Electrochemical oxidative heterodifunctionalization of dehydroalanine: Access to unnatural α, αdisubstituted amino esters

Hui Cao,^a Ruitao Wang,^a Qianqiu Zhang,^a Cuifen Lu,^a Yue Weng,^a Meng Gao^{*},^a

Supporting Information

TABLE OF CONTENTS

1. General Information	2
2. General Experimental Procedures	2
2.1 Detailed Experimental Procedures for Dehydroalanine Derivatives	2
2.2 Optimization of reaction conditions	2
2.3 Methyl 2-acetamido-2-methoxy-3-(phenylselanyl)propanoate (3ca) Synthesis	4
2.4 Methyl 2-acetamido-2,3-dimethoxypropanoate (3aa) Synthesis	4
2.5 Methyl 2-acetamido-2,3-diazidopropanoate (4ba) Synthesis	4
2.6 Gram-scale synthesis of 1a at 3 mmol scale	5
2.7 Thiostrepton functionalization	5
3. Mechanistic Experiments	8
3.1 Radical trapping experiments	8
3.2 Cyclic voltammetry experiments	11
4. Detailed descriptions for products:	12
5. NMR spectra of all products	25
6. X-ray single-crystal data	64

1. General Information

Unless otherwise stated, analytical grade solvents and commercially available reagents were used without further purification. All solvents were analytical reagent or better and were degassed prior to use. The instrument for electrolysis was dual display potentiostat (DJS-292B) (made in China). The anode electrode is carbon rod electrodes (Φ 6mm) and the cathode electrode is platinum plate electrodes (15 mm×15 mm×0.3 mm). Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (boiling point is between 60-90°C). Gradient flash chromatography was conducted eluting with a continuous gradient from petroleum to the indicated solvent, and they are listed as volume/volume ratios. High resolution mass spectra (HRMS) for molecular were measured with an Agilent 6224 instrument and accurate masses were reported for the molecular ion + Hydrogen (M+H) or molecular ion + Sodium (M+Na). The ¹H, ¹³C NMR spectra were recorded on a Bruker Advance III (400 MHz) spectrometers with tetramethylsilane as an internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. For ¹H NMR, chemical shifts (δ) were given in ppm relatives to internal standard (TMS at 0 ppm, CDCl₃ at 7.26 ppm). For ¹³C-NMR, chemical shifts (δ) were reported in ppm using solvent as internal standard (CDCl₃ at 77.00 ppm).

2. General Experimental Procedures

2.1 Detailed Experimental Procedures for Dehydroalanine Derivatives^{[1][2][3]}

To a solution of Boc-L-serine A (410 mg, 2.0 mmol, 1.0 equiv.) in 40 mL CH₂Cl₂ was added HOBT (1-hydroxybenzotriazole) (3.0 mmol), HBTU (O-benzotriazole-N, N, N', N'-tetramethyluronium-hexafluorophosphate) (3.0 mmol) and triethylamine (2.4 mmol). The mixture was stirred for 30 min at room temperature, and then, peptide **B** (2.0 mmol) was added to the solution. The reaction was stirred overnight. After regular workup, the reaction mixture washed by saturated NaHCO₃ solution (40 mL x 3), 2 M hydrochloric acid solution (40 mL x 3) and H₂O (40 mL x 3). The organic layers were combined, dried over Na₂SO₄, and concentrated. The resulting crude product was purified by flash chromatography (DCM/MeOH) to afford corresponding dipeptides **C**. To a solution of **C** (2.0 mmol, 1.0 equiv.) in 15 mL MeCN was added DBU (10 mmol, 5 equiv), and the resulting mixture was stirred for an additional 8 hours.

2.2 Optimization of reaction conditions

Table S1 Optimization of the reaction conditions

Ac	$\begin{array}{c} \begin{array}{c} \begin{array}{c} C(+), Pt(-) \\ \frac{n_{BUNBF_4}}{7 \text{ mL MeCN}} \end{array} \\ \begin{array}{c} COOMe \end{array} + TMSN_3 \end{array} \xrightarrow[]{} \begin{array}{c} C(+), Pt(-) \\ \frac{n_{BUNBF_4}}{7 \text{ mL MeCN}} \\ 10 \text{ mA, 3 h, rt} \end{array} \xrightarrow[]{} \begin{array}{c} C(+), Pt(-) \\ Ac \\ N \\ H \end{array} \end{array}$	3 OOMe
	1a 3ba	
Entry	Variaton from the standard conditions ^a	yield
1	none	46
2	Without electric current	N.D.
3	"Bu ₄ NI	N.D.
4	ⁿ Bu ₄ NF	N.D.
5	ⁿ Bu ₄ NPF ₆	27
6	ⁿ Bu ₄ NClO ₄	20
7	LiClO ₄	Trace
8	5 mA	29
9	15 mA	36

^aReaction conditions: undivided cell, carbon rod anode, Pt cathode, **1a** (0.2 mmol), TMSN₃ (1 mmol), ^{*n*}Bu₄NBF₄ (0.2 mmol), MeCN (7mL), air, rt, 10 mA, 3 h. yield of isolated products. N.D = Not Detected

Table S2 Optimization of the reaction conditions

	Ш		C(+),Pt(-) PhSe	
Ac	N COOMe +!	MeOH + PhSeSePh	7 mL MeCN AC	COOMe
	⊓ 1a 2:	a 4a	20 mA, 2 h, rt H 3ca	
Entry	Variaton f	rom the stan	dard conditions ^a	yield
1		none		92
2	W	ithout electrie	c current	N.D.
3		C(+), Zn	(-)	70
4		C(+), Ni	(-)	82
5		C(+), Fe	(-)	59
6		Pt(+), Pt((-)	42
7		10 mA, 4	h	83
8		15 mA,4	h	73
9		ⁿ Bu ₄ NCl	O_4	66
10		ⁿ Bu ₄ NBI	F ₄	53
11		ⁿ Bu ₄ NI		N.D.
12		2eq of 2	a	67
13		6eq of 2	a	78

^aReaction conditions: undivided cell, carbon rod anode, Pt cathode, 1a (0.2 mmol), 2a (0.8 mmol),

 n Bu₄NPF₆ (0.2 mmol), **4a** (0.2 mmol), MeCN (7 mL), air, rt, 20 mA, 2 h. yield of isolated products. N.D = Not Detected

2.3 Methyl 2-acetamido-2-methoxy-3-(phenylselanyl)propanoate (3ca) Synthesis

In an oven-dried undivided three-necked bottle (10 mL) equipped with a stir bar, **1a** (0.2 mmol), **4a** (0.2 mmol),**2a** (0.8 mmol) and "Bu₄NPF₆ (0.2 mmol) were combined and added. Under the air, CH₃CN (7 mL) were injected respectively into the tubes via syringes. The bottle was equipped with carbon rod (ϕ 6 mm, about 10 mm immersion depth in solution) as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 20 mA under room temperature for 1.5 h. After completion of the reaction, as indicated by TLC, the pure product (yield: 92%, 60.72 mg) was obtained by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate= 1.5:1).

2.4 Methyl 2-acetamido-2,3-dimethoxypropanoate (3aa) Synthesis

In an oven-dried undivided three-necked bottle (10 mL) equipped with a stir bar, **1a** (0.2 mmol), ,**2a** (1 mL) and ^{*n*}Bu₄NPF₆ (0.2 mmol) were combined and added. Under the air, CH₃CN (6 mL) were injected respectively into the tubes via syringes. The bottle was equipped with carbon rod (ϕ 6 mm, about 10 mm immersion depth in solution) as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under room temperature for 3 h. After completion of the reaction, as indicated by TLC, the pure product (yield: 85%, 34.88 mg) was obtained by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate= 1.5:1).

2.5 Methyl 2-acetamido-2,3-diazidopropanoate (4ba) Synthesis

In an oven-dried undivided three-necked bottle (10 mL) equipped with a stir bar, **1a** (0.2 mmol), TMSN₃ (1 mol) and ${}^{n}Bu_{4}NBF_{4}$ (0.2 mmol) were combined and added. Under the air, CH₃CN (7 mL) were injected respectively into the tubes via syringes. The bottle was equipped with carbon rod (ϕ 6 mm, about 10 mm immersion depth in solution) as the anode and platinum plate (15

 $mm \times 15 mm \times 0.3 mm$) as the cathode. The reaction mixture was stirred and electrolyzed at a constant current of 10 mA under room temperature for 3 h. After completion of the reaction, as indicated by TLC, the pure product (yield: 46%, 20.90 mg) was obtained by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate= 1.5:1).

2.6 Gram-scale synthesis of 1a at 3 mmol scale

^a Reaction conditions: **1a** (3.0 mmol), **2a** (3.0 mmol), **4a** (12.0 mmol), ^{*n*}Bu₄NPF₆ (3.0 mmol), CH₃CN (20 mL), carbon rod (ϕ 6 mm, about 10 mm immersion depth in solution) as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode, 20 mA,6 h, rt, undivided cell.^bIsolated yields.

2.7 Thiostrepton functionalization

In an oven-dried undivided three-necked bottle (5 mL) equipped with a stir bar, thiostrepton (10 mg), MeOH (20 μ L), "Bu₄NPF₆ (10 mg), CH₃CN (2 mL) were combined and added. The bottle was equipped carbon paper (Φ 1mm) as the anode and platinum wire (Φ 0.4mm) as the cathode. The reaction mixture was stirred and electrolysis at constant current of 10 mA under room temperature for 15 min.The reaction mixture was diluted with 5 mL ethyl acetate and 5 mL H₂O, the phases were washed with brine dried over MgSO₄ and the solvent was removed under vacuum. The sample was analyzed by MALDI-TOF with DHB as matrix.For determination of the product distribution, the areas of all the [M]+ -peaks of the products were summed up and divided by the area of the corresponding product.

Product	m/z [M]+	t = 10 min	t = 30 min
Starting material	1664	58	35
Mono	1726	27	37
Product	m/z [M]+	t = 10 min	t = 30 min
Di	1788	10	14
Tri	1850	5	14

t=30 min

Figure S1. MALDI-TOF measurement of the crude product of the electrochemical modification of thiostrepton with MeOH

Thiostrepton functionalization

In an oven-dried undivided three-necked bottle (5 mL) equipped with a stir bar, thiostrepton (10 mg), TMSN₃ (20 μ L), ^{*n*}Bu₄NBF₄ (10 mg), CH₃CN (3 mL) were combined and added. The bottle was equipped carbon paper (Φ 1mm) as the anode and platinum wire (Φ 0.4mm) as the cathode. The reaction mixture was stirred and electrolysis at constant current of 10 mA under room temperature for 15 min.The reaction mixture was diluted with 5 mL ethyl acetate and 5 mL H₂O, the phases were washed with brine dried over MgSO₄ and the solvent was removed under vacuum. The sample was analyzed by MALDI-TOF with DHB as matrix. For determination of the product distribution, the areas of all the [M]+ -peaks of the products were summed up and divided by the area of the corresponding product.

Product	m/z [M]+	t = 10 min	t = 30 min
Starting material	1664	39	20
Mono	1748	32	38
Di	1832	21	31
Tri	1916	8	11

t=10 min

t=30 min

Figure S2. MALDI-TOF measurement of the crude product of the electrochemical modification of thiostrepton with TMSN₃

3. Mechanistic Experiments

3.1 Radical trapping experiments

^aReaction conditions: **1a** (0.2 mmol), **4a** (0.2 mmol), **2a** (0.8 mmol), ${}^{n}Bu_{4}NPF_{6}$ (0.2 mmol), CH₃CN (7 mL), carbon rod (ϕ 6 mm, about 10 mm immersion depth in solution) as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode, 2 h, rt, undivided cell.

Detected by HRMS of **b'** calcd for C₁₅H₂₃NOSe [M+H]⁺: 451.1659; Found: 451.1650

Figure S3. The HRMS spectra of compound b'

Detected by HRMS of **c'** calcd for C₁₅H₂₃NOSe [M+H]⁺: 308.1077; Found: 308.1035

Figure S4. The HRMS spectra of compound c'

^aReaction conditions: **1a** (0.2 mmol), **6a** (0.2 mmol), **6a** (0.8 mmol), ^{*n*}Bu₄NPF₆ (0.2 mmol), TEMPO (0.6 mmol), CH₃CN (7 mL), carbon rod (ϕ 6 mm, about 10 mm immersion depth in solution) as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode, 20 mA, 6 h, rt, undivided cell.

^a Reaction conditions: **1a** (0.2 mmol), **2a** (1 mL), ${}^{n}Bu_{4}NPF_{6}$ (0.2 mmol), TEMPO (0.6 mmol), CH₃CN (6 mL), carbon rod (ϕ 6 mm, about 10 mm immersion depth in solution) as the anode and platinum plate (15 mm×15 mm×0.3 mm) as the cathode, 15 mA, 5 h, rt, undivided cell.

Detected by HRMS of **a'** calcd for $C_{16}H_{30}N_2O_5$ [M+Na]⁺: 353.20469; Found: 353.20473

Figure S5. The HRMS spectra of compound a'

3.2 Cyclic voltammetry experiments

Cyclic voltammetry was performed in a three-electrode cell connected to a schlenk line at room temperature. The working electrode was a steady glassy carbon disk electrode, the counter electrode was a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution and separated from a reaction by a salt bridge.8 mL of CH₃CN containing 0.02 M ^{*n*}Bu₄NPF₆ were poured into the electrochemical cell in all experiments. The scan rate is 0.1 V/s. The positive scan range was from 0 V to 3.0 V and 0 V to -3.0 V.

Figure S5. Cyclic voltammograms of substrate 1a, 4a, MeOH, 1a+4a, 1a+MeOH (0.02 M) 0-3 V

Figure S6. Cyclic voltammograms of substrate 1a, 4a, MeOH (0.02 M) -3-0 V

Figure S7: Proposed mechanism of diazidation

4. Detailed descriptions for products:

Methyl 2-acetamido-2,3-dimethoxypropanoate (3aa):

White solid (Yield: 90 %, 36.89 mg). ¹H NMR (400 MHz, Chloroform-d) δ 6.78 (s, 1H), 4.01 (d, J = 9.4 Hz, 1H), 3.80 (s, 3H), 3.67 (d, J = 9.4 Hz, 1H), 3.35 (s, 3H), 3.27 (s, 3H), 2.06 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.94, 169.51, 86.35, 73.44, 59.71, 53.24, 51.93, 23.71. HRMS (ESI) cald. For (M+Na)+ C₈H₁₅NO₅: 228.0842, found, 228.0842

Ac N COOMe

Methyl 2-acetamido-2,3-diethoxypropanoate (3ab):

White solid (Yield: 70 %, 32.65 mg). ¹H NMR (400 MHz, Chloroform-d) δ 6.83 (s, 1H), 4.15 (d, J = 9.6 Hz, 1H), 3.82 (s, 3H), 3.73 (d, J = 9.6 Hz, 1H), 3.65 – 3.41 (m, 4H), 2.08 (s, 3H), 1.18 (dt, 3H)

 $J = 16.8, 7.0 \text{ Hz}, 6\text{H}). {}^{13}\text{C NMR} (101 \text{ MHz}, \text{Chloroform-d}) \delta 170.05, 169.75, 86.36, 71.31, 67.38, 60.04, 53.13, 23.82, 14.95. \text{ HRMS} (ESI) cald. For (M+Na)+ C_{10}H_{19}NO_5: 256.1155, found, 256.1155.$

Methyl 2-acetamido-2,3-dipropoxypropanoate (3ac):

White solid (Yield: 61 %, 31.88 mg). ¹H NMR (400 MHz, Chloroform-d) δ 6.79 (s, 1H), 4.17 (d, J = 9.5 Hz, 1H), 3.80 (s, 3H), 3.71 (d, J = 9.5 Hz, 1H), 3.51 – 3.33 (m, 3H), 3.28 (dt, J = 8.7, 6.7 Hz, 1H), 2.05 (s, 3H), 1.64 – 1.43 (m, 4H), 0.86 (dt, J = 9.9, 7.4 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.18, 169,66.60, 86.53, 73.59, 71.25, 66.05, 53.06, 23.91, 22.82, 22.59, 10.52. HRMS (ESI) cald. For (M+Na)+ C₁₂H₂₃NO₅: 284.1468, found, 284.1462.

Methyl 2-acetamido-2,3-diisopropoxypropanoate (3ad):

White solid (Yield: 56 %, 36.45mg). ¹H NMR (400 MHz, Chloroform-d) δ 6.88 (s, 1H), 4.28 (d, J = 9.3 Hz, 1H), 3.89 (p, J = 6.2 Hz, 1H), 3.81 (s, 3H), 3.66 (d, J = 9.3 Hz, 1H), 3.59 (p, J = 6.1 Hz, 1H), 2.06 (s, 3H), 1.15 – 1.03 (m, 12H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.15, 169.69, 86.51, 72.74, 68.69, 67.65, 52.97, 24.21, 23.74, 22.90, 22.07, 21.85. HRMS (ESI) cald. For (M+Na)+ C₁₂H₂₃NO₅: 284.1468, found, 284.1468.

Methyl 2-acetamido-2,3-dibutoxypropanoate (3ae)

Yellow oil (Yield: 56 %, 32.41mg). ¹H NMR (400 MHz, Chloroform-d) δ 6.74 (s, 1H), 4.14 (d, J = 9.6 Hz, 1H), 3.78 (s, 3H), 3.69 (d, J = 9.6 Hz, 1H), 3.52 – 3.37 (m, 3H), 3.31 (dt, J = 9.0, 6.6 Hz, 1H), 2.02 (s, 3H), 1.55 – 1.42 (m, 4H), 1.30 (dq, J = 14.8, 7.4 Hz, 4H), 0.86 (td, J = 7.4, 3.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.12, 169.42, 86.56, 71.69, 71.34, 64.01, 52.88, 31.63, 31.45, 23.79, 19.12, 19.10, 13.72, 13.68. HRMS (ESI) cald. For (M+Na)+ C₁₄H₂₇NO₅: 312.1781, found, 312.1785.

Methyl 2-acetamido-2,3-diisobutoxypropanoate (3af)

Colorless oil (Yield: 56 %, 32.40mg). ¹H NMR (400 MHz, Chloroform-d) δ 6.76 (s, 1H), 4.18 (d, J = 9.5 Hz, 1H), 3.78 (s, 3H), 3.71 (d, J = 9.5 Hz, 1H), 3.28 – 3.13 (m, 3H), 3.05 (dd, J = 8.6, 6.7)

Hz, 1H), 2.03 (s, 3H), 1.79 (dqd, J = 13.4, 6.6, 2.2 Hz, 2H), 0.88 – 0.79 (m, 12H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.17, 169.55, 169.44, 169.01, 86.60, 78.70, 71.36, 70.87, 52.85, 28.36, 28.17, 23.83, 19.30, 19.22, 19.07, 19.04, 18.86. HRMS (ESI) cald. For (M+Na)+ C₁₄H₂₇NO₅: 312.1781, found, 312.1796.

Methyl 2-acetamido-2,3-bis(isopentyloxy)propanoate (3ag)

Colorless oil (Yield: 40 %, 25.39mg). ¹H NMR (400 MHz, Chloroform-d) δ 6.77 (s, 1H), 4.18 (d, J = 9.4 Hz, 1H), 3.81 (s, 3H), 3.72 (d, J = 9.6 Hz, 1H), 3.60 – 3.42 (m, 3H), 3.39 – 3.29 (m, 1H), 2.06 (s, 3H), 1.67 (ddt, J = 30.3, 13.4, 6.7 Hz, 2H), 1.50 – 1.36 (m, 4H), 0.87 (dd, J = 6.7, 2.9 Hz, 12H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.21, 169.65, 86.55, 71.28, 70.38, 62.62, 53.07, 38.34, 38.12, 25.99, 24.94, 24.71, 23.91, 22.56, 22.53, 22.49, 22.39. HRMS (ESI) cald. For (M+Na)+ C₁₆H₃₁NO₅: 340.2094, found, 340.2108.

Methyl 2-acetamido-2,3-diazidopropanoate (3ba):

Colorless oil (Yield: 46 %, 20.90 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.05 (s, 1H), 4.00 (d, J = 12.6 Hz, 1H), 3.90 (s, 3H), 3.53 (d, J = 12.5 Hz, 1H), 2.13 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.74, 167.17, 75.35, 53.98, 53.79, 22.89. HRMS (ESI) cald. For (M+Na)+ C₆H₉N₇O₃: 250.0659, found, 250.0658.

Methyl 2-((R)-2-((tert-butoxycarbonyl)amino)propanamido)-2,3-dimethoxypropanoate (3ah):

Colorless oil (Yield: 85 %, 56.84 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.40 (d, J = 43.1 Hz, 1H), 5.06 (s, 1H), 4.22 (s, 1H), 4.04 (d, J = 9.6 Hz, 1H), 3.84 (s, 3H), 3.72 (d, J = 13.1 Hz, 1H), 3.33 (d, J = 32.6 Hz, 6H), 1.45 (s, 9H), 1.39 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 172.62, 172.57, 169.31, 155.50, 86.52, 86.38, 80.30, 73.48, 73.31, 59.73, 53.21, 53.19, 51.88, 51.84, 50.48, 28.23, 17.93. HRMS (ESI) cald. For (M+Na)+ C₁₄H₂₆N₂O₇: 357.1632, found, 357.1630.

Methyl 2-((R)-2-((tert-butoxycarbonyl)amino)-3-methylbutanamido)-2,3-

dimethoxypropanoate (3ai):

Colorless oil (Yield: 66%, 47.84 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.18 (d, J = 27.4 Hz, 1H), 5.02 (s, 1H), 4.02 (d, J = 9.5 Hz, 1H), 3.84 (d, J = 5.7 Hz, 3H), 3.72 (d, J = 9.5 Hz, 1H), 3.54 – 3.12 (m, 6H), 2.29 – 2.05 (m, 1H), 1.77 (s, 1H), 1.46 (s, 9H), 1.07 – 0.88 (m, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.67, 169.61, 167.25, 154.00, 84.75, 84.30, 78.21, 71.83, 58.35, 57.82, 57.66, 51.36, 51.23, 50.18, 50.09, 28.73, 28.53, 26.34, 17.28, 15.60. HRMS (ESI) cald. For (M+Na)+ C₁₆H₃₀N₂O₇: 385.1945, found, 385.1941.

Methyl 2-((R)-2-((tert-butoxycarbonyl)amino)-4-methylpentanamido)-2,3-

dimethoxypropanoate (3aj):

Colorless oil (Yield: 60%, 45.15 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.42 (s, 1H), 5.11 – 4.84 (m, 1H), 4.14 (s, 1H), 4.03 (dd, J = 23.5, 9.5 Hz, 1H), 3.83 (d, J = 3.4 Hz, 3H), 3.72 (d, J = 9.7 Hz, 1H), 3.34 (dd, J = 30.6, 3.3 Hz, 6H), 1.71 (s, 2H), 1.45 (s, 10H), 0.95 (t, J = 5.8 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 172.46, 169.33, 169.21, 155.72, 86.57, 86.25, 80.27, 73.68, 73.25, 59.75, 59.66, 53.19, 53.12, 51.92, 40.79, 40.64, 28.22, 24.73, 24.69, 22.92, 22.87, 21.84. HRMS (ESI) cald. For (M+Na)+ C₁₇H₃₂N₂O₇: 399.2101, found, 399.2102.

Methyl 2-((3S)-2-((tert-butoxycarbonyl)amino)-3-methylpentanamido)-2,3-

dimethoxypropanoate (3ak):

Colorless oil (Yield: 50%, 37.65 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.18 (d, J = 33.0 Hz, 1H), 5.05 (dd, J = 22.7, 8.3 Hz, 1H), 4.02 (dd, J = 44.9, 9.2 Hz, 2H), 3.80 (d, J = 5.9 Hz, 3H), 3.68 (d, J = 9.4 Hz, 1H), 3.45 – 3.15 (m, 6H), 1.98 (s, 2H), 1.88 (ddq, J = 13.4, 6.9, 4.3, 3.6 Hz, 1H), 1.42 (s, 9H), 1.00 – 0.84 (m, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.68, 167.25, 153.94, 84.26, 78.19, 71.84, 71.04, 57.81, 51.35, 50.16, 35.15, 26.35, 22.77, 13.54, 9.59. HRMS (ESI) cald. For (M+Na)+ C₁₇H₃₂N₂O₇: 399.2101, found, 399.2109.

Methyl 2-((R)-2-((tert-butoxycarbonyl)amino)-3-phenylpropanamido)-2,3-

dimethoxypropanoate (3ai):

Colorless oil (Yield: 67%, 55.01 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.34 – 7.07 (m, 6H),

5.04 (s, 1H), 4.42 (s, 1H), 3.98 (dd, J = 15.2, 9.5 Hz, 1H), 3.82 (d, J = 4.5 Hz, 3H), 3.64 (dd, J = 36.8, 9.6 Hz, 1H), 3.32 (d, J = 6.4 Hz, 3H), 3.20 (d, J = 8.7 Hz, 3H), 3.10 (d, J = 6.1 Hz, 2H), 1.42 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.13, 171.09, 169.14, 169.03, 155.43, 136.44, 136.35, 129.42, 128.68, 127.02, 86.53, 86.26, 73.57, 73.38, 59.68, 59.64, 56.00, 53.18, 53.13, 51.99, 37.90, 37.64, 28.21. HRMS (ESI) cald. For (M+Na)+ C₂₀H₃₀N₂O₇: 433.1945, found, 433.1940.

MeOOC N H Boc

Methyl 2-((R)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)propanamido)-2,3dimethoxypropanoate (3am):

Colorless oil (Yield: 64%, 52.03 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.91 (d, J = 24.1 Hz, 1H), 5.48 (s, 1H), 4.23 (s, 1H), 4.04 (d, J = 9.4 Hz, 1H), 3.94 – 3.71 (m, 5H), 3.43 (s, 1H), 3.38 (s, 3H), 3.30 (s, 3H), 1.47 (s, 9H), 1.22 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.50, 170.38, 169.12, 169.05, 155.29, 86.57, 85.95, 79.90, 74.03, 73.96, 73.55, 61.69, 61.52, 59.60, 54.51, 54.33, 52.99, 51.80, 28.18, 27.25, 27.18. HRMS (ESI) cald. For (M+K)+ C₁₈H₃₄N₂O₈: 429.1997, found, 429.1999.

Methyl (S)-2,3-diazido-2-((R)-2-((tert-butoxycarbonyl)amino)propanamido)propanoate (3bb):

yellow oil (Yield: 43%, 30.65 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.90 (d, J = 21.5 Hz, 1H), 5.03 (s, 1H), 4.24 (s, 1H), 3.99 – 3.92 (m, 1H), 3.87 (s, 3H), 3.53 (dd, J = 12.5, 7.8 Hz, 1H), 1.45 (s, 9H), 1.36 (dd, J = 7.0, 2.2 Hz, 3H).¹³C NMR (101 MHz, Chloroform-d) δ 171.63, 165.10, 165.07, 154.03, 79.00, 73.38, 52.29, 52.06, 51.96, 47.91, 26.32, 15.33. HRMS (ESI) cald. For (M+Na)+ C₁₂H₂₀N₈O₅: 379.1448, found, 379.1442.

MeOOC N₃ H H Boc

Methyl (S)-2,3-diazido-2-((R)-2-((tert-butoxycarbonyl)amino)-3-

methylbutanamido)propanoate (3bc):

Colorless liquid (Yield: 36%, 27.68 mg).¹H NMR (400 MHz, Chloroform-d) δ 7.43 (s, 1H), 4.97 (s, 1H), 3.88 (s, 3H), 3.64 – 3.49 (m, 1H), 2.18 (tt, J = 13.3, 6.7 Hz, 1H), 1.67 (s, 1H), 1.46 (s, 9H), 1.25 (s, 1H), 1.02 – 0.94 (m, 6H).³C NMR (101 MHz, Chloroform-d) δ 172.70, 172.58, 166.93, 156.17, 80.54, 75.29, 59.74, 53.85, 30.24, 30.14, 28.22, 19.18, 19.10, 17.82, 17.73. HRMS (ESI) cald. For (M+Na)+ C₁₄H₂₄N₈O₅: 407.1761, found, 407.1765.

Methyl (S)-2,3-diazido-2-((R)-2-((tert-butoxycarbonyl)amino)-4-

methylpentanamido)propanoate (3bd):

Yellow oil (Yield: 44%, 35.06 mg).¹H NMR (400 MHz, Chloroform-d) δ 7.93 (s, 1H), 4.95 (s, 1H), 4.19 (s, 1H), 3.95 (d, J = 12.5 Hz, 1H), 3.88 (s, 3H), 3.54 (dd, J = 12.4, 9.0 Hz, 1H), 1.74 – 1.64 (m, 2H), 1.46 (d, J = 4.9 Hz, 10H), 0.99 – 0.91 (m, 6H).¹³C NMR (101 MHz, Chloroform-d) δ 173.74, 166.89, 156.12, 80.54, 75.26, 60.40, 53.75, 52.64, 40.36, 28.17, 24.61, 22.72. HRMS (ESI) cald. For (M+Na)+ C₁₅H₂₆N₈O₅: 421.1918, found, 421.1918.

Methyl 2,3-diazido-2-((3S)-2-((tert-butoxycarbonyl)amino)-3-

methylpentanamido)propanoate (3be):

Yellow oil (Yield: 36%, 28.69 mg).¹H NMR (400 MHz, Chloroform-d) δ 7.67 (s, 1H), 5.10 (s, 1H), 3.99 (s, 1H), 3.86 (s, 4H), 3.54 (d, J = 12.5 Hz, 1H), 1.87 (s, 1H), 1.44 (s, 10H), 1.13 (s, 1H), 0.93 (dt, J = 21.4, 7.1 Hz, 6H).¹³C NMR (101 MHz, Chloroform-d) δ 172.67, 172.55, 166.88, 156.05, 80.56, 75.27, 59.14, 54.43, 53.85, 36.44, 28.23, 24.72, 24.69, 15.44, 15.37, 11.22. HRMS (ESI) cald. For (M+Na)+ C₁₅H₂₆N₈O₅: 421.1918, found, 421.1917.

Methyl (S)-2,3-diazido-2-((R)-2-((tert-butoxycarbonyl)amino)-3-

phenylpropanamido)propanoate (3bf):

Yellow oil (Yield: 40%, 34.60 mg).¹H NMR (400 MHz, Chloroform-d) δ 7.47 – 7.16 (m, 6H), 5.05 (d, J = 7.7 Hz, 1H), 4.52 – 4.29 (m, 1H), 3.96 – 3.73 (m, 4H), 3.54 – 3.30 (m, 1H), 3.08 (s, 2H), 1.43 (s, 9H).¹³C NMR (101 MHz, Chloroform-d) δ 172.21, 172.14, 166.81, 166.76, 155.71, 136.17, 136.08, 129.33, 129.27, 128.84, 128.76, 127.18, 127.14, 80.87, 75.28, 75.23, 55.60, 54.09, 37.62, 29.70, 28.19. HRMS (ESI) cald. For (M+Na)+ C₁₈H₂₄N₈O₅: 455.1761, found, 455.1768.

Methyl (S)-2,3-diazido-2-((R)-3-(tert-butoxy)-2-((tert-

butoxycarbonyl)amino)propanamido)propanoate (3bg):

Yellow oil (Yield: 38%, 32.56 mg).¹H NMR (400 MHz, Chloroform-d) $\delta 8.22$ (s, 1H), 5.43 (s, 1H), 4.27 (s, 1H), 4.07 – 3.94 (m, 1H), 3.93 – 3.85 (m, 3H), 3.81 (s, 1H), 3.54 (t, J = 12.6 Hz, 1H), 3.40 (t, J = 7.9 Hz, 1H), 1.46 (s, 9H), 1.31 – 1.20 (m, 9H).¹³C NMR (101 MHz, Chloroform-d) δ 171.51, 166.89, 166.83, 155.31, 80.16, 75.43, 75.31, 74.60, 74.52, 61.58, 61.43, 54.14, 53.94, 53.62, 28.23, 27.27, 27.21.HRMS (ESI) cald. For (M+Na)+ C₁₆H₂₈N₈O₆: 451.2024, found, 451.2023.

PhSe Ac N H COOMe

Methyl 2-acetamido-2-methoxy-3-(phenylselanyl)propanoate (3ca):

White solid (Yield: 92 %, 60.72 mg).¹H NMR (400 MHz, Chloroform-d) δ 7.50 (dd, J = 6.5, 3.1 Hz, 2H), 7.28 – 7.16 (m, 3H), 6.73 (s, 1H), 4.19 (d, J = 12.9 Hz, 1H), 3.58 (s, 3H), 3.26 (d, J = 13.0 Hz, 1H), 3.17 (s, 3H), 1.76 (s, 3H).¹³C NMR (101 MHz, Chloroform-d) δ 169.69, 169.46, 133.89, 129.13, 128.62, 127.63, 88.26, 53.07, 52.24, 31.69, 23.58. HRMS (ESI) cald. For (M+Na)+ C₁₃H₁₇NO₄Se: 348.0274, found, 348.0277.

PhSe Ac H COOMe

Methyl 2-acetamido-2-ethoxy-3-(phenylselanyl)propanoate (3cb):

White solid (Yield: 70 %, 48.20 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.52 (dd, J = 6.5, 3.0 Hz, 2H), 7.30 – 7.16 (m, 3H), 6.75 (s, 1H), 4.24 (d, J = 13.0 Hz, 1H), 3.59 (s, 3H), 3.52 – 3.40 (m, 1H), 3.32 – 3.20 (m, 2H), 1.77 (s, 3H), 1.14 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.78, 169.46, 133.76, 129.06, 128.82, 127.50, 87.62, 60.46, 52.93, 32.17, 23.60, 15.04. HRMS (ESI) cald. For (M+Na)+ C₁₄H₁₉NO₄Se: 362.0431, found, 362.0437.

MeSe Ac N H COOMe

Methyl 2-acetamido-2-methoxy-3-(methylselanyl)propanoate (3cc):

White solid (Yield: 58 %, 31.11 mg). ¹H NMR (400 MHz, Chloroform-d) δ 6.88 (s, 1H), 3.79 (s, 3H), 3.62 (d, J = 13.0 Hz, 1H), 3.24 (s, 3H), 2.92 (d, J = 12.9 Hz, 1H), 2.05 (s, 3H), 1.99 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.77, 169.63, 87.46, 53.18, 52.35, 30.56, 23.77, 5.78. HRMS (ESI) cald. For (M+Na)+ C₈H₁₅NO₄Se: 286.0118, found, 286.0114.

BnSe Ac N H COOMe

Methyl 2-acetamido-3-(benzylselanyl)-2-methoxypropanoate (3cd):

White solid (Yield: 51 %, 35.12 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.30 (d, J = 6.2 Hz, 4H), 7.22 (td, J = 6.0, 2.6 Hz, 1H), 6.70 (s, 1H), 3.81 (s, 2H), 3.77 (s, 3H), 3.59 (d, J = 12.8 Hz, 1H), 6.70 (s, 1H), 3.81 (s, 2H), 3.77 (s, 3H), 3.59 (d, J = 12.8 Hz, 1H), 6.70 (s, 1H), 3.81 (s, 2H), 3.77 (s, 3H), 3.59 (d, J = 12.8 Hz, 1H)

1H), 3.30 (s, 3H), 2.91 (d, J = 12.8 Hz, 1H), 2.01 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.74, 169.49, 138.95, 129.03, 128.89, 128.67, 128.45, 127.04, 86.58, 53.14, 52.52, 30.29, 28.49, 23.59. HRMS (ESI) cald. For (M+Na)+ C₁₄H₁₉NO₄Se: 362.0431, found, 362.0450.

Ac NH COOMe

Methyl 2-acetamido-2-methoxy-3-(methylthio)propanoate (3ce):

White solid (Yield: 40 %, 17.69 mg). ¹H NMR (400 MHz, Chloroform-d) δ 6.91 (s, 1H), 3.79 (s, 3H), 3.53 (d, J = 14.0 Hz, 1H), 3.24 (s, 3H), 2.93 (d, J = 14.0 Hz, 1H), 2.10 (s, 3H), 2.06 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.83, 169.79, 87.54, 53.19, 52.13, 39.35, 23.72, 16.87. HRMS (ESI) cald. For (M+Na)+ C₈H₁₅NO₄S: 244.0614, found, 244.0614.

Methyl 2-acetamido-2-methoxy-3-(phenylthio)propanoate (3cf):

White solid (Yield: 45 %, 25.50 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.39 – 7.33 (m, 2H), 7.28 – 7.12 (m, 3H), 6.66 (s, 1H), 4.26 (d, J = 14.1 Hz, 1H), 3.63 (s, 3H), 3.29 (d, J = 14.1 Hz, 1H), 3.13 (s, 3H), 1.70 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.73, 169.61, 134.35, 131.64, 128.98, 127.19, 88.53, 53.19, 51.93, 37.87, 23.59. HRMS (ESI) cald. For (M+Na)+ C₁₃H₁₇NO₄S: 306.0770, found, 306.0778.

Methyl 2-acetamido-2-methoxy-3-(p-tolylthio)propanoate (3cg):

White solid (Yield: 50 %, 29.74 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.30 (d, J = 7.9 Hz, 2H), 7.09 (d, J = 7.8 Hz, 2H), 6.70 (s, 1H), 4.24 (d, J = 14.1 Hz, 1H), 3.68 (s, 3H), 3.28 (d, J = 14.1 Hz, 1H), 3.17 (s, 3H), 2.30 (s, 3H), 1.74 (s, 3H).¹³C NMR (101 MHz, Chloroform-d) δ 169.69, 169.64, 137.33, 132.09, 130.69, 129.70, 88.53, 53.15, 51.89, 38.36, 23.54, 21.02. HRMS (ESI) cald. For (M+Na)+ C₁₄H₁₉NO₄S: 320.0927, found, 320.0921.

Methyl 2-acetamido-2-methoxy-3-((4-methoxyphenyl)thio)propanoate (3ch):

White solid (Yield: 56 %, 35.10 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.33 (d, J = 8.4 Hz, 2H), 6.79 (d, J = 8.4 Hz, 2H), 6.71 (s, 1H), 4.17 (d, J = 14.1 Hz, 1H), 3.75 (s, 3H), 3.65 (s, 3H),

3.19 (d, J = 14.1 Hz, 1H), 3.13 (s, 3H), 1.74 (s, 3H).¹³C NMR (101 MHz, Chloroform-d) δ 169.68, 169.66, 159.40, 134.45, 124.68, 114.54, 88.55, 55.37, 53.18, 51.82, 38.97, 23.62. HRMS (ESI) cald. For (M+Na)+ C₁₄H₁₉NO₅S: 336.0876, found, 336.0873.

Methyl 2-acetamido-3-((4-chlorophenyl)thio)-2-methoxypropanoate (3ci):

White solid (Yield: 40 %, 25.42 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.38 – 7.34 (m, 2H), 7.31 – 7.24 (m, 2H), 6.72 (s, 1H), 4.32 (d, J = 14.1 Hz, 1H), 3.73 (s, 3H), 3.33 (d, J = 14.1 Hz, 1H), 3.19 (s, 3H), 1.81 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.70, 169.52, 133.30, 132.93, 132.90, 129.03, 88.48, 53.28, 51.94, 37.96, 23.62. HRMS (ESI) cald. For (M+Na)+ C₁₄H₁₆NO₄SCI: 352.0380, found, 352.0389.

PhSe O H MeOOC N H Boc

Methyl 2-((R)-2-((tert-butoxycarbonyl)amino)propanamido)-2-methoxy-3-

(phenylselanyl)propanoate (3cj):

Yellow oil (Yield: 76 %, 69.83 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.57 – 7.45 (m, 3H), 7.28 – 7.20 (m, 3H), 4.92 (dd, J = 69.1, 7.3 Hz, 1H), 4.18 (dd, J = 24.8, 12.9 Hz, 1H), 3.57 (d, J = 13.6 Hz, 3H), 3.34 (t, J = 12.7 Hz, 1H), 3.20 (d, J = 4.8 Hz, 3H), 1.46 (d, J = 8.4 Hz, 9H), 1.24 (dd, J = 7.3, 2.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 172.31, 172.12, 169.14, 169.04, 155.44, 133.71, 133.67, 129.05, 128.93, 128.87, 127.53, 88.12, 87.76, 80.21, 52.98, 52.92, 52.26, 52.23, 50.40, 32.42, 31.95, 28.30, 28.28, 17.64, 17.47. HRMS (ESI) cald. For (M+Na)+ C₁₉H₂₈N₂O₆Se: 477.1064, found, 477.1062.

Methyl 2-((R)-2-((tert-butoxycarbonyl)amino)-3-methylbutanamido)-2-methoxy-3-(phenylselanyl)propanoate (3ck):

Yellow oil (Yield: 58 %, 56.55 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.57 – 7.49 (m, 2H), 7.36 (d, J = 8.0 Hz, 1H), 7.31 – 7.25 (m, 3H), 5.02 (t, J = 9.1 Hz, 1H), 4.12 (dd, J = 12.8, 7.5 Hz, 1H), 4.02 – 3.85 (m, 1H), 3.54 (d, J = 14.6 Hz, 3H), 3.39 (dd, J = 12.8, 9.0 Hz, 1H), 3.26 (s, 3H), 2.23 – 2.10 (m, 1H), 1.49 (s, 9H), 1.06 – 0.87 (m, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.44, 171.36, 169.04, 155.84, 133.62, 133.54, 129.16, 129.11, 128.98, 127.65, 127.57, 87.26,

80.11, 60.30, 60.10, 52.85, 52.83, 52.47, 52.41, 33.39, 33.29, 30.35, 30.24, 29.69, 29.35, 28.30, 19.46, 19.37, 17.53. HRMS (ESI) cald. For (M+Na)+ C₂₁H₃₂N₂O₆Se: 505.1377, found, 505.1377.

Methyl 2-((R)-2-((tert-butoxycarbonyl)amino)-4-methylpentanamido)-2-methoxy-3-(phenylselanyl)propanoate (3cl):

White solid (Yield: 90 %, 90.27 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.51 (ddt, J = 6.6, 4.5, 2.9 Hz, 2H), 7.42 (s, 1H), 7.27 – 7.20 (m, 3H), 4.72 (dd, J = 42.9, 7.8 Hz, 1H), 4.15 (t, J = 12.5 Hz, 1H), 4.02 (d, J = 9.1 Hz, 1H), 3.54 (d, J = 8.0 Hz, 3H), 3.33 (t, J = 12.9 Hz, 1H), 3.20 (d, J = 4.3 Hz, 3H), 1.73 – 1.52 (m, 2H), 1.44 (d, J = 7.1 Hz, 9H), 1.37 – 1.22 (m, 1H), 0.95 – 0.87 (m, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 172.28, 172.16, 169.14, 169.07, 155.66, 133.60, 133.57, 129.07, 127.52, 87.73, 87.58, 80.21, 53.47, 52.91, 52.36, 52.31, 40.32, 32.72, 32.50, 28.28, 24.78, 24.69, 23.04, 22.99. HRMS (ESI) cald. For (M+Na)+ C₂₂H₃₄N₂O₆Se: 519.1533, found, 519.1533.

Methyl 2-((3S)-2-((tert-butoxycarbonyl)amino)-3-methylpentanamido)-2-methoxy-3-(phenylselanyl)propanoate (3cm):

White solid (Yield: 63 %, 63.19 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.56 – 7.44 (m, 2H), 7.36 (s, 1H), 7.23 (ddq, J = 5.9, 4.2, 1.8 Hz, 3H), 5.04 (t, J = 9.0 Hz, 1H), 4.06 (dd, J = 25.0, 12.8 Hz, 1H), 3.98 – 3.82 (m, 1H), 3.49 (d, J = 20.2 Hz, 3H), 3.35 (dd, J = 12.8, 6.3 Hz, 1H), 3.22 (s, 3H), 1.89 – 1.78 (m, 1H), 1.51 (d, J = 3.6 Hz, 1H), 1.44 (s, 9H), 1.11 (ddt, J = 14.0, 9.5, 7.0 Hz, 1H), 0.91 (ddd, J = 16.4, 14.0, 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.45, 171.38, 168.99, 155.76, 133.63, 133.58, 133.52, 129.17, 129.09, 129.02, 127.62, 127.55, 87.15, 87.11, 80.03, 59.68, 59.52, 52.79, 52.43, 52.34, 36.82, 36.70, 33.39, 28.29, 24.71, 24.62, 15.71, 15.52, 11.49, 11.45. HRMS (ESI) cald. For (M+Na)+ C₂₂H₃₄N₂O₆Se: 519.1533, found, 519.1539.

Methyl 2-((R)-2-((tert-butoxycarbonyl)amino)-3-phenylpropanamido)-2-methoxy-3-(phenylselanyl)propanoate (3cn):

White solid (Yield: 75 %, 80.33 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.48 – 7.43 (m, 2H), 7.38 (s, 1H), 7.30 – 7.12 (m, 9H), 4.78 (d, J = 7.2 Hz, 1H), 4.22 – 3.99 (m, 2H), 3.50 (d, J = 8.1 Hz, 1H), 4.22 – 3.99 (m, 2H), 3.50 (d, J = 8.1 Hz), 1.22 + 3.22 +

3H), 3.24 (dd, J = 28.5, 12.9 Hz, 1H), 3.07 (d, J = 32.6 Hz, 3H), 2.94 (d, J = 6.9 Hz, 1H), 1.37 (d, J = 2.0 Hz, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.08, 170.88, 168.97, 168.96, 155.39, 136.56, 136.46, 133.66, 133.65, 129.36, 129.27, 129.08, 128.95, 128.74, 127.59, 127.55, 127.02, 127.00, 87.82, 87.44, 80.40, 55.90, 52.91, 52.41, 52.34, 37.64, 37.03, 32.98, 32.48, 29.71, 28.26, 28.24. HRMS (ESI) cald. For (M+Na)+ C₂₅H₃₂N₂O₆Se: 553.1377, found, 553.1375.

Methyl 2-((R)-2-((tert-butoxycarbonyl)amino)-4-(methylthio)butanamido)-2-methoxy-3-(phenylselanyl)propanoate (3co):

Colorless oil (Yield: 65 %, 67.54 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.57 – 7.45 (m, 3H), 7.24 (h, J = 2.3 Hz, 3H), 5.04 (dd, J = 56.6, 8.0 Hz, 1H), 4.20 – 4.08 (m, 2H), 3.53 (d, J = 25.8 Hz, 3H), 3.33 (dd, J = 19.1, 12.9 Hz, 1H), 3.19 (s, 3H), 2.55 (tt, J = 14.0, 6.8 Hz, 2H), 2.09 (d, J = 12.0 Hz, 3H), 2.02 – 1.67 (m, 2H), 1.44 (d, J = 9.4 Hz, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.31, 171.15, 169.02, 168.96, 155.55, 133.72, 129.09, 128.86, 127.62, 87.90, 87.85, 80.31, 53.86, 52.99, 52.95, 52.39, 52.38, 32.46, 32.40, 30.87, 30.23, 30.21, 28.31, 28.28, 15.36, 15.32. HRMS (ESI) cald. For (M+Na)+ C₂₁H₃₂N₂O₆SSe: 537.1098, found, 537.1098.

Methyl 2-((R)-3-(4-(benzyloxy)phenyl)-2-((tert-butoxycarbonyl)amino)propanamido)-2methoxy-3-(phenylselanyl)propanoate (3cp):

Yellow oil (Yield: 43 %, 55.18 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.49 (dtd, J = 4.8, 4.0, 2.4 Hz, 2H), 7.43 – 7.29 (m, 6H), 7.27 – 7.20 (m, 3H), 7.15 – 7.09 (m, 2H), 6.93 – 6.89 (m, 2H), 5.03 (s, 2H), 4.84 (d, J = 6.4 Hz, 1H), 4.24 – 4.00 (m, 2H), 3.54 (d, J = 9.9 Hz, 3H), 3.29 (dd, J = 18.8, 12.9 Hz, 1H), 3.12 (d, J = 30.1 Hz, 3H), 2.99 – 2.90 (m, 2H), 1.43 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.20, 171.00, 168.99, 157.87, 157.84, 155.42, 136.98, 133.68, 133.64, 130.45, 130.37, 129.10, 128.97, 128.75, 128.61, 128.00, 127.60, 127.56, 127.46, 127.45, 115.12, 115.11, 87.78, 87.34, 80.38, 70.01, 56.02, 52.91, 52.44, 52.35, 36.76, 36.22, 33.13, 32.58, 29.72, 28.29, 28.28. HRMS (ESI) cald. For (M+Na)+ C₃₂H₃₈N₂O₇Se: 659.1796, found, 659.1700.

Methyl 2-((R)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)propanamido)-2-methoxy-3-

(phenylselanyl)propanoate (3cq):

Yellow oil (Yield: 40 %, 42.52 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.97 (d, J = 54.0 Hz, 1H), 7.48 (ddd, J = 5.6, 3.7, 2.0 Hz, 2H), 7.24 – 7.19 (m, 3H), 5.34 (t, J = 6.2 Hz, 1H), 4.25 – 4.10 (m, 1H), 3.73 (ddd, J = 17.0, 10.0, 3.7 Hz, 2H), 3.52 (d, J = 35.7 Hz, 3H), 3.37 – 3.23 (m, 2H), 3.17 (d, J = 15.3 Hz, 3H), 1.45 (d, J = 6.4 Hz, 9H), 1.19 (d, J = 3.0 Hz, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 170.50, 170.18, 168.98, 168.96, 155.25, 133.91, 133.48, 129.14, 129.02, 128.95, 128.67, 127.65, 127.45, 88.54, 87.69, 80.05, 79.85, 74.17, 74.11, 61.60, 54.57, 54.43, 52.90, 52.79, 52.36, 52.22, 32.86, 31.56, 28.32, 27.41, 27.39. HRMS (ESI) cald. For (M+Na)+ C₂₃H₃₆N₂O₇Se: 519.1533, found, 519.1530.

Methyl 2-((S)-2,6-bis((tert-butoxycarbonyl)amino)hexanamido)-2-methoxy-3-

(phenylselanyl)propanoate (3cr):

Colorless liquid; (Yield: 40 %, 49.33 mg). ¹H NMR (400 MHz, Chloroform-d) δ 7.55 – 7.44 (m, 3H), 7.22 (td, J = 3.6, 1.8 Hz, 3H), 5.09 (dd, J = 25.9, 7.4 Hz, 1H), 4.65 (d, J = 6.0 Hz, 1H), 4.11 (dd, J = 21.7, 12.9 Hz, 1H), 3.93 (qd, J = 8.6, 5.8, 4.3 Hz, 1H), 3.52 (d, J = 10.0 Hz, 3H), 3.32 (dd, J = 12.8, 6.4 Hz, 1H), 3.19 (d, J = 6.1 Hz, 3H), 3.08 (p, J = 6.5 Hz, 2H), 1.42 (dd, J = 7.3, 3.7 Hz, 24H). ¹³C NMR (101 MHz, Chloroform-d) δ 171.90, 171.76, 169.07, 169.03, 156.23, 156.21, 155.79, 133.66, 133.61, 129.08, 129.03, 127.54, 87.78, 87.41, 80.20, 79.14, 54.88, 52.93, 52.90, 52.37, 52.31, 39.80, 32.96, 32.40, 31.06, 29.70, 29.68, 28.44, 28.30, 22.56. HRMS (ESI) cald. For (M+Na)+ C₂₇H₃₂N₃O₈Se: 634.2167, found, 634.2169.

[1] R. A. Serwa, J.-M. Swiecicki, D. Homann, C. P. R. Hackenberger, Phosphoramidate-peptide synthesis by solution- and solid-phase Staudinger-phosphite reactions. *J. Pept. Sci.* **2010**, 16, 563–567.

[2] Alam J, Keller T H, Loh T P. Functionalization of peptides and proteins by Mukaiyama aldol reaction. *J. Am. Chem. Soc.* **2010**, 132, 9546-9548.

[3] R. A. Aycock, D. B. Vogt and N. T. Jui, A practical and scalable system for heteroaryl amino acid synthesis. *Chem. Sci.*, **2017**, 8, 7998-8003

5. NMR spectra of all products

f1 (ppm)

¹H and ¹³C NMR spectra of **3ab**

120 110 f1 (ppm) Ó 210 200 190 180

¹H and ¹³C NMR spectra of **3ad**

¹H and ¹³C NMR spectra of **3ae**

f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H and ¹³C NMR spectra of **3af**

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of **3ba**

¹H and ¹³C NMR spectra of **3ah**

ppm)

¹H and ¹³C NMR spectra of **3al**

¹H and ¹³C NMR spectra of **3ak**

110 100 f1 (ppm) 140 130 120

¹H and ¹³C NMR spectra of **3am**

fl (ppm)

¹H and ¹³C NMR spectra of **3bb**

210 200 190 180 170 f1 (ppm)

fl (ppm)

fl (ppm)

f1 (ppm)

190 180 170 160 150 140 130 120 110 100 fl (ppm)

110 100 f1 (ppm) 140 130

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (pom)

¹H and ¹³C NMR spectra of **3cm**

¹H and ¹³C NMR spectra of **3cn**

f1 (ppm)

6. X-ray single-crystal data

Datablock:

Bond precision:	C-C = 0.0047 A	Wavelength=1.54184		
Cell:	a=12.5578(3) alpha=90	b=12.4264(3) beta=105.148(2)	c=9.7765(2) gamma=90	
Temperature:	293 K			
Volume	Calculated 1472.60(6)	Reported 1472.60(6)		
Space group	P 21/c	P 1 21/c 1		
Hall group	-P 2ybc	-P 2ybc		
Moietv formula	C13 H17 N O4	C13 H17 N O	4	
Sum formula	C13 H17 N O4 ^{Se}	C13 H17 N O	₄ Se	
Mr	330.24 Se	330.23	Se	
Dx, g cm-3	1.490	1.490		
Z	4	4		
Mu (mm-1)	3.550	3.550		
F000	672.0	672.0		
F000′	670.58			
h,k,lmax	15,15,12	15,15,11		
Nref	3100	2939		
Tmin,Tmax Tmin'	0.639,0.653 0.579	0.777,1.000		

Correction method= # Reported T Limits: Tmin=0.777 Tmax=1.000 AbsCorr = MULTI-SCAN

Data completeness= 0.948

Theta(max) = 76.573

		wR2(refl ections) =
R(reflections) = 0.0.	320(2466)	0.0868(2939)
S = 1.057	Npar= 175	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

a Alert Level G	
A Alert level C PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.600 5 F	Report

PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms	1	Report
PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K)	293	Check
PLAT200_ALERT_1_G Reporteddiffrn_ambient_temperature (K)	293	Check
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	133	Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity	3.8	Low
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	1	Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check