# **Supporting Information**

# Photoredox Catalyzed Hydroazolylation of Alkenes *via* Phosphoranyl Radicals

Fan Zhu,<sup>*a*</sup> Zhi Qiao,<sup>*a*</sup> Na He,<sup>*a*</sup> Chunxiao Nong,<sup>*a*</sup> Qiping He,<sup>*a*</sup> Meilan Xi,<sup>\*c</sup> Xizhong Song,<sup>\*b,c</sup> Jun Lin,<sup>*a*</sup> Jingbo Chen<sup>\*a</sup> and Yi Jin<sup>\*a</sup>

<sup>a</sup> Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research & Development for Natural Products; School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China.

<sup>b</sup> State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China.

<sup>c</sup> Jiangxi Fangzhu Pharmaceutical Co., Ltd., Xinyu 338000, P.R. China.

\* Corresponding author. Tel./fax: +86-871-65031633. E-mail:

ximeilan9177@163.com (M. Xi); songxz6133@163.com (X. Song);

chenjb@ynu.edu.cn (J. Chen); jinyi@ynu.edu.cn (Y. Jin).

#### Contents

| 1. | General information                                                                  | <b>S</b> 2  |
|----|--------------------------------------------------------------------------------------|-------------|
| 2. | Synthesis of Substrates 1 and 2                                                      | <b>S</b> 3  |
| 3. | General Procedure for preparing compounds 3a-3zc and 4a-4p                           | <b>S</b> 7  |
|    | Figure S1. Details for the photochemical reaction setup                              | <b>S</b> 8  |
| 4. | Spectroscopic Data of <b>3a-3zc</b> , <b>4a-4p</b>                                   | <b>S</b> 9  |
| 5. | Mechanistic studies (Figure S2, S3, Scheme S1, etc.)                                 | <b>S</b> 33 |
| 6. | X-ray structures for compound <b>3a</b> , <b>4a</b> , <b>4j</b>                      | S39         |
| 7. | <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra of <b>3a-3zc</b> and <b>4a-4p</b> | S43         |
| 8. | References                                                                           | S91         |

#### 1. General information

All chemicals and reagents were used of commercial grade and were used without further purification. The reactions were monitored by thin-layer chromatography (TLC) using silica gel GF254. Column chromatography was performed with 200–300 mesh silica gel. All yields refer to isolated products after purification. The intermediates and the products synthesized were fully characterized by spectroscopic data. The NMR spectra were recorded on Bruker DRX-400 (<sup>1</sup>H: 400 MHz, <sup>13</sup>C: 101 MHz) using CDCl<sub>3</sub> as solvent. The following abbreviation were used to explain the multiplicities: (s) = singlet, (d) = doublet, (t) = triplet, (q) = quartet, (sept) = septuplet, (dd) = double doublet, (dt) = double triplet, (dq) = double quartet, (dd) = double doublet, (m) = multiplet; Chemical shifts ( $\delta$ ) are expressed in parts per million (ppm) and *J* values are given in hertz (Hz). The melting points were measured by the XT-4A melting point apparatus without correction.

# 2. Synthesis of substrates $\mathbf{1}$ and $\mathbf{2}^{1}$



#### 2.1 Synthesis of *N*-Vinylindole 1

In a round-bottom flask, substrate indole (1.0 equiv.), tetrabutylammonium bromide (TBAB) (0.1 equiv.), KOH (10.0 equiv.),  $K_2CO_3$  (4.0 equiv.) and the solvent DCE (0.27 M) were added. Then, the mixture was stirred at 70°C for 12 h. After the reaction completion monitored by TLC analysis, the solvent was evaporated under reduced pressure. The mixture of the residue, KOH (4.0 equiv.), and EtOH (0.20 M) were stirred in a preheated oil at 80 °C for 3 h. After the reaction completion monitored by TLC analysis, the reaction completion monitored by TLC analysis, the reaction completion monitored by TLC analysis, and EtOH (0.20 M) were stirred in a preheated oil at 80 °C for 3 h. After the reaction completion monitored by TLC analysis, the reaction mixture was filtered and evaporated under vacuum. The residue was purified by a silica-gel column chromatography using petroleum ether/ethyl acetate as an eluent to obtain the product **1a-1q**<sup>1</sup>.

1a-1q



Under nitrogen atmosphere, iodomethyl triphenylphosphonium iodide (10.32 g, 18.50 mmol, 1.5 equiv) was suspended in THF (26.0 mL). At room temperature, sodium bis(trimethylsilyl)amide (2.00 M in THF, 9.2 mL, 18.50 mmol, 1.5 equiv) was added dropwise over 5 min. The reaction was stirred for 30 min then cooled to -78 °C. A solution of S1 (12.32 mmol, 1.0 equiv) in THF (26.0 mL) was added dropwise over 15 min. The reaction was then stirred at -78  $\,$  °C for 1 h then guenched with saturated ammonium chloride solution(10.0 mL) then warmed to RT. The crude was diluted with Et<sub>2</sub>O (20.0 mL) and saturated salt solution (20.0 mL). The layers were separated, the aqueous layers were extracted with  $Et_2O$  (5 × 30.0 mL). The organic layer was washed with sat. NaHCO<sub>3</sub>( $2 \times 20.0$  mL), then brine (20.0 mL). The organic layers were combined and concentrated under reduced pressure. The compound was purified by column chromatography:  $SiO_2$  using pentane affording S2. Then, CuI (10 mol%), S2(1.2 equiv.) and  $K_3PO_4$  (2.0 equiv.) were added to pre-dried a flask with a Teflonlined septum. The flask was then evacuated and backfilled with N<sub>2</sub> (3 cycles). Indole (1.0 equiv.), N,N-dimethylethane-1,2-diamine (20 mol%), and 1,4-dioxane (0.50 M) were added by syringe at room temperature. The flask was then sealed and the reaction mixture was stirred at 110  $\,^{\circ}$ C for 24 h. The reaction was cooled to room temperature. Ethyl acetate (10.0 mL) was added and stirred for 10 min. The deposition was separated and washed with ethyl acetate (20.0 mL  $\times$  3). The organic phase was combined. The solvent was removed under vacuum. The crude product was purified by colum chromatography on silica gel to give corresponding N-alkenyl indolproducts 1r.



**2m-2p** were purchased from reagent company.



To a solution of **S3** (3.0 mmol, 1.0 equiv.) and boronic acid (6.0 mmol, 2.0 equiv.) in 1,4-dioxane (5 Vol) was added 2M Na<sub>2</sub>CO<sub>3</sub> (9.0 mmol, 3.0 equiv.) and purged with argon for 5 min, Pd (PPh<sub>3</sub>)<sub>4</sub> (0.3 mmol, 0.1 equiv.) was added and stirred at 100 °C in oil bath for 16 h under argon atmosphere. After completion of the reaction, monitored by TLC, the reaction mixture was diluted with water (20 mL) and extracted with EtOAc (3 ×40 mL). The combined organic extracts were washed with water (2 × 10 mL) and brine (2 × 10 mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and filtered. The solvent was removed under vacuum. The crude product was purified by colum chromatography on silica gel to give corresponding products **S4**. Then, **S4** (3 mmol, 1.0 equiv.) and N<sub>2</sub>H<sub>4</sub>•H<sub>2</sub>O (6mmol, 2.0 equiv.) in absolute EtOH (8 mL) were added to 30.0 mL reaction tube. Afterwards, reflux reaction at 80 °C for 24 hours . Concentrate the solvent under reduced pressure , dissolve the residue in a 10% Na<sub>2</sub>CO<sub>3</sub> aqueous solution (20 mL), extract the solution with Et2O (20mL) to remove any starting material. Acidify with concentrated HCl to precipitate the product, filter the solution, rinse the precipitate with water, dry the precipitate to obtain 1-hydroxybenzotriazole**2a-2l**.

3. General Procedure for preparing compounds 3a-3zc and 4a-4p



*N*-vinylcarbazole Under Ar atmosphere, 1 (0.20mmol, 1.0 equiv), 1-Hydroxybenzotriazole 2 (0.22 mmol, 1.1 equiv), Ph<sub>3</sub>P (0.20 mmol, 1.0 equiv), [Ir(dFCF<sub>3</sub>ppy)<sub>2</sub>dtbbpy]PF<sub>6</sub> (1 mol%, 0.002 mmol) in DCM (2.0 mL, 0.1 M) were added to 10.0 mL reaction tube. The mixture was stirred at 490 nm blue light (LEDs, 36W) and monitored by TLC. After stirring for 24h. Then, the reaction was quenched with saturated NaCl solution and extracted with 20.0 mL EtOAc for three times. The organic layers were combined, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated under reduced pressure. The residues were purified by flash column chromatography on silica gel to provide the products 3, and 4. The products were further identified by NMR spectroscopy.



Figure S1. Details for the photochemical reaction setup. The light Source and the Material of the Irradiation Vessel Manufacturer: Xi'an WATTECS experimental equipment Co. Ltd Model: WP-TEC-1020SL Broadband source: X = 490 nm (light power: 36W). Material of the irradiation vessel: borosilicate reaction tube (10 ml) Distance from the light source to the irradiation vessel: 2.0 cm Not use any filters

- 4. Spectroscopic Data of **3a-3zc**, **4a-4p**.
- 4.1 Spectroscopic Data of (3a)
- 9-(1-(1H-Benzo[d][1,2,3]triazol-1-yl)ethyl)-9H-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **3a** as white solid (50.0 mg, 80% yield). **MP**: 169.8-171.9 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 (d, *J* = 7.8 Hz, 2H), 7.94 (d, *J* = 8.3 Hz, 1H), 7.43 (d, *J* = 8.3 Hz, 2H), 7.34 (t, *J* = 8.4 Hz, 2H), 7.29 (q, *J* = 6.8 Hz, 1H), 7.20–7.12 (m, 3H), 7.05 (ddd, *J* = 8.0, 6.9, 1.1 Hz, 1H), 6.90 (d, *J* = 8.3 Hz, 1H), 2.55 (d, *J* = 6.7 Hz, 3H); <sup>13</sup>C **NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.6, 138.6, 132.8, 128.0, 126.5, 124.4, 124.0, 120.8, 120.5, 120.1, 109.8, 109.6, 65.0, 17.9. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>20</sub>H<sub>16</sub>N<sub>4</sub>Na [M+Na]<sup>+</sup>, 335.1267; found, 335.1264. Data consistent with those previously reported<sup>2</sup>.

4.2 Spectroscopic Data of (3b)

9-(1-(1H-Benzo[d][1,2,3]triazol-1-yl)ethyl)-3,6-dibromo-9H-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **3b** as white solid (75.2 mg, 80% yield). **MP**: 232.4-234.3 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (S, 2H), 8.04 (d, *J* = 8.3 Hz, 1H), 7.52 (dd, *J* = 8.8, 2.0 Hz, 2H), 7.40 (d, *J* = 8.8 Hz, 2H), 7.33–7.27 (m, 2H), 7.26–7.19 (m,

1H), 6.91 (d, J = 8.2 Hz, 1H), 2.62 (d, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 146.6, 137.6, 132.6, 130.0, 128.4, 124.8, 124.6, 123.8, 120.5, 113.9, 111.2, 109.3, 65.0, 18.1. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>20</sub>H<sub>14</sub>Br<sub>2</sub>N<sub>4</sub>Na [M+Na]<sup>+</sup>, 490.9477; found, 490.9473.

4.3 Spectroscopic Data of (3c)

1-(1-(1*H*-Indol-1-yl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3c** as purple solid (38.3 mg, 73% yield). **MP**: 111.8-113.3 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09–8.07 (m, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.55 (d, *J* = 3.4 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.41 (q, *J* =7.1 Hz, 1H), 7.37–7.32 (m, 2H), 7.27–7.22 (m, 2H), 7.19 (ddd, *J* = 8.0, 7.1, 1.1 Hz, 1H), 6.70 (d, *J* = 3.6 Hz, 1H), 2.49 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.6, 135.7, 131.6, 129.1, 128.0, 124.4, 123.9, 122.9, 121.5, 121.0, 120.3, 109.7, 109.6, 104.2, 65.9, 20.1. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>16</sub>H<sub>14</sub>N<sub>4</sub>Na [M+Na]<sup>+</sup>, 285.1111; found, 285.1109; Data consistent with those previously reported<sup>2</sup>.

4.4 Spectroscopic Data of (3d)

1-(1-(6-Fluoro-1*H*-indol-1-yl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3d** as purple solid (30.8 mg, 55% yield). **MP**: 158.3-

159.6 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.04 (d, J = 7.2 Hz, 1H), 7.50 (dd, J = 8.7, 5.4 Hz, 1H), 7.46 (d, J = 3.5 Hz, 1H), 7.37–7.29 (m, 2H), 7.25 (q, J = 6.8 Hz, 1H), 7.18 (d, J = 7.2 Hz, 1H), 7.13 (dd, J = 9.7, 2.3 Hz, 1H), 6.90–6.85 (m, 1H), 6.60 (d, J = 2.7 Hz, 1H), 2.44 (d, J = 6.8 Hz, 3H); <sup>13</sup>C **NMR** (100 MHz, CDCl<sub>3</sub>) δ 160.2 (d,  $J_{C-F} = 238.3$  Hz), 146.6, 135.8 (d, J = 11.9 Hz), 131.5 128.1, 125.4, 124.5, 124.3 (d, J = 3.8 Hz), 122.3 (d, J = 10.0 Hz), 120.4, 109.8, 109.6 (d, J = 3.9 Hz), 104.3, 96.4 (d, J = 22.8 Hz), 66.0, 20.1. <sup>19</sup>F **NMR** (376 MHz, CDCl<sub>3</sub>) δ -118.65. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>16</sub>H<sub>13</sub>FN<sub>4</sub>Na [M+Na]<sup>+</sup>, 303.1016; found, 303.1014.

4.5 Spectroscopic Data of (3e)

1-(1-(6-Chloro-1*H*-indol-1-yl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3e** as purple oil (40.4 mg, 68% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, *J* = 7.3 Hz, 1H), 7.30 (d, *J* = 8.5 Hz, 1H), 7.25 (d, *J* = 3.5 Hz, 2H), 7.17–7.10 (m, 2H), 7.09–7.04 (m, 1H), 6.98 (d, *J* = 7.2 Hz, 1H), 6.89 (dd, *J* = 8.4, 1.8 Hz, 1H), 6.40 (d, *J* = 3.4 Hz, 1H), 2.23 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.6, 136.1, 131.6, 129.0, 128.2, 127.6, 124.6, 124.5, 122.4, 121.7, 120.5, 109.7, 109.5, 104.4, 65.8, 20.2. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>16</sub>H<sub>13</sub>ClN<sub>4</sub>Na [M+Na]<sup>+</sup>, 319.0721; found, 319.0713.

4.6 Spectroscopic Data of (3f)

1-(1-(6-Bromo-1*H*-indol-1-yl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3f** as purple oil ( 47.8 mg, 70% yield). <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, *J* = 7.3 Hz, 1H), 7.63 (s, 1H), 7.46–7.42 (m, 2H), 7.38–7.30 (m, 2H), 7.26 (d, *J* = 6.8 Hz, 1H), 7.23 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.18 (d, *J* = 7.2 Hz, 1H), 6.59 (d, *J* = 2.7 Hz, 1H), 2.43 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.6, 136.5, 131.6, 128.2, 127.9, 124.6, 124.4, 122.7, 120.5, 116.6, 112.6, 109.5, 104.4, 65.8, 20.3. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>16</sub>H<sub>13</sub>BrN<sub>4</sub>Na [M+Na]<sup>+</sup>, 363.0216; found, 363.0218.

# 4.7 Spectroscopic Data of (3g)

1-(1-(6-(Benzyloxy)-1*H*-indol-1-yl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3g** as yellow solid (55.3 mg, 75% yield). **MP**: 113.2-114.6 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.86–7.82 (m, 1H), 7.29–7.24 (m, 3H), 7.21–7.17 (m, 3H), 7.14–7.03 (m, 4H), 6.95–6.92 (m, 1H), 6.78 (s, 1H), 6.67 (dd, *J* = 8.7, 2.2 Hz, 1H), 6.38 (d, *J* = 3.3 Hz, 1H), 4.88–4.81 (m, 2H), 2.21 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  156.0, 146.6 , 137.2, 136.5 131.5, 128.6, 128.0, 128.0, 127.7, 124.4, 123.3, 122.8, 122.0, 120.3, 111.5, 109.8, 104.1, 94.8, 70.6, 66.1, 20.0. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>23</sub>H<sub>20</sub>N<sub>4</sub>ONa [M+Na]<sup>+</sup>, 391.1529; found, 391.1530.

4.8 Spectroscopic Data of (3h)

1-(1-(5-Fluoro-1*H*-indol-1-yl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3h** as purple solid (39.2 mg, 70% yield). **MP**: 157.3-158.8 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04–8.01 (m, 1H), 7.54 (d, *J* = 3.4 Hz, 1H), 7.35–7.28 (m, 4H), 7.23 (dd, *J* = 9.3, 2.5 Hz, 1H), 7.16–7.14 (m, 1H), 6.91 (td, *J* = 9.0, 2.5 Hz, 1H), 6.59 (d, *J* = 2.6 Hz, 1H), 2.43 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.5 (d *J* <sub>C-F</sub>= 234.7 Hz), 146.7, 132.3, 131.5, 129.6 (d, *J* = 10.2 Hz), 128.1, 125.6, 124.5, 120.5, 111.3 (d, *J* = 26.1 Hz), 110.4 (d, *J* = 9.5 Hz), 109.6, 106.4 (d, *J* = 23.3 Hz), 104.1 (d, *J* = 4.5 Hz), 66.3, 20.1. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>)  $\delta$  -123.38. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>16</sub>H<sub>13</sub>FN<sub>4</sub>Na [M+Na]<sup>+</sup>, 303.1016; found, 303.1019.

4.9 Spectroscopic Data of (3i)

1-(1-(5-Chloro-1H-indol-1-yl)ethyl)-1H-benzo[d][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3i** as yellow solid (38.0 mg, 64% yield). **MP**: 160.3-167.8 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04–8.01 (m, 1H), 7.55 (d, *J* = 2.0 Hz, 1H), 7.51 (d, *J* = 3.4 Hz, 1H), 7.35–7.28 (m, 4H), 7.16–7.10 (m, 2H), 6.57 (d, *J* = 2.6 Hz, 1H), 2.43 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.6, 134.1, 131.5, 130.2, 128.2, 126.7, 125.3, 124.5, 123.2, 120.9, 120.5, 110.7, 109.5, 103.8, 66.1, 20.1.

**HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for  $C_{16}H_{13}ClN_4Na$  [M+Na]<sup>+</sup>, 319.0721; found, 319.0715.

4.10 Spectroscopic Data of (3j)

1-(1-(5-Iodo-1*H*-indol-1-yl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3j** as yellow solid (50.5 mg, 65% yield). **MP**: 161.3-162.5 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04–8.01 (m, 1H), 7.93 (d, *J* = 1.7 Hz, 1H), 7.45 (d, *J* = 3.5 Hz, 1H), 7.41 (dd, *J* = 8.7, 1.7 Hz, 1H), 7.35–7.27 (m, 3H), 7.20 (d, *J* = 8.7 Hz, 1H), 7.15–7.13 (m, 1H), 6.55 (d, *J* = 2.6 Hz, 1H), 2.44 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.6, 134.8, 131.6, 131.5, 131.2, 130.3, 128.2, 124.8, 124.5, 120.5, 111.6, 109.5, 103.5, 84.6, 66.0, 20.1. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>16</sub>H<sub>13</sub> IN<sub>4</sub>Na [M+Na]<sup>+</sup>, 411.0077; found, 411.0071.

4.11 Spectroscopic Data of (3k)

1-(1-(5-Methoxy-1*H*-indol-1-yl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3k** as yellow solid (42.1 mg, 72% yield). **MP**: 112.4-113.7 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.96–7.93 (m, 1H), 7.40 (d, *J* = 3.4 Hz, 1H), 7.24–7.19 (m, 4H), 7.09–7.06 (m, 1H), 6.98 (d, *J* = 2.4 Hz, 1H), 6.75 (dd, *J* = 9.0, 2.5

Hz, 1H), 6.49 (d, J = 2.6 Hz, 1H), 3.73 (s, 3H), 2.35 (d, J = 6.8 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  154.9, 146.6, 131.5, 130.9, 129.7, 128.0, 124.5, 124.4, 120.3, 113.0, 110.4, 109.8, 103.8, 103.2, 66.3, 55.9, 20.1. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>17</sub>H<sub>16</sub>N<sub>4</sub>ONa [M+Na]<sup>+</sup>, 315.1216; found, 315.1211.

4.12 Spectroscopic Data of (31)

1-(1-(4-Fluoro-1*H*-indol-1-yl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3l** as purple solid (33.6 mg, 60% yield). **MP**: 161.3-162.7 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05–8.02 (m, 1H), 7.46 (d, *J* = 3.4 Hz, 1H), 7.36–7.29 (m, 3H), 7.22 (d, *J* = 8.3 Hz, 1H,), 7.19–7.16 (m, 1H), 7.10 (td, *J* = 8.1, 5.1 Hz, 1H), 6.79 (dd, *J* = 9.4, 7.9 Hz, 1H), 6.72 (d, *J* = 3.5 Hz, 1H), 2.46 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  156.5 (d, *J*c-F = 246.8 Hz), 146.6, 138.2, 131.5, 128.2, 124.5, 123.9 123.7 (d, *J* = 7.6 Hz), 120.5, 118.2 (d, *J* = 22.7 Hz), 109.5, 106.0, 105.7 (t, *J* = 6.3Hz), 100.3, 66.2, 20.2. <sup>19</sup>**F NMR** (376 MHz, CDCl<sub>3</sub>)  $\delta$  -121.16. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>16</sub>H<sub>13</sub>FN<sub>4</sub>Na [M+Na]<sup>+</sup>, 303.1016; found, 303.1009.

4.13 Spectroscopic Data of (3m)

1-(1-(4-Methyl-1*H*-indol-1-yl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole



S15

Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3m** as yellow solid (42.6 mg, 77% yield). **MP**: 114.2-115.7 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07–8.05 (m, 1H), 7.51 (d, *J* = 3.4 Hz, 1H), 7.40–7.30 (m, 4H), 7.25–7.22 (m, 1H), 7.17–7.13 (m, 1H) , 6.97 (d, *J* = 7.2 Hz, 1H), 6.70 (d, *J* = 4.3 Hz, 1H), 2.57 (s, 3H), 2.48 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.6, 135.5, 131.6, 131.0, 128.9, 128.0, 124.4, 123.3, 123.0, 121.1, 120.3, 109.8, 107.1, 102.7, 66.0, 20.2, 18.7. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>17</sub>H<sub>16</sub>N<sub>4</sub>Na [M+Na]<sup>+</sup>, 299.1267; found, 299.1262.

4.14 Spectroscopic Data of (3n)

1-(1-(7-Methoxy-1*H*-indol-1-yl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3n** as yellow solid (40.9 mg, 70% yield). **MP**: 114.2-115.7 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.23 (q, *J* = 6.7 Hz, 1H), 8.03 (d, *J* = 8.1 Hz, 1H), 7.42 (dt, *J* = 8.3, 1.1 Hz, 1H), 7.37–7.29 (m, 3H), 7.21 (d, *J* = 7.0 Hz, 1H), 7.06 (t, *J* = 7.9 Hz, 1H), 6.76 (d, *J* = 7.0 Hz, 1H), 6.52 (d, *J* = 3.4 Hz, 1H), 4.07 (s, 3H), 2.42 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>C **NMR** (100 MHz CDCl<sub>3</sub>)  $\delta$  147.1, 146.1, 132.6, 130.8, 127.8, 125.1, 124.6, 124.3, 121.0, 120.0, 114.4, 109.8, 104.9, 103.8, 65.9, 55.6, 21.9. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>17</sub>H<sub>16</sub>N<sub>4</sub>ONa [M+Na]<sup>+</sup>, 315.1216; found, 315.1213.

4.15 Spectroscopic Data of (30)

1-(1-(3-Methyl-1*H*-indol-1-yl)ethyl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **30** as yellow solid (40.9 mg, 74% yield). **MP**: 113.1-114.8 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (d, *J* = 7.2 Hz, 1H), 7.54 (d, *J* = 7.7 Hz, 1H), 7.42 (d, *J* = 8.3 Hz, 1H), 7.35–7.27 (m, 3H), 7.25–7.17 (m, 3H), 7.13 (ddd, *J* = 8.0, 7.1, 1.0 Hz, 1H), 2.42 (d, *J* = 6.8 Hz, 3H), 2.33 (s, 3H); <sup>13</sup>C **NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.6, 136.1, 131.7, 129.5, 127.9, 124.3, 122.8, 121.2, 120.3, 120.3, 119.6, 113.5, 109.9, 109.4, 65.7, 20.3, 10.0. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>17</sub>H<sub>16</sub>N<sub>4</sub>Na [M+Na]<sup>+</sup>, 299.1267; found, 299.1269.

### 4.16 Spectroscopic Data of (**3p**)

5-(1-(1*H*-Benzo[*d*][1,2,3]triazol-1-yl)ethyl)-5*H*-[1,3]dioxolo[4,5-f]indole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3p** as yellow solid (46.6 mg, 76% yield). **MP**: 170.1-171.8 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97–7.93 (m, 1H), 7.30 (d, *J* = 3.4 Hz, 1H), 7.25–7.17 (m, 2H), 7.14 (q, *J* = 6.8 Hz, 1H), 7.07–7.03 (m, 1H), 6.88 (s, 1H), 6.78 (s, 1H), 6.44 (d, *J* = 2.6 Hz, 1H), 5.80 (dd, *J* = 14.2, 1.3 Hz, 2H), 2.32 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.6, 145.6, 143.8, 131.4, 130.9, 128.0, 124.4, 122.9, 122.5, 120.3, 109.8, 104.2, 100.9, 99.8, 91.0, 66.5, 20.0. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>17</sub>H<sub>14</sub>N<sub>4</sub>O<sub>2</sub>Na [M+Na]<sup>+</sup>, 329.1009; found, 329.1005.

4.17 Spectroscopic Data of (3q)

9-(1-(1H-Benzo[d][1,2,3]triazol-1-yl)ethyl)-2,3,4,9-tetrahydro-1H-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3q** as yellow solid (44.3 mg, 70% yield). **MP**: 166.4-167.9 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.86 (d, *J* = 7.6 Hz, 1H), 7.28 (dd, *J* = 5.7, 3.4 Hz, 1H), 7.13–7.05 (m, 3H), 6.92–6.87 (m, 2H), 6.84 (q, *J* = 6.8 Hz, 1H), 6.71 (d, *J* = 7.8 Hz, 1H), 2.76–2.69 (m, 1H), 2.55–2.51 (m, 2H), 2.33 (d, *J* = 6.8 Hz, 3H), 2.25–2.18 (m, 1H), 1.81–1.75 (m, 1H), 1.70–1.61 (m, 3H); <sup>13</sup>C **NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.6, 135.0, 134.1, 132.8, 128.4, 128.0, 124.4, 121.9, 120.1, 120.0, 118.4, 112.5, 110.0, 109.7, 65.3, 23.4, 23.0, 22.8, 21.1, 19.6. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>20</sub>H<sub>20</sub>N<sub>4</sub>Na [M+Na]<sup>+</sup>, 339.1580; found, 339.1583.

4.18 Spectroscopic Data of (**3r**)

1-(1-(1H-Indol-1-yl)-4-phenylbutyl)-1H-benzo[d][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 10) afforded **3r** as yellow solid (47.6 mg, 65% yield). **MP**: 165.4-166.6 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, *J* = 8.1 Hz, 1H), 7.55 (d, *J* = 7.8 Hz, 1H), 7.46 (d, *J* = 8.3 Hz, 1H), 7.40 (d, *J* = 3.4 Hz, 1H), 7.32–7.12 (m, 7H), 7.10–7.01 (m, 4H), 6.56 (d, *J* = 3.4 Hz, 1H), 2.98–2.80 (m, 2H), 2.67 (t, *J* = 7.4 Hz, 2H), 1.71–1.63 (m, 2H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.4, 141.0, 136.0, 131.9, 128.9, 128.7, 128.5, 128.0, 126.3, 124.4, 124.1, 122.9, 121.5, 120.8, 120.4, 109.6, 109.4, 104.3, 69.1,

35.1, 32.9, 27.2. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>24</sub>H<sub>22</sub>N<sub>4</sub>Na [M+Na]<sup>+</sup>, 389.1737; found, 389.1729.

4.19 Spectroscopic Data of (3s)

1-(Tetrahydrofuran-2-yl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **3s** as colorless oil (27.6 mg, 73% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (d, *J* = 8.5 Hz, 1H), 7.71 (d, *J* = 8.3 Hz, 1H), 7.52–7.47 (m, 1H), 7.38 (t, *J* = 8.1 Hz, 1H), 6.51 (dd, *J* = 6.8, 2.4 Hz, 1H), 4.13–4.00 (m, 2H), 3.20–3.13 (m, 1H), 2.57–2.47 (m, 1H), 2.45–2.35 (m, 1H), 2.23–2.13 (m, 1H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.5, 133.0, 127.6, 124.3, 120.0, 110.5, 88.0, 69.4, 30.9, 24.5. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>10</sub>H<sub>11</sub>N<sub>3</sub>ONa [M+Na]<sup>+</sup>, 212.0794; found, 212.0791. Data consistent with those previously reported<sup>3</sup>.

4.20 Spectroscopic Data of (3t)

1-(tetrahydro-2*H*-pyran-2-yl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **3t** as colorless oil (30.5 mg, 75% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (d, *J* = 8.4 Hz, 1H), 7.74 (d, *J* = 8.3 Hz, 1H), 7.48 (t, *J* = 8.1 Hz, 1H), 7.37 (t, *J* = 7.7 Hz, 1H), 6.04 (dd, *J* = 8.3, 2.9 Hz, 1H), 3.97–3.91 (m, 1H), 3.81–3.76 (m, 1H), 2.66–2.57 (m, 1H), 2.25–2.16 (m, 2H) 1.89–1.80 (m, 1H), 1.78–1.72 (m, 2H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.5, 132.6, 127.6, 124.3, 120.1, 111.2,

85.8, 67.0, 29.4, 25.1, 21.8. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>11</sub>H<sub>13</sub>N<sub>3</sub>ONa [M+Na]<sup>+</sup>, 226.0951; found, 226.0947. Data consistent with those previously reported<sup>3</sup>.

4.21 Spectroscopic Data of (3u)

1-(1-(Cyclohexyloxy)ethyl)-1H-benzo[d][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **3u** as colorless oil (38.3 mg, 78% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (d, *J* = 8.4 Hz, 1H), 7.74 (d, *J* = 8.3 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 7.7 Hz, 1H), 6.04 (dd, *J* = 8.3, 2.9 Hz, 1H), 3.24–3.17 (m, 1H), 2.04–2.00 (m, 1H), 1.82 (d, *J* = 6.2 Hz, 3H), 1.76–1.69 (m, 1H), 1.57–1.52(m, 1H), 1.46–1.36 (m,3H), 1.21–1.11 (m, 3H), 1.06–0.96 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.0, 131.3, 127.3, 124.2, 120.1, 111.7, 84.8, 75.9, 32.8, 31.2, 25.5, 24.0, 23.8, 21.9. HRMS (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>14</sub>H<sub>19</sub>N<sub>3</sub>ONa [M+Na]<sup>+</sup>, 268.1420; found, 268.1415. Data consistent with those previously reported<sup>3</sup>.

4.22 Spectroscopic Data of (3v)

1-(1-Isobutoxyethyl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **3v** as colorless oil (32.9 mg, 70% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (d, *J* = 9.6 Hz, 1H), 7.79 (d, *J* = 9.5 Hz, 1H), 7.50–7.46 (m, 1H), 7.41–7.37 (m, 1H), 6.26–6.21 (m, 1H), 3.26 (dd, *J* = 9.1, 7.3 Hz, 1H), 2.93–2.89

(m, 1H), 1.87 (d, J = 5.2 Hz, 3H), 1.84–1.75 (m, 1H), 0.83 (d, J = 7.7 Hz, 3H), 0.79 (d, J = 7.7 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.0, 131.2, 127.5, 124.3, 120.2, 111.4, 87.7, 75.7, 28.3, 21.2, 19.3. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>12</sub>H<sub>17</sub>N<sub>3</sub>ONa [M+Na]<sup>+</sup>, 242.1264; found, 242.1261. Data consistent with those previously reported<sup>3</sup>.

4.23 Spectroscopic Data of (3w)

1-(1-Butoxyethyl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **3w** as colorless oil (32.9 mg, 69% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (d, *J* = 8.4 Hz, 1H), 7.80 (d, *J* = 8.4 Hz, 1H), 7.50–7.46 (m, 1H), 7.41–7.37 (m, 1H), 6.24 (q, *J* = 6.1 Hz, 1H), 3.50–3.44 (m, 1H), 3.19–3.13 (m, 1H), 1.86 (d, *J* = 6.1 Hz, 3H), 1.52–1.45 (m, 2H), 1.34–1.21 (m, 2H), 0.80 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.3, 131.5, 127.8, 124.6, 120.5, 111.7, 87.8, 69.2, 31.7, 21.6, 19.6, 14.1. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>12</sub>H<sub>17</sub>N<sub>3</sub>ONa [M+Na]<sup>+</sup>, 242.1264; found, 242.1259. Data consistent with those previously reported<sup>3</sup>.

4.24 Spectroscopic Data of (3x)

1-Allyl-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 30) afforded **3x** as colorless oil (23.9 mg, 75% yield).<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.00 (d, *J* = 8.5 Hz, 1H), 7.56 (dt, *J* = 8.4, 1.1 Hz, 1H), 7.50 (ddd, *J* = 8.2, 6.8, 0.9 Hz, 1H), 7.37 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 8.15–8.07 (m, 1H), 5.36–5.34 (m, 1H), 5.32 (t, *J* = 1.1 Hz, 1H), 5.02 (d, *J* = 6.7 Hz, 2H). <sup>13</sup>**C NMR** (100 MHz,

CDCl<sub>3</sub>)  $\delta$  143.5, 130.2, 128.1, 128.0, 124.7, 123.7, 120.3, 109.0, 81.3. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>9</sub>H<sub>9</sub>N<sub>3</sub>Na [M+Na]<sup>+</sup>, 182.0689; found, 182.0687. Data consistent with those previously reported<sup>4</sup>.

4.25 Spectroscopic Data of (3y)

1-(3-Methylbut-2-en-1-yl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 30) afforded **3y** as colorless oil (27.3 mg, 73% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, *J* = 8.3 Hz, 1H), 7.50–7.43 (m, 2H), 7.35 (ddd, *J* = 8.1, 6.4, 1.5 Hz, 1H), 5.46 (ddt, *J* = 8.4, 6.8, 1.5 Hz, 1H), 5.26 (d, *J* = 7.1 Hz, 2H), 1.90 (s, 3H), 1.78 (s, 3H). <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.3, 138.6, 127.2, 123.9, 120.1, 117.8, 109.8, 46.7, 25.8, 18.3. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>11</sub>H<sub>13</sub>N<sub>3</sub>Na [M+Na]<sup>+</sup>, 210.1002; found, 210.1005. Data consistent with those previously reported<sup>5</sup>.

4.26 Spectroscopic Data of (3za)

1-(Cyclopent-2-en-1-yl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 40) afforded **3za** as colorless oil (15.9 mg, 43% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.00 (dd, *J* = 8.4, 1.0 Hz, 1H), 7.55 (dt, *J* = 8.3, 1.1 Hz, 1H), 7.51–7.47 (m, 1H), 7.37 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 6.32–6.29 (m, 1H), 5.91–5.88 (m, 1H), 5.75–5.72 (m, 1H), 2.67–2.58 (m, 1H), 2.46–2.35 (m, 2H), 2.31–2.22 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.5, 142.0, 128.5, 127.9, 127.7, 124.6, 120.3, 109.3, 96.8,

31.5, 29.0. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for  $C_{11}H_{11}N_3Na$  [M+Na]<sup>+</sup>, 208.0845; found, 208.0844. Data consistent with those previously reported<sup>6</sup>.

4.27 Spectroscopic Data of (3zb)

1-(Cyclohex-2-en-1-yl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 40) afforded **3zb** as colorless oil (19.9 mg, 50% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (d, *J* = 8.4 Hz, 1H), 7.58 (d, *J* = 8.2 Hz, 1H), 7.52–7.48 (m, 1H), 7.38 (ddd, *J* = 8.1, 6.8, 1.2 Hz, 1H), 6.17 (dt, *J* = 10.1, 3.7 Hz, 1H), 5.89 (ddd, *J* = 10.1, 4.2, 2.2 Hz, 1H), 5.14 (q, *J* = 4.5 Hz, 1H), 3.49 (d, *J* = 5.4 Hz, 2H), 2.26–2.19 (m, 1H), 2.14–1.93 (m, 2H), 1.87–1.79 (m, 1H), 1.75–1.66 (m, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.5, 136.3, 128.7, 128.0, 124.6, 123.3, 120.3, 109.2, 83.8, 27.2, 25.3, 18.1. HRMS (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>12</sub>H<sub>13</sub>N<sub>3</sub>Na [M+Na]<sup>+</sup>, 222.1002; found, 222.1005. Data consistent with those previously reported<sup>7</sup>.

4.28 Spectroscopic Data of (**3zc**)

1-(1-Phenylethyl)-1*H*-benzo[*d*][1,2,3]triazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 50) afforded **3zc** as colorless oil (5.8 mg, 13% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.98–7.95 (m, 1H), 7.28–7.16(m, 8H), 5.96 (q, *J* = 7.1 Hz, 1H), 2.09 (d, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.5, 140.2, 132.5, 129.0, 128.3, 127.1, 126.3, 123.9, 120.0, 110.2, 59.1, 21.2. HRMS (TOF-ESI<sup>+</sup>): m/z calcd for

C14H13N3Na [M+Na]+, 246.1002; found, 246.1000. Data consistent with those previously reported<sup>8</sup>.

4.29 Spectroscopic Data of (4a)

9-(1-(6-chloro-1*H*-benzo[*d*][1,2,3]triazol-1-yl)ethyl)-9*H*-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **4a** as yellow solid (52.0 mg, 75% yield). **MP**: 193.1-194.3 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, *J* = 7.3 Hz, 2H), 7.81 (s, 1H), 7.29–7.22 (m, 4H), 7.17 (q, *J* = 6.8 Hz, 1H), 7.12–7.08 (m, 2H), 6.91 (dd, *J* = 8.7, 1.6 Hz, 1H), 6.65 (d, *J* = 8.8 Hz, 1H), 2.46 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.3, 138.5, 131.5, 130.4, 129.0, 126.6, 123.9, 120.9, 120.7, 119.5, 110.8, 109.4, 65.4, 17.9. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>20</sub>H<sub>15</sub>ClN<sub>4</sub>Na [M+Na]<sup>+</sup>, 369.0877; found, 369.0876.

4.30 Spectroscopic Data of (4b)

9-(1-(6-Bromo-1*H*-benzo[*d*][1,2,3]triazol-1-yl)ethyl)-9*H*-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **4b** as yellow solid (53.2 mg, 68% yield). **MP**: 197.3-198.6 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (s, 1H), 8.08 (d, *J* = 7.8 Hz, 2H), 7.46–7.40 (m, 4H), 7.36 (q, *J* = 6.8 Hz, 1H), 7.30–7.27 (m, 2H), 7.23 (dd, *J* = 8.8, 1.7 Hz, 1H), 6.78 (d, *J* = 8.8 Hz, 1H), 2.65 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$ 

147.8, 138.5, 131.8, 131.5, 126.6, 124.0, 122.8, 121.0, 120.7, 117.9, 111.1, 109.4, 65.4, 18.0. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>20</sub>H<sub>15</sub>BrN<sub>4</sub>Na [M+Na]<sup>+</sup>, 413.0372; found, 413.0375.

4.31 Spectroscopic Data of (4c)

9-(1-(6-Methoxy-1*H*-benzo[*d*][1,2,3]triazol-1-yl)ethyl)-9*H*-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **4c** as yellow solid (52.0 mg, 76% yield). **MP**: 155.4-156.5 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (d, *J* = 7.8 Hz, 2H), 7.82 (d, *J* = 9.1 Hz, 1H), 7.55 (d, *J* = 8.2 Hz, 2H), 7.44–7.40 (m, 2H), 7.33–7.24 (m, 3H), 6.82 (dd, *J* = 9.1, 2.2 Hz, 1H), 6.14 (s, 1H), 3.30 (s, 3H), 2.68 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.1, 141.9, 138.8, 134.0, 126.5, 123.9, 120.8, 120.8, 120.5, 116.7, 109.6, 90.2, 64.9, 55.2, 18.0. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>21</sub>H<sub>18</sub>N<sub>4</sub>ONa [M+Na]<sup>+</sup>, 365.1373; found, 365.1370.

4.32 Spectroscopic Data of (4d)

9-(1-(6-Methyl-1*H*-benzo[*d*][1,2,3]triazol-1-yl)ethyl)-9*H*-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **4d** as white solid ( 49.0 mg, 75% yield). **MP**: 152.7-153.9 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (d, *J* = 7.7 Hz, 2H), 7.77 (s, 1H), 7.49 (d, *J* = 8.3 Hz, 2H), 7.41 (ddd, *J* = 8.3, 7.1, 1.3 Hz, 2H), 7.34 (q, *J* = 6.8 Hz, 1H), 7.26 (dd,

J = 14.9, 1.0 Hz, 2H), 6.97 (dd, J = 8.5, 1.5 Hz, 1H), 6.83 (d, J = 7.8 Hz, 1H), 2.62 (d, J = 6.8 Hz, 3H), 2.37 (s, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.3, 138.7, 134.5, 131.4, 130.2, 126.5, 123.9, 120.8, 120.4, 119.1, 109.6, 109.3, 65.0, 21.5, 17.9. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>21</sub>H<sub>18</sub>N<sub>4</sub>Na [M+Na]<sup>+</sup>, 349.1424; found, 349.1418.

4.33 Spectroscopic Data of (4e)

9-(1-(6-(Trifluoromethyl)-1*H*-benzo[*d*][1,2,3]triazol-1-yl)ethyl)-9*H*-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **4e** as yellow solid (51.0 mg, 67% yield). **MP**: 190.3-191.7 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.14 (d, *J* = 8.7 Hz, 1H), 8.09 (d, *J* = 7.8 Hz, 2H), 7.55 (d, *J* = 8.3 Hz, 2H), 7.50–7.41(m, 4H), 7.34–7.27 (m, 3H), 2.69 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>C **NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.8, 138.6 132.1, 126.7, 124.1, 121.4(d, *J* = 3.0 Hz), 121.3, 121.0, 120.9, 109.5, 108.1 (d, *J* = 4.8 Hz), 65.5, 18.0. <sup>19</sup>F **NMR** (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.14. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>21</sub>H<sub>15</sub>F<sub>3</sub>N<sub>4</sub>Na [M+Na]<sup>+</sup>, 403.1141; found, 403.1146.

4.34 Spectroscopic Data of (4f)

9-(1-(6-(Thiophen-2-yl)-1*H*-benzo[*d*][1,2,3]triazol-1-yl)ethyl)-9*H*-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **4f** as white solid (47.3 mg, 60% yield). **MP**: 208.9-210.0 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.21 (s, 1H), 8.09 (d, *J* = 7.8 Hz, 2H), 7.50 (d,

J = 8.3 Hz, 2H), 7.45–7.36 (m, 4H), 7.30–7.28 (m, 2H), 7.25–7.23 (m, 2H), 7.04 (dd, J = 5.1, 3.7 Hz, 1H), 6.92 (d, J = 8.7 Hz, 1H), 2.66 (d, J = 6.8 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.3, 143.4, 138.6, 132.3, 131.4, 128.3, 127.2, 126.6, 125.4, 123.9, 123.8, 120.9, 120.6, 116.4, 110.2, 109.6, 65.2, 18.0. HRMS (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>24</sub>H<sub>18</sub>N<sub>4</sub>SNa [M+Na]<sup>+</sup>, 417.1144; found, 417.1136.

4.35 Spectroscopic Data of (4g)

9-(1-(6-Phenyl-1*H*-benzo[*d*][1,2,3]triazol-1-yl)ethyl)-9*H*-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **4g** as white solid (48.2 mg, 62% yield). **MP**: 205.2-206.7 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 (s, 1H), 8.10 (d, *J* = 7.7 Hz, 2H), 7.54 (d, *J* = 8.3 Hz, 2H), 7.52–7.48 (m, 2H), 7.47–7.38 (m, 6H), 7.34 (d, *J* = 7.3 Hz, 1H), 7.29 (d, *J* = 6.9 Hz, 2H), 7.01 (d, *J* = 8.7 Hz, 1H), 2.67 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>C **NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.5, 140.4, 138.7, 138.3, 132.3, 129.0, 128.3, 127.7, 127.5, 126.6, 124.0, 120.9, 120.6, 118.0, 110.0, 109.6, 65.2, 18.0, 1.2. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>26</sub>H<sub>20</sub>N<sub>4</sub>Na [M+Na]<sup>+</sup>, 411.1580; found, 411.1547.

4.36 Spectroscopic Data of (4h)

9-(1-(6-(Naphthalen-1-yl)-1*H*-benzo[*d*][1,2,3]triazol-1-yl)ethyl)-9*H*-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **4h** as white solid (67.5 mg, 77% yield). **MP**: 203.4-

204.7 °C; <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 (d, *J* = 4.5 Hz, 2H), 8.11 (s, 1H), 7.87 (dd, *J* = 11.9, 7.5 Hz, 2H), 7.69 (d, *J* = 8.5 Hz, 1H), 7.62 (d, *J* = 8.3 Hz, 2H), 7.50–7.43 (m, 5H), 7.37–7.28 (m, 5H), 7.12 (d, *J* = 8.5 Hz, 1H), 2.71 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.1, 139.1, 138.8, 137.5, 133.9, 132.3, 131.7, 130.9, 128.5, 128.2, 127.5, 126.6, 126.4, 126.0, 125.8, 125.5, 124.0, 121.0, 120.9, 120.6, 109.8, 109.4, 65.1, 18.0. HRMS (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>30</sub>H<sub>22</sub>N<sub>4</sub>Na [M+Na]<sup>+</sup>, 461.1737; found, 461.1730.

#### 4.37 Spectroscopic Data of (4i)

9-(1-(7-Methyl-1*H*-benzo[*d*][1,2,3]triazol-1-yl)ethyl)-9*H*-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **4i** as white solid (47.0 mg, 72% yield). **MP**: 154.3-155.8 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (d, *J* = 7.7 Hz, 2H), 7.54 (d, *J* = 8.3 Hz, 2H), 7.42 (ddd, *J* = 8.4, 7.2, 1.3 Hz, 2H), 7.36 (q, *J* = 6.8 Hz, 1H), 7.28–7.24 (m, 2H), 7.08–6.99 (m, 2H), 6.82 (d, *J* = 8.2 Hz, 1H), 2.77 (s, 3H), 2.64 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  138.7, 133.0, 128.0, 126.5, 124.4, 123.9, 120.8, 120.4, 109.7, 107.0, 65.0, 18.0, 16.8. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>21</sub>H<sub>18</sub>N<sub>4</sub>Na [M+Na]<sup>+</sup>, 349.1424; found, 349.1417.

4.38 Spectroscopic Data of (4j)

9-(1-(6-Chloro-1*H*-benzo[*d*][1,2,3]triazol-1-yl)ethyl)-9*H*-carbazole



S28

Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **4j** as white solid (49.9 mg, 72% yield). **MP**: 198.4-199.8 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (d, *J* = 7.9 Hz, 2H), 7.86 (d, *J* = 8.8 Hz, 1H), 7.41 (d, *J* = 8.2 Hz, 2H), 7.35 (ddd, *J* = 8.2, 7.0, 1.2 Hz, 2H), 7.24–7.18 (m, 3H), 7.13 (dd, *J* = 8.9, 1.8 Hz, 1H), 6.91 (s, 1H), 2.54 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.2, 138.6, 134.5, 133.4, 126.6, 125.8, 124.1, 121.1, 120.9, 120.7, 109.7, 109.5, 65.2, 17.9. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>20</sub>H<sub>15</sub>ClN<sub>4</sub>Na [M+Na]<sup>+</sup>, 369.0877; found, 369.0875.

4.39 Spectroscopic Data of (4k)

9-(1-(5-Methoxy-1*H*-benzo[*d*][1,2,3]triazol-1-yl)ethyl)-9*H*-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **4k** as white solid (50.0 mg, 73% yield). **MP**: 156.3-157.7 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (d, *J* = 7.8 Hz, 2H), 7.76 (d, *J* = 9.1 Hz, 1H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.35 (ddd, *J* = 8.4, 7.2, 1.3 Hz, 2H), 7.24–7.17(m, 3H), 6.75 (dd, *J* = 9.1, 2.2 Hz, 1H), 6.07 (d, *J* = 2.2 Hz, 1H), 3.23 (s, 3H), 2.61 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>C **NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.1, 141.9, 138.8, 134.0, 126.5, 123.9, 120.8, 120.8, 120.5, 116.7, 109.6, 90.2, 64.9, 55.2, 18.1. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>21</sub>H<sub>18</sub>N<sub>4</sub>ONa [M+Na]<sup>+</sup>, 365.1373; found, 365.1370.

4.40 Spectroscopic Data of (41)

9-(1-(5-Methyl-1*H*-benzo[*d*][1,2,3]triazol-1-yl)ethyl)-9*H*-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **4l** as white solid (49.0 mg, 75% yield). **MP**: 196.5-197.9 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, *J* = 7.8 Hz, 2H), 7.87 (d, *J* = 8.6 Hz, 1H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.43–7.38 (m, 2H), 7.30 (q, *J* = 6.9 Hz, 1H), 7.24–7.22 (m, 2H), 7.04 (dd, *J* = 8.5, 1.4 Hz, 1H), 6.77 (s, 1H), 2.58 (d, *J* = 6.8 Hz, 3H), 2.19 (s, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.3, 138.8, 138.7, 133.4, 126.8, 126.5, 124.0, 120.8, 120.4, 119.6, 109.7, 109.0, 64.8, 22.1, 17.9. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>21</sub>H<sub>18</sub>N<sub>4</sub>Na [M+Na]<sup>+</sup>, 349.1424; found, 349.1420.

## 4.41 Spectroscopic Data of (4m)

9-(1-(7-Methyl-1H-[1,2,3]triazolo[4,5-b]pyridin-1-yl)ethyl)-9H-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **4m** as yellow solid (53.4 mg, 82% yield). **MP**: 190.0-191.2 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.47 (d, *J* = 4.7 Hz, 1H), 8.16 (d, *J* = 8.4 Hz, 2H), 8.03 (d, *J* = 7.7 Hz, 2H), 7.82 (q, *J* = 7.2 Hz, 1H), 7.50 (ddd, *J* = 8.4, 7.2, 1.3 Hz, 2H), 7.28–7.24 (m, 2H), 7.07 (dd, *J* = 4.7, 1.0 Hz, 1H), 2.78 (s, 3H), 2.64 (d, *J* = 7.1 Hz, 3H); <sup>13</sup>C **NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  150.5, 145.5, 141.4, 139.3, 137.8, 126.2, 123.9, 120.8, 120.3, 111.3, 62.6, 18.3, 16.6. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>20</sub>H<sub>18</sub>N<sub>5</sub>Na [M+Na]<sup>+</sup>, 350.1376; found, 350.1372.

4.42 Spectroscopic Data of (4n)

9-(1-(3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)ethyl)-9H-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 20) afforded **5a** as yellow solid (48.9 mg, 78% yield). **MP**: 192.2-193.6 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.64 (dd, *J* = 4.5, 1.5 Hz, 1H), 8.34 (dd, *J* = 8.3, 1.5 Hz, 1H), 8.16 (d, *J* = 8.4 Hz, 2H), 8.04 (d, *J* = 7.7 Hz, 2H), 7.86 (q, *J* = 7.2 Hz, 1H), 7.51 (ddd, *J* = 8.4, 7.2, 1.3 Hz, 2H), 7.31 (dd, *J* = 8.3, 4.5 Hz, 1H), 7.28–7.25 (m, 2H), 2.66 (d, *J* = 7.1 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  150.7, 145.7, 139.2, 137.1, 128.7, 126.2, 123.9, 120.3, 120.3, 120.3, 111.3, 62.6, 18.3. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>19</sub>H<sub>15</sub>N<sub>5</sub>Na [M+Na]<sup>+</sup>, 336.1220; found, 336.1213.

### 4.43 Spectroscopic Data of (40)

ethyl 1-(1-(9H-Carbazol-9-yl)ethyl)-1H-1,2,3-triazole-4-carboxylate



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 30) afforded **40** as white solid (53.5 mg, 80% yield). **MP**: 152.1-153.3 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (d, *J* = 6.9 Hz, 3H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.48 (ddd, *J* = 8.4, 7.2, 1.3 Hz, 2H), 7.35 (q, *J* = 7.0 Hz, 1H), 7.31–7.27 (m, 2H), 4.41 (q, *J* = 7.1 Hz, 2H), 2.49 (d, *J* = 7.0 Hz, 3H), 1.39 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.6, 140.3, 139.1, 137.4, 126.3, 124.0, 120.5, 110.5, 70.1, 61.6, 18.2, 14.3. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>19</sub>H<sub>18</sub>N<sub>4</sub>O<sub>2</sub>Na [M+Na]<sup>+</sup>, 357.1322; found, 357.1318.

# 4.44 Spectroscopic Data of (4p)

9-(1-(1H-Pyrazol-1-yl)ethyl)-9H-carbazole



Following the general procedure, purification by flash chromatography on silica gel (eluent: EA: PE = 1: 30) afforded **4p** as white solid (37.1 mg, 71% yield). **MP**: 156.2-157.7 °C; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (d, *J* = 7.8 Hz, 1H), 8.04 (d, *J* = 7.8 Hz, 2H), 7.43 – 7.41 (m, 2H), 7.27 – 7.24 (m, 3H), 7.16 (s, 1H), 6.87 (q, *J* = 6.4 Hz, 1H), 6.44 (s, 1H), 5.68 (t, *J* = 2.4 Hz, 1H), 2.13 (d, *J* = 6.4 Hz, 3H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  139.6, 134.1, 126.2, 126.0, 123.5, 123.1, 120.5, 119.6, 110.7, 103.5, 88.3, 17.5. **HRMS** (TOF-ESI<sup>+</sup>): m/z calcd for C<sub>19</sub>H<sub>15</sub>N<sub>3</sub>Na [M+Na]<sup>+</sup>, 284.1158; found, 284.1153.

#### 5. Mechanistic studies



Under Ar atmosphere, *N*-vinylcarbazole **1** (0.2 mmol, 1.0 equiv), 1-Hydroxybenzotriazole **2** (0.22 mmol, 1.1 equiv), Ph<sub>3</sub>P (0.2 mmol, 1.0 equiv),  $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$  (1 mol%, 0.001mmol), and BPO (0.4 mmol, 2 equiv) in DCM (0.2mL, 0.1 M) were added to 10.0 mL reaction tube. The mixture was stirred at 490 nm blue light (LEDs, 36W) and monitored by TLC. After stirring for 24h and directly detected by HRMS.





Under Ar atmosphere, N-vinylcarbazole **1** (0.2 mmol, 1.0 equiv), 1-Hydroxybenzotriazole **2** (0.22 mmol, 1.1 equiv), Ph<sub>3</sub>P (0.2 mmol, 1.0 equiv),  $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$  (1 mol%, 0.001mmol), and BHT (0.4 mmol, 2 equiv) in DCM (0.2mL, 0.1 M) were added to 10.0 mL reaction tube. The mixture was stirred at 490 nm blue light (LEDs, 36W) and monitored by TLC. After stirring for 24h and directly detected by HRMS.





Under atmosphere, *N*-vinylcarbazole **1** (0.2 Ar mmol, 1.0 equiv), 1-Hydroxybenzotriazole 2 (0.22 mmol, 1.1 equiv), Ph<sub>3</sub>P (0.2 mmol, 1.0 equiv), [Ir(dFCF<sub>3</sub>ppy)<sub>2</sub>dtbbpy]PF<sub>6</sub> (1 mol%, 0.001mmol), and D<sub>2</sub>O (1.0 mmol, 10 equiv) in DCM (0.2mL, 0.1 M) were added to 10.0 mL reaction tube. The mixture was stirred at 490 nm blue light (LEDs, 36W) and monitored by TLC. After stirring for 24h and found Ph<sub>3</sub>PO by HRMS. Then, the reaction was quenched with saturated NaCl solution and extracted with 20.0 mL EtOAc for three times. The organic layers were combined, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated under reduced pressure. The crude product was purified by flash column chromatography (1/20, ethyl acetate/petroleum ether) to afford compound 3a.



**S35** 



160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110 108 106 104 102 100 98 96 fl (ppm)

Figure S2. Comparison chart of the CNMR spectrum of compounds **4a** and **4j**. In the spectrum of **4a**, the presence of **4j** was not observed, while in the spectrum of **4j**, a small amount of the **4a** isomer was present.



Figure S3. LCMS spectrum of d **4j**. Dissolve a small amount of sample in MeOH to a concentration of 0.1 mg/ml, and separate **4j** under the conditions of MeOH: H<sub>2</sub>O (80:20) in the mobile phase with a flow rate of 0.8 ml/min. HRMS (TOF-ESI<sup>+</sup>): m/z calcd for **4j** [M+Na]<sup>+</sup>, 369.0877. The presence of isomeric peaks in the product **4j** was confirmed.


Scheme S1. A schematic diagram of the possible  $N_1/N_3$  selectivity. We speculate that the observed  $N_1/N_3$  selectivity may be attributed to two factors: Firstly, from a thermodynamic perspective, the *N* radicals intermediates generated by 6-chloro-1Hbenzo[d][1,2,3]triazol-1-ol (**17**) or 5-chloro-1H-benzo[d][1,2,3]triazol-1-ol (**18**) may form a pair of  $N_1/N_3$  equilibrium isomers. However, the  $N_1$  radical intermediate may be relatively more stable compared to the  $N_3$  radical. Secondly, from a kinetic perspective, the rate of the radical addition reaction between the *N* radical of the triazole and the olefin may be faster than the equilibrium transition rate between  $N_1$  and  $N_3$  ( $k_5$ ,  $k_6 > k_3$ ,  $k_4$ ). Based on these two assumptions, the rate-determining step of this reaction is the formation of *N* radicals, which quickly completes the subsequent reactions, thus obtaining good *N* reaction selectivity. So, for example, the **4a** product may hardly have the **4j** isomer, while the **4j** product may contain a small amount of the **4a** isomer.



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3aa



# 6. X-ray Structure and Data of 3a, 4a, 4j 6.1 X-ray Structure and Data of 3a

Figure S4. X-Ray crystal structure of **3a**, thermal ellipsoids shown at 50% probability **Datablock: 1** 

| Bond precision:                      | C-C = 0.0023 A               | Wavelength=0.71073      |                                   |  |  |
|--------------------------------------|------------------------------|-------------------------|-----------------------------------|--|--|
| Cell:                                | a=8.6995(4)<br>alpha=90      | b=18.4071(7)<br>beta=90 | c=39.8272(14)<br>gamma=90         |  |  |
| Temperature:                         | 100 K                        |                         | -                                 |  |  |
|                                      | Calculated                   | Reporte                 | d                                 |  |  |
| Volume                               | 6377.6(4)                    | 6377.6(                 | 4)                                |  |  |
| Space group                          | Pbca                         | Pbca                    |                                   |  |  |
| Hall group                           | -P 2ac 2ab                   | -P 2ac 2ab              |                                   |  |  |
| Moiety formula                       | C20 H16 N4                   | C20 H16                 | N4                                |  |  |
| Sum formula                          | C20 H16 N4                   | C20 H16                 | C20 H16 N4                        |  |  |
| Mr                                   | 312.37                       | 312.37                  |                                   |  |  |
| Dx,g cm-3                            | 1.301                        | 1.301                   | 1.301                             |  |  |
| Z                                    | 16                           | 16                      |                                   |  |  |
| Mu (mm-1)                            | 0.080                        | 0.080                   |                                   |  |  |
| F000                                 | 2624.0                       | 2624.0                  |                                   |  |  |
| F000'                                | 2624.83                      |                         |                                   |  |  |
| h,k,lmax                             | 11,24,53                     | 11,24,5                 | 3                                 |  |  |
| Nref                                 | 7944                         | 7935                    |                                   |  |  |
| Tmin, Tmax                           | 0.982,0.986                  | 0.700,0                 | .746                              |  |  |
| Tmin'                                | 0.982                        |                         |                                   |  |  |
| Correction metho<br>AbsCorr = MULTI- | od= # Reported T Li<br>-SCAN | mits: Tmin=0.700        | Tmax=0.746                        |  |  |
| Data completenes                     | ss= 0.999                    | Theta(max) = 28.3       | 323                               |  |  |
| R(reflections) =                     | 0.0499( 5104)                |                         | wR2(reflections)<br>0.1198( 7935) |  |  |
| S = 1.028                            | Npar= 4                      | 36                      |                                   |  |  |

Figure S5. Crystal data and structure refinement for 3a

6.2 X-ray Structure and Data of 4a



Figure S6. X-Ray crystal structure of **4a**, thermal ellipsoids shown at 50% probability

#### Datablock: 1

| Bond precision:                                                                       | C-C = 0.0049 A | Wavelength=0.71073 |                |  |  |  |  |
|---------------------------------------------------------------------------------------|----------------|--------------------|----------------|--|--|--|--|
| Cell:                                                                                 | a=9.9868(4)    | b=12.6657(5)       | c=13.3981(6)   |  |  |  |  |
|                                                                                       | alpha=90       | beta=90            | gamma=90       |  |  |  |  |
| Temperature:                                                                          | 298 K          |                    |                |  |  |  |  |
|                                                                                       | Calculated     | Reporte            | d              |  |  |  |  |
| Volume                                                                                | 1694.72(12)    | 1694.72            | (12)           |  |  |  |  |
| Space group                                                                           | P 21 21 21     | P 21 21            | 21             |  |  |  |  |
| Hall group                                                                            | P 2ac 2ab      | P 2ac 2            | ab             |  |  |  |  |
| Moiety formula                                                                        | C20 H15 C1 N4  | C20 H15            | C1 N4          |  |  |  |  |
| Sum formula                                                                           | C20 H15 Cl N4  | C20 H15            | Cl N4          |  |  |  |  |
| Mr                                                                                    | 346.81         | 346.81             |                |  |  |  |  |
| Dx,g cm-3                                                                             | 1.359          | 1.359              | 1.359          |  |  |  |  |
| Z                                                                                     | 4              | 4                  |                |  |  |  |  |
| Mu (mm-1)                                                                             | 0.235          | 0.235              |                |  |  |  |  |
| F000                                                                                  | 720.0          | 720.0              |                |  |  |  |  |
| F000'                                                                                 | 720.80         |                    |                |  |  |  |  |
| h,k,lmax                                                                              | 13,16,17       | 13,16,1            | 7              |  |  |  |  |
| Nref                                                                                  | 4223[ 2400]    | 4189               |                |  |  |  |  |
| Tmin, Tmax                                                                            | 0.940,0.954    | 0.703,0            | .746           |  |  |  |  |
| Tmin'                                                                                 | 0.939          |                    |                |  |  |  |  |
| Correction method= # Reported T Limits: Tmin=0.703 Tmax=0.746<br>AbsCorr = MULTI-SCAN |                |                    |                |  |  |  |  |
| Data completeness= 1.75/0.99 Theta(max)= 28.295                                       |                |                    |                |  |  |  |  |
| R(reflections) = 0.0510(2857) WR2(reflections) =                                      |                |                    |                |  |  |  |  |
| S = 1.088                                                                             | Npar= 2        | 227                | 0.10/1 ( 4109) |  |  |  |  |
|                                                                                       | •              |                    |                |  |  |  |  |

Figure S7. Crystal data and structure refinement for 4a

#### 6.3 X-ray Structure and Data of 4j





### Datablock: 1

| Bond precision:                                                                       | C-C = 0.0056 A | Wavelength=0.71073 |            |               |  |  |  |
|---------------------------------------------------------------------------------------|----------------|--------------------|------------|---------------|--|--|--|
| Cell:                                                                                 | a=9.4084(4)    | b=21.4394          | (9)        | c=16.9249(8)  |  |  |  |
|                                                                                       | alpha=90       | beta=96.02         | 24(1)      | gamma=90      |  |  |  |
| Temperature:                                                                          | 298 K          |                    |            |               |  |  |  |
|                                                                                       | Calculated     |                    | Reported   |               |  |  |  |
| Volume                                                                                | 3395.1(3)      |                    | 3395.1(3)  |               |  |  |  |
| Space group                                                                           | P 21/n         |                    | P 21/n     |               |  |  |  |
| Hall group                                                                            | -P 2yn         |                    | -P 2yn     |               |  |  |  |
| Moiety formula                                                                        | C20 H15 C1 N4  |                    | C20 H15 C1 | LN4           |  |  |  |
| Sum formula                                                                           | C20 H15 C1 N4  |                    | C20 H15 C1 | LN4           |  |  |  |
| Mr                                                                                    | 346.81         |                    | 346.81     |               |  |  |  |
| Dx,g cm-3                                                                             | 1.357          | 1.357              |            |               |  |  |  |
| Z                                                                                     | 8              |                    | 8          |               |  |  |  |
| Mu (mm-1)                                                                             | 0.235          |                    | 0.235      |               |  |  |  |
| F000                                                                                  | 1440.0         |                    | 1440.0     |               |  |  |  |
| F000'                                                                                 | 1441.61        |                    |            |               |  |  |  |
| h,k,lmax                                                                              | 12,28,22       |                    | 12,28,22   |               |  |  |  |
| Nref                                                                                  | 8506           |                    | 8475       |               |  |  |  |
| Tmin, Tmax                                                                            | 0.952,0.963    |                    | 0.680,0.74 | 16            |  |  |  |
| Tmin'                                                                                 | 0.952          |                    |            |               |  |  |  |
| Correction method= # Reported T Limits: Tmin=0.680 Tmax=0.746<br>AbsCorr = MULTI-SCAN |                |                    |            |               |  |  |  |
| Data completeness= 0.996 Theta(max)= 28.370                                           |                |                    |            |               |  |  |  |
| R(reflections) = 0.0981(4232) wR2(reflections) =                                      |                |                    |            |               |  |  |  |
| S = 1.115                                                                             | Npar= 4        | 153                |            | 0.1040( 0473) |  |  |  |

Figure S9. Crystal data and structure refinement for 4j

Compound **3a**、**4d**、**4j**(50mg) was added to a 10mL sample bottle, following to add DCM (2mL), n-hexane (2.5mL) and toluene (0.1mL), then seal the bottle with a parafilm, and poke 15 small holes on the parafilm, place the sample bottle in a safe place to allow it to volatilize and separate out the single crystal. Take out the single crystal and send it for single crystal diffraction test to obtain relevant data. Instrument model: Intensity data for single crystals of each complex were collected on a BRUKER SMART APEX II CCD detector with graphite-monochromatized Mo K $\alpha$  radiation (k = 0.071073 nm). The structures were solved by direct method using the program SHELXS-97 and subsequent Fourier difference techniques, and refined anisotropically by full matrix least-squares on F2 using SHELXL-97.

<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of **3a-3zc** and **4a-4p** 7. 7,738 7,738 7,738 7,738 8,80 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,738 1,7 <2554 2554 H<sub>3</sub>C 1.99 0.97 ¥ 985688 885688 7.5 7.5 7.0 3.00 Å 2.5 9.5 9.0 8.5 8.0 7.5 6.5 6.0 5.5 5.0 4.5 fl (ppm) 2.0 0.0 4.0 3.5 3.0 1.5 1.0 0.5 <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 3a 77.48 CDCB 77.16 CDCB 76.84 CDCB -146.59 - 138.64 132.82 132.82 123.87 123.88 123.88 122.37 123.88 122.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.38 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 123.58 -64.99 -17.90 H<sub>3</sub>C 160 150 140 130 120 110 100 90 80 70 f1 (ppm) 230 220 -10 -2 210 60 50 20 10 200 190 170 0 180 40





<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3b



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3c



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3d



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -60 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (pgm)

## <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 3d



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3e



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3f



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3g



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3h



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

## <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 3h



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3i



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3j



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3k



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3l



10 0 -10 -20 -30 -40 -50 -60 -70 -80 -50 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

## <sup>19</sup>F-NMR (376 MHz, CDCl<sub>3</sub>) spectrum of 3l



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3m



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3n



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 30



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3p



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3q



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3r



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3s



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3t



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3u



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3v



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3w



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3x



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3y



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3za



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 3zb


**S73** 



<sup>13</sup>C-NMR (100MHz, CDCl<sub>3</sub>) spectrum of 4a







 $<^{2.66}_{2.64}$ 

<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4b



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4c



<sup>13</sup>C-NMR (100MHz, CDCl<sub>3</sub>) spectrum of 4d





 $\begin{pmatrix} 2.70 \\ 2.69 \\ 2.68 \end{pmatrix}$ 

<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4e





## <sup>19</sup>F-NMR (376.5 MHz, CDCl<sub>3</sub>) spectrum of 4e



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4f





 $<^{2.68}_{2.66}$ 

<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4g



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4h



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4i





<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4j



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4k



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4l



<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>) spectrum of 4m



<sup>13</sup>C-NMR (100MHz, CDCl<sub>3</sub>) spectrum of 4n



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 40



<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>) spectrum of 4p

- 9. References
- (a) Li, L.; Ren, J.-T.; Zhou, J.-J.; Wu, X.-M.; Shao, Z.-H.; Yang, X.-D.; Qian, D.-Y., Enantioselective synthesis of *N*-alkylindoles enabled by nickel-catalyzed C-C coupling[J]. *Nature Communications*. **2022**, *13*, 6861. (b) Vinothkumar Vinayagam, Satish Kumar Karre, Sreenivasa Reddy Kasu, Ravuri Srinath, Hema Sundar Naveen Babu Bathula, Subir Kumar Sadhukhan. AlCl<sub>3</sub>-Mediated CHF<sub>2</sub> Transfer and Cyclocondensation of Difluoromethoxy Functionalized o-Phenylenediamines to Access N-Substituted Benzimidazoles[J]. *Org. Lett.* **2022**, *24*, 6142–6147. (c) Gurram V, Akula H K, Garlapati R, Pottabathini N, Lakshman M. Mild and General Access to Diverse 1H-Benzotriazoles via Diboron-Mediated N-OH Deoxygenation and Palladium-Catalyzed C-C and C-N Bond Formation[J]. *Adv. Synth. Catal.* **2015**, *357*, 451–462.
- Katritzky, Alan R.; Jurczyk, Simona; Rachwal, Bogumila; Rachwal, Stanislaw; Shcherbakova, Irina; et al. New synthesis of amines and amides mediated by additions of benzotriazole to enamines and enamides and transformations of the adducts[J]. *Synthesis*. **1992**, *12*, 1295-8.
- Tan, Z.-M.; Xiang, F.; Xu, K.; Zeng, C.-C. Electrochemical Organoselenium-Catalyzed Intermolecular Hydroazolylation of Alkenes with Low Catalyst Loadings[J]. Org. Lett. 2022, 24, 5345–5350.
- Matthew T Zambri, Teh Ren Hou, Mark S Taylor. Synergistic Organoboron/Palladium Catalysis for Regioselective N-Allylations of Azoles with Allylic Alcohols[J]. Org. Lett. 2022, 24, 7617–7621.
- Katritzky, Alan R.; Cheng, Dai; Henderson, Scott A.; Li, Jianqing. Trans-Selective Olefination of Carbonyl Compounds by Low-Valent Titanium-Mediated Dehydroxybenzotriazolylation[J]. J. Org. Chem. 1998, 63, 6704-6709.
- Wu, J.-C.; Zhou, Y.; Zhou, Y.-C.; Chiang, C.-W.; Lei, A.-W. Electro-oxidative C(sp3)–H Amination of Azoles via Intermolecular Oxidative C(sp3)–H/N–H Cross-Coupling[J]. ACS Catal. 2017, 7, 8320–8323.
- 7. Sun, J.-W.; Wang, Y.; Pan, Y. Metal-Free Catalytic Approach for Allylic C-H

Amination Using N-Heterocycles via sp3 C–H Bond Activation[J]. *J. Org. Chem.* **2015**, *80*, 8945–8950.

 Alfred. K. K. Fung, Li-Juan Yu, Michael S. Sherburn, Michelle L. Coote. Atom Transfer Radical Polymerization-Inspired Room Temperature (sp<sup>3</sup>)C–N Coupling[J]. *J. Org. Chem.* 2021, 86, 9723–9732.