Supplementary Information for

BN-Benzo[b]fluoranthenes: facile synthesis, characterization, and optoelectronic

properties

Yuyi Wang,^a Siqi Liu,^a Peng Yang,^a Tao Shi,^a Jiawei Fan,^a Guijiang Zhou,^{a*} Bochao Su^{a*}

^aSchool of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, China Correspondence to: zhougj@mail.xjtu.edu.cn

bochao.su@xjtu.edu.cn

Contents

- 1. Synthetic procedures
- 2. Crystal structural parameters
- 3. Photophysical properties
- 4. Device performance
- 5. Computational details
- 6. References
- 7. NMR Spectra Collection

1. Synthetic procedures

General considerations: All oxygen- and moisture-sensitive manipulations were carried out under dry nitrogen using standard Schlenk techniques or in a Vigor inert atmosphere dry-box containing an atmosphere of purified nitrogen. Solvents were dried by standard methods and freshly distilled prior to use. The NMR spectra were recorded with a JEOL-400 MHz spectrometer, referenced to residual solvent signals as internal standards (¹H and ¹³C{¹H}) or with an external reference (BF₃·OEt₂ for ¹¹B). Abbreviations: s = singlet; d = doublet; t = triplet; m = multiplet; br = broad. The UV-Vis absorption spectra of the compounds were recorded on a Perkin-Elmer Lambda-950 Spectrophotometer. The photoluminescence (PL) spectra, related emission lifetimes, and the absolute fluorescence quantum yields of the compounds were studied with Edinburgh Instruments Ltd (FLSP980) fluorescence spectrophotometer. The mass spectra (MS) were characterized on an Agilent 6540 electrospray ionization quadrupole time-of-flight mass spectrometer or the WATERS I-Class VION IMS Qtof mass spectroscopy.

Scheme S1 Synthesis of Cz1-Cz7.

Typical procedures: A sealed tube containing 1-bromo-3,6-di-tert-butyl-9H-carbazole (2.56 g, 7.2 mmol, 1.0 equiv), Pd(PPh₃)₄ (0.42 g, 0.36 mmol, 0.05 equiv), arylboronic acid (7.9 mmol, 1.1 equiv) and K₂CO₃ (9.95 g, 72.0 mmol, 10.0 equiv) was pumped and then refilled with nitrogen three times. A mixed solvent (Toluene/EtOH/H₂O = 5/1/1, 140 mL) was added to the above mixture by syringe. The reaction mixture was heated to 110 °C and stirred for 12 hours. After cooling to room temperature, the solvent was extracted three times with dichloromethane, dried over anhydrous magnesium sulfate, and filtered. The solvent was removed under vacuum to produce the crude product. The crude product was purified by column chromatography on silica gel to give the

corresponding coupling compounds Cz1-Cz7.

Cz1: $R_f = 0.75$ (PE:DCM = 2:1), m.p. 182-183 °C, white solid (2.05 g, yield = 80 %). ¹H NMR (400 MHz, CDCl₃): δ 8.24 (d, J = 8.4 Hz, 2H, Ar), 8.18 (s, 1H, NH), 7.81 (d, J = 7.7 Hz, 2H, Ar), 7.69 - 7.60 (m, 3H, Ar), 7.59 - 7.49 (m, 2H, Ar), 7.38 (d, J = 8.5Hz, 1H, Ar), 1.62 (s, 9H, CH₃), 1.58 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 142.88, 142.44, 139.82, 138.13, 135.97, 129.31, 128.54, 127.48, 124.38, 123.88, 123.82, 123.74, 123.62, 116.44, 115.62, 110.23, 34.93, 34.84, 32.24, 32.19.

Cz2: $R_f = 0.60$ (PE:DCM = 2:1), m.p. 214-216 °C, white solid (2.18 g, yield = 58 %). ¹H NMR (400 MHz, CDCl₃): δ 8.16 (s, 1H, Ar), 8.11 (s, 1H, Ar), 8.06 (s, 1H, Ar), 7.58 (d, J = 8.5 Hz, 2H, Ar), 7.50 - 7.44 (m, 2H, Ar), 7.37 - 7.28 (m, 5H, Ar), 7.22 (t, J = 8.6 Hz, 5H, Ar), 7.07 (t, J = 7.3 Hz, 2H, Ar), 1.50 (s, 9H, CH₃), 1.47 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 147.82, 147.27, 142.90, 142.43, 138.13, 135.97, 133.67, 129.50, 129.18, 124.66, 124.29, 124.04, 123.85, 123.77, 123.68, 123.53, 123.21, 116.44, 115.30, 110.22, 34.94, 34.86, 32.25, 32.19. HRMS (ESI) m/z calcd for (C₃₈H₃₈N₂) [M+H]⁺, 523.31087, found: 523.30941.

Cz3: $R_f = 0.20$ (PE:DCM = 2:1), m.p. 185-186 °C, white solid (1.66 g, yield = 60 %). ¹H NMR (400 MHz, CDCl₃): δ 8.14-8.03 (m, 3H, Ar), 7.64 (d, *J* = 8.7 Hz, 2H, Ar), 7.50-7.43 (m, 2H, Ar), 7.32 (d, *J* = 8.5 Hz, 1H, Ar), 7.10 (d, *J* = 8.5 Hz, 2H, Ar), 3.91 (s, 3H, OCH₃), 1.50 (s, 9H, CH₃), 1.47 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 159.11, 142.87, 142.40, 138.16, 136.09, 132.17, 129.60, 124.12, 123.78, 123.74, 123.70, 123.56, 116.44, 115.17, 114.72, 110.21, 55.51, 34.92, 34.85, 32.25, 32.19. HRMS (ESI) m/z calcd for (C₂₇H₃₁NO) [M+H]⁺, 386.24784, found: 386.24812. **Cz4:** $R_f = 0.30$ (PE:DCM = 1:1), m.p. 290-291 °C, white solid (1.37 g, yield = 50 %). ¹H NMR (400 MHz, CDCl₃): δ 8.14 (s, 1H, Ar), 8.11 (s, 1H, Ar), 8.06 (s, 1H, NH), 7.83 (s, 4H, Ar), 7.50 (d, J = 6.7 Hz, 1H, Ar), 7.45 (s, 1H, Ar), 7.35 (d, J = 8.5 Hz, 1H, Ar), 1.49 (s, 9H, CH₃), 1.46 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 144.72, 143.19, 142.94, 138.20, 135.59, 133.09, 129.15, 124.48, 124.28, 123.61, 123.38, 122.33, 119.07, 117.05, 116.49, 110.92, 110.41, 34.94, 34.87, 32.17, 32.13. HRMS (ESI) m/z calcd for (C₂₇H₂₈N₂) [M+H]⁺, 381.23253, found: 381.23320.

Cz5: $R_f = 0.40$ (PE:DCM = 6:1), m.p. 210-211 °C, white solid (1.46 g, yield = 48 %). ¹H NMR (400 MHz, CDCl₃): δ 8.13 (s), 8.11 (s), 8.05 (s, 1H, NH), 7.82 (s, 4H, Ar), 7.51-7.44 (m, 2H, Ar), 7.34 (d, J = 8.5 Hz, 1H, Ar), 1.50 (s, 9H, CH₃), 1.46 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃): 143.53, 143.12, 142.82, 138.17, 135.79, 129.70 (q, J_{C-F} = 32.6 Hz), 128.83, 126.24 (q, $J_{C-F} = 3.7$ Hz), 124.37 (q, $J_{C-F} = 271.9$ Hz), 124.26, 124.15, 123.70, 123.50, 122.89, 116.55, 116.52, 110.34, 34.95, 34.88, 32.20, 32.16. HRMS (ESI) m/z calcd for (C₂₇H₂₈F₃N) [M+H]⁺, 424.22466, found: 424.22528.

Cz6: $R_f = 0.55$ (PE:DCM = 2:1), m.p. 149-150 °C, white solid (1.38 g, yield = 52 %). ¹H NMR (400 MHz, CDCl₃): δ 8.35 (s, 1H, NH), 8.11 (s, 1H, Ar), 8.09 (s, 1H, Ar), 7.61 (s, 1H, Ar), 7.50 (d, J = 6.8 Hz, 1H, Ar), 7.43 (t, J = 4.5 Hz, 2H, Ar), 7.38 (d, J = 8.5 Hz, 1H, Ar), 7.23 (dd, J = 5.1, 3.6 Hz, 1H, Ar), 1.50 (s, 9H, CH₃), 1.47 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 142.83, 142.74, 141.91, 138.16, 135.62, 128.10, 124.95, 124.71, 124.27, 124.05, 123.56, 123.46, 117.24, 116.47, 116.25, 110.43, 34.89, 32.18. HRMS (ESI) m/z calcd for (C₂₄H₂₇NS) [M+H]⁺, 362.19370, found: 362.19387. **Cz7:** $R_f = 0.55$ (PE:DCM = 2:1), m.p. 170-171 °C, white solid (1.35 g, yield = 52 %). ¹H NMR (400 MHz, CDCl₃): δ 8.13 (s, 1H, NH), 8.11 (s, 1H, Ar), 8.07 (s, 1H, Ar), 7.57-7.59 (m, 1H, Ar), 7.56-7.52 (m, 2H, Ar), 7.51-7.46 (m, 2H, Ar), 7.35 (d, *J* = 8.5 Hz, 1H, Ar), 1.49 (s, 9H, CH₃), 1.47 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 142.79, 142.59, 140.41, 138.18, 136.09, 127.87, 126.79, 124.02, 123.89, 123.68, 123.23, 121.66, 119.36, 116.47, 115.66, 110.32, 34.90, 34.87, 32.23, 32.18. HRMS (ESI) m/z calcd for (C₂₄H₂₇NS) [M+H]⁺, 362.19370, found: 362.19468.

Scheme S2 Synthesis of 1-7.

Typical procedures: A mixture of 3,6-di-tert-butyl-1-aryl-9H-carbazole (0.5 mmol, 1.0 equiv), triethylamine (0.21 mL, 1.5 mmol, 3 equiv) in toluene (15 mL) was stirred at room temperature in 10 minutes. Then boron tribromide (1.0 M in heptane, 0.55 mL, 0.55 mmol, 1.1 equiv) was dropwise added to the reaction mixture. After stirring at room temperature for 10 minutes, the reaction mixture was heated up to 110 °C for 12 hours. After cooling to room temperature, mesitylmagnesium bromide (1.0 M in THF, 2.0 mL, 2.0 mmol, 4.0 equiv) was added under a nitrogen atmosphere and stirred for 12 h at room temperature. Then the mixture was quenched with water. The solvent was removed by vacuum. The mixture was extracted with dichloromethane and washed with water. The combined organic layer was dried over MgSO₄ and filtered. After the removal of the solvents, the residue was purified by column chromatography on silica gel to give the corresponding target product 1-7.

1: R_f = 0.80 (PE:DCM = 2:1), m.p. 215-216 °C, white solid (169.2 mg, yield = 70 %). ¹H NMR (400 MHz, CDCl₃, 298K): δ 8.59 (d, *J* = 8.0 Hz, 1H, Ar), 8.52 (s, 1H, Ar), 8.23 (s, 1H, Ar), 8.10 (s, 1H, Ar), 7.86 (d, *J* = 7.5 Hz, 1H, Ar), 7.80 (t, *J* = 7.5 Hz, 1H, Ar), 7.44 (t, *J* = 7.4 Hz, 1H, Ar), 7.28 (d, *J* = 1.9 Hz, 1H, Ar), 7.01 (s, 2H, Ar), 6.85 (d, *J* = 8.6 Hz, 1H, Ar), 2.46 (s, 3H, CH₃), 2.04 (s, 6H, CH₃), 1.61 (s, 9H, CH₃), 1.42 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃, 298K): δ 146.90, 146.37, 142.31, 139.84, 138.14, 138.05, 137.64, 136.34, 131.78, 128.85, 127.61, 127.16, 126.79, 124.97, 122.10, 121.63, 117.97, 116.86, 116.76, 114.94, 35.52, 34.98, 32.39, 31.94, 22.60, 21.64 (B-aryl carbons were not observed). ¹¹B NMR (128 MHz, CDCl₃, 298K): δ 43.63. HRMS (ESI) m/z calcd for (C₃₅H₃₈BN) [M+H]⁺, 484.31701, found: 484.31704. **2:** $R_f = 0.50$ (PE:DCM = 8:1), m.p. 178-179 °C, pale yellow solid (227.7 mg, yield = 70 %). ¹H NMR (400 MHz, CDCl₃, 298K): δ 8.46 (d, J = 8.6 Hz, 1H, Ar), 8.41 (s, 1H, Ar), 8.18 (s, 1H, Ar), 8.09 (s, 1H, Ar), 7.57 (s, 1H, Ar), 7.52 (d, J = 8.6 Hz, 1H, Ar), 7.21 (t, J = 8.0 Hz, 5H, Ar), 7.09 (d, J = 8.1 Hz, 4H, Ar), 6.98 (t, J = 7.2 Hz, 2H, Ar), 6.86 (s, 2H, Ar), 6.79 (d, J = 8.6 Hz, 1H, Ar), 2.35 (s, 3H, CH₃), 1.98 (s, 3H, CH₃), 1.59 (s, 3H, CH₃), 1.42 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃, 298K): δ 147.74, 146.88, 146.46, 146.37, 142.27, 139.53, 137.85, 136.08, 133.20, 132.67, 129.24, 128.97, 128.62, 127.52, 127.02, 124.84, 123.83, 123.31, 122.71, 121.53, 117.60, 116.81, 116.01, 115.01, 35.48, 34.97, 32.37, 31.93, 22.51, 21.51 (B-aryl carbons were not observed). ¹¹B NMR (128 MHz, CDCl₃, 298K): δ 42.68. HRMS (ESI) m/z calcd for (C₄₇H₄₇BN₂) [M+H]⁺, 651.39051, found: 651.38822.

3: $R_f = 0.45$ (PE:DCM = 8:1), m.p. 183-184 °C, white solid (130.9 mg, yield = 51 %) ¹H NMR (400 MHz, CDCl₃, 298K): δ 8.54 (d, J = 8.8 Hz, 1H, Ar), 8.44 (s, 1H, Ar), 8.18 (s, 1H, Ar), 8.10 (s, 1H, Ar), 7.39 (d, J = 8.7 Hz, 1H, Ar), 7.33 (s, 1H, Ar), 7.28 (s, 1H, Ar), 7.00 (s, 2H, Ar), 6.84 (d, J = 8.6 Hz, 1H, Ar), 3.82 (s), 2.45 (s, 3H, CH₃), 2.05 (s, 6H, CH₃), 1.61 (s, 9H, CH₃), 1.43 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃, 298K): δ 158.53, 146.88, 146.43, 142.30, 139.71, 137.97, 135.73, 131.60, 129.02, 127.64, 127.03, 124.85, 123.73, 121.64, 120.15, 119.15, 117.42, 116.85, 115.71, 114.95, 55.54, 35.49, 34.97, 32.39, 31.93, 22.53, 21.62 (B-aryl carbons were not observed). ¹¹B NMR (128 MHz, CDCl₃, 298K): δ 42.68. HRMS (ESI) m/z calcd for (C₃₆H₄₀BNO) [M+H]⁺, 514.32757, found: 514.32420.

4: $R_f = 0.55$ (PE : DCM = 2:1), m.p. 288-289 °C, pale solid (83.9 mg, yield = 33 %). ¹H NMR (400 MHz, CDCl₃, 298K): δ 8.66 (d, J = 8.4 Hz, 1H, Ar), 8.50 (s, 1H, Ar), 8.32 (s, 1H, Ar), 8.15 (s, 1H, Ar), 8.11 (s, 1H, Ar), 8.01 (d, J = 8.3 Hz, 1H, Ar), 7.31 (d, J = 8.6 Hz, 1H, Ar), 7.04 (s, 2H, Ar), 6.89 (d, J = 8.6 Hz, 1H, Ar), 2.47 (s, 3H, CH₃), 2.02 (s, 6H, CH₃), 1.61 (s, 9H, CH₃), 1.43 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃, 298K): δ 147.68, 147.08, 142.06, 142.02, 141.69, 139.66, 138.75, 136.90, 133.92, 128.66, 127.95, 127.67, 125.48, 122.98, 120.20, 119.64, 118.77, 118.57, 117.05, 115.15, 110.02, 35.57, 35.04, 32.29, 31.88, 22.60, 21.61 (B-aryl carbons were not observed). ¹¹B NMR (128 MHz, CDCl₃, 298K): δ 42.68. HRMS (ESI) m/z calcd for (C₃₆H₃₇BN₂) [M+H]⁺, 509.31226, found: 509.30724.

5: $R_f = 0.70$ (PE), m.p. 110-112 °C, white solid (124.1 mg, yield = 45 %). ¹H NMR (400 MHz, CDCl₃, 298K): δ 8.69 (d, J = 8.4 Hz, 1H, Ar), 8.53 (s, 1H, Ar), 8.30 (s, 1H, Ar), 8.11 (s, 2H, Ar), 8.01 (d, J = 8.4 Hz, 1H, Ar), 7.30 (d, J = 6.7 Hz, 1H, Ar), 7.03 (s, 2H, Ar), 6.83 (d, J = 8.7 Hz, 1H, Ar), 2.47 (s, 3H, CH₃), 2.03 (s, 6H, CH₃), 1.62 (s, 9H, CH₃), 1.43 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃, 298K): δ 147.43, 146.85, 142.19, 141.12, 139.72, 138.48, 136.76, 134.27 (q, $J_{C-F} = 3.4$ Hz), 128.77, 128.47 (q, $J_{C-F} = 32.1$ Hz), 128.04 (q, $J_{C-F} = 3.3$ Hz), 127.90, 127.52, 125.32, 124.64 (q, $J_{C-F} = 271.9$ Hz), 122.70, 120.53, 118.42, 118.08, 116.98, 115.16, 35.57, 35.02, 32.34, 31.90, 22.60, 21.63 (B-aryl carbons were not observed). ¹¹B NMR (128 MHz, CDCl₃, 298K): δ 41.48. HRMS (ESI) m/z calcd for (C₃₆H₃₇BF₃N) [M+H]⁺, 552.30439, found: 552.30601.

6: R_f = 0.70 (PE:DCM = 2:1), m.p. 213-214 °C, pale solid (159.1 mg, yield = 65 %). ¹H NMR (400 MHz, CDCl₃, 298K): δ 8.21 (s, 1H, Ar), 8.10 (s, 1H, Ar), 8.08 (s, 1H, Ar), 7.39 (d, J = 5.0 Hz, 1H, Ar), 7.32 (d, J = 5.0 Hz, 1H, Ar), 7.28 (d, J = 2.0 Hz, 1H, Ar), 6.99 (s, 2H, Ar), 6.89 (d, J = 8.6 Hz, 1H, Ar), 2.44 (s, 3H, CH₃), 2.08 (s, 6H, CH₃), 1.59 (s, 9H, CH₃), 1.42 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃, 298K): δ 150.06, 146.91, 146.73, 142.80, 139.67, 138.00, 135.96, 132.90, 128.80, 127.59, 127.14, 125.10, 124.28, 119.43, 118.77, 117.07, 116.91, 114.91, 35.43, 34.97, 32.32, 31.92, 22.60, 21.60 (Baryl carbons were not observed). ¹¹B NMR (128 MHz, CDCl₃, 298K): δ 40.37. HRMS (ESI) m/z calcd for (C₃₃H₃₆BNS) [M+H]⁺, 490.27343, found: 490.27194.

7: $R_f = 0.70$ (PE:DCM = 2:1), m.p. 222-223 °C, pale solid (159.1 mg, yield = 65 %). ¹H NMR (400 MHz, CDCl₃, 298K): δ 8.25 (d, J = 6.3 Hz, 2H, Ar), 8.14-8.08 (m, 2H, Ar), 7.96 (d, J = 4.8 Hz, 1H, Ar), 7.28 (d, J = 7.0 Hz, 1H, Ar), 7.01 (s, 2H, Ar), 6.90 (d, J = 8.6 Hz, 1H, Ar), 2.45 (s, 3H, CH₃), 2.12 (s, 6H, CH₃), 1.60 (s, 9H, CH₃), 1.42 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃, 298K): δ 146.86, 146.45, 145.97, 142.67, 139.81, 138.35, 136.49, 135.67, 129.03, 127.70, 126.91, 124.99, 123.25, 119.60, 119.07, 117.05, 116.43, 114.85, 35.45, 34.98, 32.37, 31.93, 22.54, 21.66 (B-aryl carbons were not observed). ¹¹B NMR (128 MHz, CDCl₃, 298K): δ 38.74. HRMS (ESI) m/z calcd for (C₃₃H₃₆BNS) [M+H]⁺, 490.27343, found: 490.27127.

Scheme S4 Synthesis of 8.

A mixture of 3,6-di-tert-butyl-1-phenyl-9H-carbazole (177.8 mg, 0.50 mmol, 1.0

equiv), triethylamine (0.21 mL, 1.50 mmol, 3 equiv) in toluene (10 mL) was stirred at room temperature in 10 minutes. Then boron tribromide (1.0 M in heptane, 0.55 mL, 0.55 mmol, 1.1 equiv) was dropwise added to the reaction mixture. After stirring at room temperature for 10 minutes, the reaction mixture was heated up to 110 °C for 12 hours. After cooling to room temperature, (4-bromo-2,6-dimethylphenyl)lithium which was prepared from 5-bromo-2-iodo-1,3-dimethylbenzene and n-BuLi (in THF, 2.0 mmol, 4.0 equiv) was added under a nitrogen atmosphere and stirred for 12 h at room temperature. Then the mixture was quenched with water. The solvent was removed by vacuum. The mixture was extracted with dichloromethane and washed with water. The combined organic layer was dried over MgSO₄ and filtered. After the removal of the solvents, the residue was purified by column chromatography on silica gel to give the target product **8**.

8: $R_f = 0.30$ (PE), m.p. 198-199 °C, white solid (208.4 mg, yield = 76 %). ¹H NMR (400 MHz, CDCl₃, 298K): δ 8.60 (d, J = 7.9 Hz, 1H, Ar), 8.53 (s, 1H, Ar), 8.24 (s, 1H, Ar), 8.11 (s, 1H, Ar), 7.88-7.72 (m, 2H, Ar), 7.46 (t, J = 7.4 Hz, 1H, Ar), 7.36 (s, 2H, Ar), 7.30 (d, J = 8.6 Hz, 1H, Ar), 6.85 (d, J = 8.6 Hz, 1H, Ar), 2.05 (s, 6H, CH₃), 1.61 (s, 9H, CH₃), 1.43 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃, 298K): δ 147.25, 146.66, 142.13, 142.01, 138.23, 137.25, 136.17, 132.04, 129.64, 128.96, 127.22, 126.93, 125.10, 122.73, 122.25, 121.62, 118.08, 117.06, 116.95, 114.69, 35.53, 34.99, 32.37, 31.91, 22.42 (Baryl carbons were not observed). ¹¹B NMR (128 MHz, CDCl₃, 298K): δ 42.21. HRMS (ESI) m/z calcd for (C₃₄H₃₅BBrN) [M+Na]⁺, 570.19381, found: 570.19498.

Method A: For **9-12**: ArB(OH)₂ (1.1 equiv), Pd(PPh₃)₄ (5 mol%), K₂CO₃ (10 equiv), toluene/EtOH, 110 °C, 12h Method B: For **13**: Pd(OAc)₂ (10 mol%), P(^tBu)₃ (20 mol%), NaO^tBu (2 equiv), toluene, 110 °C, 12h

Scheme S5 Synthesis of 9-13.

Typical procedures: A sealed tube containing **8** (106.0 mg, 0.19 mmol, 1.0 equiv), $Pd(PPh_3)_4$ (11.17 mg, 0.0097 mmol, 0.05 equiv), arylboronic acid (0.21 mmol, 1.1 equiv) and K₂CO₃ (262.60 mg, 1.9 mmol, 10.0 equiv) was pumped and then refilled with nitrogen three times. A mixed solvent (Toluene/EtOH/H₂O = 5/1/1, 12 mL) was added to the above mixture by syringe. The reaction mixture was heated to 110°C and stirred for 12 hours. After cooling to room temperature, the solvent was extracted three times with dichloromethane, dried over anhydrous magnesium sulfate, and filtered. The solvent was removed under vacuum to produce the crude product. The crude product was purified by column chromatography on silica gel to give the corresponding coupling compounds **9-12**.

A sealed tube containing 8 (111.0 mg, 0.20 mmol, 1.0 equiv), Pd(OAc)₂ (4.50 mg, 0.02 mmol, 0.10 equiv), bis(4-(tert-butyl)phenyl)amine (61.90 mg, 0.22 mmol, 1.1 equiv) and t-BuONa (38.44 mg, 0.40 mmol, 2.0 equiv) was pumped and then refilled

with nitrogen three times. Then (t-Bu)₃P (0.1mL, 0.04 mmol, 0.2 equiv) and dry toluene (15 mL) were added in sequence by syringe. The reaction mixture was heated to 110 °C and stirred for 12 hours. After cooling to room temperature, the solvent was extracted three times with dichloromethane, dried over anhydrous magnesium sulfate, and filtered. The solvent was removed under vacuum to produce the crude product. The crude product was purified by column chromatography on silica gel to give the target compound **13**.

9: $R_f = 0.35$ (PE:DCM = 4:1), m.p. 257-258 °C, white solid (71.1 mg, yield = 65 %). ¹H NMR (400 MHz, CDCl₃, 298K): δ 8.62 (d, J = 8.0 Hz, 1H, Ar), 8.55 (s, 1H, Ar), 8.25 (s, 1H, Ar), 8.12 (s, 1H, Ar), 7.92 (d, J = 7.4 Hz, 1H, Ar), 7.82 (t, J = 7.6 Hz, 1H, Ar), 7.73 (d, J = 8.6 Hz, 2H, Ar), 7.47 (t, J = 7.3 Hz, 1H, Ar), 7.41 (s, 2H, Ar), 7.28 (d, J = 8.7 Hz, 1H, Ar), 7.05 (d, J = 8.7 Hz, 2H, Ar), 6.93 (d, J = 8.6 Hz, 1H, Ar), 3.90 (s, 3H, CH₃), 2.14 (s, 6H, CH₃), 1.62 (s, 9H, CH₃), 1.42 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃, 298K): δ 159.22, 147.03, 146.48, 142.27, 140.73, 140.40, 138.19, 137.64, 136.32, 134.10, 131.86, 128.90, 128.22, 127.20, 126.85, 125.04, 122.15, 121.66, 118.01, 116.91, 116.81, 114.95, 114.32, 55.53, 35.53, 34.99, 32.38, 31.92, 22.84 (B-aryl carbons were not observed). ¹¹B NMR (128 MHz, CDCl₃, 298K): δ 38.73. HRMS (ESI) m/z calcd for (C₄₁H₄₂BNO) [M+H]⁺, 576.34322, found: 576.33999.

10: R_f = 0.65 (PE:DCM = 8:1), m.p. 274-275 °C, white solid (58.3 mg, yield = 50 %).
¹H NMR (400 MHz, CDCl₃, 298K): δ 8.65 (d, J = 8.1 Hz, 1H, Ar), 8.58 (s, 1H, Ar),
8.29 (s, 1H, Ar), 8.15 (s, 1H, Ar), 7.91 (d, J = 8.2 Hz, 3H, Ar), 7.85 (t, J = 7.6 Hz, 1H, Ar),
Ar), 7.78 (d, J = 8.2 Hz, 2H, Ar), 7.55-7.44 (m, 3H, Ar), 7.30 (d, J = 8.6 Hz, 1H, Ar),

6.93 (d, J = 8.6 Hz, 1H, Ar), 2.19 (s, 6H, CH₃), 1.65 (s, 9H, CH₃), 1.45 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃, 298K): δ 147.19, 146.64, 145.15, 142.17, 140.80, 139.74, 138.26, 137.45, 136.28, 131.99, 129.27 (q, $J_{C-F} = 32.1$ Hz), 128.99, 127.50, 127.23, 126.91, 125.82 (q, $J_{C-F} = 3.5$ Hz), 125.59, 125.02, 124.59 (q, $J_{C-F} = 271.6$ Hz), 122.25, 121.67, 118.09, 117.04, 116.91, 114.77, 35.55, 35.01, 32.38, 31.91, 22.82 (B-aryl carbons were not observed). ¹¹B NMR (128 MHz, CDCl₃, 298K): δ 44.66. HRMS (ESI) m/z calcd for (C₄₁H₃₉BF₃N) [M+H]⁺, 614.32004, found: 614.31706.

11: $R_f = 0.35$ (PE:DCM = 2:1), m.p. 319-320 °C, white solid (56.4 mg, yield = 52 %). ¹H NMR (400 MHz, CDCl₃, 298K): δ 8.65 (d, J = 8.0 Hz, 1H, Ar), 8.58 (s, 1H, Ar), 8.29 (s, 1H, Ar), 8.16 (s, 1H, Ar), 7.92-7.77 (m, 6H, Ar), 7.52-7.42 (m, 3H, Ar), 7.29 (d, J = 8.6 Hz, 1H, Ar), 6.91 (d, J = 8.6 Hz, 1H, Ar), 2.19 (s, 6H, CH₃), 1.64 (s, 9H, CH₃), 1.44 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃, 298K): δ 147.22, 146.68, 146.11, 142.10, 140.97, 139.14, 138.26, 137.34, 136.22, 132.72, 132.02, 128.99, 127.79, 127.20, 126.90, 125.51, 124.98, 122.27, 121.64, 119.31, 118.11, 117.08, 116.94, 114.66, 110.75, 35.54, 35.00, 32.36, 31.90, 22.80 (B-aryl carbons were not observed). ¹¹B NMR (128 MHz, CDCl₃, 298K): δ 41.73. HRMS (ESI) m/z calcd for (C₄₁H₃₉BN₂) [M+H]⁺, 571.32791, found: 571.32599.

12: R_f = 0.50 (PE:DCM = 8:1), m.p. 284-285 °C, white solid (94.8 mg, yield = 70 %).
¹H NMR (400 MHz, CDCl₃, 298K): δ 8.61 (d, J = 8.0 Hz, 1H, Ar), 8.54 (s, 1H, Ar), 8.25 (s, 1H, Ar), 8.11 (s, 1H, Ar), 7.91 (d, J = 7.5 Hz, 1H, Ar), 7.82 (t, J = 7.0 Hz, 1H, Ar), 7.68 (d, J = 8.5 Hz, 2H, Ar), 7.47 (t, J = 7.3 Hz, 1H, Ar), 7.43 (s, 2H, Ar), 7.34-7.27 (m, 5H, Ar), 7.24-7.15 (m, 6H, Ar), 7.05 (t, J = 7.3 Hz, 2H, Ar), 6.91 (d, J = 8.6

Hz, 1H, Ar), 2.14 (s, 6H, CH₃), 1.62 (s, 9H, CH₃), 1.42 (s, 9H, CH₃). ¹³C NMR (100 MHz, CDCl₃, 298K): δ 147.93, 147.20, 147.02, 146.48, 142.25, 140.57, 140.44, 138.19, 137.61, 136.31, 135.69, 131.88, 129.41, 128.90, 127.90, 127.20, 126.86, 125.01, 124.43, 124.41, 122.93, 122.16, 121.66, 118.02, 116.92, 116.82, 114.93, 35.52, 34.98, 32.38, 31.92, 22.84 (B-aryl carbons were not observed). ¹¹B NMR (128 MHz, CDCl₃, 298K): δ 40.12. HRMS (ESI) m/z calcd for (C₅₂H₄₉BN₂) [M+H]⁺, 713.40616, found: 713.40229. 13: $R_f = 0.65$ (PE:DCM = 4:1), m.p. 168-169°C, white solid (92.9 mg, yield = 62 %). ¹H NMR (400 MHz, CDCl₃, 298K): δ 8.60 (d, J = 8.1 Hz, 1H, Ar), 8.53 (s, 1H, Ar), 8.25 (s, 1H, Ar), 8.13 (s, 1H, Ar), 7.99 (d, J = 6.5 Hz, 1H, Ar), 7.82 (t, J = 7.6 Hz, 1H, Ar), 7.51 (t, J = 7.3 Hz, 1H, Ar), 7.39-7.31 (m, 5H, Ar), 7.17 (d, J = 8.7 Hz, 4H, Ar), 7.02 (d, J = 8.6 Hz, 1H, Ar), 6.93 (s, 2H, Ar), 1.98 (s, 6H, CH₃), 1.61 (s, 9H, CH₃), 1.47 (s, 9H, CH₃), 1.36 (s, 18H, CH₃). ¹³C NMR (100 MHz, CDCl₃, 298K): δ 148.33, 146.94, 146.39, 145.56, 145.27, 142.34, 140.91, 138.17, 137.79, 136.39, 131.80, 128.94, 127.15, 126.81, 126.13, 124.84, 123.94, 122.11, 121.95, 121.66, 117.99, 116.97, 116.75, 115.08, 35.53, 35.02, 34.45, 32.40, 31.99, 31.66, 22.77 (B-aryl carbons were not observed). ¹¹B NMR (128 MHz, CDCl₃, 298K): δ 42.62. HRMS (ESI) m/z calcd for (C₅₄H₆₁BN₂) [M+H]⁺, 749.50006, found: 749.49994.

2. Crystal structural parameters

Single-Crystal X-ray Structure Determinations: Crystals were each mounted on a glass capillary in perfluorinated oil and measured in a cold N₂ flow. The data of all compounds were collected on a Bruker D8-VENTURE diffractometer. The structures were solved by direct methods and refined on F^2 with the SHELX-97^{S1} and X-Seed software packages.^{S2} The positions of the H atoms were calculated and considered isotropically according to a riding model. CCDC: 2323362-2323367 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from the Cambridge Crystallography Data Center via www.ccdc.cam.ac.uk/data request/cif.

Fig. S1 Molecular structures of 1 (a), 3 (b), 7 (c), 8 (d), 9 (e), and 10 (f). H atoms are omitted for clarity.

 Table S1 Crystal data and structure refinement for 1.

Empirical formula	C35 H38 B N	
Formula weight	483.47	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 18.9886(11) Å	α= 90°.
	b = 11.5022(6) Å	$\beta = 110.398(2)^{\circ}.$
	c = 14.0085(6) Å	$\gamma = 90^{\circ}$.
Volume	2867.8(3) Å ³	
Ζ	4	
Density (calculated)	1.120 Mg/m ³	
Absorption coefficient	0.063 mm ⁻¹	
F(000)	1040	
Crystal size	0.300 x 0.240 x 0.150 mm	1 ³
Theta range for data collection	2.108 to 27.515°.	
Index ranges	-22<=h<=24, -14<=k<=14	4, -17<=l<=18
Reflections collected	30803	
Independent reflections	6578 [R(int) = 0.1233]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	6578 / 46 / 378	
Goodness-of-fit on F ²	1.011	
Final R indices [I>2sigma(I)]	R1 = 0.0608, wR2 = 0.124	45
R indices (all data)	R1 = 0.1329, wR2 = 0.162	28
Extinction coefficient	n/a	
Largest diff. peak and hole	0.293 and -0.264 e.Å ⁻³	

Table S2 Crystal data and structure refinement for **3**.

Identification code	C:_0530ome_0m_a_sq		
Empirical formula	C41 H42 B N O		
Formula weight	575.56		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/c$		
Unit cell dimensions	a = 14.8622(9) Å	<i>α</i> =90°.	
	b = 10.8648(7) Å	$\beta = 93.551(2)^{\circ}.$	
	c = 21.9339(10) Å	$\gamma = 90^{\circ}$.	
Volume	3535.0(4) Å ³		
Z	4		
Density (calculated)	1.081 Mg/m ³		
Absorption coefficient	0.063 mm ⁻¹		
F(000)	1232		
Crystal size	0.230 x 0.120 x 0.100 mm	ⁿ 3	
Theta range for data collection	2.093 to 24.760°.		
Index ranges	-17<=h<=17, -12<=k<=1	2, -23<=1<=25	
Reflections collected	53077		
Independent reflections	6022 [R(int) = 0.1423]		
Completeness to theta = 24.760°	99.4 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	6022 / 15 / 424		
Goodness-of-fit on F ²	1.025		
Final R indices [I>2sigma(I)]	R1 = 0.0536, $wR2 = 0.12$	04	
R indices (all data)	R1 = 0.0888, wR2 = 0.14	83	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.297 and -0.228 e.Å ⁻³		

Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	C33 H34 B N S 487.48 150(2) K 0.71073 Å Orthorhombic Pbca $a = 10.7821(6)$ Å $\alpha = 90^{\circ}$. $b = 22.6036(10)$ Å $\beta = 90^{\circ}$. $c = 22.7200(13)$ Å $\gamma = 90^{\circ}$.
Volume	5537.2(5) Å ³
Z	8
Density (calculated)	1.170 Mg/m ³
Absorption coefficient	0.139 mm ⁻¹
F(000)	2080
Crystal size	0.180 x 0.140 x 0.100 mm ³
Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction	2.013 to 25.378°. -12<=h<=12, -27<=k<=26, -27<=l<=27 189664 5060 [R(int) = 0.0944] 99.6 % None
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5060 / 0 / 334
Goodness-of-fit on F ²	1.055
Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	R1 = 0.0478, $wR2 = 0.1251R1 = 0.0554$, $wR2 = 0.1341n/a$
Largest diff. peak and hole	0.686 and -0.340 e.Å ⁻³

 Table S3 Crystal data and structure refinement for 7.

 Table S4 Crystal data and structure refinement for 8.

Empirical formula	C34 H35 B Br N	
Formula weight	548.35	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions	a = 18.6908(5) Å	α=90°.
	b = 11.6182(3) Å	$\beta = 109.9070(10)^{\circ}.$
	c = 14.1142(4) Å	$\gamma = 90^{\circ}.$
Volume	2881.81(14) Å ³	
Z	4	
Density (calculated)	1.264 Mg/m ³	
Absorption coefficient	1.449 mm ⁻¹	
F(000)	1144	
Crystal size	0.250 x 0.160 x 0.140 mm	3
Theta range for data collection	2.101 to 27.503°.	
Index ranges	-24<=h<=24, -13<=k<=15	5, - 18<=1<=18
Reflections collected	54434	
Independent reflections	6606 [R(int) = 0.0674]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares of	on F ²
Data / restraints / parameters	6606 / 0 / 342	
C_{a} draw of fit on E^2		
Goodness-of-fit on F ²	1.063	
Final R indices [I>2sigma(I)]	1.063 R1 = 0.0394, wR2 = 0.096	50
Final R indices [I>2sigma(I)] R indices (all data)	1.063 R1 = 0.0394, wR2 = 0.096 R1 = 0.0480, wR2 = 0.101	50 8
Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	1.063 R1 = 0.0394, wR2 = 0.096 R1 = 0.0480, wR2 = 0.101 n/a	50 8

 Table S5 Crystal data and structure refinement for 9.

Empirical formula	C41 H42 B N O		
Formula weight	575.56		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/c$		
Unit cell dimensions	a = 14.8622(9) Å	α=90°.	
	b = 10.8648(7) Å	$\beta = 93.551(2)^{\circ}.$	
	c = 21.9339(10) Å	$\gamma = 90^{\circ}.$	
Volume	3535.0(4) Å ³		
Z	4		
Density (calculated)	1.081 Mg/m ³		
Absorption coefficient	0.063 mm ⁻¹		
F(000)	1232		
Crystal size	0.230 x 0.120 x 0.100 mm	1 ³	
Theta range for data collection	2.093 to 24.760°.		
Index ranges	-17<=h<=17, -12<=k<=12, -23<=l<=25		
Reflections collected	53077		
Independent reflections	6022 [R(int) = 0.1423]		
Completeness to theta = 24.760°	99.4 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	6022 / 15 / 424		
Goodness-of-fit on F ²	1.025		
Final R indices [I>2sigma(I)]	R1 = 0.0536, $wR2 = 0.126$	04	
R indices (all data)	R1 = 0.0888, wR2 = 0.148	83	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.297 and -0.228 e.Å ⁻³		

 Table S6 Crystal data and structure refinement for 10.

Empirical formula	C41 H39 B F3 N	
Formula weight	613.54	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /n	
Unit cell dimensions	a = 15.7996(5) Å	<i>α</i> = 90°.
	b = 11.0848(3) Å	β=103.4970(10)°.
	c = 19.6140(6) Å	$\gamma = 90^{\circ}.$
Volume	3340.23(17) Å ³	
Z	4	
Density (calculated)	1.220 Mg/m ³	
Absorption coefficient	0.081 mm ⁻¹	
F(000)	1296	
Crystal size	0.250 x 0.170 x 0.070 mm	1 ³
Crystal size Theta range for data collection	0.250 x 0.170 x 0.070 mm 1.886 to 27.492°.	1 ³
Crystal size Theta range for data collection Index ranges	0.250 x 0.170 x 0.070 mm 1.886 to 27.492°. -20<=h<=20, -14<=k<=12	n ³ 2, -25<=1<=25
Crystal size Theta range for data collection Index ranges Reflections collected	0.250 x 0.170 x 0.070 mm 1.886 to 27.492°. -20<=h<=20, -14<=k<=12 63998	1 ³ 2, -25<=1<=25
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections	0.250 x 0.170 x 0.070 mm 1.886 to 27.492°. -20<=h<=20, -14<=k<=12 63998 7658 [R(int) = 0.0879]	1 ³ 2, -25<=1<=25
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242°	0.250 x 0.170 x 0.070 mm 1.886 to 27.492°. -20<=h<=20, -14<=k<=12 63998 7658 [R(int) = 0.0879] 99.8 %	n ³ 2, -25<=1<=25
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction	0.250 x 0.170 x 0.070 mm 1.886 to 27.492°. -20<=h<=20, -14<=k<=12 63998 7658 [R(int) = 0.0879] 99.8 % None	n ³ 2, -25<=1<=25
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Refinement method	0.250 x 0.170 x 0.070 mm 1.886 to 27.492°. -20<=h<=20, -14<=k<=12 63998 7658 [R(int) = 0.0879] 99.8 % None Full-matrix least-squares	n ³ 2, -25<=1<=25 on F ²
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Refinement method Data / restraints / parameters	0.250 x 0.170 x 0.070 mm 1.886 to 27.492°. -20<=h<=20, -14<=k<=12 63998 7658 [R(int) = 0.0879] 99.8 % None Full-matrix least-squares 7658 / 51 / 459	n ³ 2, -25<=1<=25 on F ²
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F ²	0.250 x 0.170 x 0.070 mm 1.886 to 27.492°. -20<=h<=20, -14<=k<=12 63998 7658 [R(int) = 0.0879] 99.8 % None Full-matrix least-squares 7658 / 51 / 459 1.037	n ³ 2, -25<=1<=25 on F ²
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)]	0.250 x 0.170 x 0.070 mm 1.886 to 27.492°. -20<=h<=20, -14<=k<=12 63998 7658 [R(int) = 0.0879] 99.8 % None Full-matrix least-squares 7658 / 51 / 459 1.037 R1 = 0.0559, wR2 = 0.132	n ³ 2, -25<=1<=25 on F ² 74
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	$0.250 \ge 0.170 \ge 0.070 \ \text{mm}$ $1.886 \ \text{to} \ 27.492^{\circ}.$ -20 <=h <= 20, -14 <=k <= 12 63998 $7658 \ [R(\text{int}) = 0.0879]$ 99.8 % None Full-matrix least-squares 7658 / 51 / 459 1.037 $R1 = 0.0559, \ WR2 = 0.13^{\circ}$ $R1 = 0.0761, \ WR2 = 0.15^{\circ}$	n ³ 2, -25<=1<=25 on F ² 74 71
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	0.250 x 0.170 x 0.070 mm 1.886 to 27.492°. -20<=h<=20, -14<=k<=12 63998 7658 [R(int) = 0.0879] 99.8 % None Full-matrix least-squares 7658 / 51 / 459 1.037 R1 = 0.0559, wR2 = 0.137 R1 = 0.0761, wR2 = 0.157 n/a	n ³ 2, -25<=1<=25 on F ² 74 71

3. Photophysical properties

Fig. S2 UV-Vis absorption (top) and fluorescence (bottom) spectra of "*parental*" benzo[*b*]fluoranthene and 1-13 in dichloromethane at the concentration of 1×10^{-5} M.

Fig. S3 Fluorescence spectra of 1-13 in various solvents at the concentration of 1×10^{-5} M. 2, 12, and 13 show noticeable solvatochromism and 1 and 3-13 show neglectable solvatochromism.

Comp	$\lambda_{abs}{}^a$	$\varepsilon (M^{-1} \text{ cm}^{-1})^{b}$	$\lambda_{ m em} \left(\lambda_{ m ex} ight)^{ m c}$	Lifetime ^d	$\Phi_{\mathrm{pl}}{}^{\mathrm{d}}$
	nm		nm	τ (ns)	%
1	346, 361	25241 (361)	366, 382, 402 (343)	3.18	60.48
2	359, 391	20206 (391)	444 (347)	4.81	52.37
3	350, 366	24660 (366)	373, 388, 406 (347)	3.02	52.71
4	358, 374	16289 (374)	404 (346)	3.65	44.87
5	350, 366	24716 (366)	394 (346)	3.29	49.93
6	353, 371	15730 (371)	376, 392, 412 (346)	1.83	31.28
7	346, 361	25992 (361)	386, 402 (344)	1.64	25.51
8	346, 361	68761 (361)	366, 382 (343)	2.90	53.92
9	346, 361	24810 (361)	366, 382, 402 (343)	2.95	54.51
10	346, 361	19143 (361)	368, 382, 400 (343)	3.02	56.34
11	346, 361	24280 (361)	368, 384, 402 (343)	2.95	58.04
12	346, 361	48672 (361)	454 (343)	9.05	43.86
13	345, 361	50561 (361)	486 (343)	16.94	22.48

Table S7 Photophysical data for compounds 1–13

^aAbsorption (λ_{abs}) maxima measured in DCM. ^bMolar Absorption Coefficient $\varepsilon = A/bc$.

^cEmission maxima (λ_{em}) measured in DCM. ^dMeasured in DCM at the concentration of 1×10^{-5} M.

4. Device performance

Fig. S4 The TG curve of 2.

Device	Dopant	V _{turn-on} (V)	Luminance L _{max} ^a (cd m-2)	η _{ext} (%)	$\eta_{\rm L}$ (cd A ⁻¹)	η _P (lm W ⁻¹)	λ _{max} c (nm)
A1	2 (4.0 wt%)	4.5	964 (14)	1 (4.5) ^a 0.94 ^b	1.28 (4.5) 0.93	0.89 (4.5) 0.32	448 (0.19,0.12)
A2	2 (6.0 wt%)	4	958 (14.5)	1.02 (4) ^a 0.88 ^b	1.76 (4) 0.95	1.39 (4) 0.33	448 (0.20,0.14)
A3	2 (8.0 wt%)	4	950 (14)	0.86 (4) ^a 0.74 ^b	1.68 (4) 0.88	1.32 (4) 0.32	448 (0.23,0.16)

Table S8 EL performance of the OLEDs.

^aMaximum values of the devices. Values in the parentheses are the voltage at which they were obtained. ^bValues were collected at *ca*. 100cd m⁻². ^cValues were collected at 8 V and CIE coordinates (x,y) are shown in parentheses.

Fig. S5 Relationship between EL efficiencies and luminance for the devices with doping levels of 4 wt% (left), 6 wt% (middle), and 8 wt% (right).

Fig. S6 EL spectrum for the device A2 and current density-voltage-luminance (*J-V-L*) characteristics for the OLEDs.

5. Computational details

All quantum chemical calculations were carried out using Gaussian 09.^{S3} The geometries of all compounds were optimized by using the hybrid functional B3LYP with the 6-31G(d) basis set. In addition, frequency calculations are carried out at the same level of theory to confirm the stationary points are minima with no imaginary frequencies. Nucleus-independent chemical shifts (NICS) were calculated using the gauge invariant atomic orbital (GIAO) approach at the same level of theory. For excited singlet states, we employed time-dependent density functional theory (TD-DFT) at the same level of theory to predict absorption and emission frequencies in dichloromethane.

Fig. S7 Optimized structure of 1' (left), 1 (middle), and C-1 (right). (Hydrogen atoms were omitted for clarity)

Fig. S8 Calculated electrostatic potential (ESP) distribution maps of **1** and **C-1**. Red colour being the electron-rich region and blue being the electron-deficient region.

Fig. S9 Calculated NICS(1)_{zz} values for 1 and C-1.

Fig. S10 Calculated UV-Vis spectrum of **1** at $B_3LYP/6-31$ G(d) level of theory. The solvent effect of DCM is accounted for by the CPCM solvation model.

Table S9 TDDFT description of first 5 electronically excited states in 1

Excitation energies and oscillator strengths of the excited states with high oscillator strengths are marked in bold. The highest occupied molecular orbital of **1** is MO 130.

Excited State	1:	Singlet-A	3.7472 eV	330.87 nm	f=0.2977	<s**2>=0.000</s**2>
129 ->131		0.44302				
130 ->131		0.52473				
Excited State	2:	Singlet-A	3.8800 eV	319.54 nm	f=0.1714	<s**2>=0.000</s**2>
127 ->131		-0.16181				
129 ->131		0.50650				
130 ->131		-0.43309				
Excited State	3:	Singlet-A	4.0406 eV	306.85 nm	f=0.0000	<s**2>=0.000</s**2>
128 ->131		0.69053				
128 ->132		-0.14177				
Excited State	4:	Singlet-A	4.1432 eV	299.25 nm	f=0.0192	<s**2>=0.000</s**2>
126 ->131		-0.14530				
127 ->131		0.58425				
129 ->131		0.10642				
129 ->132		-0.31900				
Excited State	5:	Singlet-A	4.2698 eV	290.38 nm	f=0.0004	<s**2>=0.000</s**2>
126 ->131		0.66636				
126 ->132		-0.10220				
127 ->131		0.19875				

Fig. S11 The comparison of the optimized S_0 and S_1 structures for 1, and the twisted angles between the mesityl groups and the B/N involved-rings are 101.8° (S_1) and 90.74° (S_0).

Fig. S12 Calculated emission spectrum from TDDFT excitations for 1

Fig. S13 The calculated orbitals HOMO and LUMO of the excited state (ES) most likely

involved in the vertical transition of emission for compound 1 in DCM.

Output for TDDFT excitations for emission of 1

The highest occupied molecular orbital of 1 is MO 130.

Excitation energies and oscillator strengths:

Excited State	1:	Singlet-A	3.1832 eV	389.50 nm	f=0.1858	<s**2>=0.000</s**2>
130 ->131	1	-0.69626				
Excited State	2:	Singlet-A	3.4985 eV	354.39 nm	f=0.4821	<s**2>=0.000</s**2>
129 ->13	1	-0.68907				
Excited State	3:	Singlet-A	3.7871 eV	327.38 nm	f=0.0345	<s**2>=0.000</s**2>
128 ->13	1	0.69632				

Fig. S14 The HOMO and LUMO orbitals for 2.

Fig. S15 The HOMO and LUMO orbitals for 12.

Fig. S16 The HOMO and LUMO orbitals for 13.

Fig. S17 Calculated emission spectrum from TDDFT excitations for 2.

Fig. S18 The calculated orbitals HOMO and LUMO of the excited state (ES) most likely

involved in the vertical transition of emission for compound 2 in DCM.

Output for TDDFT excitations for emission of 2

The highest occupied molecular orbital of **2** is MO 174.

Excitation energies and oscillator strengths:

Excited State	1:	Singlet-A	2.6717 eV	464.06 nm	f=0.2734	<s**2>=0.000</s**2>
174 ->17	5	0.70021				
Excited State	2:	Singlet-A	3.3062 eV	375.01 nm	f=0.2689	<s**2>=0.000</s**2>
174 ->170	6	0.68817				
Excited State	3:	Singlet-A	3.4961 eV	354.63 nm	f=0.1201	<s**2>=0.000</s**2>

Fig. S19 Calculated emission spectrum from TDDFT excitations for 12.

Fig. S20 The calculated orbitals HOMO and LUMO of the excited state (ES) most

likely involved in the vertical transition of emission for compound 12 in DCM.

Output for TDDFT excitations for emission of 12

The highest occupied molecular orbital of **12** is MO 190.

Excitation energies and oscillator strengths:

Excited State	1:	Singlet-A	2.7819 eV	445.68 nm	f=0.1817	<s**2>=0.000</s**2>
190 ->191		-0.69696				
Excited State	2:	Singlet-A	3.2973 eV	376.02 nm	f=1.1148	<s**2>=0.000</s**2>
189 ->191		-0.11113				

Fig. S21 The Calculated emission spectrum from TDDFT excitations for 13.

Fig. S22 The calculated orbitals HOMO and LUMO of excited state (ES) most likely involved in the vertical transition of emission for compound **13** in DCM.

Output for TDDFT excitations for emission of 13

The highest occupied molecular orbital of 13 is MO 203.

Excited State	1:	Singlet-A	2.6080 eV	475.40 nm	f=0.0006	<s**2>=0.000</s**2>
202 ->203	3	0.70177				
Excited State	2:	Singlet-A	3.3902 eV	365.71 nm	f=0.0027	<s**2>=0.000</s**2>
202 ->204	1	0.70062				
Excited State	3:	Singlet-A	3.5057 eV	353.66 nm	f=0.3671	<s**2>=0.000</s**2>
200 ->203	3	-0.67927				
201 ->203	3	0.10064				

Table S10 Cartesian Coordinates for 1'-S₀ (ground state)

Ν	0.264025	-0.403595	-0.118980	С	-6.010346	-1.705064	-0.605676
С	1.708790	-2.546078	-0.612647	С	-1.581617	5.047742	-0.632021
С	0.011151	0.996241	-0.233890	С	-0.481114	6.105529	-0.840944
С	2.864856	-0.277502	0.294988	С	-2.539950	5.107507	-1.845299
С	-1.013594	-1.015745	0.061875	С	-2.361255	5.415404	0.652913
С	-1.377459	1.244446	-0.172136	Н	1.960600	1.904999	-0.508818
С	0.891475	2.057023	-0.444406	Н	3.232043	-3.026363	0.839872
С	2.648563	-3.397665	0.000965	Н	0.276842	-2.421855	-2.227435
С	1.003968	-3.053823	-1.723854	Н	-2.951538	2.698802	-0.250631
С	3.038584	0.079122	1.653799	Н	1.072087	4.155892	-0.719437
С	-1.877578	2.540223	-0.301256	Н	2.304132	-6.193004	-1.908967
С	-2.028943	-0.035608	0.028765	Н	0.674519	-4.708697	-3.061876
С	3.913764	-0.003084	-0.616360	Н	-0.592983	-3.111290	0.427276
С	-1.010620	3.623032	-0.496633	Н	3.568931	-5.345559	0.057809
С	0.368041	3.346278	-0.564748	Н	4.352184	0.942764	3.119043
С	2.139448	-5.180488	-1.549026	Н	-4.124897	0.391626	0.183081
С	1.221981	-4.347370	-2.194982	Н	5.869838	0.842349	-0.886375
С	-1.346836	-2.339637	0.346266	Н	1.556636	-1.188800	2.635096
С	2.849671	-4.704321	-0.445413	Н	2.330384	-0.006872	3.696447
С	5.265882	0.964620	1.174318	Н	1.101665	0.510928	2.535233
С	4.231620	0.681813	2.068884	Н	-2.925946	-3.704567	0.742933
С	-3.366361	-0.385880	0.217211	Н	4.643026	0.020192	-2.654371
С	-3.727471	-1.716417	0.463337	Н	3.701317	-1.422550	-2.246774
С	5.081373	0.621219	-0.168760	Н	2.882507	0.112172	-2.528775
С	1.951303	-0.166863	2.681952	Н	6.404482	2.180266	2.560019
С	-2.691328	-2.667477	0.531860	Н	7.315227	0.836204	1.864670
С	3.779208	-0.341233	-2.087272	Н	6.976077	2.263423	0.883761
С	-5.210273	-2.084487	0.663147	Н	-6.480829	-3.800920	1.051424
С	6.554476	1.597587	1.644911	Н	-5.054283	-4.199933	0.086080
С	-5.413195	-3.589531	0.922578	Н	-4.899749	-3.920111	1.832633
В	1.557167	-1.049696	-0.147593	Н	-6.836190	-1.555742	2.027080
С	-5.777984	-1.308819	1.875614	Н	-5.705926	-0.225051	1.736183

Н	-5.234433	-1.563711	2.792549	Н	-2.961407	6.114882	-1.951589
Н	-5.636469	-2.248257	-1.481129	Н	-3.374887	4.406833	-1.739797
Н	-7.071448	-1.953259	-0.478432	Н	-2.012263	4.859769	-2.773414
Н	-5.942574	-0.634189	-0.824457	Н	-1.704390	5.390166	1.529897
Н	-0.936275	7.098557	-0.929656	Н	-2.781066	6.425721	0.570717
Н	0.219398	6.137588	0.001268	Н	-3.190365	4.724323	0.837975
Н	0.092627	5.922738	-1.756653				

Table S11 Cartesian Coordinates for $1-S_0$ (ground state)

Ν	-0.237543	-0.320070	-0.000005	С	-4.840118	-0.896866	1.198151
С	-0.541251	-2.827625	-0.000021	Н	-5.375815	-0.824538	2.143381
С	1.139793	-0.570559	-0.000016	С	-2.725377	-1.153409	-2.542527
С	-2.738916	-1.170004	0.000016	Н	-3.427540	-1.150807	-3.382429
С	-0.384036	1.093766	0.000018	Н	-2.116416	-2.062621	-2.618149
С	1.874007	0.626797	0.000007	Н	-2.046220	-0.301464	-2.676504
С	1.739481	-1.834068	-0.000030	С	-1.389793	3.260989	0.000023
С	-1.368211	-3.970971	-0.000027	Н	-2.292584	3.864889	0.000030
Н	-2.446047	-3.831508	-0.000011	С	-2.725545	-1.154275	2.542544
С	0.872931	-3.019095	-0.000043	Н	-2.045273	-0.303191	2.676278
С	-3.453125	-1.078179	-1.216070	Н	-2.117764	-2.064265	2.618404
С	3.267518	0.578387	0.000020	Н	-3.427693	-1.150545	3.382454
Н	3.834549	1.502279	0.000045	С	-0.062590	5.440112	0.000059
С	0.891363	1.701255	0.000028	С	-7.057146	-0.644275	-0.000073
С	-3.453208	-1.078506	1.216070	Н	-7.563490	-1.619170	-0.001000
С	3.922779	-0.664785	0.000001	Н	-7.402338	-0.100287	-0.886049
С	3.145776	-1.837455	-0.000022	Н	-7.402545	-0.101839	0.886767
Н	3.659539	-2.792611	-0.000030	С	1.386763	5.962191	0.000058
С	0.546648	-5.430134	-0.000087	Н	1.938768	5.633676	0.888103
Н	0.970676	-6.431242	-0.000114	Н	1.384306	7.058067	0.000046
С	1.391252	-4.327628	-0.000079	Н	1.938772	5.633650	-0.887976
Н	2.464667	-4.489394	-0.000102	В	-1.176987	-1.405051	0.000009
С	-1.538416	1.875503	0.000018	С	-0.769545	5.989198	1.262260
Н	-2.524530	1.427755	0.000028	Н	-1.821886	5.689498	1.303814
С	-0.843035	-5.256746	-0.000059	Н	-0.734604	7.085645	1.273586
Н	-1.502218	-6.120717	-0.000065	Н	-0.282503	5.623843	2.173591
С	-5.554587	-0.806053	-0.000032	С	-0.769564	5.989287	-1.262089
С	-4.840037	-0.896550	-1.198194	Н	-0.282556	5.623975	-2.173455
Н	-5.375672	-0.823983	-2.143444	Н	-0.734591	7.085734	-1.273350
С	1.011495	3.094431	0.000032	Н	-1.821918	5.689631	-1.303640
Н	2.001713	3.536639	0.000035	С	5.460993	-0.783776	0.000001
С	-0.130939	3.901191	0.000026	С	5.922610	-1.550321	1.262380
С	6.155196	0.591804	0.000065	Н	5.896900	1.179771	0.888188
---	----------	-----------	-----------	---	----------	-----------	-----------
С	5.922604	-1.550210	-1.262450	Н	5.896933	1.179839	-0.888022
Н	7.015561	-1.644117	-1.274409	Н	7.015568	-1.644224	1.274323
Н	5.616401	-1.023827	-2.173665	Н	5.502032	-2.560474	1.304351
Н	5.502017	-2.560356	-1.304505	Н	5.616413	-1.024021	2.173645
Н	7.242522	0.455531	0.000078				

Table S12 Cartesian Coordinates for $1-S_1$ (first excited state)

Ν	-0.227257	-0.328238	0.020453	С	-2.556481	-0.642148	-2.516040
С	-0.582146	-2.840643	0.051599	Н	-3.195222	-0.519318	-3.396946
С	1.116710	-0.584533	-0.000558	Н	-1.909637	-1.512146	-2.680903
С	-2.763998	-1.172746	-0.033989	Н	-1.898698	0.235546	-2.461899
С	-0.364841	1.071410	0.049075	С	-1.334585	3.257642	0.146261
С	1.885748	0.645219	-0.009886	Н	-2.233787	3.863383	0.199212
С	1.719601	-1.871633	0.000502	С	-2.994489	-1.700804	2.450576
С	-1.389053	-4.022181	0.066710	Н	-2.138549	-1.068673	2.716443
Н	-2.470203	-3.903107	0.059385	Н	-2.628554	-2.734682	2.439236
С	0.856020	-3.048139	0.038427	Н	-3.737317	-1.617744	3.251156
С	-3.380830	-0.800363	-1.255206	С	-0.005048	5.442531	0.140726
С	3.298889	0.596129	-0.037034	С	-7.066654	-0.480612	-0.262295
Н	3.868191	1.516443	-0.044472	Н	-7.595232	-1.411929	-0.507802
С	0.932491	1.686125	0.021791	Н	-7.322380	0.248799	-1.038620
С	-3.586293	-1.306897	1.112165	Н	-7.472426	-0.121700	0.689875
С	3.917529	-0.643516	-0.051589	С	1.443444	5.963552	0.092811
С	3.112673	-1.846300	-0.031285	Н	2.030402	5.616580	0.950948
Н	3.641645	-2.791777	-0.038756	Н	1.439718	7.058686	0.116487
С	0.554740	-5.470428	0.082290	Н	1.958179	5.654493	-0.824171
Н	0.984360	-6.467975	0.096479	В	-1.210852	-1.465913	0.027814
С	1.379885	-4.354051	0.054787	С	-0.662132	5.958181	1.443693
Н	2.456581	-4.505228	0.047130	Н	-1.710928	5.652881	1.523491
С	-1.500229	1.863970	0.120328	Н	-0.632302	7.053813	1.473485
Н	-2.492443	1.432488	0.158212	Н	-0.133141	5.579173	2.325625
С	-0.851720	-5.292497	0.086598	С	-0.766086	6.014743	-1.079466
Н	-1.506383	-6.161044	0.101716	Н	-0.312933	5.675457	-2.017996
С	-5.573630	-0.701470	-0.179572	Н	-0.735443	7.110646	-1.063292
С	-4.760428	-0.571278	-1.310190	Н	-1.818859	5.712659	-1.085613
Н	-5.212809	-0.288869	-2.259863	С	5.441847	-0.803058	-0.085559
С	1.060089	3.099598	0.047182	С	5.905075	-1.584740	1.170474
Н	2.054119	3.531145	0.020759	С	6.174089	0.551627	-0.104962
С	-0.068252	3.905852	0.108828	С	5.846949	-1.589509	-1.358583
С	-4.963302	-1.067634	1.024327	Н	6.935838	-1.713952	-1.385085
Н	-5.575185	-1.165122	1.920048	Н	5.543072	-1.051280	-2.263354

Н	5.397437	-2.586923	-1.391896	Н	6.994166	-1.708252	1.147848
Н	7.255734	0.381578	-0.130969	Н	5.458507	-2.582361	1.227632
Н	5.953578	1.146497	0.788338	Н	5.642167	-1.043575	2.086260
Н	5.910299	1.144242	-0.987984				

Table S13 Cartesian Coordinates for C-1-S $_0$ (ground state)

С	-3.670090	1.748045	-3.075971	С	2.173450	-5.169722	-2.293523
С	-4.134407	3.177932	-2.832327	Н	-4.534909	3.266557	-1.797671
С	-4.846724	0.796602	-2.903296	Н	-4.932231	3.438032	-3.563486
С	-3.121240	1.626987	-4.491470	Н	-3.275203	3.874117	-2.958280
С	0.773262	-4.932691	-1.743234	Н	-5.247039	0.885851	-1.868622
С	-0.237342	-5.001787	-2.880527	Н	-5.644361	1.057325	-3.634437
С	0.445623	-6.000948	-0.708339	Н	-4.508451	-0.248725	-3.081150
С	-2.188240	2.349147	-1.150480	Н	-3.713580	0.872219	-5.055587
С	-2.596900	1.396820	-2.093163	Н	-2.055765	1.307952	-4.449651
С	-2.018954	0.122438	-2.131894	Н	-3.192986	2.612694	-5.003333
С	-1.022163	-0.172277	-1.202471	Н	-1.260523	-4.827926	-2.478479
С	-0.611945	0.787967	-0.253557	Н	-0.190755	-6.006571	-3.356981
С	-1.188308	2.056223	-0.216607	Н	0.001213	-4.221445	-3.637446
С	-0.242046	-1.391743	-0.991907	Н	-0.577737	-5.826825	-0.306861
С	0.628057	-1.136482	0.089295	Н	0.492031	-7.005470	-1.185362
С	0.435598	0.197004	0.577378	Н	1.183644	-5.951312	0.123305
С	-0.207731	-2.630960	-1.604294	Н	-2.660736	3.342480	-1.144365
С	0.711694	-3.581655	-1.101424	Н	-2.341349	-0.623776	-2.872992
С	1.561318	-3.309010	-0.032713	Н	-0.867144	2.803760	0.523692
С	1.543978	-2.045141	0.611061	Н	-0.869811	-2.868606	-2.449973
С	1.182052	0.646644	1.624916	Н	2.256845	-4.085751	0.317880
С	1.021867	1.886749	2.098253	Н	3.469590	-3.419578	1.993678
С	2.343428	-1.571600	1.730312	Н	4.811088	-2.580434	3.895109
С	3.312441	-2.393617	2.357967	Н	4.473465	-0.244748	4.745431
С	4.064092	-1.926249	3.421781	Н	2.791593	1.229344	3.681553
С	3.874948	-0.614852	3.899972	Н	2.820155	4.704606	2.787676
С	2.935397	0.206094	3.304355	Н	-1.409603	3.970372	3.279898
С	2.154610	-0.253819	2.213428	Н	4.169106	2.311031	2.666936
С	2.120716	2.738859	2.207482	Н	3.866907	2.916028	0.979326
С	1.953578	4.032590	2.701424	Н	3.411949	1.215471	1.430221
С	0.687623	4.474149	3.085979	Н	0.100968	5.814817	4.650742
С	-0.411229	3.622093	2.976667	Н	-0.199981	6.419903	2.962941
С	-0.244088	2.328308	2.482808	Н	1.490754	6.385492	3.628085
С	3.479384	2.264963	1.794623	Н	-1.253554	0.507738	2.989307
С	0.508290	5.862625	3.616057	Н	-1.555115	1.113577	1.301886
С	-1.423408	1.413727	2.365527	Н	-2.338449	1.940334	2.717882

Н	2.117493	-5.335727	-3.392650	Н	2.616966	-6.066162	-1.805201
Н	2.808922	-4.280055	-2.085107				

Table S14 Cartesian Coordinates for $2-S_0$ (ground state)

Ν	1.609564	-0.150797	0.033904	Н	4.846382	-3.489025	0.381974
С	-0.852418	0.410969	-0.051547	С	-0.054433	-2.472399	-2.285602
С	1.843919	1.223768	-0.097791	Н	0.950587	-2.064105	-2.452052
С	-0.036809	-2.204865	0.242620	Н	-0.765858	-1.656921	-2.466032
С	2.889419	-0.765785	0.105157	Н	-0.229532	-3.240998	-3.045214
С	3.218925	1.506530	-0.111408	С	7.086146	-1.932778	0.251632
С	0.859013	2.211705	-0.201382	С	-0.984345	-6.423909	0.714672
С	-2.203276	0.016451	-0.024273	Н	-2.072423	-6.574841	0.717452
Н	-2.438992	-1.037823	0.083545	Н	-0.599415	-6.826116	1.658078
С	-0.546430	1.798436	-0.178798	Н	-0.576727	-7.028330	-0.103106
С	-0.177670	-2.771482	1.529549	С	8.069827	-0.752345	0.141673
С	3.648100	2.828013	-0.232774	Н	7.953881	-0.211547	-0.804559
Н	4.709725	3.046817	-0.242993	Н	9.099595	-1.124754	0.184735
С	3.894534	0.223208	0.018481	Н	7.942991	-0.037668	0.962886
С	-0.202146	-3.036874	-0.887760	В	0.270508	-0.664916	0.074803
С	2.701598	3.861275	-0.339132	С	7.371729	-2.904595	-0.918193
С	1.334380	3.530265	-0.320570	Н	6.732736	-3.792808	-0.876580
Н	0.610697	4.334195	-0.401496	Н	8.414919	-3.242893	-0.888162
С	-2.928556	2.301436	-0.265173	Н	7.200409	-2.415423	-1.883901
Н	-3.727838	3.030093	-0.358602	С	7.352910	-2.655411	1.593654
С	-1.607619	2.717975	-0.278919	Н	7.167907	-1.986323	2.441781
Н	-1.403329	3.778813	-0.386309	Н	8.395902	-2.991561	1.646241
С	3.232211	-2.110768	0.236575	Н	6.713044	-3.535279	1.717676
Н	2.476068	-2.883147	0.303144	С	3.113072	5.342131	-0.474167
С	-3.249366	0.935841	-0.134169	С	2.560398	5.916029	-1.800608
С	-0.634373	-4.962938	0.551462	С	4.642708	5.527436	-0.478191
С	-0.470299	-4.132779	1.663964	С	2.538514	6.151159	0.713084
Н	-0.572687	-4.555210	2.662323	Н	2.821662	7.207697	0.628692
С	5.245437	-0.134895	0.064073	Н	2.921655	5.771428	1.667119
Н	5.997802	0.643127	-0.004621	Н	1.445238	6.102207	0.750497
С	5.615732	-1.477142	0.195755	Н	4.884555	6.591764	-0.576252
С	-0.492427	-4.394403	-0.717806	Н	5.115468	5.003483	-1.316730
Н	-0.612847	-5.023272	-1.598486	Н	5.099919	5.170000	0.451523
С	0.007382	-1.920514	2.769058	Н	2.844197	6.970202	-1.908971
Н	-0.227229	-2.484650	3.677466	Н	1.467817	5.859803	-1.846976
Н	-0.638005	-1.033727	2.749968	Н	2.958921	5.366279	-2.660918
Н	1.041091	-1.562374	2.859744	Ν	-4.604847	0.512549	-0.123373
С	4.585654	-2.439609	0.279467	С	-5.573456	1.248961	0.610467

С	-6.854898	1.471530	0.079534	С	-5.875704	-1.581805	-0.276468
С	-5.264159	1.768916	1.878196	С	-4.494162	-0.885623	-2.136710
С	-7.802370	2.189515	0.806317	С	-6.259825	-2.714006	-0.992551
Н	-7.100613	1.079123	-0.902047	Н	-6.257671	-1.411296	0.725040
С	-6.212877	2.501643	2.589038	С	-4.869664	-2.029899	-2.837633
Н	-4.279934	1.593240	2.300627	Н	-3.816335	-0.166185	-2.585223
С	-7.488543	2.713727	2.062264	С	-5.757451	-2.948877	-2.274051
Н	-8.788617	2.351556	0.379001	Н	-6.945376	-3.423961	-0.537105
Н	-5.955028	2.895675	3.568721	Н	-4.475767	-2.194784	-3.837173
Н	-8.227832	3.279008	2.622487	Н	-6.053280	-3.836453	-2.826038
С	-4.990565	-0.651670	-0.844169				

Table S15 Cartesian Coordinates for $2-S_1$ (first excited state)

Ν	1.600701	-0.169612	0.033479	С	5.234468	-0.145070	0.059683
С	-0.855884	0.367623	-0.048880	Н	5.988214	0.632327	-0.011400
С	1.828334	1.205174	-0.103179	С	5.604607	-1.483925	0.192018
С	-0.069739	-2.238293	0.256223	С	-0.553542	-4.440676	-0.681788
С	2.865719	-0.774461	0.104796	Н	-0.695268	-5.073503	-1.556920
С	3.207359	1.492747	-0.117368	С	0.058002	-1.962858	2.782160
С	0.834412	2.201291	-0.212343	Н	-0.164426	-2.522432	3.696957
С	-2.230746	0.009529	-0.029167	Н	-0.565343	-1.061017	2.772491
Н	-2.496039	-1.037775	0.088820	Н	1.100447	-1.624334	2.844905
С	-0.554827	1.791771	-0.186117	С	4.570157	-2.452460	0.277830
С	-0.171251	-2.809884	1.547037	Н	4.832477	-3.501790	0.380432
С	3.639970	2.827847	-0.243888	С	-0.153790	-2.531227	-2.270009
Н	4.701828	3.045190	-0.254759	Н	0.839390	-2.102393	-2.453677
С	3.879150	0.221383	0.014742	Н	-0.880200	-1.729037	-2.447139
С	-0.266924	-3.081866	-0.862791	Н	-0.323785	-3.312820	-3.018175
С	2.691988	3.854073	-0.353465	С	7.074435	-1.941919	0.247449
С	1.320156	3.528214	-0.336734	С	-1.002151	-6.468663	0.770957
Н	0.599905	4.334420	-0.422365	Н	-2.088892	-6.621919	0.823125
С	-2.942848	2.342098	-0.255883	Н	-0.575548	-6.870730	1.696398
Н	-3.741406	3.065543	-0.374953	Н	-0.631880	-7.072374	-0.064893
С	-1.614722	2.721563	-0.291956	С	8.060860	-0.763945	0.135214
Н	-1.389726	3.776655	-0.417880	Н	7.943893	-0.223729	-0.811241
С	3.219483	-2.122503	0.236409	Н	9.090027	-1.138689	0.178120
Н	2.464057	-2.896455	0.303605	Н	7.934552	-0.047467	0.954945
С	-3.241122	0.948796	-0.133788	В	0.228900	-0.688996	0.075562
С	-0.659361	-5.006984	0.592581	С	7.360445	-2.917017	-0.919919
С	-0.461078	-4.171806	1.696559	Н	6.717807	-3.802775	-0.877938
Н	-0.531183	-4.591700	2.699161	Н	8.402616	-3.258878	-0.887225

Н	7.193768	-2.427632	-1.886720	С	-5.065310	1.675826	1.972315
С	7.343628	-2.664436	1.589404	С	-7.738962	2.017521	1.203200
Н	7.165247	-1.992360	2.437045	Н	-7.201262	1.016955	-0.622816
Н	8.385491	-3.005208	1.639177	С	-5.955198	2.328843	2.815471
Н	6.699686	-3.541124	1.716234	Н	-4.036268	1.514321	2.269559
С	3.103278	5.335593	-0.492373	С	-7.291681	2.503249	2.438879
С	2.552131	5.907915	-1.820288	Н	-8.769683	2.169369	0.898862
С	4.632547	5.524718	-0.494999	Н	-5.607700	2.696753	3.775705
С	2.526471	6.149573	0.690645	Н	-7.980213	3.018787	3.100916
Н	2.808781	7.206315	0.602491	С	-5.018001	-0.514262	-0.972871
Н	2.911053	5.774160	1.646272	С	-5.981353	-1.452286	-0.541352
Н	1.433345	6.097651	0.726799	С	-4.440318	-0.641637	-2.255018
Н	4.872221	6.589602	-0.595500	С	-6.360276	-2.488198	-1.386101
Н	5.106580	4.997682	-1.330821	Н	-6.390681	-1.381734	0.459963
Н	5.088528	5.168536	0.435742	С	-4.838191	-1.677104	-3.089516
Н	2.834323	6.962744	-1.929290	Н	-3.712638	0.089378	-2.586751
Н	1.459882	5.847767	-1.868212	С	-5.796193	-2.605133	-2.661328
Н	2.955592	5.358349	-2.678961	Н	-7.086246	-3.218223	-1.042262
Ν	-4.611156	0.531270	-0.125989	Н	-4.405967	-1.758894	-4.081735
С	-5.517227	1.173459	0.731236	Н	-6.096417	-3.417364	-3.315794
С	-6.865280	1.358343	0.349558				

Table S16 Cartesian Coordinates for $12-S_0$ (ground state)

Ν	-3.415944	-0.330798	0.009462	С	-4.677962	3.074370	-0.080589
С	1.189706	-0.924571	-1.175270	Н	-5.669394	3.519002	-0.093720
Н	1.725640	-0.910267	-2.121171	С	-6.795748	-1.866956	0.043956
С	1.908981	-0.798756	0.022427	Н	-7.296492	-2.825974	0.067741
С	-4.513450	-3.032149	0.078208	С	3.379095	-0.606466	0.017416
С	-5.533960	0.606845	-0.017856	С	-7.574952	-0.702193	0.012429
С	-5.384678	-1.852082	0.046067	С	-4.555823	1.686611	-0.044357
С	-4.792146	-0.588683	0.014297	С	-6.922361	0.547541	-0.018671
С	-3.275110	1.084177	-0.026811	Н	-7.501587	1.466100	-0.043439
С	-5.025864	-4.343044	0.112469	С	1.189705	-0.863347	1.224948
Н	-6.098445	-4.509860	0.115917	Н	1.717749	-0.741098	2.167504
С	-2.127685	1.869746	-0.045068	С	-3.099639	-2.834965	0.074491
Н	-1.139080	1.427763	-0.031766	С	-4.176411	-5.441103	0.142408
С	-0.195690	-1.106121	-1.186145	Н	-4.596011	-6.443732	0.168579
С	-0.910552	-1.167935	0.031837	С	5.391759	0.348808	-0.981790
С	-2.278801	3.259186	-0.081412	Н	5.850660	0.963669	-1.749488
Н	-1.376186	3.859069	-0.095243	С	-0.195367	-1.046367	1.245126

С	-3.536578	3.890429	-0.100066	С	-4.478176	5.893370	1.108965
С	4.014407	0.157825	-0.976856	С	-4.475980	5.827178	-1.414076
Н	3.414064	0.646372	-1.739306	С	-2.340869	6.155646	-0.158470
С	-2.267673	-3.974559	0.105533	Н	-4.605957	6.982831	1.092419
Н	-1.190345	-3.830992	0.102910	Н	-3.944220	5.627416	2.028375
С	4.196510	-1.180438	1.006722	Н	-5.474752	5.442307	1.160115
Н	3.747525	-1.806836	1.772485	Н	-2.508159	7.238305	-0.187332
С	6.197971	-0.237090	0.007772	Н	-1.744727	5.890572	-1.039031
С	-2.787219	-5.261906	0.139052	Н	-1.746398	5.937622	0.736006
Н	-2.124383	-6.122731	0.162488	Н	-4.604198	6.915957	-1.454692
С	-0.922110	-1.229792	-2.509641	Н	-5.472312	5.373615	-1.443522
Н	-1.610024	-0.389223	-2.668061	Н	-3.940170	5.513820	-2.317336
Н	-1.521479	-2.147110	-2.557411	Ν	7.605278	-0.052628	0.003161
Н	-0.219956	-1.244849	-3.349316	С	8.299394	0.162084	1.225591
С	5.576566	-1.010098	1.002143	С	7.767513	1.012676	2.208428
Н	6.183557	-1.485483	1.766062	С	9.528427	-0.472522	1.468532
С	-9.116781	-0.743288	0.010547	С	8.447760	1.213049	3.408038
С	-0.923893	-1.086164	2.572670	Н	6.821690	1.512493	2.025150
Н	-0.222916	-1.051361	3.412737	С	10.209981	-0.251425	2.663770
Н	-1.524769	-1.998091	2.675089	Н	9.942904	-1.136503	0.716640
Н	-1.610626	-0.236549	2.678895	С	9.674092	0.587608	3.643104
С	-3.695917	5.422802	-0.140400	Н	8.020938	1.875060	4.157084
С	-9.672185	-2.179857	0.046332	Н	11.159964	-0.751335	2.834414
Н	10.767618	-2.150580	0.043563	Н	10.204819	0.751858	4.576561
Н	-9.359776	-2.716770	0.949298	С	8.323534	-0.081228	-1.223799
Н	-9.356541	-2.762212	-0.826858	С	9.346265	0.848415	-1.473026
В	-2.471750	-1.410612	0.037824	С	8.022355	-1.039890	-2.204952
С	-9.653963	0.006646	1.252983	С	10.054173	0.810464	-2.672776
Н	10.750842	-0.006435	1.262930	Н	9.580583	1.596592	-0.722483
Н	-9.334264	1.053868	1.268373	С	8.723639	-1.058102	-3.409044
Н	-9.299650	-0.463592	2.177372	Н	7.238385	-1.766525	-2.016891
С	-9.649099	-0.058055	-1.270735	С	9.746125	-0.138006	-3.650402
Н	-9.291490	-0.575155	-2.168447	Н	10.842389	1.538084	-2.848244
Н	-9.328927	0.986941	-1.338642	Н	8.476907	-1.807573	-4.156649
Н	10.745939	-0.071430	-1.284119	Н	10.295367	-0.159905	-4.587335

Table S17 Cartesian Coordinates for 12-S₁ (first excited state)

Ν	3.418999	-0.320703	-0.082018	Н	-1.611587	-0.189641	2.034454
С	-1.140144	-0.511388	1.110564	С	-1.939492	-0.791760	-0.020950

С	4.498211	-3.029398	0.107136	С	-5.611610	-1.113092	-0.871302
С	5.546792	0.603969	0.010541	Н	-6.240134	-1.689972	-1.539092
С	5.371439	-1.864976	0.125145	С	9.115778	-0.769719	0.336492
С	4.792689	-0.587987	0.025895	С	0.730913	-1.925474	-2.508834
С	3.296127	1.071223	-0.192984	Н	0.007263	-1.933706	-3.330591
С	5.002881	-4.345245	0.198475	Н	1.132288	-2.939572	-2.400623
Н	6.075833	-4.501960	0.277313	Н	1.572334	-1.284943	-2.796741
С	2.164906	1.873168	-0.369168	С	3.763551	5.414456	-0.477579
Н	1.174319	1.439114	-0.443574	С	9.654592	-2.208654	0.454205
С	0.237525	-0.696178	1.096650	Н	10.747996	-2.187235	0.531998
С	0.893228	-1.168582	-0.077482	Н	9.396453	-2.813863	-0.422217
С	2.325114	3.256115	-0.458260	Н	9.268694	-2.717083	1.345077
Н	1.433207	3.857539	-0.594399	В	2.460397	-1.433935	-0.078323
С	4.715978	3.067515	-0.220811	С	9.752208	-0.127775	-0.919418
Н	5.708353	3.509548	-0.168180	Н	10.847504	-0.154653	-0.852899
С	6.788354	-1.878354	0.228851	Н	9.449771	0.917789	-1.038673
Н	7.281979	-2.837496	0.313190	Н	9.454119	-0.667422	-1.826184
С	-3.385657	-0.599697	0.006948	С	9.573907	0.010926	1.591582
С	7.575971	-0.711206	0.224013	Н	9.148490	-0.429517	2.501165
С	4.590098	1.675298	-0.129831	Н	9.264037	1.060392	1.552540
С	6.949618	0.539459	0.110966	Н	10.667534	-0.012927	1.682340
Н	7.534875	1.454413	0.096990	С	4.662119	5.764504	-1.687769
С	-1.285384	-1.264451	-1.180413	С	4.427642	5.944465	0.815731
Н	-1.860795	-1.447163	-2.083062	С	2.420824	6.149273	-0.656133
С	3.060959	-2.823659	0.000350	Н	4.800409	6.850654	-1.763332
С	4.171750	-5.454397	0.190405	Н	4.210997	5.413723	-2.623481
Н	4.593180	-6.453879	0.260635	Н	5.653449	5.307023	-1.602857
С	-5.365237	0.472594	0.966504	Н	2.596515	7.229696	-0.715721
Н	-5.795578	1.190139	1.654708	Н	1.742720	5.970003	0.186161
С	0.093297	-1.447106	-1.222591	Н	1.908897	5.845977	-1.576636
С	3.591574	3.884557	-0.382586	Н	4.565563	7.031881	0.760314
С	-4.001317	0.287821	0.931462	Н	5.410626	5.491161	0.981872
Н	-3.384311	0.878489	1.598159	Н	3.805937	5.725273	1.691862
С	2.245856	-3.999861	0.014888	Ν	-7.582782	-0.040554	0.087268
Н	1.165517	-3.877807	-0.037086	С	-8.365177	-0.205737	-1.095180
С	-4.246522	-1.291358	-0.888706	С	-7.942015	0.373031	-2.302566
Н	-3.831114	-2.019714	-1.575040	С	-9.565976	-0.930666	-1.038380
С	-6.208452	-0.224216	0.061304	С	-8.717000	0.214101	-3.448449
С	2.767498	-5.272951	0.097860	Н	-7.028633	0.957644	-2.330674
Н	2.106814	-6.137396	0.099529	С	-10.330486	-1.081828	-2.191407
С	1.034277	-0.406005	2.348170	Н	-9.880130	-1.382221	-0.103591
Н	1.696976	0.455581	2.202841	С	-9.909888	-0.512558	-3.397752
Н	1.673648	-1.256475	2.611959	Н	-8.393897	0.670397	-4.378876
Н	0.378753	-0.187566	3.197248	Н	-11.252977	-1.652446	-2.149563

Н	-10.511484	-0.632143	-4.293440	С	-8.612220	-0.006440	3.663716
С	-8.250145	0.318186	1.296967	Н	-7.219393	-1.159950	2.487834
С	-9.220780	1.332229	1.280946	С	-9.574625	1.007095	3.653456
С	-7.948607	-0.356804	2.490809	Н	-10.618026	2.464686	2.450153
С	-9.875985	1.672459	2.460671	Н	-8.385529	-0.535834	4.583854
Н	-9.440073	1.854939	0.356207	Н	-10.090640	1.275472	4.570085

Table S18 Cartesian Coordinates for $13-S_0$ (ground state)

Ν	-3.016524	-0.369548	0.092018	С	-3.399753	3.387631	-1.797008
С	-2.549848	-2.585701	1.209982	С	1.647067	-1.115965	-0.756361
С	-4.374321	-0.685672	0.220299	Н	2.202908	-1.430842	-1.634487
С	-0.464929	-0.956164	0.452450	С	-0.537176	0.188919	2.721243
С	-2.963196	0.901015	-0.542622	Н	0.144147	0.600052	3.472759
С	-5.185287	0.333542	-0.305287	Н	-1.100301	-0.627766	3.189079
С	-4.890141	-1.853422	0.791555	Н	-1.261929	0.973179	2.466977
С	-1.650468	-3.550232	1.711844	С	-2.101837	2.900006	-1.528342
Н	-0.584353	-3.351982	1.639391	Н	-1.240868	3.498093	-1.812589
С	-3.948153	-2.852834	1.309993	С	-0.411081	-2.081425	-1.826439
С	0.214954	-0.284037	1.494095	Н	-1.148064	-1.429908	-2.313328
С	-6.572395	0.197341	-0.266237	Н	-0.949586	-2.974018	-1.484988
Н	-7.198489	0.984078	-0.671427	Н	0.308236	-2.395919	-2.589094
С	-4.275360	1.357810	-0.797925	С	-3.569203	4.755557	-2.484715
С	0.277004	-1.375039	-0.676251	С	-5.049644	5.125696	-2.695552
С	-7.144891	-0.955860	0.296932	Н	-5.564824	4.399321	-3.334469
С	-6.292961	-1.950533	0.810421	Н	-5.119506	6.103527	-3.185354
Н	-6.743080	-2.837266	1.243238	Н	-5.592528	5.192933	-1.745813
С	-3.465343	-4.983378	2.381118	В	-2.007490	-1.272664	0.568629
Н	-3.822988	-5.906040	2.831442	С	-2.880449	4.727134	-3.870105
С	-4.379851	-4.056406	1.898216	Н	-1.809996	4.511118	-3.789639
Н	-5.440175	-4.273816	1.980862	Н	-2.987931	5.697559	-4.370370
С	-1.862951	1.674580	-0.909521	Н	-3.327761	3.961146	-4.513816
Н	-0.850138	1.339237	-0.723322	С	-2.919709	5.856834	-1.613055
С	-2.090299	-4.733884	2.290196	Н	-3.395364	5.906687	-0.626911
Н	-1.376269	-5.460263	2.669044	Н	-3.027426	6.837404	-2.093077
С	2.321029	-0.456679	0.280819	Н	-1.850532	5.677816	-1.458673
С	1.589072	-0.049054	1.404199	С	-8.671799	-1.164461	0.369611
Н	2.102210	0.453850	2.218417	С	-9.059284	-2.442092	-0.412512
С	-4.486553	2.592206	-1.419947	С	-9.453993	0.017420	-0.234980
Н	-5.503514	2.920549	-1.604450	С	-9.105440	-1.316561	1.847142

Н	-10.189989	-1.467639	1.913699	Н	3.607224	4.354733	0.620069
Н	-8.850793	-0.420149	2.423985	Н	6.899315	2.241653	2.406370
Н	-8.620846	-2.171644	2.329934	С	5.889899	4.845081	2.068085
Н	-10.529954	-0.176345	-0.160200	С	4.852309	5.528402	2.990488
Н	-9.218560	0.163540	-1.295363	С	7.204602	4.693762	2.856561
Н	-9.250609	0.955348	0.294279	С	6.163791	5.755085	0.846827
Н	-10.143438	-2.603713	-0.367842	Н	3.902039	5.703407	2.475116
Н	-8.573413	-3.334645	-0.004657	Н	4.644967	4.910451	3.871607
Н	-8.770967	-2.358240	-1.466547	Н	5.227836	6.499515	3.336319
Ν	3.717610	-0.209902	0.195278	Н	7.995694	4.241285	2.247756
С	4.586386	-1.203390	-0.332760	Н	7.558571	5.679983	3.177742
С	5.634813	-0.854937	-1.199359	Н	7.072546	4.081445	3.755924
С	4.424054	-2.555225	-0.005067	Н	6.549848	6.728765	1.173332
С	6.486961	-1.830400	-1.704925	Н	6.905392	5.301551	0.179304
Н	5.778050	0.185758	-1.472990	Н	5.255641	5.936288	0.262241
С	5.276144	-3.524355	-0.535157	С	7.296679	-4.235709	-1.986870
Н	3.624248	-2.849544	0.667233	С	6.964827	-5.667503	-1.525490
С	6.333047	-3.192906	-1.393768	С	7.213525	-4.197021	-3.531563
Н	7.284756	-1.515702	-2.372554	С	8.744147	-3.912172	-1.545847
Н	5.107382	-4.557323	-0.250690	Н	7.035858	-5.771893	-0.436773
С	4.255035	1.020116	0.661759	Н	5.958138	-5.972322	-1.833483
С	3.609703	2.237559	0.390927	Н	7.674457	-6.373462	-1.971726
С	5.445500	1.055787	1.398609	Н	7.477622	-3.211399	-3.929166
С	4.140005	3.436603	0.853449	Н	7.902415	-4.929204	-3.970914
Н	2.688975	2.237155	-0.184028	Н	6.200189	-4.434677	-3.874924
С	5.974619	2.268884	1.840162	Н	9.445555	-4.643039	-1.967215
Н	5.961280	0.128057	1.625891	Н	9.058938	-2.917865	-1.879800
С	5.338317	3.491520	1.587116	Н	8.836562	-3.942204	-0.454135

Table S19 Cartesian Coordinates for $13-S_1$ (first excited state)

Ν	3.011945	-0.318552	-0.125304	С	3.977020	-2.705516	-1.503816
С	2.544050	-2.451294	-1.399165	С	-0.249117	-0.230765	-1.575033
С	4.376993	-0.620960	-0.259073	С	6.585051	0.239290	0.320255
С	0.455391	-0.919393	-0.546929	Н	7.199863	0.999419	0.788132
С	2.943451	0.889192	0.582855	С	4.262722	1.338265	0.892277
С	5.176610	0.365741	0.349143	С	-0.271322	-1.372129	0.590876
С	4.901814	-1.754163	-0.911057	С	7.156391	-0.867669	-0.314232
С	1.675541	-3.419760	-1.998114	С	6.318390	-1.836190	-0.912710
Н	0.600465	-3.257890	-1.933770	Н	6.783358	-2.686721	-1.399338

С	3.539625	-4.773682	-2.740740	Н	10.225747	-1.262484	-1.927808
Н	3.916255	-5.656513	-3.250939	Н	8.893680	-0.177452	-2.375102
С	4.420963	-3.866531	-2.176084	Н	8.657979	-1.931183	-2.410974
Н	5.487918	-4.060307	-2.256901	Н	10.540638	-0.122593	0.234329
С	1.837198	1.645619	0.987351	Н	9.213516	0.135581	1.376364
Н	0.824641	1.329804	0.761765	Н	9.261867	1.038844	-0.149996
С	2.140208	-4.541658	-2.647878	Н	10.156553	-2.556777	0.259008
Н	1.442055	-5.250132	-3.088756	Н	8.586877	-3.258748	-0.167019
С	-2.325370	-0.467058	-0.336681	Н	8.776113	-2.388612	1.362490
С	-1.615574	-0.005577	-1.464637	Ν	-3.706041	-0.243557	-0.233563
Н	-2.153241	0.489079	-2.266196	С	-4.544073	-1.204874	0.383470
С	4.446965	2.536551	1.604764	С	-5.589439	-0.794698	1.231106
Н	5.459123	2.857755	1.829139	С	-4.344985	-2.574649	0.148726
С	3.353969	3.298812	2.016433	С	-6.401559	-1.744753	1.829923
С	-1.639706	-1.153344	0.687240	Н	-5.737694	0.259794	1.435981
Н	-2.182305	-1.471801	1.570683	С	-5.175726	-3.510660	0.755368
С	0.483411	0.253837	-2.805127	Н	-3.562327	-2.898644	-0.528216
Н	-0.194090	0.758807	-3.500459	С	-6.221461	-3.126477	1.611217
Н	0.963434	-0.579287	-3.328999	Н	-7.187982	-1.400394	2.493309
Н	1.278982	0.956933	-2.532090	Н	-5.003183	-4.557869	0.539760
С	2.053965	2.826164	1.690802	С	-4.279114	0.946276	-0.748424
Н	1.185615	3.402129	1.998727	С	-3.630721	2.181945	-0.569115
С	0.448268	-2.073280	1.719815	С	-5.501938	0.903446	-1.435811
Н	1.185982	-1.408693	2.184613	С	-4.203131	3.338748	-1.075273
Н	0.996482	-2.945880	1.348875	Н	-2.701473	2.228924	-0.012181
Н	-0.249210	-2.403266	2.495667	С	-6.055077	2.075072	-1.940712
С	3.502517	4.616322	2.801069	Н	-5.998203	-0.047033	-1.598050
С	4.976047	4.979749	3.065575	С	-5.425833	3.321087	-1.776640
Н	5.484290	4.211490	3.659396	Н	-3.688565	4.279238	-0.908455
Н	5.030262	5.921173	3.624564	Н	-6.990347	2.003269	-2.482176
Н	5.535476	5.114894	2.132851	С	-6.014780	4.630090	-2.322799
В	2.014818	-1.227962	-0.692228	С	-5.008498	5.265764	-3.313081
С	2.789396	4.491108	4.168999	С	-7.348508	4.409616	-3.060976
Н	1.722861	4.270609	4.053201	С	-6.264834	5.605455	-1.146388
Н	2.877555	5.426638	4.735896	Н	-4.048631	5.489352	-2.836237
Н	3.234084	3.687818	4.768158	Н	-4.817778	4.599048	-4.161616
С	2.862117	5.775739	2.000407	Н	-5.414087	6.206072	-3.703737
Н	3.358799	5.900771	1.031013	Н	-8.115397	3.985910	-2.402730
Н	2.951774	6.719914	2.552503	Н	-7.723714	5.370510	-3.428568
Н	1.797788	5.600334	1.810628	Н	-7.232449	3.747806	-3.926643
С	8.685949	-1.068733	-0.384245	Н	-6.680866	6.546048	-1.525165
С	9.071382	-2.398703	0.306504	Н	-6.977835	5.182465	-0.429640
С	9.463250	0.065423	0.311535	Н	-5.342435	5.842714	-0.606491
С	9.139969	-1.115166	-1.862825	С	-7.150711	-4.137904	2.298095

С	-6.804650	-5.593784	1.933419	Н	-7.306749	-2.972652	4.165519
С	-7.028164	-3.978112	3.833533	Н	-7.692101	-4.691139	4.335557
С	-8.611995	-3.861351	1.867542	Н	-6.003296	-4.173718	4.168469
Н	-6.901292	-5.780308	0.857905	Н	-9.285541	-4.573798	2.357466
Н	-5.787432	-5.861889	2.240264	Н	-8.937258	-2.852662	2.142427
Н	-7.493788	-6.271120	2.448738	Н	-8.730204	-3.971852	0.783653

6. References

[S1] Barbour LJ. X-Seed–A software tool for supramolecular crystallography. Elsevier;2001.

[S2] Sheldrick G. SHELXS-97, program for crystal structure solution. University of Göttingen Germany; 1997.

[S3] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.

Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H.

Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,

B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-

Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D.

Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara,

K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.

Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J.

Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R.

Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J.

- Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R.
- L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

7. NMR Spectra Collection

Fig. S23 ¹H NMR Spectra of Cz1 (400 MHz, CDCl₃)

Fig. S24 ¹³C NMR Spectra of Cz1 (100 MHz, CDCl₃)

Fig. S25 ¹H NMR Spectra of Cz2 (400 MHz, CDCl₃)

Fig. S26¹³C NMR Spectra of Cz2 (100 MHz, CDCl₃)

Fig. S27 ¹H NMR Spectra of Cz3 (400 MHz, CDCl₃)

Fig. S28 ¹³C NMR Spectra of Cz3 (100 MHz, CDCl₃)

Fig. S29 ¹H NMR Spectra of Cz4 (400 MHz, CDCl₃)

Fig. S30 ¹³C NMR Spectra of Cz4 (100 MHz, CDCl₃)

Fig. S31 ¹H NMR Spectra of Cz5 (400 MHz, CDCl₃)

Fig. S32 ¹³C NMR Spectra of Cz5 (100 MHz, CDCl₃)

Fig. S33 ¹H NMR Spectra of Cz6 (400 MHz, CDCl₃)

Fig. S34 ¹³C NMR Spectra of Cz6 (100 MHz, CDCl₃)

Fig. S35 ¹H NMR Spectra of Cz7 (400 MHz, CDCl₃)

Fig. S37 ¹H NMR Spectra of 1 (400 MHz, CDCl₃)

Fig. S38 ¹³C NMR Spectra of 1 (100 MHz, CDCl₃)

Fig. S39¹¹B NMR Spectra of 1 (128 MHz, CDCl₃)

Fig. S40 ¹H NMR Spectra of 2 (400 MHz, CDCl₃)

Fig. S41 ¹³C NMR Spectra of 2 (100 MHz, CDCl₃)

Fig. S42 ¹¹B NMR Spectra of 2 (128 MHz, CDCl₃)

Fig. S44 ¹³C NMR Spectra of 3 (100 MHz, CDCl₃)

Fig. S45¹¹B NMR Spectra of 3 (128 MHz, CDCl₃)

Fig. S46 ¹H NMR Spectra of 4 (400 MHz, CDCl₃)

Fig. S47 ¹³C NMR Spectra of 4 (100 MHz, CDCl₃)

Fig. S48 ¹¹B NMR Spectra of 4 (128 MHz, CDCl₃)

Fig. S49 ¹H NMR Spectra of 5 (400 MHz, CDCl₃)

Fig. S50 ¹³C NMR Spectra of 5 (100 MHz, CDCl₃)

Fig. S51¹¹B NMR Spectra of 5 (128 MHz, CDCl₃)

Fig. S52 ¹H NMR Spectra of 6 (400 MHz, CDCl₃)

Fig. S53 ¹³C NMR Spectra of 6 (100 MHz, CDCl₃)

Fig. S54 ¹¹B NMR Spectra of 6 (128 MHz, CDCl₃)

Fig. S55 ¹H NMR Spectra of 7 (400 MHz, CDCl₃)

Fig. S56¹³C NMR Spectra of 7 (100 MHz, CDCl₃)

Fig. S57 ¹¹B NMR Spectra of 7 (128 MHz, CDCl₃)

Fig. S58 ¹H NMR Spectra of 8 (400 MHz, CDCl₃)

Fig. S59¹³C NMR Spectra of 8 (100 MHz, CDCl₃)

Fig. S60¹¹B NMR Spectra of 8 (128 MHz, CDCl₃)

Fig. S62 ¹³C NMR Spectra of 9 (100 MHz, CDCl₃)

Fig. S63 ¹¹B NMR Spectra of 9 (128 MHz, CDCl₃, in quartz NMR tube)

Fig. S64 ¹H NMR Spectra of 10 (400 MHz, CDCl₃)

Fig. S65 ¹³C NMR Spectra of 10 (100 MHz, CDCl₃)

Fig. S66¹¹B NMR Spectra of 10 (128 MHz, CDCl₃)

Fig. S67 ¹H NMR Spectra of 11 (400 MHz, CDCl₃)

Fig. S68 ¹³C NMR Spectra of 11 (100 MHz, CDCl₃)

Fig. S69¹¹B NMR Spectra of 11 (128 MHz, CDCl₃)

Fig. S70 ¹H NMR Spectra of 12 (400 MHz, CDCl₃)

Fig. S71 ¹³C NMR Spectra of 12 (100 MHz, CDCl₃)

Fig. S72¹¹B NMR Spectra of 12 (128 MHz, CDCl₃, in quartz NMR tube)

Fig. S73 ¹H NMR Spectra of 13 (400 MHz, CDCl₃)

Fig. S74 ¹³C NMR Spectra of 13 (100 MHz, CDCl₃)

Fig. S75¹¹B NMR Spectra of 13 (128 MHz, CDCl₃, in quartz NMR tube)