Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Advanced ¹⁹F-NMR Studies Shed New Light on Encapsulation of Isosteric Guests in the Hexameric Capsules of Resorcin[4]arenes and Pyrogallol[4]arenes

Sarit Slovak,^a Tamar Salem,^a Inbar Horin,^a Liat Avram,^{b*} and Yoram Cohen,^{a*}

^a School of Chemistry, The Sackler Faculty of Exact Sciences Tel Aviv University, Ramat Aviv, 6977801 Tel Aviv, Israel. ^b Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel. **Materials.** All starting materials, reagents, guest molecules and the deuterated solvents were purchased from Sigma-Aldrich and were used as received. Compounds **1** and **2** were prepared according to modifications of the previously published procedures.^{1,2}

General. ¹H NMR and ¹⁹F NMR spectra, diffusion NMR measurements and ¹⁹F-GEST NMR measurements were performed on 11.7T Avance III Bruker NMR spectrometer.

Diffusion NMR. For the diffusion measurements, the samples were placed in 4mm NMR tubes that were then placed coaxially in 5mm NMR tubes, which act as a thermal insulating system and increase the accuracy and reproducibility of the diffusion measurements by reducing the chance of convections in the sample. This precaution is more important when diffusion NMR experiments are performed on non-viscous solvents with low boiling points and heat capacities. Diffusion NMR were performed with a z-gradient system capable of producing maximal gradient pulses of about 50 gauss cm⁻¹. ¹H- and ¹⁹F-diffusion NMR experiments were performed using the longitudinal eddy currents delays (LED) pulse sequence.³ Sine-shaped pulse gradients, of 4ms duration, were incremented from 0.7 to 32.2 gauss cm⁻¹ in 10 steps, the pulse gradient separation was 50ms, and the t_e was set to 5ms. The diffusion coefficients were extracted from:

$$\ln I/I_0 = -\gamma^2 \delta^2 G^2 (2/\pi)^2 (\Delta - \delta/4) D = -bD$$

where I and I_0 are the echo intensity, in the presence and absence of the gradient pulse, respectively, γ is the gyromagnetic ratio, G is the pulse gradient strength, $2/\pi$ is a geometrical correction factor due to the sine shape of the pulse gradients used, δ is the duration of the pulse gradient, Δ is the time interval between the leading edges of the pulse gradient used, and D is the diffusion coefficient. The diffusion coefficients were extracted from the slope of the plot of ln I/I_0 versus the b value. All diffusion NMR data were acquired at 298K and were obtained in triplicate. The given values represent means \pm the standard deviation.

¹⁹**F-GEST.** ¹⁹**F-GEST** experiments were performed on 11.7T NMR instrument at 470MHz. A pre-saturation pulse with varying intensity and of 2sec of duration was applied prior to the 90° pulse. The frequency of the pre-saturation pulse was swept from $\Delta \omega = +3.2$ ppm to $\Delta \omega = -3.2$ ppm in 128 steps relative to the frequency of the free guest

that was set to 0ppm. In addition, a reference ¹⁹F-NMR spectrum (S₀) was collected with a pre-saturation pulse applied at $\Delta \omega$ of +15ppm. For each frequency offset (S_{$\Delta \omega$}), four scans were collected using a repetition time of 8sec, resulting in a collection time of 31sec per ¹⁹F-NMR spectrum. The total collection time of the entire GEST experiment was 70minutes. For k_{out} values estimation the z-spectra of the multi-B1 GEST experiments were fitted using the Bloch–McConnell equations, as recently described. ⁴⁻⁸ Simulations were performed on the z-spectra using custom-written scripts in MATLAB version 8.2.0.701 (The MathWorks, Natick, MA). The code for data fitting can be found at http://www.cest-sources.org/doku.php?id=start and can be found in the publication by Zaiss and Bachert.⁴⁻⁸

Table S1: Integration ratios of the signals of 1 and 2 (4.3-5ppm) vs. the signals of encapsulated 3 and 4, in C_6D_6 and $CDCl_3$ solutions of 30mM of 1 and 2 and 10mM of 3 and 4.

Sample	Normalized integration ratios of host signals at 4-5ppm vs signals of encapsulated guests ^a			
	#1	#2	#3	Average
1/3 in C ₆ D ₆	1:0.42	1:0.44	1:0.49	0.45±0.04
1/3 in CDCl₃	1:0.63	1:0.64	1:0.64	0.63±0.01
1/4 in C ₆ D ₆	1:0.28	1:0.27	1:0.30	0.28±0.02
1/4 in CDCl₃	NA	NA	NA	NA
2/3 in C ₆ D ₆	1:0.17	1:0.18	1:0.19	0.18±0.01
2/3 in CDCl₃	1:0.12	1:0.12	1:0.13	0.12±0.01
2/4 in C ₆ D ₆	1:0.40	1:0.41	1:0.40	0.40±0.01
2/4 in CDCl ₃	NA	NA	NA	NA

^a Taking into account that **4** has 3 hydrogens less than **3**.

For 1 in the C₆D₆ solutions, the encapsulation preference of 4 over 3 is 0.28/0.45 = 0.62, while for 2, in the same solvent, it is 0.40/0.18 = 2.22 resulting in a preference ratio of more than 3 for the two capsules.

Sample	peak (ppm)	¹ H Diffusion coefficients		
		[x10 ⁻⁵ cm ² s ⁻¹]		
		No CD₃OD	With CD ₃ OD	
	-0.06 (encapsulated 3)	0.24 ± 0.01	NA	
1/3 in	1.9 (free 3)	1.00 ± 0.01	1.10 ± 0.02ª	
CDCl₃	4.3 (1)	0.25 ± 0.01	0.41 ± 0.01 ^a	
	7.28 (CHCl ₃)	1.96 ± 0.05	2.30 ± 0.02 ^a	
1/4 in	2.0 (free 4)	0.95 ± 0.01		
CDCl ₃	4.3 (1)	0.25 ± 0.01		
	7.28 (CHCl ₃)	1.90 ± 0.02		
	0.37 (encapsulated 3)	0.23 ± 0.01	NA	
2/3 in	1.9 (free 3)	1.06 ± 0.01	0.94 ± 0.01^{b}	
CDCl₃	4.3 (2)	0.23 ± 0.01	0.37 ± 0.01 ^b	
	7.28 (CHCl ₃)	2.34 ± 0.01	1.91 ± 0.17 ^b	
2/4 in CDCl₃	2.0 (free 4)	1.01 ± 0.01		
	4.4 (2)	0.23 ± 0.01		
	7.28 (CHCl ₃)	2.29 ± 0.02		

Table S2. ¹H Diffusion coefficients for representative peaks of **1**, **2**, **3** and **4** (500MHz, 298K) in the CDCl₃ solutions of 30mM of **1** or **2** and 10mM of **3** and **4**.

^a For disruption of hexameric capsules of 1/3 in CDCl₃ 45µl of CD₃OD were added. ^b For disruption of hexameric capsule of 2/3 in CDCl₃ 150µl of CD₃OD were added.

Sample	Peak (ppm)	¹⁹ F Diffusion coefficients [x10 ⁻⁵ cm ² s ⁻¹]
1/4 in C ₆ D ₆	-143 (free 4)	0.96 ± 0.01
2/4 in	-145.7 (encapsulated 4)	0.21 ± 0.01
C_6D_6	-143 (free 4)	0.98 ± 0.01
1/4 in CDCl₃	-143 (free 4)	0.93 ± 0.01ª
2/4 in CDCl₃	-143 (free 4)	1.03 ± 0.01

Table S3. ¹⁹F Diffusion coefficients of 4 (470MHz, 298K) in the C_6D_6 and $CDCl_3$ solutions of 30mM of 1 or 2 and 10mM of 4.

^a Partial overlap with the small signal of the encapsulated guest4.

Figure S1. ¹H-NMR spectra (500MHz, 298K) of the solutions of 30mM of 1 and 100mM of 3 (a,b) and 4 (c, d) in C_6D_6 (a, c) and $CDCl_3$ (b, d). The * symbols represent signals of the higher aggregates of 1 in C_6D_6 .

Figure S2. ¹H-NMR spectra (500MHz, 298K) of the solutions of 30mM of 2 and 100mM of 3 (a, b) and 4 (c, d) in C_6D_6 (a, c) and $CDCl_3$ (b, d).

Figure S3. ¹H-NMR spectra (500MHz, 298K) of the C_6D_6 solution of 30mM of **2** and 100mM of **4** a) before and after addition of b) 2µl, c) 4µl, d) 6µl, e) 8µl, f) 10µl, g) 12µl and h) 18µl CD₃OD.

Sample	Peak (ppm)	¹ H Diffusion coefficients [x10 ⁻⁵ cm ² s ⁻¹]			
		No CD₃OD	With 8µl CD₃OD	With 12µl CD₃OD	With 18µl CD₃OD
2/4 in C ₆ D ₆	-0.13 (encapsulated 4)	0.20 ± 0.01	NA	NA	NA
	1.7 (free 4)	0.80 ± 0.01	0.91 ± 0.01	0.91 ± 0.01	0.96 ± 0.01
	4.7 (2)	0.19 ± 0.01	0.19 ± 0.01	0.18 ± 0.01	0.22 ± 0.01
	7.15 (C ₆ H ₆)	1.77 ± 0.01	1.97 ± 0.01	1.94 ± 0.01	2.13 ± 0.02

Table S4. ¹H Diffusion coefficients for representative peaks of **2**, and **4** (500MHz, 298K) in the C_6D_6 solution of 30mM of **2** and 100mM of **4**.

Table S5. ¹⁹F Diffusion coefficients of **4** (470MHz, 298K) in the C_6D_6 solution of 30mM of **2** and 100mM of **4** before and after addition of methanol.

Sample	Peak (ppm)	¹⁹ F Diffusion coefficients [x10 ⁻⁵ cm ² s ⁻¹]			
		No CD₃OD	With 8µl CD₃OD	With 12µl CD₃OD	With 18µl CD₃OD
2/4 in	-145.7 (encapsulated 4)	0.18 ± 0.01	NA	NA	NA
C_6D_6	-143.0 (free 4)	0.81 ± 0.01	0.92 ± 0.01	0.91 ± 0.01	0.96 ± 0.01

Figure S4. ¹⁹F 2D NOESY experiment performed on the C_6D_6 solution of 30mM of **2** and 10mM of **4** (470MHz, 298K) after addition of 8µl of CD₃OD. The spectra was collected 18hours after sample preparation.

4. References

- (1) Avram, L.; Cohen, Y. J. Am. Chem. Soc. 2002, 124, 15148-15149.
- (2) Avram, L.; Cohen, Y. J. Am. Chem. Soc., 2004, 126, 11556-11563.
- (3) Gibbs, S. J.; Johnson, C. S. Jr., J. Magn. Reson., 1991, 93, 395-402.
- (4) M. Zaiss, P. Bachert, NMR Biomed., 2013, 26, 507-518.

(5) M. Zaiss, Z. Zu, J. Xu, P. Schuenke, D. F. Gochberg, J. C. Gore, M. E. Ladd, P. Bachert, *NMR Biomed.*, **2015**, 28, 217-230.

(6) M. Zaiss, G. Angelovski, E. Demetriou, M. T. McMahon, X. Golay, K. Scheffler, *Magn. Reson. Med.*, **2018**, 79, 1708-1721.

(7) L. Avram, V. Havel, R. Shusterman-Krush, M. A. Iron, M. Zaiss, V. Sindelar, A. Bar-Shir, *Chem. Eur. J.*, **2019**, 25, 1687-1690.

(8) R. Shusterman-Krush, L. Grimm, L. Avram, F. Biedermann, A. Bar-Shir, *Chem. Sci.*, **2021**, 12, 865-871.