPN (1.6 mg, 1 mol%), KI (3.3 mg, 10 mol%), Cs₂CO₃ (97.7 mg, 1.5 equiv.), TEMPO (2 equiv.) / DPE (2 equiv.), and a stirring bar. The vial was closed by PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and connected with atmosphere with a needle. The vial was evacuated under vacuum and recharged with nitrogen for three times. After MeCN (2 mL), α -bromo alkyl phosphate (1.2 equiv.), and aniline (0.2 mmol) were added with a syringe under nitrogen atmosphere. The vials were placed on an alloy plate, which was transferred into an autoclave with two inserted quartz-glass windows. After the autoclave was flushed three times, it was pressurised with 10 bar of CO and then irradiated with 30 W blue LEDs at 18-25 °C for 24 h. After completed, the reaction results were detected by GC and GC-MS analysis.

7. Competition between primary and second α-phosphate halides

A 4 mL screw-cap vial was charged with Ni(acac)₂ (2.6 mg, 5 mol%), **L1** (4.0 mg, 6 mol%), 4-CzIPN (1.6 mg, 1 mol%), KI (3.3 mg, 10 mol%), Cs₂CO₃ (97.7 mg, 1.5 equiv.), and a stirring bar. The vial was closed by PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and connected with atmosphere with a needle. The vial was evacuated under vacuum and recharged with nitrogen for three times. After MeCN (2 mL), α -bromo alkyl phosohine oxide **1pp** (1.2 equiv.) and **1ss** (1.2 equiv.), and aniline (0.2 mmol) were added with a syringe under nitrogen atmosphere. The vials were placed on an alloy plate, which was transferred into an autoclave with two inserted quartz-glass windows. After the autoclave was flushed three times, it was pressurised with 10 bar of CO and then irradiated with 30 W blue LEDs at 18-25 °C for 24 h. After completed, the reaction mixture was directly purified by column chromatographyon silica gel using petroleum ether and ethyl acetate to afford the corresponding products.

8. Testing the reactivity of 3-iodopropanol

A 4 mL screw-cap vial was charged with Ni(acac)₂ (2.6 mg, 5 mol%), **L1** (4.0 mg, 6 mol%), 4-CzIPN (1.6 mg, 1 mol%), KI (3.3 mg, 10 mol%), Cs₂CO₃ (condition a: 97.7 mg, 1.5 equiv. condition b: 228.0 mg, 3.5 equiv.), and a stirring bar. The vial was closed by PTFE/white rubber septum (Wheaton 13 mm Septa) and phenolic cap and connected with atmosphere with a needle. The vial was evacuated under vacuum and recharged with nitrogen for three times. After MeCN (2 mL), α -bromo alkyl phosphate (1.2 equiv.), and 3-iodopropanol (0.2 mmol) were added with a syringe under nitrogen atmosphere. The vials were placed on an alloy plate, which was transferred into an autoclave with two inserted quartz-glass windows. After the autoclave was flushed three times, it was pressurised with 10 bar of CO and then irradiated with 30 W blue LEDs at 18-25 °C for 24 h. After completed, the reaction mixture was directly purified by column chromatographyon silica gel using petroleum ether and ethyl acetate to afford the corresponding product.

9. Spectroscopic Data of Products

Diethyl (1-oxo-4-phenyl-1-(phenylamino)butan-2-yl)phosphonate (3a)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:3) to afford the title compound as a brown liquid (64.5 mg, 86% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 8.81 (s, 1H), 7.53 (d, *J* = 7.4 Hz, 2H), 7.31 – 7.24 (m, 4H), 7.22 – 7.15 (m, 3H), 7.06 (t, *J* = 7.4 Hz, 1H), 4.27 – 3.93 (m, 4H), 3.01 – 2.93 (m, 1H), 2.93 – 2.84 (m, 1H), 2.72 – 2.54 (m, 1H), 2.54 – 2.30 (m, 1H), 2.20 – 2.02 (m, 1H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.28 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.3, 140.7, 138.0, 128.8, 128.6, 128.5, 126.2, 124.2, 119.8, 63.2 (d, J = 6.7 Hz), 62.6 (d, J = 6.7 Hz), 45.8 (d, J = 129.0 Hz), 34.1 (d, J = 14.6 Hz), 28.5 (d, J = 4.3 Hz), 16.4 (d, J = 6.5 Hz), 16.3. (d, J = 6.3 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 25.42.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₇NO₄P⁺ 376.1672; Found: 376.1678.

Diethyl (1-((4-(tert-butyl)phenyl)amino)-1-oxo-4-phenylbutan-2-yl)phosphonate (3b)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:3) to afford the title compound as a brown liquid (63.8 mg, 74% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 8.72 (s, 1H), 7.46 (d, *J* = 8.1 Hz, 2H), 7.37 – 7.24 (m, 4H), 7.23 – 7.12 (m, 3H), 4.84 – 3.90 (m, 4H), 3.05 – 2.76 (m, 2H), 2.73 – 2.54 (m, 1H), 2.52 – 2.28 (m, 1H), 2.25 – 1.98 (m, 1H), 1.41 – 1.19 (m, 15H).

¹³C NMR (101 MHz, CDCl₃) δ 165.2, 147.1, 140.8, 135.3, 128.6, 128.4, 126.1, 125.6, 119.6, 63.1 (d, J = 6.5 Hz), 62.6 (d, J = 6.4 Hz), 45.8 (d, J = 128.7 Hz), 34.3, 34.0 (d, J = 14.5 Hz), 31.3, 28.5 (d, J = 4.3 Hz), 16.4 (d, J = 6.1 Hz), 16.3 (d, J = 6.4 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 25.49.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₄H₃₅NO₄P⁺ 432.2298; Found: 432.2305.

Diethyl (1-((4-methoxyphenyl)amino)-1-oxo-4-phenylbutan-2-yl)phosphonate (3c)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 1:2) to afford the title compound as a brown liquid (34.0 mg, 42% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 8.63 (s, 1H), 7.44 (d, *J* = 9.0 Hz, 2H), 7.38 – 7.22 (m, 2H), 7.22 – 6.91 (m, 3H), 6.81 (d, J = 9.0 Hz, 2H), 4.30 – 3.91 (m, 4H), 3.77 (s, 3H), 3.12 – 2.80 (m, 2H), 2.74 – 2.55 (m, 1H), 2.53 – 2.30 (m, 1H), 2.25 – 2.05 (m, 1H), 1.50 – 1.10 (m, 6H).

¹³**C NMR (101 MHz, CDCl₃)** δ 165.1, 156.3, 140.8, 131.2, 128.6, 128.4, 126.1, 121.5, 114.0, 63.1 (d, J = 6.7 Hz), 62.6 (d, J = 6.8 Hz), 55.4, 45.7 (d, J = 129.0 Hz), 34.1 (d, J = 14.5 Hz), 28.5 (d, J = 4.4 Hz), 16.4 (d, J = 5.9 Hz), 16.3 (d, J = 6.2 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 25.59.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₂₉NO₅P⁺ 406.1778; Found: 406.1787.

Diethyl (1-((4-fluorophenyl)amino)-1-oxo-4-phenylbutan-2-yl)phosphonate (3d)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:3) to afford the title compound as a brown liquid (55.0 mg, 70% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ¹⁹F NMR, ³¹P NMR, and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 9.14 (s, 1H), 7.50 – 7.42 (m, 2H), 7.37 – 7.23 (m, 2H), 7.23 – 7.08 (m, 3H), 6.90 (t, J = 8.7 Hz, 2H), 4.26 – 4.09 (m, 2H), 4.08 – 3.88 (m, 2H), 3.07 – 2.92 (m, 1H), 2.89 – 2.73 (m, 1H), 2.73 – 2.54 (m, 1H), 2.54 – 2.29 (m, 1H), 2.18 – 1.96 (m, 1H), 1.34 (t, J = 7.1 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.4 (d, J = 2.5 Hz), 159.2 (d, J = 243.1 Hz), 140.7, 134.2 (d, J = 2.8 Hz), 128.6, 128.4, 126.2, 121.3 (d, J = 7.8 Hz), 115.3 (d, J = 22.4 Hz), 63.4 (d, J = 6.6 Hz), 62.4 (d, J = 6.8 Hz), 45.7 (d, J = 129.1 Hz), 34.1 (d, J = 15.0 Hz), 28.5 (d, J = 4.7 Hz), 16.4 (d, J = 5.9 Hz), 16.3 (d, J = 6.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ -118.54.

³¹P NMR (162 MHz, CDCl₃) δ 25.33.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₆FNO₄P⁺ 394.1578; Found: 394.1582.

Diethyl (1-((4-chlorophenyl)amino)-1-oxo-4-phenylbutan-2-yl)phosphonate (3e)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:3) to afford the title compound as a brown liquid (67.9 mg, 83% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 9.43 (s, 1H), 7.42 (d, *J* = 8.8 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 2H), 7.18 (t, *J* = 7.6 Hz, 3H), 7.12 (d, *J* = 8.9 Hz, 2H), 4.28 – 4.09 (m, 2H), 4.09 – 3.75 (m, 2H), 3.35 – 2.94 (m, 1H), 2.94 – 2.75 (m, 1H), 2.69 – 2.51 (m, 1H), 2.51 – 2.31 (m, 1H), 2.26 – 1.96 (m, 1H), 1.35 (t, *J* = 7.1 Hz, 3H), 1.24 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.5 (d, J = 2.8 Hz), 140.7, 136.8, 128.8, 128.61, 128.56, 128.4, 126.1, 120.7, 63.5 (d, J = 6.6 Hz), 62.2 (d, J = 6.9 Hz), 45.9 (d, J = 129.4 Hz), 34.1 (d, J = 15.2 Hz), 28.5 (d, J = 4.8 Hz), 16.4 (d, J = 5.9 Hz), 16.2 (d, J = 6.1 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 25.14.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₆ClNO₄P⁺ 410.1282; Found: 410.1286.

Diethyl (1-((4-bromophenyl)amino)-1-oxo-4-phenylbutan-2-yl)phosphonate (3f)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:3) to afford the title compound as a brown liquid (73.4 mg, 81% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 9.35 (s, 1H), 7.38 (d, *J* = 8.9 Hz, 2H), 7.33 – 7.23 (m, 4H), 7.23 – 7.11 (m, 3H), 4.33 – 4.08 (m, 2H), 4.06 – 3.84 (m, 2H), 3.28 – 2.92 (m, 1H), 2.91 – 2.73 (m, 1H), 2.62 – 2.52 (m, 1H), 2.51 – 2.37 (m, 1H), 2.26 – 1.95 (m, 1H), 1.34 (t, *J* = 7.0 Hz, 3H), 1.25 (t, *J* = 7.0 Hz, 3H).

¹³**C NMR** (**101 MHz, CDCl**₃) δ 165.5 (d, *J* = 2.7 Hz), 140.7, 137.2, 131.6, 128.6, 128.4, 126.1, 121.0, 116.5, 63.5 (d, *J* = 6.7 Hz), 62.3 (d, *J* = 6.9 Hz), 45.9 (d, *J* = 129.0 Hz), 34.1 (d, *J* = 15.1 Hz), 28.5 (d, *J* = 4.8 Hz), 16.4 (d, *J* = 5.8 Hz), 16.3 (d, *J* = 6.2 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 25.16.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₆BrNO₄P⁺ 454.0777; Found: 454.0781.

Diethyl (1-oxo-4-phenyl-1-((4-(trifluoromethyl)phenyl)amino)butan-2-yl)phosphonate (3g)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:3) to afford the title compound as a brown liquid (61.1 mg, 69% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ¹⁹F NMR, ³¹P NMR, and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 9.64 (s, 1H), 7.57 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.5 Hz, 2H), 7.35 – 7.23 (m, 2H), 7.23 – 6.98 (m, 3H), 4.28 – 4.10 (m, 2H), 4.06 – 3.80 (m, 2H), 3.17 – 2.94 (m, 1H), 2.91 – 2.75 (m, 1H), 2.66 – 2.54 (m, 1H), 2.53 – 2.38 (m, 1H), 2.20 – 1.96 (m, 1H), 1.37 (t, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.9, 141.2, 140.6, 128.6, 128.5, 127.2 (q, J = 271.4 Hz), 126.2, 125.9, 125.4, 119.0, 63.5 (d, J = 6.7 Hz), 62.3 (d, J = 6.9 Hz), 45.9 (d, J = 129.0 Hz), 34.1 (d, J = 15.1 Hz), 28.5 (d, J = 4.8 Hz), 16.4 (d, J = 5.8 Hz), 16.3 (d, J = 6.2 Hz).

¹⁹F NMR (**376** MHz, CDCl₃) δ -62.25.

³¹P NMR (162 MHz, CDCl₃) δ 25.01.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₂₆F₃NO₄P⁺ 444.1546; Found: 444.1549.

Diethyl (1-oxo-4-phenyl-1-(o-tolylamino)butan-2-yl)phosphonate (3h)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:3) to afford the title compound as a brown liquid (51.3 mg, 66% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 8.37 (s, 1H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.25 – 7.16 (m, 5H), 7.07 (t, *J* = 7.5 Hz, 1H), 4.53 – 3.98 (m, 4H), 3.01 – 2.86 (m, 2H), 2.83 – 2.60 (m, 1H), 2.48 – 2.35 (m, 1H), 2.33 (s, 3H), 2.27 – 2.06 (m, 1H), 1.34 – 1.26 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 165.3 (d, *J* = 1.9 Hz), 140.7, 135.8, 130.5, 129.0, 128.6, 128.5, 126.6, 126.2, 125.0, 122.5, 63.0 (d, *J* = 6.9 Hz), 62.8 (d, *J* = 6.8 Hz), 45.6 (d, *J* = 128.5 Hz), 34.1 (d, *J* = 14.2 Hz), 28.7 (d, *J* = 4.3 Hz), 16.4 (d, *J* = 4.3 Hz), 16.3 (d, *J* = 4.5 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 25.89.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₂₉NO₄P⁺ 390.1829; Found: 390.1834.

Diethyl (1-oxo-4-phenyl-1-(m-tolylamino)butan-2-yl)phosphonate (3i)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:3) to afford the title compound as a brown liquid (63.8 mg, 82% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 8.92 (s, 1H), 7.38 – 7.31 (m, 2H), 7.31 – 7.24 (m, 2H), 7.23 – 7.15 (m, 3H), 7.13 (t, *J* = 7.8 Hz, 1H), 6.86 (d, *J* = 7.5 Hz, 1H), 4.28 – 4.11 (m, 2H), 4.11 – 3.90 (m, 2H), 3.17 – 2.91 (m, 1H), 2.91 – 2.75 (m, 1H), 2.74 – 2.55 (m, 1H), 2.56 – 2.35 (m, 1H), 2.28 (s, 3H), 2.19 – 1.99 (m, 1H), 1.32 (t, *J* = 7.0 Hz, 3H), 1.27 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.3 (d, J = 2.5 Hz), 140.8, 138.6, 137.9, 128.62, 128.57, 128.4, 126.1, 124.9, 120.3, 116.8, 63.2 (d, J = 6.8 Hz), 62.5 (d, J = 6.7 Hz), 45.8 (d, J = 128.8 Hz), 34.1 (d, J = 14.9 Hz), 28.5 (d, J = 4.7 Hz), 21.4, 16.4 (d, J = 5.9 Hz), 16.3 (d, J = 6.0 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 25.43.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₂₉NO₄P⁺ 390.1829; Found: 390.1835.

Diethyl (1-((3-methoxyphenyl)amino)-1-oxo-4-phenylbutan-2-yl)phosphonate (3j)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 1:2) to afford the title compound as a brown liquid

(64.0 mg, 79% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 9.17 (s, 1H), 7.31 – 7.24 (m, 2H), 7.24 – 7.13 (m, 4H), 7.13 – 6.99 (m, 2H), 6.57 (d, *J* = 7.6 Hz, 1H), 4.23 – 4.09 (m, 2H), 4.09 – 3.89 (m, 2H), 3.75 (s, 3H), 3.10 – 2.95 (m, 1H), 2.94 – 2.77 (m, 1H), 2.70 – 2.55 (m, 1H), 2.53 – 2.29 (m, 1H), 2.21 – 2.00 (m, 1H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.26 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR (101 MHz, CDCl₃)** δ 165.4 (d, *J* = 2.8 Hz), 159.8, 140.7, 139.3, 129.3, 128.6, 128.4, 126.1, 111.8, 110.2, 104.9, 63.3 (d, *J* = 6.7 Hz), 62.3 (d, *J* = 6.8 Hz), 55.1, 45.9 (d, *J* = 129.2 Hz), 34.0 (d, *J* = 15.0 Hz), 28.5 (d, *J* = 4.6 Hz), 16.4 (d, *J* = 5.9 Hz), 16.2 (d, *J* = 6.2 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 25.31.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₂₉NO₅P⁺ 406.1778; Found: 406.1781.

Diethyl (1-((3-bromophenyl)amino)-1-oxo-4-phenylbutan-2-yl)phosphonate(3k)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:3) to afford the title compound as a brown liquid (59.8 mg, 66% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 9.47 (s, 1H), 7.76 (t, *J* = 2.0 Hz, 1H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.34 – 7.24 (m, 2H), 7.23 – 7.15 (m, 3H), 7.10 (d, *J* = 8.9 Hz, 1H), 7.01 (t, *J* = 8.0 Hz, 1H), 4.35 – 4.14 (m, 3H), 4.09 – 3.82 (m, 2H), 3.11 – 2.95 (m, 1H), 2.91 – 2.76 (m, 1H), 2.68 – 2.52 (m, 1H), 2.20 – 1.96 (m, 1H), 1.36 (t, *J* = 7.0 Hz, 3H), 1.25 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.5, 140.7, 139.4, 129.9, 128.64, 128.60, 128.4, 126.8, 126.1, 122.3, 117.8, 63.6 (d, *J* = 6.5 Hz), 62.3 (d, *J* = 6.7 Hz), 45.8 (d, *J* = 129.0 Hz), 34.0 (d, *J* = 15.2 Hz), 28.5 (d, *J* = 5.0 Hz), 16.4 (d, *J* = 5.8 Hz), 16.3 (d, *J* = 6.1 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 25.14.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₆BrNO₄P⁺ 454.0777; Found: 454.0782

Diethyl (1-(naphthalen-2-ylamino)-1-oxo-4-phenylbutan-2-yl)phosphonate (3l)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:3) to afford the title compound as a brown liquid (73.1 mg, 86% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 9.37 (s, 1H), 8.19 (s, 1H), 7.64 (d, *J* = 8.1 Hz, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.54 (d, *J* = 8.8 Hz, 1H), 7.42 (d, *J* = 8.9 Hz, 1H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.32 – 7.23 (m, 3H), 7.22 – 7.14 (m, 3H), 4.33 – 4.14 (m, 2H), 4.12 – 3.94 (m, 2H), 3.17 – 2.99 (m, 1H), 2.96 – 2.82 (m, 1H), 7.95 (m, 2H), 7.95 (m,

1H), 2.76 – 2.59 (m, 1H), 2.57 – 2.43 (m, 1H), 2.29 – 2.03 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.28 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 165.6 (d, J = 2.8 Hz), 140.8, 135.6, 133.6, 130.4, 128.6, 128.4, 128.3, 127.5, 127.3, 126.10, 126.09, 124.6, 119.6, 116.3, 63.4 (d, J = 6.7 Hz), 62.4 (d, J = 6.9 Hz), 46.0 (d, J = 128.9 Hz), 34.1 (d, J = 15.0 Hz), 28.6 (d, J = 4.7 Hz), 16.4 (d, J = 5.9 Hz), 16.3 (d, J = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 25.39.

HRMS (**ESI-TOF**) **m/z**: [M+H]⁺ calcd for C₂₄H₂₉NO₄P⁺ 426.1829; Found: 426.1833.

Diethyl (1-(benzylamino)-1-oxo-4-phenylbutan-2-yl)phosphonate (3m)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:3) to afford the title compound as a brown liquid (48.2 mg, 62% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 4.4 Hz, 4H), 7.30 – 7.24 (m, 3H), 7.23 – 7.14 (m, 3H), 6.79 (s, 1H), 4.60 – 4.41 (m, 2H), 4.19 – 3.90 (m, 4H), 2.87 – 2.78 (m, 1H), 2.77 – 2.69 (m, 1H), 2.68 – 2.54 (m, 1H), 2.45 – 2.22 (m, 1H), 2.18 – 2.00 (m, 1H), 1.30 – 1.19 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 167.1 (d, J = 2.3 Hz), 140.7, 138.1, 128.58, 128.56, 128.4, 127.7, 127.4, 126.1, 62.7 (d, J = 6.8 Hz), 62.6 (d, J = 6.7 Hz), 45.1 (d, J = 129.5 Hz), 43.8, 34.0 (d, J = 14.8 Hz), 28.5 (d, J = 4.4 Hz), 16.3 (d, J = 2.2 Hz), 16.2 (d, J = 2.3 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 25.43.

HRMS (**ESI-TOF**) **m/z**: [M+H]⁺ calcd for C₂₁H₂₉NO₄P⁺ 390.1829; Found: 390.1834.

Diethyl (1-(butylamino)-1-oxo-4-phenylbutan-2-yl)phosphonate (3n)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 1:3) to afford the title compound as a brown liquid (59.6 mg, 84% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.33 – 7.25 (m, 2H), 7.23 – 7.12 (m, 3H), 6.49 (s, 1H), 4.20 – 3.92 (m, 4H), 3.47 – 3.07 (m, 2H), 3.00 – 2.77 (m, 1H), 2.77 – 2.52 (m, 2H), 2.41 – 2.19 (m, 1H), 2.15 – 2.00 (m, 1H), 1.57 – 1.47 (m, 2H), 1.45 – 1.34 (m, 2H), 1.34 – 1.23 (m, 6H), 0.93 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.0 (d, *J* = 2.3 Hz), 140.8, 128.5, 128.4, 126.1, 62.7 (d, *J* = 6.8 Hz), 62.5 (d, *J* = 6.8 Hz), 45.1 (d, *J* = 129.4 Hz), 39.5, 34.0 (d, *J* = 14.7 Hz), 31.5, 28.6 (d, *J* = 4.4 Hz), 19.9, 16.34 (d, *J* = 3.1 Hz), 16.28 (d, *J* = 3.0 Hz), 13.6.

³¹P NMR (162 MHz, CDCl₃) δ 25.83.

HRMS (**ESI-TOF**) **m**/**z**: [M+H]⁺ calcd for C₁₈H₃₁NO₄P⁺ 356.1985; Found: 356.1991.

Diethyl (1-(((3s,5s,7s)-adamantan-1-yl)amino)-1-oxo-4-phenylbutan-2-yl)phosphonate (3o)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 1:3) to afford the title compound as a brown liquid (66.7 mg, 77% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.32 – 7.25 (m, 2H), 7.24 – 7.14 (m, 3H), 6.03 (s, 1H), 4.36 – 3.87 (m, 4H), 2.86 – 2.75 (m, 1H), 2.72 – 2.48 (m, 2H), 2.39 – 2.17 (m, 1H), 2.15 – 1.99 (m, 10H), 1.77 – 1.62 (m, 6H), 1.33 – 1.23 (m, 6H).

¹³**C NMR (101 MHz, CDCl**₃) δ 165.8 (d, *J* = 2.3 Hz), 141.0, 128.6, 128.4, 126.1, 62.6 (d, *J* = 6.7 Hz), 62.5 (d, *J* = 6.7 Hz), 52.3, 46.0 (d, *J* = 128.5 Hz), 41.4, 36.3, 34.0 (d, *J* = 14.9 Hz), 29.4, 28.7 (d, *J* = 4.3 Hz), 16.43 (d, *J* = 1.7 Hz), 16.57 (d, *J* = 1.6 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 26.04.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₄H₃₇NO₄P⁺ 434.2455; Found: 434.2460

Diethyl (1-(oxetan-3-ylamino)-1-oxo-4-phenylbutan-2-yl)phosphonate (3p)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography ($PE/^{i}PrOH = 4:1$) to afford the title compound as a brown liquid (44.7 mg, 63% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.44 (s, 1H), 7.38 – 7.24 (m, 2H), 7.24 – 7.00 (m, 3H), 5.09 – 4.96 (m, 1H), 4.96 – 4.84 (m, 2H), 4.53 (t, *J* = 6.4 Hz, 2H), 4.33 – 3.97 (m, 4H), 2.97 – 2.69 (m, 2H), 2.69 – 2.43 (m, 1H), 2.42 – 2.24 (m, 1H), 2.16 – 1.95 (m, 1H), 1.36 – 1.26 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 167.0 (d, J = 2.5 Hz), 140.6, 128.5, 128.4, 126.2, 78.2, 78.0, 63.0 (d, J = 6.7 Hz), 62.5 (d, J = 6.7 Hz), 45.1, 44.8 (d, J = 129.9 Hz), 34.0 (d, J = 14.5 Hz), 28.2 (d, J = 4.7 Hz), 16.31 (d, J = 3.8 Hz), 16.26 (d, J = 3.9 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 24.99.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₂₇NO₅P⁺ 356.1621; Found: 356.1625.

Diethyl (1-oxo-4-phenyl-1-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)butan-2-yl)phosphonate (3q)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography ($PE/^{i}PrOH = 7:3$) to afford the title compound as a brown liquid

(62.1 mg, 73% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 7.4 Hz, 2H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.14 (d, *J* = 6.8 Hz, 2H), 4.19 – 4.04 (m, 4H), 3.97 (s, 4H), 3.90 – 3.68 (m, 2H), 3.57 – 3.35 (m, 2H), 3.32 – 3.13 (m, 1H), 3.00 – 2.70 (m, 1H), 2.59 – 2.40 (m, 2H), 2.31 – 2.08 (m, 1H), 1.87 – 1.73 (m, 1H), 1.69 (q, *J* = 5.6, 5.2 Hz, 2H), 1.61 – 1.51 (m, 1H), 1.37 – 1.17 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 166.0 (d, J = 4.5 Hz), 140.5, 128.6, 128.4, 126.2, 106.8, 64.4, 62.6 (d, J = 4.2 Hz), 62.5 (d, J = 4.4 Hz), 44.4, 40.4, 40.1 (d, J = 132.9 Hz), 35.2, 34.8, 33.8 (d, J = 15.7 Hz), 28.8 (d, J = 4.4 Hz), 16.41 (d, J = 2.8 Hz), 16.35 (d, J = 3.1 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 24.11.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₃₃NO₆P⁺ 426.2040; Found: 426.2044.

Diethyl (1-oxo-4-phenyl-1-((thiophen-2-ylmethyl)amino)butan-2-yl)phosphonate (3r)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:3) to afford the title compound as a brown liquid (59.3 mg, 75% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.31 – 7.24 (m, 2H), 7.23 – 7.14 (m, 4H), 7.03 – 6.98 (m, 1H), 6.97 – 6.90 (m, 1H), 6.83 (s, 1H), 4.65 (d, *J* = 5.7 Hz, 2H), 4.36 – 3.89 (m, 4H), 2.87 – 2.67 (m, 2H), 2.67 – 2.54 (m, 1H), 2.43 – 2.22 (m, 1H), 2.18 – 1.97 (m, 1H), 1.35 – 1.18 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 167.0 (d, J = 2.3 Hz), 140.72, 140.68, 128.6, 128.4, 126.8, 126.1, 126.1, 125.1, 62.8 (d, J = 6.8 Hz), 62.7 (d, J = 6.8 Hz), 45.0 (d, J = 129.6 Hz), 38.5, 34.0 (d, J = 14.5 Hz), 28.5 (d, J = 4.3 Hz), 16.32 (d, J = 2.6 Hz), 16.26 (d, J = 2.7 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 25.25.

HRMS (**ESI-TOF**) m/z: [M+H]⁺ calcd for C₁₉H₂₇NO₄SP⁺ 396.1393; Found: 396.1401.

Diethyl (1-(benzo[d]thiazol-2-ylamino)-1-oxo-4-phenylbutan-2-yl)phosphonate (3s)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 1:3) to afford the title compound as a brown liquid (63.1 mg, 73% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 11.36 (s, 1H), 7.74 – 7.55 (m, 2H), 7.38 – 7.28 (m, 1H), 7.28 – 7.21 (m, 2H), 7.21 – 7.09 (m, 4H), 4.34 – 4.13 (m, 2H), 4.16 – 3.79 (m, 2H), 3.35 – 3.10 (m, 1H), 3.00 – 2.68 (m, 1H), 2.68 – 2.43 (m, 2H), 2.31 – 2.05 (m, 1H), 1.33 (t, *J* = 7.1 Hz, 3H), 1.26 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.4 (d, J = 3.7 Hz), 157.6, 148.4, 140.3, 132.1, 128.6, 128.5, 126.2, 125.8, 123.6, 121.0 (d, J = 2.3 Hz), 63.8 (d, J = 6.5 Hz), 62.8 (d, J = 6.6 Hz), 45.4 (d, J = 128.9 Hz), 34.0 (d, J = 14.6 Hz), 28.1 (d, J = 4.6 Hz), 16.4 (d, J = 5.9 Hz), 16.3 (d, J = 5.9 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 22.98.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₂₆N₂O₄SP⁺ 433.1345; Found: 433.1347.

Hexyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4a)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (70.7 mg, 92% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.33 – 7.25 (m, 2H), 7.24 – 7.12 (m, 3H), 4.32 – 3.99 (m, 6H), 3.03 – 2.85 (m, 1H), 2.84 – 2.65 (m, 1H), 2.65 – 2.52 (m, 1H), 2.44 – 2.24 (m, 1H), 2.24 – 2.00 (m, 1H), 1.75 – 1.61 (m, 2H), 1.44 – 1.21 (m, 12H), 1.05 – 0.80 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1 (d, J = 5.0 Hz), 140.4, 128.5, 128.4, 126.2, 65.6, 62.7 (d, J = 6.2 Hz), 62.6 (d, J = 6.7 Hz), 45.0 (d, J = 130.9 Hz), 34.3 (d, J = 15.4 Hz), 31.4, 28.6 (d, J = 4.5 Hz), 28.5, 25.5, 22.5, 16.4 (d, J = 2.0 Hz), 16.3 (d, J = 2.1 Hz), 14.0.

³¹P NMR (162 MHz, CDCl₃) δ 22.61.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₃₄O₅P⁺ 385.2138; Found: 385.2145.

Decyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4b)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (85.4 mg, 97% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.32 – 7.24 (m, 2H), 7.24 – 7.07 (m, 3H), 4.17 – 4.03 (m, 6H), 3.03 – 2.89 (m, 1H), 2.79 – 2.68 (m, 1H), 2.64 – 2.52 (m, 1H), 2.40 – 2.24 (m, 1H), 2.22 – 2.08 (m, 1H), 1.72 – 1.62 (m, 2H), 1.46 – 1.16 (m, 20H), 0.92 – 0.84 (t, *J* = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1 (d, J = 5.1 Hz), 140.4, 128.5, 128.4, 126.2, 65.6, 62.7 (d, J = 6.4 Hz), 62.6 (d, J = 6.7 Hz), 45.1 (d, J = 130.9 Hz), 34.3 (d, J = 15.3 Hz), 31.8, 29.5, 29.3, 29.2, 28.62 (d, J = 4.5 Hz), 28.56, 25.8, 22.6, 16.4 (d, J = 1.8 Hz), 16.3 (d, J = 2.0 Hz), 14.1.

³¹P NMR (162 MHz, CDCl₃) δ 22.61.

HRMS (**ESI-TOF**) **m/z**: [M+H]⁺ calcd for C₂₄H₄₂O₅P⁺ 441.2764; Found: 441.2770.

(EtO)₂₽^{∽O}

Ethyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4c)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (43.3 mg, 66% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.32 – 7.26 (m, 2H), 7.24 – 7.14 (m, 3H), 4.27 – 4.18 (m, 2H), 4.16 – 4.05 (m, 4H), 3.02 – 2.89 (m, 1H), 2.79 – 2.67 (m, 1H), 2.65 – 2.53 (m, 1H), 2.40 – 2.24 (m, 1H), 2.22 – 2.07 (m, 1H), 1.34 – 1.27 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0 (d, J = 5.1 Hz), 140.4, 128.5, 128.4, 126.2, 62.7 (d, J = 6.5 Hz), 62.6 (d, J = 6.8 Hz), 61.4, 45.0 (d, J = 130.9 Hz), 34.3 (d, J = 15.3 Hz), 28.6 (d, J = 4.7 Hz), 16.34 (d, J = 2.1 Hz), 16.28 (d, J = 2.3 Hz), 14.1.

³¹P NMR (162 MHz, CDCl₃) δ 22.55.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₆H₂₆O₅P⁺ 329.1512; Found: 329.1512.

Cyclohexyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4d)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (47.4 mg, 62% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.28 (t, *J* = 7.2 Hz, 2H), 7.25 – 7.14 (m, 3H), 5.00 – 4.80 (m, 1H), 4.26 – 4.02 (m, 4H), 3.04 – 2.86 (m, 1H), 2.83 – 2.68 (m, 1H), 2.64 – 2.52 (m, 1H), 2.41 – 2.23 (m, 1H), 2.23 – 2.06 (m, 1H), 1.99 – 1.84 (m, 2H), 1.80 – 1.72 (m, 2H), 1.65 – 1.23 (m, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 168.4 (d, J = 5.1 Hz), 140.5, 128.5, 128.4, 126.2, 73.7, 62.6 (d, J = 6.8 Hz), 62.5 (d, J = 7.4 Hz), 45.3 (d, J = 130.7 Hz), 34.3 (d, J = 15.6 Hz), 31.5, 31.4, 28.7 (d, J = 4.6 Hz), 25.3, 23.60, 23.58, 16.36 (d, J = 2.2 Hz), 16.30 (d, J = 2.3 Hz)

³¹P NMR (162 MHz, CDCl₃) δ 22.61.

HRMS (**ESI-TOF**) m/z: [M+H]⁺ calcd for C₂₀H₃₂O₅P⁺ 383.1982; Found: 383.1983.

Cyclododecyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4e)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid

(81.1 mg, 87% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.32 – 7.26 (m, 2H), 7.24 – 7.14 (m, 3H), 5.23 – 5.07 (m, 1H), 4.21 – 4.03 (m, 4H), 2.99 – 2.86 (m, 1H), 2.80 – 2.68 (m, 1H), 2.63 – 2.51 (m, 1H), 2.39 – 2.23 (m, 1H), 2.21 – 2.06 (m, 1H), 1.81 – 1.68 (m, 2H), 1.58 – 1.51 (m, 2H), 1.49 – 1.21 (m, 24H).

¹³C NMR (101 MHz, CDCl₃) δ 168.7 (d, J = 5.1 Hz), 140.5, 128.5, 128.4, 126.2, 73.5, 62.6 (d, J = 6.1 Hz), 62.5 (d, J = 6.4 Hz), 45.2 (d, J = 130.8 Hz), 34.3 (d, J = 15.8 Hz), 29.2, 29.1, 28.7 (d, J = 4.4 Hz), 23.9, 23.7, 23.44, 23.41, 23.26, 23.24, 21.03, 20.98, 16.4 (d, J = 2.6 Hz), 16.3 (d, J = 2.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 22.87.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₆H₄₄O₅P⁺ 467.2921; Found: 467.2926.

3-Methoxypropyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4f)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 1:1) to afford the title compound as a colorless liquid (36.5 mg, 49% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.39 – 7.24 (m, 2H), 7.24 – 7.14 (m, 3H), 4.29 – 4.20 (m, 2H), 4.17 – 3.97 (m, 4H), 3.47 (t, *J* = 6.4 Hz, 2H), 3.34 (s, 3H), 3.03 – 2.89 (m, 1H), 2.79 – 2.66 (m, 1H), 2.65 – 2.53 (m, 1H), 2.40 – 2.24 (m, 1H), 2.23 – 2.07 (m, 1H), 1.99 – 1.86 (m, 2H), 1.36 – 1.23 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0 (d, *J* = 4.9 Hz), 140.4, 128.5, 128.4, 126.2, 68.9, 62.70 (d, *J* = 6.5 Hz), 62.58 (d, *J* = 6.4 Hz), 62.57, 58.7, 45.0 (d, *J* = 130.9 Hz), 34.3 (d, *J* = 15.2 Hz), 28.9, 28.6 (d, *J* = 4.5 Hz), 16.4, 16.3 (d, *J* = 1.4 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 22.52.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₃₀O₆P⁺ 373.1775; Found:373.1777.

((R)-2,2-dimethyl-1,3-dioxolan-4-yl)methyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4g)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:3) to afford the title compound as a colorless liquid (35.6 mg, 43% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.36 – 7.25 (m, 2H), 7.25 – 7.13 (m, 3H), 4.38 – 4.28 (m, 1H), 4.27 – 4.00 (m, 7H), 3.83 – 3.73 (m, 1H), 3.07 – 2.93 (m, 1H), 2.79 – 2.66 (m, 1H), 2.66 – 2.54 (m, 1H), 2.40 – 2.24 (m, 1H), 2.24 – 2.08 (m, 1H), 1.44 (s, 3H), 1.37 (s, 3H), 1.35 – 1.26 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 168.9 (d, *J* = 5.1 Hz), 140.3, 128.6, 128.5, 126.3, 109.8, 73.3, 66.4, 65.5, 65.4, 62.8 (d, *J* = 6.7 Hz), 62.7 (d, *J* = 7.7 Hz), 44.9 (d, *J* = 130.9 Hz), 34.3 (d, *J* = 15.1 Hz), 28.6 (d, *J* = 4.6 Hz), 26.8, 25.3, 16.31, 16.27.

³¹P NMR (162 MHz, CDCl₃) δ 22.11. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₃₂O₇P⁺ 415.1880; Found: 415.1885.

Benzyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4h)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (53.8 mg, 69% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 – 7.30 (m, 5H), 7.25 (t, *J* = 7.3 Hz, 2H), 7.18 (t, *J* = 7.3 Hz, 1H), 7.10 (d, *J* = 6.7 Hz, 2H), 5.20 (s, 2H), 4.62 – 3.87 (m, 4H), 3.07 – 2.91 (m, 1H), 2.75 – 2.63 (m, 1H), 2.61 – 2.49 (m, 1H), 2.41 – 2.25 (m, 1H), 2.24 – 2.08 (m, 1H), 1.38 – 1.21 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 168.9 (d, J = 5.1 Hz), 140.3, 135.5, 128.53, 128.50, 128.4, 128.3, 126.2, 67.1, 62.72 (d, J = 6.4 Hz), 62.67 (d, J = 6.8 Hz), 45.0 (d, J = 130.9 Hz), 34.2 (d, J = 15.1 Hz), 28.6 (d, J = 4.6 Hz), 16.3 (d, J = 5.6 Hz), 16.2 (d, J = 5.7 Hz)

³¹P NMR (162 MHz, CDCl₃) δ 22.26.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₂₈O₅P⁺ 391.1669; Found: 391.1672.

Phenyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4j)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (63.2 mg, 84% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 2H), 7.34 – 7.28 (m, 2H), 7.28 – 7.15 (m, 4H), 7.11 (d, *J* = 7.3 Hz, 2H), 4.28 – 4.09 (m, 4H), 3.46 – 3.10 (m, 1H), 2.92 – 2.80 (m, 1H), 2.78 – 2.66 (m, 1H), 2.52 – 2.36 (m, 1H), 2.34 – 2.19 (m, 1H), 1.38 – 1.29 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 167.8 (d, J = 5.4 Hz), 150.6, 140.2, 129.5, 128.58, 128.56, 126.4, 126.1, 121.3, 63.0 (d, J = 6.4 Hz), 62.9 (d, J = 6.7 Hz), 45.1 (d, J = 129.9 Hz), 34.3 (d, J = 15.0 Hz), 28.6 (d, J = 4.5 Hz), 16.4 (d, J = 1.4 Hz), 16.4 (d, J = 1.7 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 21.77.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₆O₅P⁺ 377.1512; Found: 377.1513.

[1,1'-Biphenyl]-4-yl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4k)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (56.0 mg, 62% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.63 – 7.49 (m, 4H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.39 – 7.29 (m, 3H), 7.27 – 7.16 (m, 5H), 4.27 – 4.10 (m, 4H), 3.37 – 3.11 (m, 1H), 2.99 – 2.82 (m, 1H), 2.79 – 2.67 (m, 1H), 2.59 – 2.38 (m, 1H), 2.38 – 2.19 (m, 1H), 1.41 – 1.21 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 167.9 (d, J = 5.5 Hz), 150.0, 140.3, 140.2, 139.3, 128.8, 128.59, 128.57, 128.2, 127.4, 127.1, 126.4, 121.6, 63.1 (d, J = 6.4 Hz), 62.9 (d, J = 6.8 Hz), 45.2 (d, J = 130.0 Hz), 34.4 (d, J = 15.0 Hz), 28.6 (d, J = 4.5 Hz), 16.42, 16.36.

³¹P NMR (162 MHz, CDCl₃) δ 21.73.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₆H₃₀O₅P⁺ 453.1825; Found: 453.1828.

p-Tolyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4l)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (53.8 mg, 69% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.30 (t, *J* = 7.5 Hz, 2H), 7.25 – 7.16 (m, 5H), 6.98 (d, *J* = 8.4 Hz, 2H), 4.28 – 4.02 (m, 4H), 3.28 – 3.12 (m, 1H), 2.91 – 2.79 (m, 1H), 2.78 – 2.66 (m, 1H), 2.56 – 2.37 (m, 1H), 2.35 (s, 3H), 2.31 – 2.15 (m, 1H), 1.44 – 1.24 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 168.0 (d, J = 5.3 Hz), 148.4, 140.2, 135.7, 129.9, 128.6, 128.5, 126.3, 121.0, 63.0 (d, J = 6.5 Hz), 62.9 (d, J = 6.9 Hz), 45.1 (d, J = 129.9 Hz), 34.3 (d, J = 15.0 Hz), 28.6 (d, J = 4.5 Hz), 20.8, 16.4 (d, J = 1.7 Hz), 16.3 (d, J = 1.9 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 21.83.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₂₈O₅P⁺ 391.1669; Found: 391.1675.

4-Chlorophenyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4m)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid

(49.2 mg, 60% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.28 (m, 4H), 7.26 – 7.19 (m, 3H), 7.04 (d, *J* = 8.9 Hz, 2H), 4.27 – 4.09 (m, 4H), 3.25 – 3.12 (m, 1H), 2.97 – 2.78 (m, 1H), 2.76 – 2.65 (m, 1H), 2.54 – 2.35 (m, 1H), 2.32 – 2.14 (m, 1H), 1.48 – 1.18 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 167.7 (d, *J* = 5.5 Hz), 149.1, 140.1, 131.5, 129.5, 128.6, 126.4, 122.7, 63.1 (d, *J* = 6.4 Hz), 62.9 (d, *J* = 6.9 Hz), 45.1 (d, *J* = 129.8 Hz), 34.3 (d, *J* = 14.8 Hz), 28.5 (d, *J* = 4.7 Hz), 16.4, 16.3.

³¹P NMR (162 MHz, CDCl₃) δ 21.53.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₂₅ClO₅P⁺ 411.1123; Found: 411.1128.

(Trimethylsilyl)methyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4n)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 5:2) to afford the title compound as a colorless liquid (47.9 mg, 62% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 7.22 – 7.12 (m, 2H), 7.12 – 7.01 (m, 3H), 4.12 – 3.91 (m, 4H), 3.75 (d, J = 3.2 Hz, 2H), 2.92 – 2.78 (m, 1H), 2.67 – 2.55 (m, 1H), 2.51 – 2.39 (m, 1H), 2.28 – 2.13 (m, 1H), 2.10 – 1.95 (m, 1H), 1.33 – 0.99 (m, 6H), 0.00 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.7 (d, *J* = 5.1 Hz), 140.4, 128.5, 128.4, 126.2, 62.6 (d, J = 4.0 Hz), 62.5 (d, *J* = 4.3 Hz), 59.0, 45.0 (d, *J* = 131.3 Hz), 34.3 (d, *J* = 15.5 Hz), 28.7 (d, J = 4.4 Hz), 16.4, 16.3, -3.1.

³¹P NMR (162 MHz, CDCl₃) δ 22.90.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₃₂O₅PSi⁺ 387.1751; Found: 387.1756.

6-Chlorohexyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (40)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (63.6 mg, 76% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.32 – 7.26 (m, 2H), 7.24 – 7.13 (m, 3H), 4.24 – 4.02 (m, 6H), 3.53 (t, J = 6.6 Hz, 2H), 3.03 – 2.89 (m, 1H), 2.79 – 2.67 (m, 1H), 2.65 – 2.53 (m, 1H), 2.40 – 2.23 (m, 1H), 2.23 – 2.07 (m, 1H), 1.83 – 1.63 (m, 4H), 1.55 – 1.37 (m, 4H), 1.40 – 1.23 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1 (d, J = 4.9 Hz), 140.4, 128.5, 128.4, 126.2, 65.3, 62.7 (d, J = 6.5 Hz), 62.6 (d, J = 6.8 Hz), 45.0 (d, J = 131.0 Hz), 44.9, 34.3 (d, J = 15.1 Hz), 32.4, 28.6 (d, J = 4.7 Hz), 28.4, 26.4, 25.2, 16.4, 16.3.

³¹P NMR (162 MHz, CDCl₃) δ 22.55. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₃₃ClO₅P⁺ 419.1749; Found: 419.1750.

(EtO)₂P^{>0}

3-Iodopropyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4p)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (45.9 mg, 49% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.41 – 7.25 (m, 2H), 7.25 – 7.12 (m, 3H), 4.52 – 4.17 (m, 2H), 4.17 – 3.94 (m, 4H), 3.27 (t, *J* = 6.8 Hz, 2H), 3.11 – 2.83 (m, 1H), 2.78 – 2.64 (m, 1H), 2.65 – 2.53 (m, 1H), 2.48 – 2.24 (m, 1H), 2.22 – 2.09 (m, 3H), 1.39 – 1.10 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 168.9 (d, *J* = 5.1 Hz), 140.2, 128.53, 128.48, 126.3, 64.8, 62.8 (d, *J* = 6.5 Hz), 62.7 (d, *J* = 6.8 Hz), 44.9 (d, *J* = 130.9 Hz), 34.3 (d, *J* = 15.1 Hz), 32.2, 28.4 (d, *J* = 4.6 Hz), 16.41, 16.35, 1.5.

³¹P NMR (162 MHz, CDCl₃) δ 22.37.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₂₇IO₅P⁺ 469.0635; Found:469.0642.

(EtO)₂P^{-O} Ph

Methyl-d3 2-(diethoxyphosphoryl)-4-phenylbutanoate (4q)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (43.7 mg, 69% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.24 (m, 2H), 7.24 – 7.14 (m, 3H), 4.22 – 4.02 (m, 4H), 3.05 – 2.91 (m, 1H), 2.78 – 2.67 (m, 1H), 2.64 – 2.52 (m, 1H), 2.41 – 2.24 (m, 1H), 2.23 – 2.07 (m, 1H), 1.35 – 1.22 (m, 6H).

¹³**C NMR (101 MHz, CDCl**₃) δ 169.5 (d, *J* = 5.0 Hz), 140.3, 128.5, 128.4, 126.2, 62.8 (d, *J* = 6.4 Hz), 62.7 (d, *J* = 6.7 Hz), 44.9 (d, *J* = 131.0 Hz), 34.3 (d, *J* = 15.0 Hz), 28.6 (d, *J* = 4.6 Hz), 16.3 (d, *J* = 2.0 Hz), 16.3 (d, *J* = 2.2 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 22.51.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₅H₂₁D₃O₅P⁺ 318.1544; Found: 318.1545.

(EtO)₂₽^{∽O}

(E)-Hex-2-en-1-yl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4r)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (53.5 mg, 70% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.34 – 7.24 (m, 2H), 7.23 – 7.13 (m, 3H), 5.87 – 5.76 (m, 1H), 5.64 – 5.53 (m, 1H), 4.60 (d, *J* = 6.5 Hz, 2H), 4.18 – 4.02 (m, 4H), 3.04 – 2.90 (m, 1H), 2.81 – 2.67 (m, 1H), 2.64 – 2.52 (m, 1H), 2.40 – 2.24 (m, 1H), 2.22 – 2.09 (m, 1H), 2.09 – 1.98 (m, 2H), 1.51 – 1.37 (m, 2H), 1.36 – 1.23 (m, 6H), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR (101 MHz, CDCl₃)** δ 168.8 (d, *J* = 5.0 Hz), 140.5, 136.9, 128.6, 128.4, 126.2, 123.5, 66.1, 62.72 (d, *J* = 5.7 Hz), 62.66 (d, *J* = 6.5 Hz), 45.0 (d, *J* = 130.9 Hz), 34.3, 34.3 (d, *J* = 15.2 Hz), 28.7 (d, *J* = 4.7 Hz), 22.0, 16.3 (d, *J* = 3.1 Hz), 16.3 (d, *J* = 3.4 Hz), 13.6.

³¹P NMR (162 MHz, CDCl₃) δ 22.43.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₃₂O₅P⁺ 383.1982; Found: 383.1985.

Dec-9-en-1-yl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4s)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (71.0 mg, 81% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.32 – 7.25 (m, 2H), 7.24 – 7.15 (m, 3H), 5.88 – 5.73 (m, 1H), 5.03 – 4.96 (m, 1H), 4.96 – 4.89 (m, 1H), 4.23 – 4.01 (m, 6H), 3.04 – 2.89 (m, 1H), 2.81 – 2.67 (m, 1H), 2.64 – 2.52 (m, 1H), 2.40 – 2.23 (m, 1H), 2.22 – 2.10 (m, 1H), 2.12 – 1.99 (m, 2H), 1.73 – 1.62 (m, 2H), 1.42 – 1.22 (m, 16H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1 (d, J = 5.0 Hz), 140.4, 139.1, 128.5, 128.4, 126.2, 114.2, 65.6, 62.7 (d, J = 6.6 Hz), 62.6 (d, J = 6.9 Hz), 45.1 (d, J = 131.0 Hz), 34.3 (d, J = 15.3 Hz), 33.7, 29.3, 29.2, 29.0, 28.9, 28.6 (d, J = 4.5 Hz), 28.6, 25.8, 16.4 (d, J = 1.7 Hz), 16.3 (d, J = 1.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 22.61.

HRMS (**ESI-TOF**) **m/z**: [M+H]⁺ calcd for C₂₄H₄₀O₅P⁺ 439.2608; Found: 439.2612.

(2*E*,6*E*)-3,7,11-Trimethyldodeca-2,6,10-trien-1-yl 2-(diethoxyphosphoryl)-4-phenylbutanoate (4t)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (58.5 mg, 58% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.32 – 7.23 (m, 2H), 7.23 – 7.13 (m, 3H), 5.39 (t, *J* = 6.5 Hz, 1H), 5.27 – 5.00 (m, 2H), 4.68 (d, *J* = 6.3 Hz, 2H), 4.42 – 3.83 (m, 4H), 3.03 – 2.89 (m, 1H), 2.79 – 2.67 (m, 1H), 2.64 – 2.52 (m, 1H), 2.40 – 2.23 (m, 1H), 2.22 – 2.01 (m, 7H), 2.01 – 1.87 (m, 2H), 1.73 (s, 3H), 1.71 – 1.54 (m, 9H), 1.42 – 1.15 (m, 6H).

¹³**C NMR (101 MHz, CDCl**₃) δ 169.0 (d, J = 4.9 Hz), 142.8, 140.5, 135.5, 131.3, 128.6, 128.4, 126.2, 124.3, 123.5, 117.9, 62.7 (d, J = 5.2 Hz), 62.64 (d, J = 5.9 Hz), 62.3, 45.0 (d, J = 130.9 Hz), 39.7, 39.5, 34.3 (d, J = 15.3 Hz), 28.7 (d, J = 4.5 Hz), 26.7, 26.3, 25.7, 17.7, 16.5, 16.4 (d, J = 3.4 Hz), 16.3 (d, J = 3.6 Hz), 16.0.

³¹P NMR (162 MHz, CDCl₃) δ 22.52.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₉H₄₆O₅P⁺ 505.3077; Found: 505.3079.

Diethyl (1-((2-(cyclohex-1-en-1-yl)ethyl)amino)-1-oxo-4-phenylbutan-2-yl)phosphonate (4u)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:3) to afford the title compound as a brown liquid (47.2 mg, 58% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.24 (m, 2H), 7.24 – 7.14 (m, 3H), 6.31 (s, 1H), 5.49 (s, 1H), 4.22 – 3.97 (m, 5H), 3.65 – 3.30 (m, 2H), 2.94 – 2.75 (m, 1H), 2.75 – 2.54 (m, 2H), 2.33 – 2.21 (m, 1H), 2.16 (t, *J* = 7.0 Hz, 2H), 2.03 – 1.90 (m, 4H), 1.68 – 1.58 (m, 2H), 1.58 – 1.49 (m, 2H), 1.40 – 1.20 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 167.0 (d, J = 2.4 Hz), 140.8, 134.5, 128.6, 128.4, 126.1, 123.5, 62.7 (d, J = 6.8 Hz), 62.5 (d, J = 6.6 Hz), 61.4 (d, J = 6.5 Hz), 45.2 (d, J = 129.7 Hz), 37.8, 37.6, 34.0 (d, J = 14.7 Hz), 28.7 (d, J = 4.3 Hz), 27.9, 25.2, 22.8, 22.3, 16.4 (d, J = 2.1 Hz), 16.3 (d, J = 2.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 25.60.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₃₅NO₄P⁺ 408.2298; Found: 408.2302.

Hexane-1,6-diyl bis(2-(diethoxyphosphoryl)-4-phenylbutanoate) (4v)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 1:1) to afford the title compound as a brown liquid (85.9 mg, 63% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.33 – 7.24 (m, 4H), 7.24 – 7.14 (m, 6H), 4.18 – 4.05 (m, 12H), 3.07 – 2.90 (m, 2H), 2.79 – 2.65 (m, 2H), 2.64 – 2.49 (m, 2H), 2.43 – 2.25 (m, 2H), 2.22 – 2.07 (m, 2H), 1.72 – 1.64 (m, 4H), 1.47 – 1.36 (m, 4H), 1.35 – 1.23 (m, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0 (d, J = 4.9 Hz), 140.3, 128.44, 128.38, 126.2, 65.2, 62.64 (d, J = 6.3 Hz), 62.55 (d, J = 6.7 Hz), 45.0 (d, J = 131.0 Hz), 34.2 (d, J = 15.2 Hz), 28.5 (d, J = 4.4 Hz), 28.4, 25.5, 16.3, 16.2.

³¹P NMR (162 MHz, CDCl₃) δ 22.65.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{34}H_{53}O_{10}P_2^+$ 683.3108; Found: 683.3110.

Decyl 2-(diisopropoxyphosphoryl)-4-phenylbutanoate (5a)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (83.3 mg, 89% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.28 (t, *J* = 7.3 Hz, 2H), 7.23 – 7.13 (m, 3H), 4.77 – 4.62 (m, 2H), 4.21 – 4.07 (m, 2H), 2.96 – 2.82 (m, 1H), 2.78 – 2.67 (m, 1H), 2.63 – 2.51 (m, 1H), 2.38 – 2.22 (m, 1H), 2.20 – 2.06 (m, 1H), 1.72 – 1.62 (m, 2H), 1.42 – 1.23 (m, 26H), 0.87 (t, *J* = 6.8 Hz, 3H).

¹³**C NMR (101 MHz, CDCl**₃) δ 169.2 (d, *J* = 5.1 Hz), 140.5, 128.5, 128.4, 126.1, 71.3 (d, *J* = 6.8 Hz), 71.1 (d, *J* = 7.0 Hz), 65.4, 45.8 (d, *J* = 132.3 Hz), 34.3 (d, *J* = 15.5 Hz), 31.8, 29.5, 29.2 (d, *J* = 4.8 Hz), 28.8 (d, *J* = 4.7 Hz), 28.6, 25.8, 24.1 (d, *J* = 3.5 Hz), 24.0 (d, *J* = 3.7 Hz), 23.73 (d, *J* = 5.2 Hz), 23.70 (d, *J* = 5.3 Hz), 22.6, 14.0.

³¹P NMR (162 MHz, CDCl₃) δ 22.60.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₆H₄₆O₅P⁺ 469.3077; Found: 469.3083.

Decyl 2-(dibutoxyphosphoryl)-4-phenylbutanoate (5b)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (81.7 mg, 82% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.28 (t, *J* = 7.5 Hz, 2H), 7.24 – 7.13 (m, 3H), 4.24 – 4.11 (m, 2H), 4.11 – 3.94 (m, 4H), 3.03 – 2.87 (m, 1H), 2.79 – 2.68 (m, 1H), 2.64 – 2.52 (m, 1H), 2.40 – 2.24 (m, 1H), 2.22 – 2.08 (m, 1H), 1.71 – 1.57 (m, 6H), 1.42 – 1.21 (m, 18H), 0.97 – 0.84 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1 (d, J = 5.1 Hz), 140.4, 128.5, 128.4, 126.2, 66.34 (d, J = 6.9 Hz), 66.27 (d, J = 7.3 Hz), 65.6, 45.0 (d, J = 131.0 Hz), 34.3 (d, J = 15.4 Hz), 32.5 (d, J = 6.2 Hz), 31.9, 29.5, 29.3 (d, J = 3.4 Hz), 25.9, 22.6, 18.6 (d, J = 2.3 Hz), 14.1, 13.6 (d, J = 1.4 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 22.51.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₅₀O₅P⁺ 497.3390; Found: 497.3394.

Decyl 2-(diethoxyphosphoryl)propanoate (5c)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 1:1) to afford the title compound as a colorless liquid (58.8 mg, 84% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 4.29 – 3.86 (m, 6H), 3.14 – 2.83 (m, 1H), 1.80 – 1.51 (m, 2H), 1.50 – 1.37 (m, 3H), 1.36 – 1.10 (m, 20H), 0.92 – 0.68 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.78 (d, *J* = 4.5 Hz), 65.5, 62.5 (d, *J* = 6.6 Hz), 39.3 (d, *J* = 133.5 Hz), 31.8, 29.43, 29.42, 29.2 (d, *J* = 6.6 Hz), 28.5, 25.7, 22.6, 16.3 (d, *J* = 3.1 Hz), 16.3 (d, *J* = 3.4 Hz), 14.0, 11.7, 11.6.

³¹P NMR (162 MHz, CDCl₃) δ 23.89.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₃₆O₅P⁺ 351.2295; Found: 351.2299.

Decyl 2-(diethoxyphosphoryl)-4-methylpentanoate (5d)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid

(69.0 mg, 88% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 4.37 – 3.94 (m, 6H), 3.12 – 2.88 (m, 1H), 2.13 – 1.83 (m, 1H), 1.72 – 1.50 (m, 4H), 1.43 – 1.07 (m, 20H), 1.03 – 0.73 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.5 (d, J = 5.1 Hz), 65.4, 62.6 (d, J = 5.8 Hz), 62.5 (d, J = 6.3 Hz), 44.0 (d, J = 131.2 Hz), 35.5 (d, J = 5.1 Hz), 31.8, 29.5, 29.2, 29.1, 28.5, 26.9 (d, J = 14.8 Hz), 25.8, 22.9, 22.6, 21.1, 16.33 (d, J = 2.3 Hz), 16.28 (d, J = 2.6 Hz), 14.0.

³¹P NMR (162 MHz, CDCl₃) δ 23.49.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₄₂O₅P⁺ 393.2764; Found: 393.2772.

Decyl 2-(diethoxyphosphoryl)hexanoate (5e)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (72.9 mg, 93% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 4.28 – 3.86 (m, 6H), 3.09 – 2.71 (m, 1H), 2.05 – 1.88 (m, 1H), 1.87 – 1.74 (m, 1H), 1.73 – 1.54 (m, 2H), 1.43 – 1.11 (m, 24H), 1.04 – 0.67 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.4 (d, J = 4.8 Hz), 65.4, 62.6 (d, J = 4.8 Hz), 62.5 (d, J = 5.2 Hz), 45.8 (d, J = 131.2 Hz), 31.8, 30.5 (d, J = 14.9 Hz), 29.5, 29.2, 29.1, 28.5, 26.6 (d, J = 4.9 Hz), 25.8, 22.6, 22.2, 16.3 (d, J = 2.9 Hz), 16.3 (d, J = 2.9 Hz), 14.0, 13.7.

³¹P NMR (162 MHz, CDCl₃) δ 23.11.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₄₂O₅P⁺ 393.2764; Found: 393.2770.

Decyl 2-cyclopentyl-2-(diethoxyphosphoryl)acetate (5f)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (51.7 mg, 64% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 4.38 – 3.90 (m, 6H), 2.90 – 2.65 (m, 1H), 2.46 – 2.33 (m, 1H), 2.01 – 1.89 (m, 1H), 1.84 – 1.72 (m, 1H), 1.72 – 1.47 (m, 6H), 1.46 – 1.10 (m, 22H), 0.85 (t, *J* = 6.7 Hz, 3H). ¹³**C NMR (101 MHz, CDCl₃)** δ 169.5 (d, *J* = 4.1 Hz), 65.3, 62.33 (d, *J* = 6.6 Hz), 62.32 (d, *J* = 7.6 Hz), 51.4 (d, *J* = 132.5 Hz), 38.9 (d, *J* = 5.0 Hz), 31.9 (d, *J* = 15.8 Hz), 31.4 (d, *J* = 2.4 Hz), 29.5, 29.2, 29.1, 28.5, 25.8, 24.9, 24.2, 22.6, 16.4, 16.3, 14.0.

³¹P NMR (162 MHz, CDCl₃) δ 22.45.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₄₂O₅P⁺ 405.2764; Found: 405.2767.

Decyl 2-(diisopropoxyphosphoryl)butanoate (5g)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (72.1 mg, 92% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 4.81 – 4.53 (m, 2H), 4.26 – 3.97 (m, 2H), 2.94 – 2.63 (m, 1H), 2.01 – 1.79 (m, 2H), 1.75 – 1.54 (m, 2H), 1.47 – 1.20 (m, 26H), 0.95 (t, *J* = 7.3 Hz, 3H), 0.86 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.4 (d, J = 4.8 Hz), 71.2 (d, J = 6.7 Hz), 71.0 (d, J = 7.2 Hz), 65.3, 48.3 (d, J = 132.8 Hz), 31.8, 29.48, 29.46, 29.2 (d, J = 6.9 Hz), 28.5, 25.8, 24.1 (d, J = 3.4 Hz), 24.0 (d, J = 3.7 Hz), 23.8 (d, J = 5.2 Hz), 23.7 (d, J = 5.4 Hz), 22.6, 20.8 (d, J = 5.1 Hz), 14.1, 13.1, 12.9. ³¹P NMR (162 MHz, CDCl₃) δ 20.75.

HRMS (**ESI-TOF**) m/z: [M+H]⁺ calcd for C₂₀H₄₂O₅P⁺ 393.2764; Found: 393.2761.

Decyl 2-(diisopropoxyphosphoryl)-4-(methylthio)butanoate (5h)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (66.6 mg, 76% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 4.92 – 4.50 (m, 2H), 4.28 – 3.95 (m, 2H), 3.33 – 2.99 (m, 1H), 2.73 – 2.52 (m, 1H), 2.50 – 2.38 (m, 1H), 2.34 – 2.20 (m, 1H), 2.18 – 2.08 (m, 1H), 2.06 (s, 3H), 1.85 – 1.49 (m, 2H), 1.53 – 1.13 (m, 26H), 0.86 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0 (d, J = 5.2 Hz), 71.5 (d, J = 6.7 Hz), 71.3 (d, J = 7.0 Hz), 65.5, 45.1 (d, J = 132.5 Hz), 32.5 (d, J = 16.3 Hz), 31.8, 29.50, 29.47, 29.2 (d, J = 6.2 Hz), 28.5, 26.3 (d, J = 4.2 Hz), 25.8, 24.1 (d, J = 3.6 Hz), 24.0 (d, J = 3.8 Hz), 23.8 (d, J = 5.1 Hz), 23.7 (d, J = 5.2 Hz), 22.6, 15.1, 14.1.

³¹P NMR (162 MHz, CDCl₃) δ 20.27.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₄₄O₅PS⁺ 439.2642; Found: 439.2647.

Decyl 6-chloro-2-(diisopropoxyphosphoryl)hexanoate (5i)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (64.5 mg, 71% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 4.77 – 4.63 (m, 2H), 4.16 – 4.06 (m, 2H), 3.54 – 3.45 (m, 2H), 2.93 – 2.71 (m, 1H), 2.08 – 1.71 (m, 4H), 1.68 – 1.58 (m, 2H), 1.50 – 1.37 (m, 2H), 1.39 – 1.16 (m, 26H), 0.85 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.2 (d, J = 5.0 Hz), 71.4 (d, J = 6.7 Hz), 71.2 (d, J = 7.1 Hz), 65.4, 46.5 (d, J = 132.8 Hz), 44.4, 32.0, 31.8, 29.48, 29.46, 29.2 (d, J = 6.1 Hz), 28.5, 26.4 (d, J = 4.9 Hz), 25.8, 25.6, 24.1 (d, J = 3.6 Hz), 24.0 (d, J = 3.8 Hz), 23.8 (d, J = 5.2 Hz), 23.7 (d, J = 5.3 Hz), 22.6, 14.0.

³¹P NMR (162 MHz, CDCl₃) δ 20.45.

HRMS (**ESI-TOF**) m/z: [M+H]⁺ calcd for C₂₂H₄₅O₅PCl⁺ 455.2688; Found: 455.2690.

Decyl 2-(dibutoxyphosphoryl)decanoate (5j)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (51.4 mg, 51% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 4.17 – 3.88 (m, 7H), 1.79 – 1.48 (m, 14H), 1.48 – 1.18 (m, 24H), 0.92 (t, *J* = 7.4 Hz, 6H), 0.87 (t, *J* = 6.9 Hz, 6H).

¹³**C NMR (101 MHz, CDCl**₃) δ 176.4, 65.2 (d, *J* = 5.0 Hz), 65.1 (d, *J* = 4.8 Hz), 64.2, 45.5, 32.6 (d, *J* = 6.1 Hz), 32.2, 31.8 (d, *J* = 3.8 Hz), 30.6 (d, J = 16.8 Hz), 29.5 (d, *J* = 3.6 Hz), 29.3 (d, *J* = 3.4 Hz), 29.2, 29.1, 28.7, 26.1 (d, *J* = 27.3 Hz), 24.8, 22.6 (d, *J* = 1.9 Hz), 22.6, 22.4 (d, *J* = 5.1 Hz), 18.8, 14.1, 13.9, 13.6.

³¹P NMR (162 MHz, CDCl₃) δ 20.64.

HRMS (**ESI-TOF**) m/z: [M+H]⁺ calcd for C₂₈H₅₈O₅P⁺ 505.4016; Found: 505.4020.

Decyl 2-(cyclohex-3-en-1-yl)-2-(diethoxyphosphoryl)acetate (5k)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (39.1 mg, 47% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 5.83 – 5.42 (m, 2H), 4.25 – 3.86 (m, 6H), 3.04 – 2.77 (m, 1H), 2.42 – 2.32 (m, 1H), 2.12 – 1.93 (m, 4H), 1.68 – 1.60 (m, 4H), 1.44 – 1.12 (m, 20H), 0.87 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.3 (d, *J* = 4.4 Hz), 169.2 (d, *J* = 4.4 Hz), 126.8, 126.5, 125.6, 125.2, 65.4, 62.5 (d, *J* = 12.4 Hz), 62.4 (d, *J* = 12.4 Hz), 51.7 (d, *J* = 132.3 Hz), 51.5 (d, *J* = 132.3 Hz), 33.3, 33.2, 31.9, 30.2, 30.1 (d, *J* = 17.6 Hz), 30.2, 29.5, 29.23 (d, *J* = 17.6 Hz), 28.51, 28.49, 27.54, 27.46, 27.10, 27.07, 25.84, 25.83, 24.74, 24.71, 22.7, 16.39 (d, *J* = 5.5 Hz), 16.36 (d, *J* = 5.5 Hz), 14.1.

³¹P NMR (162 MHz, CDCl₃) δ 22.43, 22.36.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₄₂O₅P⁺ 417.2764; Found: 417.2767.

Decyl 2-(diethoxyphosphoryl)dodec-11-enoate (5l)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (52.1 mg, 55% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 5.97 – 5.59 (m, 1H), 5.23 – 4.76 (m, 2H), 4.46 – 3.80 (m, 6H), 3.23 – 2.76 (m, 1H), 2.41 – 1.98 (m, 2H), 1.95 (d, *J* = 8.3 Hz, 1H), 1.89 – 1.77 (m, 1H), 1.76 – 1.56 (m, 4H), 1.48 – 1.14 (m, 30H), 0.87 (t, *J* = 6.5 Hz 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.4 (d, J = 4.7 Hz), 139.2, 114.1, 65.5, 62.62 (d, J = 7.1 Hz), 62.58 (d, J = 7.3 Hz), 45.9 (d, J = 131.3 Hz), 33.8, 31.9, 29.5, 29.3 (d, J = 7.8 Hz), 29.2 (d, J = 2.9 Hz), 29.1, 29.0, 28.9, 28.6, 28.4 (d, J = 15.1 Hz), 27.0 (d, J = 4.7 Hz), 25.8, 22.7, 16.39 (d, J = 5.7 Hz), 16.36 (d, J = 5.8 Hz), 14.1.

³¹P NMR (162 MHz, CDCl₃) δ 23.06.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₆H₅₂O₅P⁺ 475.3547; Found: 475.3555.

Decyl 2-(diphenylphosphoryl)acetate (5m)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (61.6 mg, 77% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 8.14 – 7.68 (m, 4H), 7.68 – 7.35 (m, 6H), 3.92 (t, *J* = 6.7 Hz, 2H), 3.49 (d, J = 14.9 Hz, 2H), 1.56 - 1.32 (m, 2H), 1.32 - 1.01 (m, 14H), 0.88 (t, J = 6.8 Hz, 3H).

¹³C NMR (176 MHz, CDCl₃) δ 166.3, 132.3 (d, J = 3.0 Hz), 131.8 (d, J = 104.1 Hz), 131.1 (d, J =10.0 Hz), 128.6 (d, J = 12.3 Hz), 65.8, 39.2 (d, J = 60.6 Hz), 31.9, 29.53, 29.45, 29.3, 29.2, 28.3, 25.7, 22.7, 14.1.

³¹P NMR (162 MHz, CDCl₃) δ 26.85.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₄H₃₄O₃P⁺ 401.2240; Found: 401.2243.

Decyl 2-(diphenylphosphoryl)propanoate (5n)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (58.8 mg, 71% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.74 (m, 4H), 7.61 – 7.37 (m, 6H), 3.93 – 3.83 (m, 1H), 3.83 – 3.73 (m, 1H), 3.66 - 3.50 (m, 1H), 1.55 - 1.38 (m, 3H), 1.37 - 1.11 (m, 14H), 1.11 - 0.99 (m, 2H), 0.87 (t, J = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.3, 132.0 (d, J = 2.6 Hz), 132.0 (d, J = 2.7 Hz), 131.6 (d, J = 9.2Hz), 131.2 (d, J = 9.2 Hz), 130.5 (d, J = 94.4 Hz), 128.6 (d, J = 11.8 Hz), 128.4 (d, J = 11.9 Hz), 65.5, 42.5 (d, J = 60.6 Hz), 31.8, 29.5, 29.4, 29.2, 29.1, 28.1, 25.6, 22.6, 14.1, 11.0 (d, J = 3.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 31.06.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₄H₃₆O₃P⁺ 415.2397; Found: 415.2403.

Decyl 2-(diphenylphosphoryl)butanoate (50)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid
(59.9 mg, 70% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.93 – 7.84 (m, 2H), 7.84 – 7.75 (m, 2H), 7.57 – 7.36 (m, 6H), 3.93 – 3.82 (m, 1H), 3.80 – 3.70 (m, 1H), 3.43 – 3.31 (m, 1H), 2.14 – 1.96 (m, 1H), 1.93 – 1.79 (m, 1H), 1.41 – 1.07 (m, 16H), 0.97 (t, *J* = 7.3 Hz, 3H), 0.87 (t, *J* = 6.8 Hz, 3H).

¹³**C** NMR (101 MHz, CDCl₃) δ 169.8, 132.0 (d, J = 2.7 Hz), 132.0 (d, J = 2.7 Hz), 131.7 (d, J = 9.2 Hz), 131.2 (d, J = 9.2 Hz), 130.5 (d, J = 100.1 Hz), 128.5 (d, J = 12.0 Hz), 128.3 (d, J = 12.1 Hz), 65.4, 51.2 (d, J = 59.8 Hz), 31.8, 29.5, 29.4, 29.2, 29.1, 28.1, 25.7, 22.6, 20.2 (d, J = 2.4 Hz), 14.1, 13.3 (d, J = 13.3 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 29.18.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₆H₃₈O₃P⁺ 429.2553; Found: 429.2560.

Decyl 2-(diphenylphosphoryl)hexanoate (5p)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (56.7 mg, 62% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 8.08 – 7.84 (m, 2H), 7.84 – 7.75 (m, 2H), 7.61 – 7.39 (m, 6H), 3.97 – 3.82 (m, 1H), 3.81 – 3.63 (m, 1H), 3.55 – 3.32 (m, 1H), 2.08 – 1.95 (m, 1H), 1.89 – 1.74 (m, 1H), 1.44 – 1.12 (m, 20H), 0.88 (t, *J* = 6.8 Hz, 3H), 0.81 (t, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.0 (d, J = 2.3 Hz), 132.0 (d, J = 3.3 Hz), 132.0 (d, J = 3.3 Hz), 131.7 (d, J = 9.3 Hz), 131.2 (d, J = 9.3 Hz), 130.5 (d, J = 100.0 Hz), 128.6 (d, J = 11.9 Hz), 128.3 (d, J = 12.0 Hz), 65.4, 49.5 (d, J = 59.7 Hz), 31.8, 30.9 (d, J = 12.3 Hz), 29.5, 29.4, 29.3, 29.1, 28.1, 26.2 (d, J = 2.6 Hz), 25.7, 22.6, 22.2, 14.1, 13.7.

³¹P NMR (162 MHz, CDCl₃) δ 29.26.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₄₂O₃P⁺ 457.2866; Found: 457.2873.

Decyl 2-(diphenylphosphoryl)-4-phenylbutanoate (5q)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (57.5 mg, 57% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.85 – 7.75 (m, 2H), 7.74 – 7.63 (m, 2H), 7.59 – 7.47 (m, 2H), 7.48 – 7.38 (m, 4H), 7.31 – 7.19 (m, 3H), 7.07 (d, J = 7.0 Hz, 2H), 3.96 – 3.83 (m, 1H), 3.80 – 3.69 (m, 1H),

3.46 (t, *J* = 11.3 Hz, 1H), 2.83 – 2.71 (m, 1H), 2.62 – 2.50 (m, 1H), 2.50 – 2.31 (m, 1H), 2.19 – 2.00 (m, 1H), 1.58 – 1.01 (m, 16H), 0.89 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.6, 132.0 (d, *J* = 3.1 Hz), 132.0 (d, *J* = 3.3 Hz), 131.6 (d, *J* = 9.3 Hz), 131.4 (d, *J* = 100.6 Hz), 131.2 (d, *J* = 9.1 Hz), 130.5 (d, *J* = 100.8 Hz), 128.6, 128.5 (d, *J* = 12.0 Hz), 128.4, 128.3, 126.2, 65.5, 48.2 (d, *J* = 59.4 Hz), 34.5 (d, *J* = 12.7 Hz), 31.8, 29.5, 29.4, 29.3, 29.1, 28.2, 28.1, 25.7, 22.6, 14.1.

³¹P NMR (162 MHz, CDCl₃) δ 29.55.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₂H₄₂O₃P⁺ 505.2866; Found: 505.2869.

Decyl 2-(di-p-tolylphosphoryl)acetate (5r)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (63.3 mg, 74% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.71 – 7.62 (m, 4H), 7.28 (d, *J* = 8.7 Hz, 4H), 3.93 (t, *J* = 6.7 Hz, 2H), 3.45 (d, *J* = 14.8 Hz, 2H), 2.40 (s, 6H), 1.58 – 1.34 (m, 2H), 1.34 – 1.03 (m, 14H), 0.88 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (176 MHz, CDCl₃) δ166.5, 142.7 (d, *J* = 2.6 Hz), 131.2 (d, *J* = 10.0 Hz), 129.3 (d, *J* = 12.8 Hz), 128.8 (d, *J* = 106.5 Hz), 65.7, 39.3 (d, *J* = 60.5 Hz), 31.9, 29.6, 29.5, 29.3, 29.2, 28.3, 25.7, 22.7, 21.6, 14.1.

³¹P NMR (162 MHz, CDCl₃) δ 27.32.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₆H₃₈O₃P⁺ 429.2553; Found: 429. 2560.

Diethyl (1-((4-(3-ethyl-2,6-dioxopiperidin-3-yl)phenyl)amino)-1-oxo-4-phenylbutan-2yl)phosphonate (6a)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 1:2) to afford the title compound as a brown liquid (70.9 mg, 69% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 9.08 (s, 1H), 9.01 (s, 1H), 7.50 (d, J = 14.5 Hz, 2H), 7.29 – 7.24 (m, 2H), 7.23 – 7.12 (m, 5H), 4.23 – 3.85 (m, 4H), 3.27 – 2.91 (m, 1H), 2.91 – 2.78 (m, 1H), 2.76 – 2.51 (m, 2H), 2.52 – 2.27 (m, 3H), 2.27 – 2.16 (m, 1H), 2.14 – 1.99 (m, 2H), 1.95 – 1.82 (m, 1H), 1.44 – 1.20 (m, 6H), 0.99 – 0.75 (m, 3H).

¹³**C NMR** (**101 MHz, CDCl**₃) δ 175.7 (d, *J* = 34.5 Hz), 172.9 (d, *J* = 46.0 Hz), 165.5 (d, *J* = 2.8 Hz), 140.7, 137.5, 134.5 (d, *J* = 4.6 Hz), 128.6, 128.4, 126.7 (d, *J* = 2.2 Hz), 126.2, 120.2 (d, *J* = 12.6 Hz), 63.3 (d, *J* = 6.9 Hz), 62.7 (d, *J* = 5.8 Hz), 50.7 (d, *J* = 5.8 Hz), 46.1 (d, *J* = 128.6 Hz), 34.1 (d, *J* = 15.8 Hz), 32.7, 29.3 (d, *J* = 5.1 Hz), 28.3, 27.2 (d, *J* = 15.2 Hz), 16.4 (d, *J* = 5.9 Hz), 16.3 (d, *J* = 6.1 Hz), 9.1 (d, *J* = 7.2 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 24.88.

HRMS (**ESI-TOF**) m/z: [M+H]⁺ calcd for C₂₇H₃₆N₂O₆P⁺ 515.2305; Found: 505.2311.

Diethyl (1-((4-(N-(3-methoxypyrazin-2-yl)sulfamoyl)phenyl)amino)-1-oxo-4-phenylbutan-2-yl)phosphonate (6b)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 1:2) to afford the title compound as a brown liquid (60.7 mg, 54% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 9.78 (s, 1H), 7.75 (d, *J* = 9.0 Hz, 4H), 7.70 (s, 1H), 7.54 (d, *J* = 8.4 Hz, 2H), 7.33 – 7.22 (m, 2H), 7.21 – 7.12 (m, 3H), 4.25 – 4.12 (m, 2H), 4.07 – 3.84 (m, 5H), 3.15 – 2.93 (m, 1H), 2.92 – 2.70 (m, 1H), 2.63 – 2.48 (m, 1H), 2.48 – 2.35 (m, 1H), 2.19 – 1.94 (m, 1H), 1.37 (t, *J* = 7.0 Hz, 3H), 1.24 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.1, 142.7, 140.5, 133.7, 129.3, 128.6, 128.4, 126.2, 118.6, 63.7, 62.5, 54.1, 46.0 (d, *J* = 129.2 Hz), 34.0 (d, *J* = 14.8 Hz), 27.5, 16.4 (d, *J* = 5.8 Hz), 16.2 (d, *J* = 6.1 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 24.70.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₃₂N₄O₇PS⁺ 563.1724; Found: 563.1727.

Tert-butyl (2-(diethoxyphosphoryl)-4-phenylbutanoyl)glycinate (6c)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 1:2) to afford the title compound as a brown liquid (66.9 mg, 81% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.34 – 7.25 (m, 2H), 7.24 – 7.14 (m, 3H), 6.81 (s, 1H), 4.19 – 4.01 (m, 4H), 3.96 (t, *J* = 5.5 Hz, 2H), 2.90 – 2.72 (m, 2H), 2.72 – 2.53 (m, 1H), 2.41 – 2.27 (m, 1H), 2.18 – 2.04 (m, 1H), 1.48 (s, 9H), 1.34 – 1.18 (m, 6H).

¹³**C NMR (101 MHz, CDCl₃)** δ 168.5, 167.4 (d, *J* = 2.6 Hz), 140.8, 128.6, 128.4, 126.1, 82.1, 62.8 (d, *J* = 6.7 Hz), 62.7 (d, *J* = 6.7 Hz), 45.1 (d, *J* = 130.1 Hz), 42.4, 34.0 (d, *J* = 14.5 Hz), 28.6 (d, *J* = 4.4 Hz), 28.0, 16.31 (d, *J* = 2.1 Hz), 16.27 (d, *J* = 2.0 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 24.88. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₃₃NO₆P⁺ 414.2040; Found: 414.2031.

Methyl O-(tert-butyl)-N-(2-(diethoxyphosphoryl)-4-phenylbutanoyl)-L-allothreoninate (6d)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 1:2) to afford the title compound as a brown liquid (72.5 mg, 77% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.46 – 7.08 (m, 5H), 6.74 (s, 1H), 4.61 – 4.50 (m, 1H), 4.31 – 4.23 (m, 1H), 4.20 – 4.03 (m, 5H), 3.73 (s, 3H), 2.92 – 2.72 (m, 2H), 2.70 – 2.52 (m, 1H), 2.48 – 2.26 (m, 1H), 1.37 – 1.27 (m, 6H), 1.24 (d, *J* = 6.3 Hz, 3H), 1.13 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.0, 167.8 (d, *J* = 3.9 Hz), 140.9, 128.6, 128.4, 126.0, 74.0, 67.3, 62.6 (d, *J* = 1.7 Hz), 62.5 (d, *J* = 1.8 Hz), 58.2, 52.1, 45.4 (d, *J* = 131.4 Hz), 33.8 (d, *J* = 15.7 Hz), 28.6 (d, *J* = 4.2 Hz), 28.3, 28.3, 20.9, 16.3 (d, *J* = 6.0 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 24.30.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₃H₃₉NO₇P⁺ 472.2459; Found: 472.2461.

(E)-3,7-Dimethylocta-2,6-dien-1-yl 2-(diethoxyphosphoryl)-4-phenylbutanoate (6e)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (51.5 mg, 59% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.24 (m, 2H), 7.23 – 7.13 (m, 3H), 5.49 – 5.27 (m, 1H), 5.28 – 5.02 (m, 1H), 4.84 – 4.55 (m, 2H), 4.37 – 3.96 (m, 5H), 3.31 - 2.86 (m, 1H), 2.80 - 2.66 (m, 1H), 2.65 – 2.52 (m, 1H), 2.32 - 2.31 (m, 1H), 2.24 - 2.01 (m, 4H), 1.77 - 1.53 (m, 9H), 1.41 - 1.20 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0 (d, J = 4.9 Hz), 142.7, 140.5, 131.9, 128.5, 128.4, 126.2, 123.6, 117.9, 62.7 (d, J = 4.2 Hz), 62.6 (d, J = 4.8 Hz), 62.3, 45.0 (d, J = 130.9 Hz), 39.5, 34.3 (d, J = 15.4 Hz), 28.7 (d, J = 4.6 Hz), 26.3, 25.6, 17.6, 16.5, 16.33 (d, J = 3.3 Hz), 16.29 (d, J = 3.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 22.54.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₄H₃₈O₅P⁺ 437.2451; Found: 437.2460.

(7*R*,11*R*,*E*)-3,7,11,15-Tetramethylhexadec-2-en-1-yl 2-(diethoxyphosphoryl)-4-phenylbutanoate (6f)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (78.7 mg, 68% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.33 – 7.25 (m, 2H), 7.23 – 7.13 (m, 3H), 5.37 (t, *J* = 7.0 Hz, 1H), 4.68 (d, *J* = 7.0 Hz, 2H), 4.36 – 3.92 (m, 4H), 3.03 – 2.89 (m, 1H), 2.78 – 2.67 (m, 1H), 2.64 – 2.52 (m, 1H), 2.40 – 2.23 (m, 1H), 2.22 – 2.09 (m, 1H), 2.13 – 1.93 (m, 2H), 1.72 (s, 3H), 1.61 – 1.47 (m, 1H), 1.46 – 1.19 (m, 19H), 1.17 – 1.11 (m, 2H), 1.11 – 0.99 (m, 3H), 0.95 – 0.60 (m, 12H).

¹³**C NMR (101 MHz, CDCl₃)** δ 169.0 (d, J = 5.0 Hz), 142.7, 140.5, 132.2, 128.5, 128.4, 126.2, 123.5, 118.8, 62.7 (d, J = 2.8 Hz), 62.6 (d, J = 3.3 Hz), 62.0, 45.0 (d, J = 130.9 Hz), 34.3 (d, J = 15.3 Hz), 32.2, 28.7 (d, J = 4.5 Hz), 26.6, 25.7, 23.5, 17.6, 16.31 (d, J = 4.0 Hz), 16.28 (d, J = 4.1 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 22.54.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₄H₆₀O₅P⁺ 579.4173; Found: 579.4174.

(2E,6E,10E,14E,18E,22E,26E,30E)-3,7,11,15,19,23,27,31,35-Nonamethylhexatriaconta-2,6,10,14,18,22,26,30,34-nonaen-1-yl 2-(diethoxyphosphoryl)-4-phenylbutanoate (6g)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (93.0 mg, 51% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.30 – 7.25 (m, 2H), 7.23 – 7.13 (m, 3H), 5.43 – 5.35 (m, 1H), 5.12 (d, *J* = 6.8 Hz, 8H), 4.68 (d, *J* = 7.0 Hz, 2H), 4.18 – 4.06 (m, 4H), 3.04 – 2.86 (m, 1H), 2.78 – 2.67 (m, 1H), 2.64 – 2.52 (m, 1H), 2.40 – 2.23 (m, 1H), 2.21 – 1.94 (m, 33H), 1.73 (s, 3H), 1.70 – 1.56 (m, 27H), 1.39 – 1.24 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0 (d, J = 4.9 Hz), 142.9, 140.5, 135.6, 135.0, 134.92, 134.90, 134.87, 131.2, 128.6, 128.4, 126.2, 124.4, 124.23, 124.19, 124.1, 123.5, 117.9, 62.7 (d, J = 4.9 Hz), 62.6, 62.2, 45.0 (d, J = 130.8 Hz), 39.73, 39.67, 39.6, 34.3 (d, J = 15.3 Hz), 29.7, 28.7 (d, J = 4.5 Hz), 26.73, 26.68 (d, J = 2.0 Hz), 26.7, 26.3, 25.7, 17.7, 16.5, 16.4 (d, J = 3.4 Hz), 16.3 (d, J = 3.5 Hz), 16.0.

³¹P NMR (162 MHz, CDCl₃) δ 22.53.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₅₉H₉₄O₅P⁺ 913.6833; Found: 913.6824.

$(1R,2S,5R)\mbox{-}2\mbox{-}Isopropyl\mbox{-}5\mbox{-}methylcyclohexyl\mbox{-}2\mbox{-}(diethoxyphosphoryl)\mbox{-}4\mbox{-}phenylbutanoate\mbox{(6h)}$

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (75.3 mg, 86% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 2H), 7.22 – 7.14 (m, 3H), 4.85 – 4.73 (m, 1H), 4.20 – 4.02 (m, 4H), 3.02 – 2.86 (m, 1H), 2.80 – 2.68 (m, 1H), 2.63 – 2.49 (m, 1H), 2.39 – 2.24 (m, 1H), 2.26 – 2.11 (m, 1H), 2.11 – 1.90 (m, 2H), 1.70 (d, *J* = 11.4 Hz, 2H), 1.64 – 1.39 (m, 2H), 1.39 – 1.17 (m, 6H), 1.17 – 1.00 (m, 2H), 0.97 – 0.85 (m, 7H), 0.79 (t, *J* = 6.7 Hz, 3H).

13C NMR (101 MHz, Chloroform-d) δ 168.5 (d, J = 5.0 Hz), 140.5, 128.5, 128.4, 126.2, 75.5, 62.6 (d, J = 2.6 Hz), 46.8 (d, J = 8.4 Hz), 44.6, 45.25 (d, J = 131.6 Hz), 40.6, 34.1 (d, J = 2.2 Hz), 31.3 (d, J = 3.4 Hz), 28.9 (d, J = 4.4 Hz), 25.4, 22.8, 22.0, 20.8, 16.3 (d, J = 2.7 Hz), 16.2 (d, J = 2.6 Hz), 15.9, 15.7.

³¹P NMR (162 MHz, CDCl₃) δ 22.91.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₄H₄₀O₅P⁺ 439.2608; Found: 439.2608.

((3a*S*,5a*R*,8a*R*,8b*S*)-2,2,7,7-Tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (6i)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 1:2) to afford the title compound as a colorless liquid (75.9 mg, 70% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 7.33 – 7.25 (m, 2H), 7.24 – 7.16 (m, 3H), 4.61 (t, *J* = 10.0 Hz, 1H), 4.42 – 4.27 (m, 2H), 4.24 (d, *J* = 7.7 Hz, 1H), 4.19 – 4.08 (m, 5H), 3.93 (d, *J* = 13.0 Hz, 1H), 3.77 (d, *J* = 13.1 Hz, 1H), 3.07 – 2.94 (m, 1H), 2.85 – 2.68 (m, 1H), 2.69 – 2.55 (m, 1H), 2.43 – 2.27 (m, 1H), 2.27 – 2.10 (m, 1H), 1.55 (s, 3H), 1.46 (s, 3H), 1.39 (s, 3H), 1.35 – 1.28 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 168.5 (d, J = 5.2 Hz), 140.4, 128.6, 128.5, 126.2, 109.1, 108.8, 101.3, 70.8, 70.2, 70.0, 66.1, 62.9 (d, J = 6.6 Hz), 62.8 (d, J = 6.5 Hz), 61.2, 44.9 (d, J = 130.8 Hz), 34.2 (d, J = 14.7 Hz), 28.6 (d, J = 4.5 Hz), 26.5, 25.9, 25.3, 24.1, 16.32 (d, J = 5.9 Hz), 16.27 (d, J = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 22.17.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{26}H_{40}O_{10}P^+$ 543.2354; Found: 543.2362.

Ph (EtO)₂P

(10*S*,13*R*,14*R*,17*R*)-4,4,10,13,14-Pentamethyl-17-((*R*)-6-methylhept-5-en-2-yl)-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-*1H*-cyclopenta[a]phenanthren-3-yl 2-(diethoxyphosphoryl)-4-phenylbutanoate (6j)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (82.1 mg, 58% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.28 (t, *J* = 7.4 Hz, 2H), 7.24 – 7.15 (m, 3H), 5.10 (t, *J* = 7.0 Hz, 1H), 4.64 – 4.43 (m, 1H), 4.41 – 3.98 (m, 4H), 3.04 – 2.87 (m, 1H), 2.85 – 2.66 (m, 1H), 2.65 – 2.52 (m, 1H), 2.44 – 2.26 (m, 1H), 2.22 – 2.11 (m, 1H), 2.12 – 1.99 (m, 4H), 1.96 – 1.83 (m, 2H), 1.80 – 1.64 (m, 8H), 1.63 – 1.43 (m, 6H), 1.42 – 1.24 (m, 10H), 1.22 – 1.10 (m, 3H), 1.02 (s, 3H), 1.00 – 0.81 (m, 14H), 0.69 (s, 3H).

¹³**C NMR** (**101 MHz, CDCI**₃) δ 168.6 (d, *J* = 18.4 Hz), 140.5 (d, *J* = 3.6 Hz), 134.6 (d, *J* = 1.7 Hz), 134.1, 130.9, 128.5 (d, *J* = 3.1 Hz), 128.5 (d, *J* = 1.9 Hz), 126.2, 125.2, 82.3 (d, *J* = 13.5 Hz), 62.6 (d, *J* = 3.3 Hz), 62.5 (d, J = 3.5 Hz), 50.6 (d, *J* = 6.3 Hz), 50.4 (d, *J* = 11.8 Hz), 49.8, 46.1 (d, *J* = 8.2 Hz), 44.8 (d, *J* = 9.1 Hz), 44.4 (d, *J* = 2.2 Hz), 39.5, 37.9 (d, J = 8.8 Hz), 36.9, 36.4, 36.3 (d, *J* = 8.9 Hz), 35.2 (d, *J* = 3.1 Hz), 34.4 (d, *J* = 7.6 Hz), 34.3, 30.9 (d, *J* = 13.6 Hz), 28.9, 28.5, 28.2, 28.0, 27.8 (d, *J* = 3.3 Hz), 26.3, 25.7, 24.9, 24.2 (d, *J* = 1.8 Hz), 24.0 (d, *J* = 11.4 Hz), 22.8, 22.5, 21.0, 19.2, 18.6 (d, *J* = 8.6 Hz), 18.1, 17.6, 16.6, 16.4 (d, *J* = 5.6 Hz), 15.7.

³¹P NMR (162 MHz, CDCl₃) δ 23.07, 22.97.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₄₄H₇₀O₅P⁺ 709.4955; Found: 709.4960.

(*3R*,*8S*,*9R*,*10R*,*13R*,*14R*)-10,13-Dimethyl-17-oxohexadecahydro-*1H*-cyclopenta[a]phenanthren-3-yl 2-(diethoxyphosphoryl)-4-phenylbutanoate (6k)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (88.1 mg, 77% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.32 – 7.24 (m, 2H), 7.24 – 7.14 (m, 3H), 4.87 – 4.74 (m, 1H), 4.19 – 4.02 (m, 4H), 2.99 – 2.85 (m, 1H), 2.79 – 2.67 (m, 1H), 2.63 – 2.51 (m, 1H), 2.49 – 2.32 (m, 1H), 2.35

- 2.22 (m, 1H), 2.20 - 1.99 (m, 2H), 1.98 - 1.84 (m, 2H), 1.84 - 1.72 (m, 3H), 1.73 - 1.62 (m, 2H), 1.62 - 1.48 (m, 3H), 1.48 - 1.39 (m, 1H), 1.37 - 1.18 (m, 12H), 1.13 - 0.94 (m, 2H), 0.86 (s, 6H), 0.77 - 0.67 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 221.1, 168.5 (d, *J* = 4.9 Hz), 140.5, 128.5, 128.4, 126.2, 74.6, 62.6 (d, *J* = 6.3 Hz), 62.5 (d, *J* = 2.8 Hz), 62.5 (d, *J* = 2.7 Hz), 54.2, 51.3, 47.7, 45.8 (d, *J* = 2.4 Hz), 44.6 (d, *J* = 3.4 Hz), 44.5, 36.6 (d, *J* = 3.1 Hz), 35.8, 35.6, 35.0, 34.2 (d, *J* = 14.6 Hz), 33.7 (d, *J* = 21.4 Hz), 31.5, 30.7, 28.7 (d, *J* = 3.7 Hz), 28.2 (d, *J* = 3.0 Hz), 27.3, 27.2, 21.7, 20.4, 16.3 (d, *J* = 5.9 Hz), 13.8, 12.2. ³¹P NMR (162 MHz, CDCl₃) δ 22.79.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₃₃H₅₀O₆P⁺ 573.3340; Found: 573.3348.

N-Phenyl-2-(phenylsulfonyl)pentanamide (7a)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (49.5 mg, 78% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 8.53 (s, 1H), 7.88 (d, *J* = 7.1 Hz, 2H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.60 – 7.44 (m, 4H), 7.46 – 7.21 (m, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 5.39 – 3.60 (m, 1H), 2.57 – 1.86 (m, 2H), 1.59 – 1.30 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.2, 137.2, 136.2, 134.4, 129.2, 129.1, 129.0, 124.9, 120.1, 72.1, 28.7, 20.2, 13.6.

HRMS (**ESI-TOF**) **m**/**z**: [M+H]⁺ calcd for C₁₇H₂₀NO₃S⁺ 318.1158; Found: 318.1159.

N,4-Diphenyl-2-(phenylsulfonyl)butanamide (7b)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (45.5 mg, 60% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR and HRMS. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.82 (d, *J* = 7.1 Hz, 2H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.60 – 7.42 (m, 4H), 7.39 – 7.30 (m, 2H), 7.30 – 7.22 (m, 2H), 7.22 – 7.10 (m, 4H), 4.07 – 3.70 (m, 1H), 3.06 – 2.77 (m, 1H), 2.75 – 2.58 (m, 1H), 2.51 – 2.25 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 161.7, 139.5, 137.1, 136.0, 134.5, 129.2, 129.1, 129.1, 128.6, 128.5, 126.5, 125.1, 120.1, 71.2, 32.7, 28.2.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₂₂NO₃S⁺ 380.1315; Found: 380.1318.

2-((4-Fluorophenyl)sulfonyl)-*N*-phenylpentanamide (7c)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (46.9 mg, 70% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ¹⁹F NMR and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.21 – 7.75 (m, 2H), 7.50 (d, *J* = 7.4 Hz, 2H), 7.32 (t, *J* = 7.9 Hz, 2H), 7.21 (t, *J* = 8.5 Hz, 2H), 7.15 (t, *J* = 7.5 Hz, 1H), 4.12 – 3.80 (m, 1H), 2.16 – 1.86 (m, 2H), 1.59 – 1.31 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 166.4 (d, *J* = 257.8 Hz), 162.2, 137.2, 132.2 (d, *J* = 9.8 Hz), 129.1, 125.2, 120.1, 116.7 (d, *J* = 22.8 Hz), 72.3, 28.9, 20.3, 13.6.

¹⁹F NMR (376 MHz, CDCl₃) δ -101.85.

HRMS (**ESI-TOF**) m/z: [M+H]⁺ calcd for C₁₉H₁₉FNO₃S⁺ 336.1064; Found: 336.1069.

N-Phenyl-2-tosylpentanamide (7d)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (52.3 mg, 79% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR and HRMS. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.74 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 7.4 Hz, 2H), 7.41 –

7.22 (m, 4H), 7.13 (t, J = 7.4 Hz, 1H), 4.90 – 3.60 (m, 1H), 2.42 (s, 3H), 2.22 – 1.85 (m, 2H), 1.70 – 1.28 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.4, 145.6, 137.3, 133.2, 129.9, 129.1, 129.0, 124.9, 120.1, 72.1, 28.7, 21.7, 20.3, 13.6.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₂NO₃S⁺ 332.1315; Found: 332.1322.

2-(Methylsulfonyl)-*N*,4-diphenylbutanamide (7e)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (39.3 mg, 62% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR and HRMS. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.52 (d, *J* = 7.5 Hz, 2H), 7.44 – 7.25 (m, 4H), 7.24 – 7.07 (m, 4H), 3.90 – 3.57 (m, 1H), 2.98 (s, 3H), 2.94 – 2.79 (m, 1H), 2.75 – 2.61 (m, 1H), 2.58 – 2.36 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 162.9, 139.3, 137.1, 129.1, 128.8, 128.6, 126.7, 125.3, 120.3, 70.5, 37.8, 32.9, 28.7.
HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₇H₂₀NO₃S⁺ 318.1158; Found: 318.1161.

3-Phenylprop-2-yn-1-yl acetate (7f)¹⁰

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 10:1) to afford the title compound as a colorless liquid (27.1 mg, 78% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR and HRMS. ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.41 (m, 2H), 7.41 – 7.24 (m, 3H), 4.90 (s, 2H), 2.13 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 131.9, 128.7, 128.3, 122.1, 86.4, 82.9, 52.8, 20.8. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₁H₁₁O₂⁺ 175.0754; Found: 175.0759.

N-Phenylacetamide (7g)¹¹

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (22.1 mg, 82% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR and HRMS. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.50 (d, *J* = 7.3 Hz, 2H), 7.27 (t, *J* = 7.9 Hz, 2H), 7.08 (t, *J* = 7.4 Hz, 1H), 2.13 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 138.0, 128.8, 124.2, 120.1, 24.3. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₈H₁₀NO₂⁺ 136.0757; Found: 136.0758.

Octyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (8a)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (47.8 mg, 58% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.32 – 7.24 (m, 2H), 7.24 – 7.13 (m, 3H), 4.19 – 4.04 (m, 6H), 3.09 – 2.88 (m, 1H), 2.85 – 2.67 (m, 1H), 2.64 – 2.51 (m, 1H), 2.41 – 2.25 (m, 1H), 2.23 – 2.07 (m, 1H), 1.72 – 1.60 (m, 2H), 1.40 – 1.25 (m, 16H), 0.87 (t, *J* = 6.9 Hz 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1 (d, J = 5.0 Hz), 140.4, 128.5, 128.4, 126.2, 65.6, 62.7 (d, J = 13.0 Hz), 62.7, 45.1 (d, J = 130.9 Hz), 34.3 (d, J = 15.4 Hz), 31.8, 29.2, 28.6 (d, J = 4.5 Hz), 28.6, 25.8, 22.6, 16.4 (d, J = 1.9 Hz), 16.3 (d, J = 2.1 Hz), 14.1.

³¹P NMR (162 MHz, CDCl₃) δ 22.67. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₃₈O₅P⁺ 413.2451; Found: 413.2458.

Butyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (8b)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (37.7 mg, 53% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.28 (t, *J* = 7.6 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.17 (d, *J* = 7.0 Hz, 2H), 4.26 – 3.99 (m, 6H), 3.16 – 2.87 (m, 1H), 2.81 – 2.69 (m, 1H), 2.66 – 2.54 (m, 1H), 2.45 – 2.26 (m, 1H), 2.23 – 2.07 (m, 1H), 1.81 – 1.59 (m, 2H), 1.47 – 1.37 (m, 2H), 1.31 – 1.23 (m, 6H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1 (d, J = 4.9 Hz), 140.4, 128.5, 128.4, 126.2, 65.2, 62.6 (d, J = 6.4 Hz), 62.6 (d, J = 7.0 Hz), 45.0 (d, J = 130.9 Hz), 34.3 (d, J = 15.4 Hz), 30.5, 28.6 (d, J = 4.5 Hz), 19.0, 16.3 (d, J = 3.7 Hz), 16.3 (d, J = 3.9 Hz), 13.6.

³¹P NMR (162 MHz, CDCl₃) δ 22.65.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₃₀O₅P⁺ 357.1825; Found: 357.1826.

3-Phenylpropyl 2-(diethoxyphosphoryl)-4-phenylbutanoate (8c)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (50.2 mg, 60% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 7.41 – 7.25 (m, 4H), 7.24 – 7.00 (m, 6H), 4.33 – 3.94 (m, 6H), 3.02 – 2.94 (m, 1H), 2.80 – 2.66 (m, 3H), 2.65 – 2.50 (m, 1H), 2.46 – 2.27 (m, 1H), 2.24 – 2.09 (m, 1H), 2.09 – 1.94 (m, 2H), 1.51 – 1.15 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0 (d, *J* = 5.0 Hz), 141.0, 140.3, 128.5, 128.4, 128.4, 128.4, 126.2, 126.0, 64.6, 62.7 (d, *J* = 6.4 Hz), 62.6 (d, *J* = 6.6 Hz), 45.0 (d, *J* = 131.0 Hz), 34.3 (d, *J* = 15.4 Hz), 32.0, 30.2, 28.6 (d, *J* = 4.5 Hz), 16.3 (d, *J* = 6.1 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 22.63.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₃H₃₂O₅P⁺ 419.1928; Found: 419.1933.

(EtO)₂₽^{≠0}

But-3-en-1-yl 2-(diethoxyphosphoryl)-4-phenylbutanoate (8d)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (22.7 mg, 32% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.24 – 7.14 (m, 3H), 5.95 – 5.59 (m, 1H), 5.31 – 4.77 (m, 2H), 4.29 – 4.18 (m, 2H), 4.18 – 4.03 (m, 4H), 3.03 – 2.89 (m, 1H), 2.81 – 2.67 (m, 1H), 2.64 – 2.52 (m, 1H), 2.48 – 2.40 (m, 2H), 2.35 – 2.23 (m, 1H), 2.22 – 2.06 (m, 1H), 1.47 – 1.23 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0 (d, J = 4.9 Hz), 140.4, 133.8, 128.5, 128.4, 126.2, 117.4, 64.5, 62.7 (d, J = 6.3 Hz), 62.6 (d, J = 6.9 Hz), 45.0 (d, J = 131.0 Hz), 34.3 (d, J = 15.3 Hz), 32.9, 28.6 (d, J = 4.7 Hz), 16.3 (d, J = 6.0 Hz).

³¹P NMR (162 MHz, CDCl₃) δ 22.46.

HRMS (**ESI-TOF**) m/z: [M+H]⁺ calcd for C₁₈H₂₈O₅P⁺ 355.1669; Found: 355.1670.

Decyl 2-(diethoxyphosphoryl)-4,4,5,5,6,6,7,7,7-nonafluoroheptanoate (9a)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (71.6 mg, 63% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, ¹⁹F NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 4.30 – 3.98 (m, 6H), 3.48 – 3.22 (m, 1H), 3.12 – 2.79 (m, 1H), 2.76 – 2.42 (m, 1H), 1.77 – 1.57 (m, 2H), 1.42 – 1.20 (m, 20H), 0.87 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (176 MHz, CDCl₃) δ 167.6 (d, *J* = 6.3 Hz), 66.4, 63.6 (d, *J* = 6.4 Hz), 63.3 (d, *J* = 6.9 Hz), 38.1 (d, *J* = 131.8 Hz), 31.8, 29.5 (d, *J* = 3.3 Hz), 29.3, 29.2, 28.8 (t, *J* = 21.5 Hz), 28.4, 25.7, 22.6, 16.3 (d, *J* = 5.9 Hz), 14.1.

³¹P NMR (162 MHz, CDCl₃) δ 19.95.

¹⁹**F NMR (176 MHz, CDCl**₃) δ -80.53 – -81.71 (m, 3F), -112.58 – -116.50 (m, 2F), -121.97 – -125.15 (m, 2F), -125.15 – -127.65 (m, 2F).

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₃₅F₉O₅P⁺ 569.2073; Found: 569.2069.

1-Ethyl 5-(3-phenylpropyl) 4-(diethoxyphosphoryl)-2,2-difluoropentanedioate (9b)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid

(43.2 mg, 48% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, ¹⁹F NMR and HRMS.

¹**H NMR (400 MHz, CDCl₃)** δ 7.42 – 7.24 (m, 2H), 7.24 – 7.04 (m, 3H), 4.52 – 4.25 (m, 2H), 4.24 – 3.99 (m, 6H), 3.51 – 3.16 (m, 1H), 3.07 – 2.81 (m, 1H), 2.90 – 2.66 (m, 2H), 2.67 – 2.49 (m, 1H), 2.23 – 1.81 (m, 2H), 1.56 – 1.13 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 168.0 (d, J = 5.9 Hz), 163.3 (t, J = 32.2 Hz), 141.1, 128.5, 128.4, 126.0, 114.6 (d, J = 16.8 Hz), 65.3, 63.5 (d, J = 6.5 Hz), 63.3, 63.2 (d, J = 6.8 Hz), 62.6 (d, J = 5.8 Hz), 39.0 (d, J = 131.6 Hz), 32.1 (d, J = 3.8 Hz), 31.9, 30.1, 16.3 (d, J = 5.4 Hz), 13.9.

³¹P NMR (162 MHz, CDCl₃) δ 20.57.

¹⁹F NMR (176 MHz, CDCl₃) δ -95.15 - -118.30 (m, 2F)

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{20}H_{30}F_2O_7P^+$ 451.1692; Found: 451.1699.

2-(Diphenylphosphoryl)-N-phenylacetamide (5s)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 2:1) to afford the title compound as a colorless liquid (54.3 mg, 81% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H NMR (400 MHz, CDCl**₃) δ 9.75 (s, 1H), 7.82 – 7.68 (m, 4H), 7.62 – 7.40 (m, 8H), 7.21 (t, *J* = 7.9 Hz, 2H), 7.02 (t, *J* = 7.4 Hz, 1H), 3.53 (d, *J* = 12.7 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 167.5 (d, J = 8.6 Hz), 137.7, 136.8 (d, J = 13.0 Hz), 132.7 (d, J = 19.4 Hz), 130.7 (d, J = 10.1 Hz), 128.9 (d, J = 2.9 Hz), 128.8, 124.3, 119.9, 38.7 (d, J = 22.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 30.13.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₁₉NO₂P⁺ 336.1148; Found: 336.1150.

2-(Diphenylphosphanyl)-N-phenylacetamide (11)

This reaction was conducted on a 0.2 mmol scale with the general procedure. The crude product was purified by silica gel chromatography (PE/EA = 5:1) to afford the title compound as a colorless liquid (40.2 mg, 63% yield). The identity of the product was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR and HRMS.

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.45 (m, 4H), 7.40 – 7.35 (m, 6H), 7.32 (d, *J* = 7.6 Hz, 2H), 7.26 (t, *J* = 7.9 Hz, 3H), 7.06 (t, *J* = 7.2 Hz, 1H), 3.17 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 162.8 (d, *J* = 4.9 Hz), 138.0, 132.6 (d, *J* = 2.7 Hz), 131.3 (d, *J* = 103.6 Hz), 130.8 (d, *J* = 10.0 Hz), 129.0 (d, *J* = 12.3 Hz), 128.8, 124.2, 120.1, 39.7 (d, *J* = 59.3 Hz).

³¹P NMR (162 MHz, CDCl₃) δ -17.08. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₁₉NOP⁺ 320.1199; Found: 320.1203.

10. References

- J.-P. Fu, Y.-H. He, J. Zhong, Y. Yang, X. Deng and Z. J. Guan, An Efficient and General Route to the Synthesis of Diethyl α,α-Bromofluorophosphonates, *Fluor. Chem.* 2011, *132*, 636–640.
- [2] S.-J. He, J.-W. Wang, Y. Li, Z.-Y. Xu, X.-X. Wang, X. Lu and Y. Fu, Nickel-Catalyzed Enantioconvergent Reductive Hydroalkylation of Olefins with α-Heteroatom Phosphorus or Sulfur Alkyl Electrophiles, *J. Am. Chem. Soc.* 2020, 142, 214–221.
- [3] H. Wang, P. Zheng, X. Wu, Y. Li and T. XU, Modular and Facile Access to Chiral α-Aryl Phosphates via Dual Nickel- and Photoredox-Catalyzed Reductive Cross-Coupling, J. Am. Chem. Soc. 2022, 144, 3989–3997.
- [4] L. Qi, X. Pang, K. Yin, Q.-Q. Pan, X.-X. Wei and X.-Z. Shu, Mn-Mediated Reductive C(sp³)–Si Coupling of Activated Secondary Alkyl Bromides with Chlorosilanes, *Chinese Chemical Letters* 2022, 33, 5061– 5064.
- [5] Z.-P. Bao and X.-F. Wu, Palladium-Catalyzed Direct Carbonylation of Bromoacetonitrile to Synthesize 2-Cyano-*N*-acetamide and 2-Cyanoacetate Compounds, *Angew. Chem. Int. Ed.* **2023**, e202301671.
- [6] H.-J. Ai, B. N. Leidecker, P. Dam, C. Kubis, J. Rabeah and X.-F. Wu, Iron-Catalyzed Alkoxycarbonylation of Alkyl Bromides via a Two-Electron Transfer Process, *Angew. Chem. Int. Ed.* 2022, 61, e202211939.
- [7] B. T. Sargent and E. J. Alexanian, Palladium-Catalyzed Alkoxycarbonylation of Unactivated Secondary Alkyl Bromides at Low Pressure, *J. Am. Chem. Soc.* **2016**, *138*, 7520–7523.
- [8] F. Zhao, H.-J. Ai and X.-F. Wu, Copper-Catalyzed Substrate-Controlled Carbonylative Synthesis of α-Keto Amides and Amides from Alkyl Halides, *Angew. Chem. Int. Ed.* 2022, *61*, e202200062.
- [9] Y. Li, S. Das, S. Zhou, K. Junge and M. Beller, General and Selective Copper-Catalyzed Reduction of Tertiary and Secondary Phosphine Oxides: Convenient Synthesis of Phosphines, J. Am. Chem. Soc. 2012, 134, 9727–9732.
- [10] Y. Nishimoto, A. Okita, M. Yasuda and A. Baba, Synthesis of a Wide Range of Thioethers by Indium Triiodide Catalyzed Direct Coupling between Alkyl Acetates and Thiosilanes, *Org. Lett.* 2012, 14, 1846– 1849.
- [11] Y. Gao, Y. Mao, B. Zhang, Y. Zhan and Y. Huo, Regioselective Nitration of Anilines with Fe(NO₃)₃·9H₂O as A Promoter and A Nitro Source, *Org. Biomol. Chem.*, **2018**, *16*, 3881-3884.

11. Spectra Data for the Compounds

f1 (ppm)

 $\frac{1}{70}$ fl (ppm)

4.03H

4.0

- 77.0 CDCI3

4.5

5.0 fl (ppm)

5.5

3.05-≖

3.5

2.06/1 1.24-1 1.05_

2.5

~ 46.3

3.0

€ 63.2
 € 63.1
 € 63.6
 € 62.6
 € 55.4

1.02.

2.0

6.35-1

1.0

16.5 16.4 16.3 16.3

0.5

1.5

34.2 34.0 28.5 28.5 28.5

0.94₁

8.5

— 165.1

Ph

8.0

— 156.3

(EtO)₂₽^{∽O}

0

3c

9.0

13C NMR CDCI3 100.62MHz

9.5

2.03₁

6.5

131.2
128.6
128.4
126.1
121.5

6.0

— 114.0

7.0

— 140.8

2.00√ 2.05√ 3.06≠

7.5

31P NMR CDCI3 161.97MHz

19F NMR CDCI3 376.46MHz

— -118.54

10 0 -10 -20 -30 -40 -50

31P NMR CDCl3 161.97MHz

 $\frac{1}{70}$ fl (ppm)

 1H NMR_CDCI3_400.13MHz

 66

 67

 67

 68

 69

 69

 69

 60

 61

 62

 63

 64

 64

 65

 64

 65

 66

 66

 67

 67

 64

 64

 65

 66

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 67

 <

f1 (ppm)

 1H NMR_CDCI3_400.13MHz

 6.6

 8.6

 8.6

 8.6

 8.6

 8.6

 8.6

 8.6

 8.6

 8.6

 8.6

 8.6

 8.7

 8.6

 8.7

 8.6

 8.7

 8.6

 8.7

 8.6

 8.7

 8.7

 8.6

 8.7

 8.7

 8.7

 8.7

 8.7

 8.7

 8.7

 8.7

 8.7

 8.7

 8.7

 8.7

 8.7

 8.8

 8.7

 8.8

 8.8

 8.8

 8.8

 8.8

 8.8

 8.8

 8.8

 8.8

 8.8

 8.8

 8.8

 8.8

 8.8

 1H NMK_CDCI3
 400:13MHz

 11 NMK_CDCI3
 400:13MHz

 12 0.00
 200:00

 12 0.00
 200:00

 14 NMK_CDCI3
 400:13MHz

 15 0.00
 200:00

 16 0.00
 200:00

 17 0.00
 200:00

 18 0.00
 200:00

 19 0.00
 200:00

 10 0.00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:00

 200:00
 200:0

 1H NMK_CDCI3_400.13MHz

 16

 17

 17

 16

 17

 18

 19

 19

 11

 11

 11

 12

 12

 13

 14

 14

 15

 16

 17

 18

 19

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

fl (ppm)

— 25.14

1H NMR_CDCI3_400.13MHz 8.8

 1H NMR_CDCI3_400.13MHz

 0.6

 0.6

 0.6

 0.7

 0.6

 0.7

 0.7

 0.6

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 1H NMR_CDCI3_400.13MHz

 0.6

 0.6

 0.7

 0.7

 0.6

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

fl (ppm)

— 26.04

 11
 NMB
 CDC13
 400-13
 44-44-45
 44-44-45

 18
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17
 17

fl (ppm)

(EtO)₂₽^{∽O}

Ph

Н

|| 0

3s

— 22.98

 1H NMR_CDCI3
 400.13MHz

 22
 23

 23
 24

 24
 24

 25
 25

 26
 25

 27
 27

 28
 24

 29
 26

 29
 26

 29
 26

 20
 27

 21
 27

 22
 28

 24
 24

 25
 26

 26
 26

 27
 27

 28
 28

 29
 28

 29
 28

 21
 29

 20
 26

 21
 27

 28
 28

 29
 28

 29
 28

 29
 29

 20
 29

 20
 29

 21
 29

 21
 29

 21
 29

 21
 29

 21
 29

 21
 29

 21

 1H NMR_CDCI3_400.13MHz

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.7

 0.6

 0.7

 0.6

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 0.7

 $\frac{1}{70}$ fl (ppm)

1H NMR_CDCI3_400.13MHz

1H NMR_CDCI3_400.13MHz 0.8200

fl (ppm)

 $\frac{1}{70}$ fl (ppm)

— 21.73

 $\frac{1}{70}$ fl (ppm)

 1H NMR CDCl3 400.13MHz

 56 (2000)

 57 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)

 58 (2000)
 </t

f1 (ppm)

fl (ppm)

fl (ppm) $\frac{1}{70}$

1H NMR_CDCI3_400.13MHz 0.800 <t

 $\frac{1}{70}$ fl (ppm)

1H NMR_CDCI3_400.13MHz 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.7 0.6 0.7

fl (ppm)

100 fl (ppm)

f1 (ppm)

f1 (ppm) $\frac{1}{70}$

f1 (ppm) $\frac{1}{70}$

— 20.75

5g

f1 (ppm) $\frac{1}{70}$

1H NMR_CDCI3_400.13MHz 24 45 46 47 47 48 49 49 400 400 410 42 44 44 45 46 47

fl (ppm)

 $< \frac{22.43}{22.36}$

1H NMR CDCI3 400.13MHz

100 fl (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2 f1 (ppm)

fl (ppm)

 1H NMR_CDCI3_400.13MHz

 56

 57

 58

 58

 58

 58

 58

 59

 50

 50

 50

 50

 50

 50

 51

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 53

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 52

 <

- (P.bm)

 1H NMR_CDCI3_400.13MHz

 88

 88

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 82

 <

— 24.88

31P NMR CDCI3 161.97MHz

— 24.70

fl (ppm) $\frac{1}{70}$

— 24.30

S173

-10fl (ppm)

1H NMR_CDCI3_700.17MHz 06.2017 07.2017

 1H NMR_CDCl3_400.13MHz

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

 8.8 2010

-40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

0

.

-20

140 120 100 80 60 40 20

270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

fl (ppm)

19F NMR CDCI3 376.46MHz

O, NHPh F 7c

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S195

S197

fl (ppm)

1 2</t

TT (Ppm)

fl (ppm)

S211

