Electronic Supporting Information

Photochemical [2 + 2 + 1] radical annulation of 2-vinyloxy arylalkynes with bromomalonates via energy transfer

Shuo Tang^a, Jiupeng Liu^a, Min Zhang^a, Dan Wang^a, Yong Wang^{a*}, Jingjing Zhao^{a*}, and Pan Li^{a*}

College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China

General Information	SI2
The Reaction Equipment and Light Source	SI2
Optimization of Reaction Conditions	SI4
Padical Transing Experiments	SIA SI5
Radical Clock Experiments	SI5-SI6
General Procedure and Data of Cyclopenta[b]benzofurans 3	SI7-SI119
Copies of ¹ H and ¹³ C{ ¹ H} NMR Spectra of All the Products	SI20-SI52

General Information:

All reagents purchased from commercial sources were used as received. The silica gel for column chromatography was supplied as 200–300 meshes. The ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker AVANCE III spectrometer and are referenced to the residual solvent signals (7.26 ppm for ¹H in CDCl₃ and 77.0 ppm for ¹³C in CDCl₃). The HRMS spectra were recorded on a Bruker MicroTOF Q II spectrometer.

The Reaction Equipment and Light Source

We use RLH-18 8-position Photo Reaction System, which manufactured by Beijing Rogertech Co.Itd base in Beijing PRC. This Photo reactor we used have equipped 8 bule light 10W LED. This blue light 10 WLED's energy peak wavelength is 405 nm. Irradiation vessel is borosilicate glass test tube, LED irradiate through a high-reflection channel to the test tube, path length is 2 cm. No filter between LED and test tube.

Figure S1. The Reaction Equipment and Light Source (λ_{max} = 405 nm, $\Delta\lambda$ = 11.6 nm)

Optimization of Reaction Conditions

Ph + CO_2Et Br CO_2Et DMF, Ar, rt Ph CO_2Et CO_2Et			
1a	2a	3aa	
entry	solvent	yield of 3aa (%)	
1	DMF	74	
2	DMAC	65	
3	DCM	trace	
4	MeCN	trace	
5	CHCl₃	trace	
6	1,4-dioxane	trace	
7	DCE	trace	
8	DMSO	trace	
9	MeOH	trace	
10	THF	trace	
11 ^{<i>b</i>}	DMF	47	
12 ^c	DMF	72	
13 ^a	DCM	35	
14 ^{<i>a</i>}	MeCN	20	
15 ^a	DCE	15	
16 ^{<i>a</i>}	DMF	23	

Table S1. Solvent Screening^a

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), solvent (2 mL), visible LEDs (λ_{max} = 405 nm), Ar, rt, 36 h. Yields of isolated products. ^b**2a** (0.24 mmol) was added. ^c**2a** (0.4 mmol) was added. ^dNa₂CO₃ (0.4 mmol) was added.

Table S2. LEDs Screening^a

$\begin{array}{c} Ph \\ + Br \\ CO_2Et \\ 1a \\ 2a \\ \end{array} \xrightarrow{Ph} CO_2Et \\ \overrightarrow{DMF, Ar, rt} \\ \overrightarrow{DMF, Ar, rt} \\ \overrightarrow{Saa} \\ \end{array}$			
entry	LEDS	yield of 3aa (%)	
1	405	74	
2	365	72	
3	390	74	
4	425	70	
5	450	50	

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), DMF (2 mL), visible LEDs (λ_{max} = 405 nm), Ar, rt, 36 h. Yields of isolated products.

S3

Table S3. Control Experiments^a

	Ph + CO_2Et + Br CO_2Et \rightarrow DMF, Ar, rt	Ph CO ₂ Et CO ₂ Et
entry	conditions	yield of 3aa (%)
1	standard conditions	74
2 ^b	with 1 mol % <i>fac</i> -Ir(ppy)₃	78
3	without argon	28
4	in darkness	0

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), DMF (2 mL), visible LEDs (λ_{max} = 405 nm), Ar, rt, 36 h. Yields of isolated products. ^b1 h.

Ph O 1a	HBr (2 equiv)	Ph OH 1a'
solvent	1a	1a (in the presence of HBr)
DMF	\checkmark	\checkmark
DCM	\checkmark	x
MeCN	\checkmark	x
CHCl ₃	\checkmark	x
1,4-dioxane	\checkmark	x
DCE	\checkmark	X
DMSO	\checkmark	x
MeOH	\checkmark	x
THF	\checkmark	X

Table S4. Stability of 1a in Various Solvents

" $\sqrt{}$ "means compound **1a** is stable, "**x**" means the decomposition of compound **1a** into **1a**'.

Radical Trapping Experiments

To a 10 mL Schlenk flask was added 1-(phenylethynyl)-2-(vinyloxy)benzene **1a** (0.2 mmol, 44 mg), diethyl 2-bromomalonate **2a** (0.3 mmol, 71 mg) and DMF (2 mL), followed by TEMPO (0.4 mmol, 62 mg). The Schlenk tube was vacuumed and purged with argon three times before it was tightly screw capped. The reaction mixture was stirred at room temperature under the irradiation of visible LEDs (λ_{max} = 405 nm) for 36 h. There is no conversion of **1a**, and product

3aa was not detected.

To a 10 mL Schlenk flask was added 1-(phenylethynyl)-2-(vinyloxy)benzene **1a** (0.2 mmol, 44 mg), diethyl 2-bromomalonate **2a** (0.3 mmol, 71 mg) and DMF (2 mL), followed by 1,1diphenylethylene (0.4 mmol, 72 mg). The Schlenk tube was vacuumed and purged with argon three times before it was tightly screw capped. The reaction mixture was stirred at room temperature under the irradiation of visible LEDs (λ_{max} = 405 nm) for 36 h. There is no conversion of **1a**, and product **3aa** was not detected.

Radical Clock Experiments

To a 10 mL Schlenk flask was added (1-cyclopropylvinyl) benzene **1u** (0.2 mmol, 29 mg), and diethyl 2-bromomalonate **2a** (0.3 mmol, 71 mg), followed by DMF (2 mL). The Schlenk tube was vacuumed and purged with argon three times before it was tightly screw capped. The reaction mixture was stirred at room temperature under the irradiation of visible LEDs (λ_{max} = 405 nm) for 36 h. There is no reaction under the standard conditions.

To a 10 mL Schlenk flask was added (1-cyclopropylvinyl) benzene **1u** (0.2 mmol, 29 mg), diethyl 2-bromomalonate **2a** (0.3 mmol, 71 mg), and DMF (2 mL), followed by 1- (phenylethynyl)-2-(vinyloxy)benzene **1a** (0.2 mmol, 44 mg). The Schlenk tube was vacuumed and purged with argon three times before it was tightly screw capped. The reaction mixture was stirred at room temperature under the irradiation of visible LEDs (λ_{max} = 405 nm) for 36 h, and the residue was purified by flash column chromatography, eluting with petroleum ether and ethyl acetate (20:1) to afford the desired product **3ua** (15 mg, 25% yield). **Diethyl 2-((3,4-dihydronaphthalen-1-yl)methyl)malonate (3ua):** Known compound. ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.07 (m, 4 H), 5.93 (t, 1 H), 4.39 – 4.09 (m, 4 H), 3.62 (t, *J* = 7.6 Hz, 1 H), 3.08

(d, *J* = 6.3 Hz, 2 H), 2.69 (t, *J* = 8.0 Hz, 2 H), 2.30 – 2.13 (m, 2 H), 1.24 (t, *J* = 7.1 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 136.8, 133.7, 132.7, 127.7, 127.4, 127.0, 126.5, 122.2, 61.4, 51.1, 31.8, 28.2, 23.0, 14.1.

¹H NMR (400 MHz, CDCI₃) Spectrum of 3ua

¹³C{¹H} NMR (100MHz, CDCI₃) Spectrum of 3ua

General Procedure and Data of Cyclopenta[b]benzofurans 3

To a 10 mL Schlenk tube equipped with a stir bar was added 2-vinyloxy arylalkynes **1** (0.2 mmol) and bromomalonates **2** (0.3 mmol), followed by DMF (2 mL). The Schlenk tube was vacuumed and purged with argon three times before it was tightly screw capped. The reaction mixture was stirred at room temperature under the irradiation of visible LEDs (λ_{max} = 405 nm) for 36 h. The solvents were evaporated in vacuo, and the residue was purified by flash column chromatography, eluting with petroleum ether and ethyl acetate (5:1) to afford the desired product **3**.

Diethyl 1-phenyl-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3aa**): New compound. 56 mg of **3aa** was obtained from **1a** (44 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 74% yield; white solid. m. p. 158.0 – 159.6 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, *J* = 8.2 Hz, 1 H), 7.32 – 7.20 (m, 6 H), 7.20 – 7.07 (m, 2 H), 5.44 (d, *J* = 0.9 Hz, 1 H), 4.47 – 4.22 (m, 2 H), 4.09 – 4.03 (m, 1 H), 3.83 – 3.65 (m, 1 H), 3.51 – 3.31 (m, 2 H), 1.34 (t, *J* = 7.1 Hz, 3 H), 0.89 (t, *J* = 7.1 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 168.8, 160.5, 158.3, 138.1, 129.2, 128.0, 127.5, 125.3, 123.2, 122.8, 121.1, 119.3, 111.8, 70.0, 62.0, 61.5, 48.9, 34.0, 14.0, 13.4. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 401.1359 C₂₃H₂₂O₅Na, found 401.1351.

Diethyl 1-(p-tolyl)-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3ba**): New compound. 53 mg of **3ba** was obtained from **1b** (47 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 68% yield; white solid. m. p. 122.7 – 125.4 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, *J* = 8.2

Hz, 1 H), 7.24 – 7.14 (m, 1 H), 7.13 – 6.98 (m, 6 H), 5.36 (d, J = 1.3 Hz, 1 H), 4.45 – 4.16 (m, 2 H), 4.08 – 3.92 (m, 1 H), 3.80 – 3.64 (m, 1 H), 3.49 – 3.27 (m, 2 H), 2.29 (s, 3 H), 1.29 (t, J = 7.1 Hz, 3 H), 0.87 (t, J = 7.2 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 168.8, 160.4, 158.2, 137.0, 134.9, 129.0, 128.6, 125.4, 123.2, 122.7, 121.2, 119.3, 111.8, 70.0, 62.0, 61.4, 48.5, 33.8, 21.0, 14.0, 13.4. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 415.1516 C₂₄H₂₄O₅Na, found 415.1516.

Diethyl 1-(4-ethylphenyl)-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3ca**): New compound. 51 mg of **3ca** was obtained from **1c** (50 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 63% yield; white solid. m. p. 102.5 – 103.9 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, *J* = 8.2 Hz, 1 H), 7.23 – 7.01 (m, 7 H), 5.37 (s, 1 H), 4.40 – 4.16 (m, 2 H), 4.09 – 3.90 (m, 1 H), 3.78 – 3.62 (m, 1 H), 3.49 – 3.25 (m, 2 H), 2.59 (q, *J* = 7.6 Hz, 2 H), 1.29 (t, *J* = 7.1 Hz, 3 H), 1.18 (t, *J* = 7.6 Hz, 3 H), 0.83 (t, *J* = 7.1 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 168.9, 160.5, 158.3, 143.5, 135.2, 129.1, 127.4, 125.4, 123.2, 122.8, 121.2, 119.4, 111.8, 70.0, 62.0, 61.4, 48.6, 33.9, 28.5, 15.7, 14.0, 13.4. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 429.1672 C₂₅H₂₆O₅Na, found 429.1673.

Diethyl 1-(4-methoxyphenyl)-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3da**): New compound. 41 mg of **3da** was obtained from **1d** (50 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 50% yield; white solid. m. p. 116.9 – 119.6 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, *J* = 8.2 Hz, 1 H), 7.29 – 7.05 (m, 5 H), 6.81 (d, *J* = 8.7 Hz, 2 H), 5.39 (s, 1 H), 4.45 – 4.21

(m, 2 H), 4.10 - 3.96 (m, 1 H), 3.89 - 3.69 (m, 4 H), 3.58 - 3.32 (m, 2 H), 1.34 (t, J = 7.1 Hz, 3 H), 0.94 (t, J = 7.1 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 168.9, 160.5, 158.9, 158.2, 130.2, 130.0, 125.4, 123.2, 122.8, 121.2, 120.0, 113.3, 111.8, 70.0, 62.0, 61.5, 55.2, 48.2, 33.8, 14.0, 13.5. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 431.1465 C₂₄H₂₄O₆Na, found 431.1466.

Diethyl1-([1,1'-biphenyl]-4-yl)-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxyl ate (**3ea**): New compound. 53 mg of **3ea** was obtained from **1e** (59 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 58% yield; white solid. m. p. 171.6 – 173.8 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.60 – 7.52 (m, 2 H), 7.52 – 7.38 (m, 5 H), 7.37 – 7.27 (m, 3 H), 7.25 – 7.15 (m, 1 H), 7.15 – 7.05 (m, 2 H), 5.45 (s, 1 H), 4.44 – 4.20 (m, 2 H), 4.13 – 3.96 (m, 1 H), 3.80 – 3.63 (m, 1 H), 3.52 – 3.29 (m, 2 H), 1.31 (t, *J* = 7.1 Hz, 3 H), 0.84 (t, *J* = 7.1 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.1, 168.8, 160.5, 158.4, 140.7, 140.3, 137.2, 129.6, 128.7, 127.2, 126.9, 126.6, 125.3, 123.3, 122.8, 121.0, 119.3, 111.9, 70.1, 62.1, 61.6, 48.6, 34.0, 14.0, 13.4. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 477.1672 C₂₉H₂₆O₅Na, found 477.1673.

Diethyl 1-(4-fluorophenyl)-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3fa**): New compound. 53 mg of **3fa** was obtained from **1f** (48 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 67% yield; white solid. m. p. 152.5 - 155.4 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, J = 8.2 Hz, 1 H), 7.25 - 7.14 (m, 3 H), 7.15 - 7.01 (m, 2 H), 6.93 (t, J = 8.7 Hz, 2 H), 5.38 (s, 1 H), 4.42 - 4.16 (m, 2 H), ¹H NMR 4.05 - 3.91 (m, 1 H), 3.82 - 3.66 (m, 1 H), 3.51 - 3.28 (m, 2 H), 1.30 (t, J = 7.1 Hz, 3 H), 0.89 (t, J = 7.2 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.0,

168.7, 162.2 (d, ${}^{1}J_{C-F}$ = 245.9 Hz), 160.5, 158.4, 133.8 (d, ${}^{4}J_{C-F}$ = 3.2 Hz), 130.8 (d, ${}^{3}J_{C-F}$ = 8.1 Hz), 125.1, 123.3, 122.9, 120.8, 119.1, 114.8 (d, ${}^{2}J_{C-F}$ = 21.3 Hz), 111.9, 69.9, 62.1, 61.5, 48.1, 33. 9, 14.0, 13.5. ${}^{19}F$ NMR (281 MHz, CDCl₃) δ -115.07. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 419.1265 C₂₃H₂₁O₅FNa, found 419.1262.

Diethyl 1-(4-chlorophenyl)-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3ga**): New compound. white solid. 56 mg of **3ga** was obtained from **1g** (51 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 68% yield; m. p.134.5 – 136.7 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, *J* = 8.2 Hz, 1 H), 7.25 – 7.15 (m, 5 H), 7.15 – 6.99 (m, 2 H), 5.38 (s, 1 H), 4.43 – 4.16 (m, 2 H), 4.07 – 3.89 (m, 1 H), 3.84 – 3.66 (m, 1 H), 3.55 – 3.27 (m, 2 H), 1.30 (t, *J* = 7.1 Hz, 3 H), 0.89 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 168.6, 160.5, 158.5, 136.7, 133.3, 130.6, 128.1, 125.1, 123.4, 122.9, 120.6, 119.1, 111.9, 69.9, 62.1, 61.6, 48.3, 33.9, 14.0, 13.5. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 435.0970 C₂₃H₂₁O₅ClNa, found 435.0960.

Diethyl 1-(4-bromophenyl)-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3ha**): New compound. 51 mg of **3ha** was obtained from **1h** (60 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 56% yield; white solid. m. p. 145.3 – 148.9 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, *J* = 8.2 Hz, 1 H), 7.37 (d, *J* = 8.4 Hz, 2 H), 7.25 – 7.17 (m, 1 H), 7.17 – 7.00 (m, 4 H), 5.36 (s, 1 H), 4.45 – 4.15 (m, 2 H), 4.09 – 3.89 (m, 1 H), 3.85 – 3.65 (m, 1 H), 3.56 – 3.28 (m, 2 H), 1.30 (t, *J* = 7.1 Hz, 3 H), 0.89 (t, *J* = 7.1 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 168.6, 160.5, 158.5, 137.2, 131.1, 130.9, 125.1, 123.4, 122.9, 121.5, 120.5, 119.1, 111.9, 69.8, 62.1,

61.6, 48.3, 33.9, 14.0, 13.5. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 479.0465 C₂₃H₂₁O₅BrNa, found 479.0471.

Diethyl 1-(4-cyanophenyl)-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3ia**): New compound. 56 mg of **3ia** was obtained from **1i** (49 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 70% yield; white solid. m. p. 162.4 – 165.3 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.56 (d, *J* = 8.3 Hz, 2 H), 7.48 (d, *J* = 8.3 Hz, 1 H), 7.38 (d, *J* = 8.2 Hz, 2 H), 7.27 – 7.18 (m, 1 H), 7.12 (t, *J* = 7.5 Hz, 1 H), 7.00 (d, *J* = 7.5 Hz, 1 H), 5.45 (s, 1 H), 4.46 – 4.15 (m, 2 H), 4.10 – 3.91 (m, 1 H), 3.81 – 3.64 (m, 1 H), 3.50 – 3.30 (m, 2 H), 1.30 (t, *J* = 7.1 Hz, 3 H), 0.86 (t, *J* = 7.1 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 170.7, 168.4, 160.5, 158.8, 144.0, 131.8, 130.1, 124.8, 123.6, 123.1, 119.8, 118.9, 118.7, 112.1, 111.4, 69.9, 62.4, 61.7, 48.8, 34.0, 14.0, 13.5. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 426.1312 C₂₄H₂₁O₅NNa, found 426.1311.

Diethyl 1-(3-fluorophenyl)-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3ja**): New compound. 53 mg of **3ja** was obtained from **1j** (48 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 67% yield; white solid. m. p. 137.3 – 138.8 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, *J* = 8.2 Hz, 1H), 7.25 – 7.16 (m, 2 H),7.14 – 7.06 (m, 2 H), 7.03 – 6.90 (m, 3 H), 5.39 (s, 1 H), 4.44 – 4.17 (m, 2 H), 4.06 – 3.92 (m, 1 H), 3.83 – 3.68 (m, 1 H), 3.54 – 3.29 (m, 2 H), 1.30 (t, *J* = 7.1 Hz, 3 H), 0.89 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 170.9, 168.5, 162.6 (d, ¹*J*_{C-F} = 245.7 Hz), 160.5, 158.5, 140.9 (d, ³*J*_{C-F} = 7.0 Hz), 129.4 (d, ³*J*_{C-F} = 8.2 Hz), 125.1, 124.8 (d, ⁴*J*_{C-F} = 2.8 Hz), 123.4, 122.9, 120.6, 119.2, 116.2 (d, ²*J*_{C-F} = 21.7 Hz), 114.4 (d, ²*J*_{C-F} = 21.2 Hz), 111.9, 69.9, 62.2, 61.6, 48.6 (d, ⁴*J*_{C-F} = 1.7 Hz), 33.9, 14.0, 13.4. ¹⁹F NMR (281 MHz,

CDCl₃) δ -113.66. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 419.1265 C₂₃H₂₁O₅FNa, found 419.1269.

3ka

Diethyl 1-(2-fluorophenyl)-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3ka**): New compound. 32 mg of **3ka** was obtained from **1k** (48 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) with the assistance of *fac*-lr(ppy)₃ (1.3 mg, 0.002 mmol) in 40% yield; white solid. m. p. 133.4 – 134.6 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, *J* = 8.2 Hz, 1 H), 7.25 – 7.14 (m, 2 H), 7.14 – 6.99 (m, 3 H), 7.00 – 6.83 (m, 2 H), 5.77 (s, 1 H), 4.42 – 4.18 (m, 2 H), 4.19 – 4.04 (m, 1 H), 3.87 – 3.70 (m, 1 H), 3.53 – 3.26 (m, 2 H), 1.29 (t, *J* = 7.1 Hz, 3 H), 0.92 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 170.7, 168.5, 161.1 (d, ¹*J*_{C-F} = 248.6 Hz), 160.6, 158.3, 130.2, 129.1 (d, ³*J*_{C-F} = 8.2 Hz), 125.6 (d, ²*J*_{C-F} = 14.1 Hz), 125.0, 123.8 (d, ³*J*_{C-F} = 3.6 Hz), 123.4, 122.9, 120.6, 119.1, 115.1 (d, ²*J*_{C-F} = 22.4 Hz), 111.9, 69.4, 62.1, 61.6, 33.9, 14.0, 13.4. ¹⁹F NMR (281 MHz, CDCl₃) δ -115.61. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 419.1265 C₂₃H₂₁O₅FNa, found 419.1266.

Diethyl 1-(thiophen-3-yl)-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3la**): New compound. 42 mg of **3la** was obtained from **1l** (45 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 55% yield; white solid. m. p. 136.1 –137.0 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.46 (d, *J* = 8.1 Hz, 1 H), 7.24 – 7.10 (m, 4 H), 7.06 (d, *J* = 2.3 Hz, 1 H), 6.95 (dd, *J* = 4.9, 1.1 Hz, 1 H), 5.46 (s, 1 H), 4.45 – 4.15 (m, 2 H), 4.02 – 3.90 (m, 1 H), 3.87 – 3.76 (m, 1 H), 3.59 – 3.48 (m, 1 H), 3.43 – 3.29 (m, 1 H), 1.30 (t, *J* = 7.1 Hz, 3 H), 0.96 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.1, 168.9, 160.4, 158.1, 139.0, 128.6, 125.3, 124.8, 123.5, 123.3, 122.8, 121.1, 119.3, 111.9, 69.6, 62.0, 61.6, 44.1, 33.8, 14.0, 13.6. HRMS (ESI) m/z: [M + Na]⁺ Calcd

for 407.0924 C₂₁H₂₀O₅SNa, found 407.0925.

Diethyl 1-(tert-butyl)-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3ma**): New compound. 57 mg of **3ma** was obtained from **1m** (40 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 80% yield; slightly yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.50 – 7.35 (m, 2 H), 7.23 – 7.11 (m, 2 H), 4.40 – 4.29 (m, 1 H), 4.22 – 3.99 (m, 4 H), 3.99 – 3.85 (m, 1H), 3.51 – 3.28 (m, 1 H), 1.29 (t, J = 7.2 Hz, 3 H), 1.20 (t, J = 7.1 Hz, 3 H), 1.03 (s, 9 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.6, 169.6, 159.4, 159.2, 127.2, 122.8, 122.7, 122.0, 120.7, 111.7, 68.5, 61.9, 61.5, 55.4, 36.1, 34.0, 28.5, 13.8, 13.7. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 381.1672 C₂₁H₂₆O₅Na, found 381.1680.

Diethyl 7-methyl-1-phenyl-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3na**): New compound. 45 mg of **3na** was obtained from **1n** (47 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 58% yield; white solid. m. p.120.3 – 122.6 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.38 (d, *J* = 8.4 Hz, 1 H), 7.30 – 7.17 (m, 5 H), 7.04 (d, *J* = 7.3 Hz, 1 H), 6.90 (s, 1 H), 5.40 (d, *J* = 1.3 Hz, 1 H), 4.47 – 4.18 (m, 2 H), 4.14 – 3.95 (m, 1 H), 3.85 – 3.65 (m, 1 H), 3.50 – 3.30 (m, 2 H), 2.35 (s, 3 H), 1.33 (t, *J* = 7.1 Hz, 3 H), 0.89 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 168.8, 158.9, 158.4, 138.2, 132.3, 129.2, 127.9, 127.4, 125.3, 124.3, 120.8, 119.2, 111.3, 70.0, 62.0, 61.4, 48.9, 33.9, 21.2, 14.0, 13.4. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 415.1516 C₂₄H₂₄O₅Na, found 415.1516.

Diethyl 7-methoxy-1-phenyl-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3oa**): New compound. 42 mg of **3oa** was obtained from **1o** (50 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 52% yield; white solid. m. p. 80.1 – 82.2 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.34 (d, J = 9.0 Hz, 1 H), 7.25 – 7.14 (m, 5 H), 6.78 (dd, J = 9.0, 2.6 Hz, 1 H), 6.51 (d, J = 2.6 Hz, 1 H), 5.37 (s, 1 H), 4.41 – 4.16 (m, 2 H), 4.04 – 3.90 (m, 1 H), 3.79 – 3.59 (m, 4 H), 3.44 – 3.24 (m, 2 H), 1.29 (t, J = 7.1 Hz, 3 H), 0.85 (t, J = 7.2 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 168.7, 159.2, 155.8, 155.3, 138.0, 129.2, 128.0, 127.5, 125.9, 121.0, 112.1, 111.2, 102.5, 69.9, 62.0, 61.5, 55.8, 48.8, 33.9, 14.0, 13.4. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 431.1465 C₂₄H₂₄O₆Na, found 431.1465.

Diethyl 7-fluoro-1-phenyl-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3pa**): New compound. 27 mg of **3pa** was obtained from **1p** (48 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 34% yield; white solid. m. p. $112.2 - 113.6 \, {}^{\circ}$ C. ¹H NMR (300 MHz, CDCl₃) δ 7.37 (dd, J = 9.0, 4.1 Hz, 1 H), 7.25 - 7.15 (m, 5 H), 6.93 - 6.87 (m, 1 H), 6.72 (dd, J = 8.5, 2.6 Hz, 1 H), 5.36 (s, 1 H), 4.42 - 4.17 (m, 2 H), 4.08 - 3.92 (m, 1 H), 3.86 - 3.58 (m, 1 H), 3.44 - 3.24 (m, 2 H), 1.29 (t, J = 7.1 Hz, 3 H), 0.83 (t, J = 7.2 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.0, 168.6, 159.1 (d, ¹*J*C-F = 238.6 Hz), 160.3, 156.6, 137.7, 129.1, 128.1, 127.6, 126.0 (d, ³*J*C-F = 10.8 Hz), 121.3 (d, ⁴*J*C-F = 3.8 Hz), 112.3 (d, ³*J*C-F = 9.7 Hz), 110.6 (d, ²*J*C-F = 26.3 Hz), 105.2(d, ²*J*C-F = 25.4 Hz), 69.8, 62.1, 61.6, 48.7, 34.0, 14.0, 13.4. ¹⁹F NMR (281 MHz, CDCl₃) δ -120.40. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 419.1265 C₂₃H₂₁O₅FNa, found 419.1267.

Diethyl 7-chloro-1-phenyl-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3qa**): New compound. 30 mg of **3qa** was obtained from **1q** (51 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 36% yield; white solid. m. p. 113.4 – 115.1 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.41 (d, *J* = 8.8 Hz, 1 H), 7.30 – 7.16 (m, 6 H), 7.07 (d, *J* = 2.1 Hz, 1 H), 5.40 (s, 1 H), 4.46 – 4.21 (m, 2 H), 4.11 – 3.98 (m, 1 H), 3.82 – 3.66 (m, 1 H), 3.49 – 3.30 (m, 2 H), 1.34 (t, *J* = 7.1 Hz, 3 H), 0.88 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.0, 168.6, 160.0, 158.8, 137.7, 129.1, 128.5, 128.1, 127.6, 126.5, 123.4, 120.8, 119.0, 112.8, 69.8, 62.1, 61.6, 48.7, 33.9, 14.0, 13.4. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 435.0970 C₂₃H₂₁O₅ClNa, found 435.0970.

Diethyl 6-fluoro-1-phenyl-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (3ra): New compound. 29 mg of 3ra was obtained from 1r (48 mg, 0.2 mmol) and 2a (71 mg, 0.3 mmol) in 36% yield; white solid. m. p. 123.7– 124.5 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.19 (m, 6 H), 6.99 (dd, *J* = 8.5, 5.5 Hz, 1 H), 6.90 – 6.86 (m, 1 H), 5.39 (d, *J* = 1.3 Hz, 1 H), 4.43 – 4.21 (m, 2 H), 4.09 – 3.93 (m, 1 H), 3.77 – 3.65 (m, 1 H), 3.44 – 3.29 (m, 2 H), 1.32 (t, *J* = 7.1 Hz, 3 H), 0.86 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (125 MHz, CDCl₃) δ 171.1, 168.7, 160.3 (d, ³*J*_{C-F} = 13.3 Hz), 160.1 (d, ¹*J*_{C-F} = 241.5 Hz), 158.8 (d, ⁴*J*_{C-F} = 3.7 Hz), 137.9, 129.2, 128.0, 127.6, 121.7 (d, ⁵*J*_{C-F} = 1.5 Hz), 120.9, 119.3 (d, ³*J*_{C-F} = 9.6 Hz), 110.8 (d, ²*J*_{C-F} = 23.6 Hz), 100.0 (d, ²*J*_{C-F} = 26.8 Hz), 70.0, 62.1, 61.5, 48.9, 34.0, 14.0, 13.4. ¹⁹F NMR (468 MHz, CDCl₃) δ -118.44. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 419.1265 C₂₃H₂₁O₅FNa, found 419.1265.

Diethyl 10-phenyl-8,10-dihydro-9H-cyclopenta[b]naphtho[1,2-d]furan-9,9-dicarboxylate (**3sa**): New compound. 47 mg of **3sa** was obtained from **1s** (54 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 55% yield; white solid. m. p. 157.3 - 160.8 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.88 (d, *J* = 8.1 Hz, 1 H), 7.69 (s, 2 H), 7.49 - 7.23 (m, 8 H), 5.70 (d, *J* = 1.8 Hz, 1 H), 4.50 - 4.11 (m, 3 H), 3.88 - 3.71 (m, 1 H), 3.58 - 3.38 (m, 2 H), 1.35 (t, *J* = 7.1 Hz, 3 H), 0.95 (t, *J* = 7.2 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 168.7, 157.7, 157.4, 138.5, 130.4, 129.4, 128.23, 128.19, 127.7, 127.0, 125.8, 124.7, 124.3, 122.6, 120.7, 112.8, 62.1, 61.6, 49.8, 33.7, 14.0, 13.5. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 451.1516 C₂₇H₂₄O₅Na, found 451.1522.

Diethyl 1-phenyl-1,3-dihydro-2H-benzo[b]cyclopenta[d]thiophene-2,2-dicarboxylate (**3ta**): New compound. 61 mg of **3ta** was obtained from **1t** (47 mg, 0.2 mmol) and **2a** (71 mg, 0.3 mmol) in 78% yield; white solid. m. p. 139.9 – 141.6 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.76 (d, *J* = 7.8 Hz, 1 H), 7.25 – 7.06 (m, 8 H), 5.47 (d, *J* = 1.3 Hz, 1 H), 4.41 – 4.12 (m, 3 H), 3.83 – 3.67 (m, 1 H), 3.57 – 3.37 (m, 2 H), 1.28 (t, *J* = 7.1 Hz, 3 H), 0.87 (t, *J* = 7.1 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.3, 168.8, 145.0, 139.8, 139.7, 138.1, 134.2, 129.2, 128.0, 127.4, 124.2, 123.6, 123.2, 121.8, 70.8, 62.0, 61.4, 52.8, 37.4, 14.0, 13.5. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 417.1131 C₂₃H₂₂O₄SNa, found 417.1139.

3ab

Diisopropyl 1-phenyl-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3ab**): New compound. 57 mg of **3ab** was obtained from **1a** (44 mg, 0.2 mmol) and **2b** (80 mg, 0.3 mmol) in 70% yield; white solid. m. p. 132.8 – 135.0 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.49 (d, $J = 8.2 \text{ Hz}, 1 \text{ H}, 7.30 - 7.18 \text{ (m, 6 H)}, 7.17 - 7.03 \text{ (m, 2 H)}, 5.40 \text{ (d, } J = 1.4 \text{ Hz}, 1 \text{ H}), 5.27 - 5.09 \text{ (m, 1 H)}, 4.65 - 4.36 \text{ (m, 1 H)}, 4.20 - 4.00 \text{ (m, 1 H)}, 3.48 - 3.26 \text{ (m, 1 H)}, 1.33 \text{ (t, } J = 6.0 \text{ Hz}, 6 \text{ H}), 1.06 \text{ (d, } J = 6.2 \text{ Hz}, 3 \text{ H}), 0.64 \text{ (d, } J = 6.3 \text{ Hz}, 3 \text{ H}). ^{13}\text{C} \text{ NMR} (75 \text{ MHz}, \text{CDCl}_3) \delta 170.7, 168.3, 160.4, 158.2, 138.3, 129.3, 128.0, 127.4, 125.3, 123.2, 122.7, 121.6, 119.2, 111.8, 69.8, 69.52, 69.46, 48.8, 34.3, 21.6, 21.5, 21.3, 20.7. HRMS (ESI) m/z: [M + Na]^+ Calcd for 429.1672 C_{25}H_{26}O_5Na, found 429.1680.$

Dimethyl 1-phenyl-1,3-dihydro-2H-cyclopenta[b]benzofuran-2,2-dicarboxylate (**3ac**): 28 mg of **3ac** was obtained from **1a** (44 mg, 0.2 mmol) and **2c** (63 mg, 0.3 mmol) with the assistance of *fac*-Ir(ppy)₃ (1.3 mg, 0.002 mmol) in 40% yield; white solid. m. p. 152.8 – 154.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.3 Hz, 1 H), 7.28 – 7.20 (m, 6 H), 7.15 – 7.06 (m, 2 H), 5.43 (d, *J* = 1.1 Hz, 1 H), 4.09 – 3.94 (m, 1 H), 3.85 (s, 3 H), 3.45 – 3.34 (m, 1 H), 3.12 (s, 3 H). ¹³C NMR (75 MHz, CDCl₃) δ 171.6, 169.1, 160.5, 158.3, 137.9, 129.1, 128.0, 127.5, 125.3, 123.3, 122.9, 120.8, 119.3, 111.9, 70.1, 53.2, 52.1, 49.1, 33.9.

Dimethyl 2-((3-benzoylbenzofuran-2-yl)methyl)malonate (**3ac**'): New compound. 33 mg of **3ac'** was obtained from **1a** (44 mg, 0.2 mmol) and **2c** (63 mg, 0.3 mmol) with the assistance of *fac*-Ir(ppy)₃ (1.3 mg, 0.002 mmol) in 45% yield; slightly yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.80 (m, 2 H), 7.62 (t, *J* = 7.4 Hz, 1 H), 7.52 – 7.45 (m, 3 H), 7.33 – 7.27 (m, 1 H), 7.24 (d, *J* = 8.0 Hz, 1 H), 7.21 – 7.15 (m, 1 H), 4.02 (t, *J* = 7.6 Hz, 1 H), 3.70 (s, 6 H), 3.59 (d, *J* = 7.6 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃) δ 191.4, 168.5, 160.1, 153.7, 138.8, 133.0, 129.2, 128.5, 126.4, 124.8, 123.7, 121.5, 118.1, 111.2, 52.8, 50.0, 27.4. HRMS (ESI) m/z: [M + Na]⁺ Calcd for 389.0996 C₂₁H₁₈O₆Na, found 389.0995.

Ethyl 2-methyl-1-phenyl-2,3-dihydro-1H-cyclopenta[b]benzofuran-2-carboxylate (**3ad**): New compound. 29 mg of **3ad** was obtained from **1a** (44 mg, 0.2 mmol) and **2d** (54 mg, 0.3 mmol) with the assistance of *fac*-Ir(ppy)₃ (1.3 mg, 0.002 mmol) in 46% yield. **One isomer:** slightly yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.2 Hz, 1H), 7.24 – 7.16 (m, 4H), 7.12 – 7.07 (m, 4H), 4.18 (d, J = 2.1 Hz, 1H), 3.90 (dd, J = 16.5, 2.2 Hz, 1H), 3.65 – 3.45 (m, 2H), 2.74 (d, J = 16.5 Hz, 1H), 1.72 (s, 3H), 0.86 (t, J = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 173.9, 160.3, 160.2, 139.6, 128.3, 127.9, 127.1, 125.8, 123.0, 122.7, 120.8, 119.1, 111.8, 60.6, 60.4, 55.4, 36.3, 27.6, 13.6. HRMS (ESI) m/z: [M + H]⁺ Calcd for 321.1485 C₂₁H₂₁O₃, found 321.1486. **Another isomer:** slightly yellow oil. ¹H NMR (400 MHz,CDCl₃) δ 7.51 – 7.45 (m, 1H), 7.34 – 7.27 (m, 3H), 7.25 – 7.19 (m, 3H), 7.15 – 7.09 (m, 2H), 4.92 (t, J = 2.0 Hz, 1H), 4.28 (q, J = 6.9 Hz, 2H), 3.67 (dd, J = 16.4, 1.8 Hz, 1H), 2.85 (dd, J = 16.4, 2.1 Hz, 1H), 1.35 (t, J = 7.1 Hz, 3H), 1.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.8, 160.3, 159.8, 138.4, 129.2, 128.1, 127.1, 126.0, 123.0, 122.7, 120.5, 119.4, 111.8, 61.2, 57.9, 50.2, 37.9, 23.1, 14.2. HRMS (ESI) m/z: [M + H]⁺ Calcd for 321.1485 C₂₁H₂₁O₃, found 321.1483.

1-(2-Methyl-1-phenyl-2,3-dihydro-1H-cyclopenta[b]benzofuran-2-yl)ethan-1-one (3ae): known compound. 25 mg of **3ae** was obtained from **1a** (44 mg, 0.2 mmol) and **2e** (45 mg, 0.3 mmol) with the assistance of *fac*-Ir(ppy)₃ (1.3 mg, 0.002 mmol) in 43% yield. **One isomer:** white solid. m. p. 108.9 - 109.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.2 Hz, 1H), 7.25 - 7.16 (m, 4H), 7.15 - 7.07 (m, 4H), 4.22 (d, *J* = 2.1 Hz, 1H), 3.93 (dd, *J* = 16.7, 2.1 Hz, 1H), 2.63 (d, *J* = 16.7 Hz, 1H), 1.70 (s, 3H), 1.70 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 209.3, 160.2, 159.8, 139.9, 128.5, 128.0, 127.3, 125.6, 123.0, 122.7, 121.5, 118.9, 111.8, 66.5, 54.7, 35.0, 27.5, 26.8. **Another isomer:** white solid. m. p. 130.9 - 131.1 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.2 Hz, 1H), 7.33 - 7.27 (m, 3H), 7.24 - 7.16 (m, 3H), 7.14 - 7.06 (m, 2H), 4.83 (t, *J* = 1.8 Hz, 1H), 3.52 (dd, *J* = 16.3, 1.6 Hz, 1H), 2.81 (dd, *J* = 16.3, 2.2 Hz, 1H), 2.31 (s, 3H), 0.99 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 209.9, 160.4, 159.3, 138.6, 129.2, 128.2, 127.1, 125.9, 123.1, 122.7, 121.0, 119.4, 111.8, 64.1, 48.2, 36.7, 25.8, 22.4.

,́H [∼]CO₂Me

Methyl 1-phenyl-2,3-dihydro-1H-cyclopenta[b]benzofuran-2-carboxylate (**3af**): New compound. 22 mg of **3af** was obtained from **1a** (44 mg, 0.2 mmol) and **2f** (46 mg, 0.3 mmol) with the assistance of *fac*-lr(ppy)₃ (1.3 mg, 0.002 mmol) in 38% yield; white solid. m. p. 117.5 – 118.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.42 (m, 1H), 7.25 – 7.16 (m, 4H), 7.13 – 7.06 (m, 4H), 4.74 (dd, *J* = 9.1, 2.4 Hz, 1H), 4.30 – 4.17 (m, 1H), 3.63 – 3.50 (m, 1H), 3.21 (s, 3H), 3.13 – 3.04 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 172.1, 161.1, 160.5, 139.0, 128.4, 128.1, 127.2, 125.4, 123.1, 122.8, 121.7, 119.1, 111.9, 53.2, 51.3, 45.9, 27.6. HRMS (ESI) m/z: [M + K]⁺ Calcd for 331.0731 C₁₉H₁₆KO₃, found 331.0724.

Copies of ¹H and ¹³C{¹H} NMR Spectra of All the Products ¹H NMR (300 MHz, CDCI₃) Spectrum of 3aa

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3aa

¹H NMR (300 MHz, CDCI₃) Spectrum of 3ba

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3ba

¹H NMR (300 MHz, CDCI₃) Spectrum of 3ca

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3ca

¹H NMR (300 MHz, CDCI₃) Spectrum of 3da

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3da

¹H NMR (300 MHz, CDCI₃) Spectrum of 3ea

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3ea

¹H NMR (300 MHz, CDCl₃) Spectrum of 3fa

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3fa

¹⁹F NMR (281 MHz, CDCI₃) Spectrum of 3fa

¹H NMR (300 MHz, CDCI₃) Spectrum of 3ga

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3ga

¹H NMR (300 MHz, CDCI₃) Spectrum of 3ha

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3ha

¹H NMR (300 MHz, CDCl₃) Spectrum of 3ia

¹³C{¹H} NMR (75 MHz, CDCl₃) Spectrum of 3ia

¹H NMR (300 MHz, CDCl₃) Spectrum of 3ja

S30

¹⁹F NMR (281 MHz, CDCI₃) Spectrum of 3ja

¹H NMR (300 MHz, CDCI₃) Spectrum of 3ka

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3ka

¹⁹F NMR (281 MHz, CDCl₃) Spectrum of 3ka

¹H NMR (300 MHz, CDCl₃) Spectrum of 3la

¹³C{¹H} NMR (75 MHz, CDCl₃) Spectrum of 3la

¹H NMR (300 MHz, CDCI₃) Spectrum of 3ma

¹³C{¹H} NMR (75 MHz, CDCl₃) Spectrum of 3ma

¹H NMR (300 MHz, CDCI₃) Spectrum of 3na

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3na

¹H NMR (300 MHz, CDCI₃) Spectrum of 3oa

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3oa

¹H NMR (300 MHz, CDCI₃) Spectrum of 3pa

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3pa

¹⁹F NMR (281 MHz, CDCI₃) Spectrum of 3pa

¹H NMR (300 MHz, CDCI₃) Spectrum of 3qa

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3qa

¹H NMR (500 MHz, CDCl₃) Spectrum of 3ra

¹³C{¹H} NMR (125 MHz, CDCI₃) Spectrum of 3ra

¹⁹F NMR (468 MHz, CDCl₃) Spectrum of 3ra

¹H NMR (300 MHz, CDCI₃) Spectrum of 3sa

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3sa

¹H NMR (300 MHz, CDCl₃) Spectrum of 3ta

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3ta

¹H NMR (300 MHz, CDCI₃) Spectrum of 3ab

¹³C{¹H} NMR (75 MHz, CDCl₃) Spectrum of 3ab

¹H NMR (300 MHz, CDCI₃) Spectrum of 3ac

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3ac

¹H NMR (300 MHz, CDCI₃) Spectrum of 3ac'

¹³C{¹H} NMR (75 MHz, CDCI₃) Spectrum of 3ac'

¹H NMR (400 MHz, CDCI₃) Spectrum of 3ae (One isomer)

