Cyclization reactions of 1,6-dienes and 1,6-enynes by dual cobalt photocatalysis

Pei-Ting Li, Zi-Fa Shi and Wei Yu*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

Supplementary Information

Table of Contents

1. General information	S2
2. Preparation of the substrates	S3
3. Synthesis and characterization of the photocatalysts	S6
4. Optimization of the reaction conditions	S9
5. Experimental procedures	S12
6. Mechanistic studies	S13
7. Characterization Data of Products	S26
8. References	
9. Copies of ¹ H NMR and ¹³ C NMR spectra	

1. General information

The ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker AVANCE III-400 MHz, a Bruker AVANCE III HD 400 MHz, or an INOVA600 MHz spectrometer with CDCl₃ or DMSO- d_6 as the solvent. In CDCl₃, the chemical shifts in 1H NMR spectra were determined with Si(CH_3)_4 as the internal standard ($\delta=0.00$ ppm); the chemical shifts in ¹³C NMR spectra were determined based on the chemical shift of CDCl₃ (δ = 77.00 ppm). In DMSO-*d*₆, the chemical shifts in ¹H NMR spectra and ¹³C NMR spectra were determined based on the chemical shift of DMSO- d_6 ($\delta =$ 2.50 ppm for ¹H NMR spectra and $\delta = 39.60$ ppm for ¹³C NMR spectra, respectively). The ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m) or broad (br). The high resolution mass spectra (HRMS) were measured on a Thermo Scientific ORBITRAP ELITE by ESI. Melting points (m.p.) were measured on an XT-4 melting point apparatus and are uncorrected. Luminescence quenching experiments were conducted on a RF-5301PC spectrofluorophotometer. Cyclic voltammetry data were measured at a CORRTEST potentiostat. Thin layer chromatography (TLC) analyses were performed using Merck silica gel 60 F254 plates and visualized under UV light. Flash column chromatography (FCC) was conducted on silica gel (200-300 mesh). Anhydrous acetonitrile was purchased from Energy Chemical and used without further treatment. Deuterium oxide was purchased from J&K Scientific and acetonitrile-d₃ was purchased from Energy Chemical. Unless otherwise noted, all other materials were obtained from commercial suppliers, and were used without further purification.

A Kessil PR 160 L blue LED lamps (427 nm, 40 W) was used as the light source, the reaction vessel is a 15 mL common glass tube (inner diameter: 1.5 cm), which was put into the reactor at the distance of about 5.0 cm from the light source. The reactor was used to keep the reaction temperature constant.

Figure S1 The photoreaction setup.

2. Preparation of the substrates

2.1 Synthesis of 1a¹

BocNHTs
$$\xrightarrow{R_2CO_3, Ar, DMF, rt}$$
 \xrightarrow{Tr}_{Ts} $\xrightarrow{N_Boc}$ \xrightarrow{TFA} \xrightarrow{NH}_{Ts} $\xrightarrow{R_2CO_3, Ar, DMF, rt}$ $\xrightarrow{MeO_2C}$ \xrightarrow{N}_{Ts} \xrightarrow{N}_{Ts}

Step 1: To a stirred solution of *tert*-butyl tosylcarbamate (1.5 g, 5.5 mmol) and prenyl bromide (989 mg, 1.2 equiv) in DMF (15 mL) was added K₂CO₃ (1.53 g, 2.0 equiv) and the mixture was stirred at room temperature for 12 h. After the reaction was complete as monitored by TLC analysis, 10 mL of water was added into the reaction mixture, and the product was extracted with ethyl acetate (3×20 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure on a rotary evaporator. The residual was treated with flash chromatography on silica gel (petroleum ether (PE)/ethyl acetate (EA) = 10/1, v/v) to give dimethyl 2-(3-methylbut-2-enyl)malonate (1.54 g, 82%) as a colorless oil.

Step 2: To a stirred solution of *tert*-butyl(3-methylbut-2-en-1-yl)(tosyl)carbamate (1.86 g, 5.5 mmol) in dichloromethane (DCM) (25 mL) was added trifluoroacetic acid (1.63 mL) at 0 °C. The reaction mixture was allowed to warm up to room temperature overnight. After the reaction was complete as monitored by TLC analysis, the reaction mixture was cooled down to 0 °C and quenched by slowly adding saturated NaHCO₃ aqueous solution. The product was extracted with DCM (3×20 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure on a rotary evaporator. The residual was treated with flash chromatography on silica gel (PE/EA = 5/1, v/v) to give 4-methyl-*N*-(3-methylbut-2-en-1-yl)benzenesulfonamide (0.59 g, 45%) as a colorless oil.

Step 3: To a stirred solution of 4-methyl-*N*-(3-methylbut-2-en-1-yl) benzenesulfonamide (700 mg, 2.9 mmol) and methyl 2-(bromomethyl)acrylate (628 mg, 1.2 equiv) in DMF (15 mL) was added K₂CO₃ (807 mg, 2.0 equiv) and the mixture was stirred at room temperature for 12 h. After the reaction was complete as monitored by TLC analysis, 10 mL of water was added into the reaction mixture, and the product was extracted with EA (3×20 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure on a rotary evaporator. The residual was treated with flash chromatography on silica gel (PE/ EA = 10/1, v/v) to give **1a** (798 mg, 81%) as a colorless oil.

1a-1o, 1aa, 3b, 3o and 3p were prepared following the same procedure.

2.2 Synthesis of 1p²

To a stirred solution of methyl 2-(hydroxymethyl)acrylate (1.50 g, 1.2 equiv) and (*Z*)-(3-bromoprop-1-en-1-yl)benzene (2.12 g, 1.0 equiv) in Et₂O (15 mL) was added Ag₂O (5.00 g, 2.0 equiv) at room temperature. The mixture was stirred under reflux overnight. After the reaction was complete as monitored by TLC analysis, the insoluble substance was filtered off through a pad of celite, and the filtrate was concentrated under reduced pressure on a rotary evaporator. The residual was treated with flash chromatography on silica gel (PE/EA = 20/1, v/v) to give **1p** (1.06 g, 35%) as a colorless oil.

1p, 1q and 1r were prepared following the same procedure.

Synthesis of 1u²

Step 1: To a stirred solution of dimethyl malonate (2.64 g, 20.0 mmol) and prenyl bromide (3.28 g, 1.1 equiv) in DMF (25 mL) was added K₂CO₃ (3.00 g, 1.1 equiv) at room temperature. The mixture was stirred for 12 h. After the reaction was complete as monitored by TLC analysis, 10 mL of water was added into the reaction mixture, and the product was extracted with EA (3×20 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure on a rotary evaporator. The residual was treated with flash chromatography on silica gel (PE/EA = 10/1, v/v) to give dimethyl 2-(3-methylbut-2-enyl)malonate (3.08 g, 77%) as a colorless oil.

Step 2: To a suspension of NaH (60 % dispersion in mineral oil, 554 mg, 1.5 equiv) in dry THF (25 mL) was added slowly dimethyl 2-(3-methylbut-2-enyl)malonate (3.08 g, 15.4 mmol) at 0 °C. After the mixture was stirred for 1 h, ethyl 2-(bromomethyl)-acrylate (3.56 g, 1.2 equiv) was added into it. The reaction mixture was stirred overnight at room temperature. After the reaction was complete as monitored by TLC analysis, 10 mL of water was added into the reaction mixture, and the product was extracted with EA (3×20 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure on a rotary evaporator. The residual was treated with flash chromatography on silica gel (PE/EA = 20/1, v/v) to give **1u** (3.91 g, 81%) as a colorless oil.

1s-1z and 3t-3v were prepared following the same procedure.

2.4 Synthesis of 3a³

Step 1: To a stirred solution of prop-2-yn-1-amine (500 mg, 9.1 mmol), Et₃N (3.8 mL, 3.0 equiv) in DCM (20 mL) was slowly added 4-methoxybenzenesulfonyl chloride (2.10 g, 1.2 equiv) at 0 °C. The reaction mixture was further stirred at room temperature overnight. After the reaction was complete as monitored by TLC analysis, 10 mL of water was added into the reaction mixture, and the product was extracted with EA (3×20 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure on a rotary evaporator. The residual was treated with flash chromatography on silica gel (PE/EA = 8/1, v/v) to give 4-methyl-*N*-(prop-2-yn-1-yl)- benzenesulfonamide (1.24 g, 66%) as a white solid.

Step 2: То stirred solution of the sulfonamide above а 4-methyl-N-(prop-2-yn-1-yl)benzenesulfonamide (600 mg, 2.9 mmol) in acetone (15 mL) was added methyl 2-(bromomethyl)acrylate (0.45 mL, 1.3 equiv) and K₂CO₃ (1.20 g, 3.0 equiv). The mixture was stirred under reflux for 10 h. After the reaction was complete as monitored by TLC analysis, 10 mL of water was added into the reaction mixture, and the product was extracted with DCM (3 \times 20 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure on a rotary evaporator. The residual was treated with flash chromatography on silica gel (PE/EA) = 5/1, v/v) to give **3a** (871 mg, 99%) as a white solid.

2.5 Synthesis of 3c⁴

Step 1: To a stirred solution of 4-methyl-*N*-(prop-2-yn-1-yl)benzenesulfonamide (837 mg, 4.0 mmol) and iodobenzene (979 mg, 1.2 equiv) in THF-Et₃N (15 mL, THF/Et₃N = 1:1, v/v) was added PdCl₂(PPh₃)₂ (56 mg, 0.02 equiv) and CuI (30 mg, 0.04 equiv). The reaction mixture was stirred at room temperature overnight under an argon atmosphere. After the reaction was complete as monitored by TLC analysis, 10 mL of water was added into the reaction mixture, and the product was extracted with DCM

 $(3 \times 20 \text{ mL})$. The combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure on a rotary evaporator. The residual was treated with flash chromatography on silica gel (PE/EA = 5/1, v/v) to give 4-methyl-*N*-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (684 mg, 60%) as a white solid.

3c was prepared from 4-methyl-*N*-(3-phenylprop-2-yn-1-yl)benzenesulfonamide in the same way as that for step 2 in the synthesis of **3a** (800 mg, 87%).

3c–3n, 3q–3s and 3w were prepared following the same procedure.

3. Synthesis and characterization of the photocatalysts

3.1 Synthesis of the photocatalysts

To a stirred solution of (4-(diphenylamino)phenyl)boronic acid (1.25 g, 1.2 equiv), 4-(10-bromoanthracen-9-yl)pyridine (1.20 g, 3.6 mmol) and Pd(PPh₃)₄ (208 mg, 0.05 equiv) in toluene/EtOH/H₂O (20 mL/10 mL/5 mL) was added K₂CO₃ (1.99 g, 4.0 equiv). The mixture was stirred under reflux for 10 h. After the reaction was complete as monitored by TLC analysis, the reaction mixture was cooled to room temperature and diluted with H₂O (20 mL). The product was extracted with DCM (3 × 20 mL). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure on a rotary evaporator. The crude product was purified by flash chromatography on silica gel (PE/EA = 3/1, v/v) to give **PC1**⁵ as a yellow solid (1.50 g, 83%). mp 288–289 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.88–8.86 (m, 2H), 7.89–7.86 (m, 2H), 7.60–7.58 (m, 2H), 7.47–7.45 (m, 2H), 7.43– 7.38 (m, 4H), 7.36–7.33 (m, 4H), 7.32–7.25 (m, 8H), 7.11–7.08 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 149.9, 148.0, 147.7, 147.3, 138.2, 133.4, 132.0, 131.9, 129.9, 129.4, 129.1, 127.3, 126.6, 126.0, 125.7, 125.1, 124.7, 123.2, 122.9. HRMS (ESI): m/z calcd for C₃₇H₂₇N₂ [M+H]⁺ 499.2169, found 499.2171.

PC2 was prepared following the same procedure of **PC1**. **PC2** was obtained as a yellow solid (1.50 g, 84%). mp 235–236 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.11 (s, 1H), 7.98–7.97 (m, 2H), 7.91–7.89 (m, 2H), 7.50–7.48 (m, 2H), 7.42–7.39 (m, 4H), 7.34–7.26 (m, 12H), 7.08–7.06 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 147.7, 147.4, 141.7, 138.7, 132.5 (d, $J_{C-F} = 54.7$ Hz), 132.0, 131.9, 131.6 (d, $J_{C-F} = 3.2$ Hz), 129.9 (d, $J_{C-F} = 26.6$ Hz), 129.4, 127.5, 126.1, 125.7, 125.2, 124.8, 123.2, 122.9, 122.1, 123.4 (q, $J_{C-F} = 271.2$ Hz), 121.7 (q, $J_{C-F} = 11.3$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6. HRMS (ESI): m/z calcd for C₄₀H₂₆F₆N [M+H]⁺ 634.1964, found 634.1961.

PC4 was prepared according to method in the literature.⁶ **PC4** was obtained as a yellow solid (493 mg, 84%). mp 209–211 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 8.05 (d, *J* = 8.4 Hz, 2H), 7.83 (d, *J* = 8.8 Hz, 2H), 7.50–7.46 (m, 2H), 7.43–7.39 (m, 2H), 7.37–7.32 (m, 4H), 7.31–7.26 (m, 8H), 7.11–7.07 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 147.1, 136.9, 132.4, 132.0, 131.4, 130.4, 129.4, 128.3, 126.9, 126.4, 125.3, 125.1, 124.6, 123.1, 123.0. HRMS (ESI): m/z calcd for C₃₂H₂₄N [M+H]⁺ 422.1903, found 422.1907.

3.2 Characterization of photocatalysts

Figure S2 Cyclic voltammograms measurements were performed with the three-electrode CORRTEST electrochemical workstation by using a glassy carbon working electrode, a platinum wire counter electrode and a saturated calomel as reference electrode. The voltammograms were taken in a degassed DCM solution ([n-Bu₄NBF₄]) = 0.1 M, PC = 1 mM. The scan rate was 0.1 V/s.

Figure S3 UV-vis spectrum of PC1 and PC2 in DCM solution $(1 \times 10^{-5} \text{ M})$.

Figure S4 Emission spectra of PC1 and PC2 in DCM solution $(1 \times 10^{-5} \text{ M})$.

The ground state reduction and oxidation potential of **PC** are determined according to the reported method.^{7,8} $E_{1/2}(PC1/PC1^{\bullet^-}) = -1.95$ V vs. SCE; $E_{1/2}(PC1^{\bullet^+}/PC1) = +1.10$ V vs. SCE. $E_{1/2}(PC2/PC2^{\bullet^-}) = -1.93$ V vs. SCE; $E_{1/2}(PC2^{\bullet^+}/PC2) = +1.12$ V vs. SCE. Excited state oxidation and reduction potentials were calculated by the following formulas:⁷

 $E_{1/2}(PC^*/PC^{\bullet^-}) = E_{1/2}(PC/PC^{\bullet^-}) + E_{0,0}$ $E_{1/2}(PC^{\bullet^+}/PC^*) = E_{1/2}(PC^{\bullet^+}/PC) - E_{0,0}$

4. Optimization of the reaction conditions

MeO ₂ C N T	Co(dmgH)(dmgH ₂)Cl ₂ (5 mol%), PC1 (5 mol%) Vc (3.0 equiv), <u>Base (0.5 equiv)</u> CH ₃ CN/H ₂ O, 390 nm, Ar, 24 h	$\xrightarrow{\text{MeO}_2C}$
Entry	Base	Yield (%)
1	K ₂ CO ₃	47
2	K_3PO_4	39
3	$C_{S2}CO_3$	40
4	C _S F	trace ^a
5	KH_2PO_4	N.R.
6	Na ₂ CO ₃	35
7	K_2CO_3	57^b

Table S1 Effect of base

The reaction was conducted on 0.2 mmol scale in CH₃CN (3.0 mL) and H₂O (0.5 mL) with 40 W 390 nm Kessil LED as the light source. System temperature of 30 °C. Isolated yield. N.R. = no reaction. ^{*a*}1a decomposed. ^{*b*}K₂CO₃ (1.5 equiv).

Table S2 Effect of light source

MeO ₂ C N _{Ts}	Co(dmgH)(dmgH ₂)Cl ₂ (5 mol%), PC1 (5 mol%) Vc (3.0 equiv), K ₂ CO ₃ (1.5 equiv) CH ₃ CN/H ₂ O, (? nm), Ar, 24 h	MeO ₂ C N Ts 2a
Entry	Light source	Yield (%)
1	390	57 ^{<i>a</i>}
2	390	63^b
3	455	N.R. ^c
4	427	91 ^{<i>d</i>}
5	427	N.R. ^e
6	427	70 ^f

The reaction was conducted on 0.2 mmol scale in CH₃CN (3.0 mL) and H₂O (0.5 mL). System

temperature of 30 °C. Isolated yield. ^{*a*}40 W 390 nm Kessil LED as the light source. ^{*b*}40 W 390 nm Kessil LED as the light source. System temperature of 50 °C. ^{*c*}18 W 455 nm blue LEDs. ^{*d*}40 W 427 nm Kessil LED as the light source. System temperature of 50 °C. ^{*e*}Vc (2.0 equiv), K₂CO₃ (1.5 equiv). ^{*f*}Vc (2.0 equiv), K₂CO₃ (1.0 equiv).

Table S3 The effect of cobalt catalyst

MeO ₂	C Ts 1a [Co] (5 mol%), PC1 (5 mol%) Vc (3.0 equiv), K ₂ CO ₃ (1.5 equiv) CH ₃ CN/H ₂ O, 427 nm, Ar, 24 h	MeO ₂ C N Ts 2a
Entry	[Co]	Yield (%)
1	Co(dmgH)(dmgH ₂)Cl ₂	91
2	$Co(acac)_2$	N.R.
3	CoBr ₂	N.R.
4	Salen Co-1	81
5	Salen Co-2	38
6	Co(dmgH)2 ^t BuPyBr	N.R. ^a

The reaction was conducted on 0.2 mmol scale in CH_3CN (3.0 mL) and H_2O (0.5 mL) with a 40 W 427 nm Kessil LED as the light source. System temperature of 50 °C. Isolated yield. ^{*a*}In the absence of **PC1**.

The reaction was conducted on 0.2 mmol scale in CH_3CN (3.0 mL) and H_2O (0.5 mL) with a 40 W 427 nm Kessil LED as the light source. System temperature of 50 °C. Isolated yield.

Table S5 Effect of solvent

MeO ₂ C N Te	Co(dmgH)(dmgH ₂)Cl ₂ (5 mol%), PC2 (5 mol%) Vc (3.0 equiv), K ₂ CO ₃ (1.5 equiv) Solvent, 427 nm, Ar, 24 h	MeO ₂ C N Ts 2a
Entry	Solvent	Yield (%)
1	CH ₃ CN/H ₂ O	91
2	DCM/H ₂ O	trace ^a
3	DCE/H ₂ O	trace ^a
4	THF/H ₂ O	68
5	PhCH ₃ /H ₂ O	N.R.
6	EtOH/H ₂ O	34
7	CH ₃ CN/H ₂ O	80^b
8	CH ₃ CN	81

The reaction was conducted on 0.2 mmol scale in CH₃CN (3.0 mL) and H₂O (0.5 mL) with a 40 W 427 nm Kessil LED light. System temperature of 50 °C. Isolated yield. ^{*a*}1a decomposed. ^{*b*}CH₃CN = 2.0 mL.

Table S6 The effect of reductant

MeO ₂ C N Ts	Co(dmgH)(dmgH ₂)Cl ₂ (5 mol%), I Reductant (3.0 equiv), K ₂ CO ₃ CH ₃ CN/H ₂ O, 427 nm, Ar,	PC1 (5 mol%) (1.5 equiv) 24 h Ts 2a
Entry	Reductant	Yield (%)
1	Vc	91
2	VcNa	N.R. ^a
3	<i>i</i> -Pr ₂ NEt	96 ^{<i>a</i>,<i>b</i>}
4	<i>i</i> -Pr ₂ NEt	$80^{a,b,c}$

The reaction was conducted on 0.2 mmol scale in CH₃CN (3.0 mL) and H₂O (0.5 mL) with a 40 W 427 nm Kessil LED as the light source. System temperature of 50 °C. Isolated yield. ^{*a*}In the absence of K₂CO₃, ^{*b*}CH₃CN = 3.0 mL. ^{*c*}System temperature of 30 °C.

		lmgH)(dmgH ₂)Cl ₂ (X mol%), <i>i</i> -Pr ₂ NEt (Z equiv)	PC1 (Y mol%) MeO ₂ C	<u>}</u>
	MeO ₂ C N Ts	CH ₃ CN, 427 nm, Ar, 2	4 h N Ts 2a	
Entry	[Co] (X mol%)	PC1 (Y mol%)	<i>i</i> -Pr ₂ NEt (Z equiv)	Yield (%)
1	5	5	3	96
2	5	5	0.5	83

Table S7 The effect of i-Pr ₂ NEt/Co	o(dmgH)(dmgH ₂)Cl ₂ /PC1 equivalent
---	--

3	5	5	1.5	94
4	3	5	3	84
5	5	3	3	86

The reaction was conducted on 0.2 mmol scale in CH_3CN (3.0 mL) and H_2O (0.5 mL) with a 40 W 427 nm Kessil LED as the light source. System temperature of 50 °C. Isolated yield.

Table S8 Control experiments

MeO ₂ C N Ts	Co(dmgH)(dmgH ₂)Cl ₂ (5 mol%), PC1 (5 mol%) <i>i-</i> Pr ₂ NEt (3.0 equiv) CH ₃ CN, 427 nm, Ar, 24 h	MeO ₂ C N Ts 2a
Entry	Variation	Yield (%)
1	without Co(dmgH)(dmgH ₂)Cl ₂	N.R.
2	without <i>i</i> -Pr ₂ NEt	N.R.
3	without PC1	N.R.
4	without Ar	N.R.
5	without light	N.R.

The reaction was conducted on 0.2 mmol scale with a 40 W 427 nm Kessil LED as the light source. System temperature of 50 °C. Isolated yield.

5. Experimental procedures

5.1 General procedure for the preparation of 2 (Protocol A)

1 (0.2 mmol) was added into a 15 mL oven-dried glass tube equipped with a magnetic stirring bar and a rubber stopper, followed by the addition of $Co(dmgH)(dmgH_2)Cl_2$ (0.01 mmol, 5 mol%), **PC1** (0.01 mmol, 5 mol%) and acetonitrile (3.0 mL). The tube was evacuated and backfilled with argon (repeated three times). *i*-Pr₂NEt (0.6 mmol, 3.0 equiv) was added into the reaction mixture, which was irradiated with a 40 W 427 nm Kessil light at 50 °C (system temperature) for 24 h. After the reaction was complete as monitored by TLC, the solvent was removed under reduced pressure with a rotatory evaporator. The residual was treated with flash chromatography on silica gel (eluted with PE and EA) to afford product **2**.

5.2 General procedure for the preparation of 4 (Protocol B)

3 (0.2 mmol) was added into a 15 mL oven-dried glass tube equipped with a magnetic stirring bar and a rubber stopper, followed by the addition of Co(dmgH)(dmgH₂)Cl₂ (0.01 mmol, 5 mol%), **PC2** (0.01 mmol, 5 mol%), ascorbic acid (0.6 mmol, 3.0 equiv), K₂CO₃ (0.3 mmol, 1.5 equiv), acetonitrile (3.0 mL) and deionized water (0.5 mL). The tube was evacuated and backfilled with argon (repeated three times). 1,4-Cyclohexadiene (1.0 mmol, 5.0 equiv) was added into the reaction mixture, which was irradiated with a 40 W 427 nm Kessil light at 50 °C (system temperature) for 48 h. After the reaction was complete as monitored by TLC the solvent was removed under reduced pressure with a rotatory evaporator. The residual was treated with flash chromatography on silica gel (eluted with PE and EA) to afford product **4**.

6. Mechanistic studies

6.1 Inhibition experiment for 1,6-diene cycloisomerization

1u (62.5 mg, 0.2 mmol) was added into a 15 mL oven-dried glass tube equipped with a magnetic stirring bar and a rubber stopper, followed by the addition of Co(dmgH)(dmgH₂)Cl₂ (3.6 mg, 0.01 mmol, 5 mol%), PC1 (5.0 mg, 0.01 mmol, 5 mol%), TEMPO (62.5 mg, 0.4 mmol, 2.0 equiv) and acetonitrile (3.0 mL). The tube was evacuated and backfilled with argon (repeated three times). *i*-Pr₂NEt (105 μ L, 0.6 mmol, 3.0 equiv) was added into the reaction mixture, which was irradiated with a 40 W 427 nm Kessil light at 50 °C (system temperature) for 24 h. The formation of 2u was completely inhibited with the addition of a radical scavenger (TEMPO). TEMPO-trapping product (**B**) was detected by HRMS (Figure S5). This result indicates that the cycloisomerization of 1,6-dienes proceeded through a radical process.

Figure S5 The HRMS of 1,6-diene cycloisomerization trapping experiments.

6.2 Inhibition experiment for 1,6-enyne cyclization

3a (61.5 mg, 0.2 mmol) was added into a 15 mL oven-dried glass tube equipped with a magnetic stirring bar and a rubber stopper, followed by the addition of Co(dmgH)(dmgH₂)Cl₂ (3.6 mg, 0.01 mmol, 5 mol%), **PC2** (6.3 mg, 0.01 mmol, 5 mol%), ascorbic acid (105.6 mg, 0.6 mmol, 3.0 equiv), K₂CO₃ (41.46 mg, 0.3 mmol, 1.5 equiv), TEMPO (62.5 mg, 0.4 mmol, 2.0 equiv), acetonitrile (3.0 mL) and deionized water (0.5 mL). The tube was evacuated and backfilled with argon (repeated three times). 1,4-Cyclohexadiene (95 μ L, 1.0 mmol, 5.0 equiv) was added into the reaction mixture, which was irradiated with a 40 W 427 nm Kessil light at 50 °C (system temperature) for 48 h. **4a** was obtained in a yield of 46% (28 mg) after flash chromatography. TEMPO-trapping products (C) were detected by HRMS (Figure S6).

Figure S6 The HRMS of 1,6-enyne cyclization trapping experiments.

Scheme S1 Deuterium labeling experiments for the cycloisomerization of 1u.

¹H NMR spectra

¹H NMR (CDCl₃, 400 MHz) (Scheme S1 (1), in CD₃CN)

7,256 4,484 4,484 4,4754,475 4,4754,475 4,475 4,475 4,475 4,4754,475 4,475 4,475 4,475 4,4754,475 4,475 4,475 4,475 4,4754,475 4,475 4,475 4,4754,475 4,475 4,4754,475 4,475 4,4754,475 4,475 4,4754,475 4,475 4,4754,475 4,475 4,4754,475 4,4754,475 4,475 4,4754,475 4,4754,475 4,4754,475 4,4754,475 4,4754,475 4,475

¹H NMR (CDCl₃, 400 MHz) (Scheme S1 (3), in CD₃CN-H₂O)

¹H NMR (CDCl₃, 400 MHz) (Scheme S1 (4), in CH₃CN-D₂O)

Scheme S2 Deuterium labeling experiments for the cyclization of 3a.

¹H NMR spectra

¹H NMR (CDCl₃, 400 MHz) (Scheme S2 (4), in CD₃CN with Vc- d_4 in the absence 1,4-cyclohexadiene)

 $^1\mathrm{H}$ NMR (CDCl₃, 400 MHz) (Scheme S2 (3), in CD₃CN in the absence of 1,4-cyclohexadiene)

In a 50 mL round-bottom flask containing D₂O (5 mL) and CH₃CN (10 mL) was added ascorbic acid (2.52 g, 14.3 mmol). The mixture was stirred for 35 min at room temperature. The solvent was removed under reduced pressure on a rotary evaporator, then the residual was dissolved in a mixed solvent of D₂O (5 mL) and CH₃CN (10 mL), stirred 35 min at room temperature, and the solvent was removed under reduced pressure with a rotatory evaporator. The resulting solid was dried under vacuum overnight at 50 °C, and ascorbic acid- d_4 was obtained as a colorless solid. Ascorbic acid- d_4 : ¹H NMR (400 MHz, DMSO- d_6) δ 11.01 (br, 0.07H, 84% D), 8.31 (br, 0.08H, 88% D), 4.87 (br, 0.13H, 93% D), 4.72 (d, J = 1.6 Hz, 1H), 3.74–3.70 (m, 1H), 3.46–3.38 (m, 2H).

For comparison, ascorbic acid: ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 11.00 (br, 0.92H), 8.28 (br, 0.96H), 4.85 (br, 1.8H), 4.70 (d, *J* = 1.6 Hz, 1H), 3.74–3.70 (m, 1H), 3.46–3.39 (m, 2H).

¹H NMR spectra

6.5 Luminescence quenching experiment

6.5.1 PC1 emission quenching by Co(dmgH)(dmgH₂)Cl₂ or *i*-Pr₂NEt

The measurement was run with acetonitrile as the solvent under an argon atmosphere. The solution was irradiated at 373 nm and the luminescence was measured from 450 nm to 750 nm (emission maximum is at 542 nm). The concentration of **PC1** stock solution was 0.1 mM in CH₃CN. The concentration of quencher Co(dmgH)(dmgH₂)Cl₂ and *i*-Pr₂NEt stock solution was 1 mM in CH₃CN.

Figure S7 Fluorescence spectra of for PC1 in CH_3CN with progressive addition of $Co(dmgH)(dmgH_2)Cl_2$.

Figure S8 Fluorescence spectra of for PC1 in CH₃CN with progressive addition of *i*-Pr₂NEt.

Figure S9 Stern-Volmer plot for the luminescence quenching of PC1 by $Co(dmgH)(dmgH_2)Cl_2$ and *i*-Pr₂NEt respectively in CH₃CN solution (intensity data was collected at 542 nm). 6.5.2 PC2 emission quenching by $Co(dmgH)(dmgH_2)Cl_2$ or Vc

The measurement was run with acetonitrile as the solvent under an argon atmosphere. The solution was irradiated at 383 nm and the luminescence was measured from 450 nm to 750 nm (emission maximum is at 550 nm). The concentration of **PC2** stock solution was 0.1 mM in CH₃CN. The concentration of quencher Co(dmgH)(dmgH₂)Cl₂ and Vc stock solution was 1 mM in CH₃CN.

Figure S10 Fluorescence spectra of for PC2 in CH_3CN with progressive addition of $Co(dmgH)(dmgH_2)Cl_2$.

Figure S11 Fluorescence spectra of for PC2 in CH₃CN with progressive addition of Vc.

Figure S12 Stern-Volmer plot for the luminescence quenching of PC2 by $Co(dmgH)(dmgH_2)Cl_2$ and Vc respectively in CH₃CN solution (intensity data was collected at 550 nm).

PC1 stability examination

To examine the stability of **PC1** in the reaction system, it was isolated after reaction and identified by ¹H NMR. For the convenience of isolation, 10 mg **PC1** (10 mol%) was added into the reaction system. After reaction, 9.5 mg **PC1** was isolated. This result demonstrated that most of **PC1** remained intact after the reaction.

¹H NMR spectra of **PC1** isolated after reaction

¹H NMR spectra for **PC1**

7. Characterization Data of Products

Methyl 2-(((4-methyl-*N*-(3-methylbut-2-en-1-yl)phenyl)sulfonamido)methyl)acr-ylate (1a)

Colorless oil (798 mg, 81% on 2.9 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.59 (m, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.27 (s, 1H), 5.84 (s, 1H), 4.82 (t, J = 7.2 Hz, 1H), 3.89 (s, 2H), 3.73 (d, J = 7.2 Hz, 2H), 3.64 (d, J = 2.0 Hz, 3H), 2.33 (s, 3H), 1.52 (s, 3H), 1.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 143.1, 137.6, 137.2, 135.6, 129.5, 127.2, 126.8, 118.3, 51.8, 46.8, 45.7, 25.6, 21.4, 17.6.

MeO₂C

Methyl (*E*)-2-(((4-methyl-*N*-(3-phenylallyl)phenyl)sulfonamido)methyl)acrylate (1b)

White solid (645 mg, 75% on 2.2 mmol scale). mp 68–69 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.4 Hz, 2H), 7.32–7.26 (m, 4H), 7.25–7.19 (m, 3H), 6.39–6.35

(m, 2H), 5.96 (d, J = 0.8 Hz, 1H), 5.92–5.84 (m, 1H), 4.06 (s, 2H), 3.98 (dd, J = 7.2, 1.2 Hz, 2H), 3.67 (s, 3H), 2.43 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 143.4, 137.1, 136.1, 135.6, 134.4, 129.7, 128.5, 127.9, 127.5, 127.3, 126.4, 123.3, 51.9, 50.6, 47.2, 21.5. HRMS (ESI): m/z calcd for C₂₁H₂₄NO₄S [M+H]⁺ 386.1421, found 386.1428.

Methyl (*E*)-2-(((4-methyl-*N*-(3-(p-tolyl)allyl)phenyl)sulfonamido)methyl)acrylate (1c)

White solid (416 mg, 56% on 1.8 mmol scale). mp 99–100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.23–7.17 (m, 2H), 6.89–6.82 (m, 2H), 6.70 (d, *J* = 16.0 Hz, 1H), 6.38 (d, *J* = 0.8 Hz, 1H), 5.98 (d, *J* = 0.8 Hz, 1H), 5.92–5.85 (m, 1H), 4.05 (s, 2H), 3.99–3.98 (m, 2H), 3.79 (s, 3H), 3.68 (s, 3H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 156.7, 143.3, 137.1, 135.7, 129.7, 129.5, 129.0, 127.3, 127.29, 127.0, 125.1, 123.8, 120.5, 110.8, 55.3, 51.8, 51.1, 47.0, 21.4. HRMS (ESI): m/z calcd for C₂₂H₂₆NO₅S [M+H]⁺ 416.1526, found 416.1530.

Methyl (*E*)-2-(((4-methyl-*N*-(3-(p-tolyl)allyl)phenyl)sulfonamido)methyl)acrylate (1d)

White solid (255 mg, 68% on 0.9 mmol scale). mp 64–65 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.11–7.06 (m, 4H), 6.36–6.32 (m, 2H), 5.95 (d, *J* = 0.8 Hz, 1H), 5.85–5.78 (m, 1H), 4.05 (s, 2H), 3.96 (dd, *J* = 6.8, 0.8 Hz, 2H), 3.67 (s, 3H), 2.42 (s, 3H), 2.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 143.3, 137.8, 137.1, 135.6, 134.2, 133.2, 129.7, 129.2, 127.3, 127.2, 126.3, 122.2, 51.8, 50.6, 47.0, 21.4, 21.1. HRMS (ESI): m/z calcd for C₂₂H₂₆NO₄S [M+H]⁺ 400.1577, found 400.1584.

Ethyl 2-(((*N*-(but-2-en-1-yl)-4-methylphenyl)sulfonamido)methyl)acrylate (1f)

Colorless oil (433 mg, 76% on 1.7 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.69 (m, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.33 (s, 1H), 5.88 (s, 1H), 5.56–5.46 (m, 1H), 5.20–5.13 (m, 1H), 4.20–4.14 (m, 2H), 3.97 (s, 2H), 3.73 (d, *J* = 7.2 Hz, 2H), 2.41 (s, 3H), 1.57 (d, *J* = 6.4 Hz, 3H), 1.27 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 143.2, 137.1, 135.8, 131.1, 129.6, 129.58, 127.2, 126.8, 124.9, 60.8, 50.3, 46.6,

21.4, 17.6, 14.1. HRMS (ESI): m/z calcd for $C_{17}H_{24}NO_4S [M+H]^+$ 338.1421, found 338.1425.

4-Methyl-*N*-(3-methylbut-2-en-1-yl)-*N*-(2-phenylallyl)benzenesulfonamide (1g)

White solid (637 mg, 80% on 2.2 mmol scale). mp 84–85 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.4 Hz, 2H), 7.41–7.38 (m, 2H), 7.34–7.25 (m, 5H), 5.44 (s, 1H), 5.22 (s, 1H), 4.85 (t, J = 7.2 Hz, 1H), 4.20 (s, 2H), 3.74 (d, J = 6.8 Hz, 2H), 2.42 (s, 3H), 1.57 (s, 3H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.05, 143.0, 138.7, 137.3, 136.7, 129.5, 128.3, 127.9, 127.3, 126.4, 118.5, 115.6, 50.2, 44.5, 25.7, 21.5, 17.7. HRMS (ESI): m/z calcd for C₂₁H₂₆NO₂S [M+H]⁺ 356.1679, found 356.1684.

4-Methyl-*N***-(3-methylbut-2-en-1-yl)***-N***-(2-(p-tolyl)allyl)benzenesulfonamide (1h)** White solid (993 mg, 73% on 3.7 mmol scale). mp 64–65 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.66–7.64 (m, 2H), 7.30–7.25 (m, 4H), 7.12 (d, *J* = 8.0 Hz, 2H), 5.40 (d, *J* = 0.8 Hz, 1H), 5.16 (d, *J* = 1.2 Hz, 1H), 4.86–4.82 (m, 1H), 4.18 (s, 2H), 3.74 (d, *J* = 7.2 Hz, 2H), 2.42 (s, 3H), 2.35 (s, 3H), 1.57 (d, *J* = 0.8 Hz, 3H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.9, 142.8, 137.7, 137.3, 136.6, 135.8, 129.4, 129.0, 127.3, 126.3, 118.5, 114.8, 50.3, 44.5, 25.7, 21.5, 21.1, 17.7. HRMS (ESI): m/z calcd for C₂₂H₂₈NO₂S [M+H]⁺ 370.18345, found 370.1830.

N-(2-(4-Fluorophenyl)allyl)-4-methyl-*N*-(3-methylbut-2-en-1-yl)benzenesulfonam ide (1i)

White solid (1.09 g, 75% on 3.9 mmol scale). mp 80–81 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.65–7.63 (m, 2H), 7.40–7.37 (m, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.02–6.98 (m, 2H), 5.39 (s, 1H), 5.19 (d, *J* = 1.2 Hz, 1H), 4.83–4.79 (m, 1H), 4.17 (s, 2H), 3.72 (d, *J* = 7.2 Hz, 2H), 2.43 (s, 3H), 1.56 (d, *J* = 0.8 Hz, 3H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.5 (d, *J*_{C-F} = 248.6 Hz), 143.1, 142.1, 137.1, 136.6, 134.6 (d, *J*_{C-F} = 3.3 Hz), 129.5, 128.2 (d, *J*_{C-F} = 8.0 Hz), 127.3, 118.4, 115.7, 115.2 (d, *J*_{C-F} = 21.2 Hz), 50.5, 44.6, 25.7, 21.6, 17.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.3. HRMS (ESI): m/z calcd for C₂₁H₂₅FNO₂S [M+H]⁺ 374.1585, found 374.1581.

N-(2-(4-Chlorophenyl)allyl)-4-methyl-*N*-(3-methylbut-2-en-1-yl)benzenesulfona mide (1j)

White solid (1.18g, 79% on 3.8 mmol scale). mp 72–73 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.4 Hz, 2H), 7.36–7.33 (m, 2H), 7.27–7.25 (m, 4H), 5.42 (s, 1H), 5.22 (s, 1H), 4.80 (t, J = 6.8 Hz, 1H), 4.17 (s, 2H), 3.71 (d, J = 6.8 Hz, 2H), 2.41 (s, 3H), 1.55 (s, 3H), 1.50 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 142.0, 136.9, 136.85, 136.5, 133.6, 129.4, 128.3, 127.7, 127.1, 118.3, 116.2, 50.4, 44.5, 25.6, 21.3, 17.6. HRMS (ESI): m/z calcd for C₂₁H₂₅CINO₂S [M+H]⁺ 390.1289, found 390.1283.

4-Methyl-*N*-(3-methylbut-2-en-1-yl)-*N*-(2-(naphthalen-2-yl)allyl)benzenesulfona mide (1k)

White solid (433 mg, 38% on 2.8 mmol scale). mp 87–88 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.79 (m, 4H), 7.67 (d, J = 8.4 Hz, 2H), 7.57 (dd, J = 8.4, 1.6 Hz, 1H), 7.49–7.47 (m, 2H), 7.22 (d, J = 8.0 Hz, 2H), 5.61 (s, 1H), 5.35 (d, J = 0.8 Hz, 1H), 4.94–4.90 (m, 1H), 4.35 (s, 2H), 3.81 (d, J = 6.8 Hz, 2H), 2.40 (s, 3H), 1.60 (s, 3H), 1.54 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.9, 142.8, 137.2, 136.6, 135.9, 133.1, 132.9, 129.4, 128.2, 127.8, 127.4, 127.2, 126.1, 126.0, 125.3, 124.5, 118.5, 116.2, 50.3, 44.6, 25.6, 21.4, 17.7. HRMS (ESI): m/z calcd for C₂₅H₂₈NO₂S [M+H]⁺ 406.1835, found 406.1830.

N-(but-2-en-1-yl)-4-methyl-*N*-(2-phenylallyl)benzenesulfonamide (11)

Colorless oil (341 mg, 62% on 1.6 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.67–7.63 (m, 2H), 7.43–7.37 (m, 2H), 7.31–7.25 (m, 5H), 5.53–5.46 (m, 1H), 5.46–5.43 (m, 1H), 5.24–5.22 (m, 1H), 5.19–5.11 (m, 1H), 4.22–4.21 (m, 2H), 3.82–3.66 (m, 2H), 2.42 (s, 3H), 1.58–1.51 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 142.8, 138.7, 137.2, 130.8, 129.5, 128.3, 127.9, 127.4, 126.5, 124.8, 115.9, 50.0, 48.8, 21.5, 17.6. HRMS (ESI): m/z calcd for C₂₀H₂₄NO₂S [M+H]⁺ 342.1522, found 342.1526.

↓ ↓ O N`Ts

N-(3-Methylbut-2-en-1-yl)-*N*-tosylacrylamide (10)

Colorless oil (357 mg, 29% on 4.2 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.78–7.76 (m, 2H), 7.31–7.26 (m, 2H), 6.92–6.85 (m, 1H), 6.38–6.33 (m, 1H), 5.76–5.72 (m, 1H), 5.22–5.17 (m, 1H), 4.47 (d, *J* = 6.4 Hz, 2H), 2.42 (s, 3H), 1.74–1.71 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 165.6, 144.6, 137.0, 136.6, 131.1, 129.6, 128.6, 127.6, 119.6, 44.7, 25.6, 21.6, 18.0. HRMS (ESI): m/z calcd for C₁₅H₂₀NO₃S [M+H]⁺ 294.1158, found 294.1165.

Trimethyl octa-1,6-diene-2,4,4-tricarboxylate (1s)

Colorless oil (827 mg, 80% on 2.7 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 6.24 (s, 1H), 5.63 (s, 1H), 5.51–5.46 (m, 1H), 5.32–5.24 (m, 1H), 3.69–3.66 (m, 9H), 2.93 (s, 2H), 2.50 (d, *J* = 7.2 Hz, 2H), 1.62 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.1, 167.3, 135.9, 130.0, 129.0, 124.5, 57.9, 52.2, 51.9, 36.1, 33.8, 18.0. HRMS (ESI): m/z calcd for C₁₄H₂₁O₆ [M+H]⁺ 285.1333, found 285.1337.

2-Ethyl 4,4-dimethyl octa-1,6-diene-2,4,4-tricarboxylate (1t)

Colorless oil (1.35 g, 84% on 5.4 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 6.22–6.21 (m, 1H), 5.59 (s, 1H), 5.50–5.44 (m, 1H), 5.30–5.25 (m, 1H), 4.16–4.10 (m, 2H), 3.64–3.63 (m, 6H), 2.94–2.91 (m, 2H), 2.58–2.48 (m, 2H), 1.60–1.55 (m, 3H), 1.27–1.22 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 166.8, 136.2, 129.8, 128.6, 124.6, 60.8, 58.0, 52.1, 36.1, 33.7, 17.9, 14.0. HRMS (ESI): m/z calcd for C₁₅H₂₃O₆ [M+H]⁺ 299.1489, found 299.1492.

2-Ethyl 4,4-dimethyl 7-methylocta-1,6-diene-2,4,4-tricarboxylate (1u)

Colorless oil (2.0 g, 70% on 9.2 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 6.19 (d, J = 1.2 Hz, 1H), 5.54 (d, J = 1.2 Hz, 1H), 4.97–4.93 (m, 1H), 4.10 (q, J = 14.4, 7.2 Hz, 2H), 3.62 (s, 6H), 2.90 (d, J = 1.2 Hz, 2H), 2.50 (d, J = 7.2 Hz, 2H), 1.63 (s, 3H), 1.53 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 166.7, 136.1, 135.4, 128.5, 117.5, 60.7, 57.7, 52.1, 33.7, 31.3, 25.8, 17.8, 14.0. HRMS (ESI): m/z calcd for C₁₆H₂₅O₆ [M+H]⁺ 313.1646, found 313.1648.

2-Ethyl 4,4-dimethyl (*E*)-7-phenylhepta-1,6-diene-2,4,4-tricarboxylate (1v)

Colorless oil (1.0 g, 71% on 4.0 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.26 (m, 4H), 7.23–7.19 (m, 1H), 6.42 (d, J = 15.6 Hz, 1H), 6.29 (d, J = 1.2 Hz, 1H), 6.14–6.10 (m, 1H), 5.67 (s, 1H), 4.17 (q, J = 14.4, 7.2 Hz, 2H), 3.70 (s, 6H), 3.04 (s, 2H), 2.75 (d, J = 7.6 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 166.9, 137.0, 136.1, 134.0, 128.9, 128.5, 127.4, 126.2, 124.0, 60.9, 58.3, 52.4, 36.7, 34.2, 14.1. HRMS (ESI): m/z calcd for C₂₀H₂₅O₆ [M + H]⁺ 361.1646, found 361.1651.

Dimethyl 2-(3-methylbut-2-en-1-yl)-2-(2-phenylallyl)malonate (1w)

Colorless oil (808 mg, 73% on 3.5 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.22 (m, 5H), 5.25 (d, J = 1.6 Hz, 1H), 5.10 (d, J = 0.8 Hz, 1H), 4.95–4.91 (m, 1H), 3.41 (s, 6H), 3.16 (s, 2H), 2.54 (d, J = 7.2 Hz, 2H), 1.67 (d, J = 0.8 Hz, 3H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 144.5, 141.5, 135.5, 127.9, 127.4, 126.9, 118.4, 117.6, 57.4, 52.0, 37.3, 30.3, 26.0, 17.9. HRMS (ESI): m/z calcd for C₁₉H₂₅O₄ [M+H]⁺ 317.1747, found 317.1752.

Methyl 2-(((*N*-(but-2-yn-1-yl)-4-methylphenyl)sulfonamido)methyl)acrylate (3b) Colorless oil (546 mg, 81% on 2.4 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 6.36 (d, *J* = 1.2 Hz, 1H), 5.92 (d, *J* = 0.8 Hz, 1H), 4.04 (s, 2H), 4.01 (q, *J* = 4.8, 2.4 Hz, 2H), 3.74 (s, 3H), 2.41 (s, 3H), 1.52 (t, *J* = 2.0 Hz, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 143.4, 136.0, 134.9, 129.3, 127.8, 127.3, 81.9, 71.6, 51.9, 46.6, 37.4, 21.4, 3.2. HRMS (ESI): m/z calcd for C₁₆H₂₀NO₄S [M+H]⁺ 322.1108, found 322.1110.

MeO₂C

Methyl 2-(((*N*-(3-(2-methoxyphenyl)prop-2-yn-1-yl)-4-methylphenyl)sulfonamido)methyl)acrylate (3d) White solid (378 mg, 72% on 1.3 mmol scale). mp 86–87 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.0 Hz, 2H), 7.26–7.20 (m, 3H), 6.91 (dd, J = 7.6, 1.6 Hz, 1H), 6.83–6.79 (m, 2H), 6.41 (s, 1H), 6.03 (s, 1H), 4.35 (s, 2H), 4.17 (s, 2H), 3.79 (s, 3H), 3.76 (s, 3H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 160.0, 143.5, 135.8, 134.8, 133.3, 129.8, 129.4, 127.8, 127.7, 120.1, 111.3, 110.4, 85.6, 82.5, 55.5, 52.0, 46.8, 38.0, 21.3. HRMS (ESI): m/z calcd for C₂₂H₂₄NO₅S [M+H]⁺ 414.1370, found 414.1374.

Methyl 2-(((*N*-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-4-methylphenyl)sulfonamido)methyl)acrylate (3e)

White solid (507 mg, 54% on 2.3 mmol scale). mp 72–73 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.02–6.98 (m, 2H), 6.77–6.74 (m, 2H), 6.41 (d, J = 0.8 Hz, 1H), 5.99 (d, J = 1.2 Hz, 1H), 4.29 (s, 2H), 4.14 (s, 2H), 3.78 (s, 3H), 3.76 (s, 3H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 159.6, 143.5, 135.9, 134.9, 132.9, 129.5, 127.8, 127.5, 114.0, 113.7, 85.8, 80.1, 55.2, 52.0, 46.8, 37.8, 21.4. HRMS (ESI): m/z calcd for C₂₂H₂₄NO₅S [M+H]⁺ 414.1370, found 414.1374.

Methyl 2-(((*N*-(3-(4-ethylphenyl)prop-2-yn-1-yl)-4-methylphenyl)sulfonamido)methyl)acrylate (3f)

Colorless oil (364 mg, 77% on 1.2 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 6.99–6.97 (m, 2H), 6.42 (d, J = 0.8 Hz, 1H), 6.00 (d, J = 1.2 Hz, 1H), 4.31 (s, 2H), 4.14 (s, 2H), 3.77 (s, 3H), 2.62 (q, J = 15.2, 7.6 Hz, 2H), 2.35 (s, 3H), 1.21 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 144.9, 143.6, 136.0, 134.9, 131.5, 129.6, 127.8, 127.7, 119.2, 86.1, 80.9, 52.0, 46.9, 37.8, 28.8, 21.4, 15.3. HRMS (ESI): m/z calcd for C₂₃H₂₆NO₄S [M+H]⁺ 412.1577, found 412.1580.

Methyl 2-(((*N*-(3-(4-(*tert*-butyl)phenyl)prop-2-yn-1-yl)-4-methylphenyl)sulfonamido)methyl)acrylate (3g) White solid (326 mg, 79% on 0.9 mmol scale). mp 46–47 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.4 Hz, 2H), 7.29–7.26 (m, 4H), 7.04–7.01 (m, 2H), 6.44 (d, *J* = 0.8 Hz, 1H), 6.01 (d, *J* = 1.2 Hz, 1H), 4.33 (s, 2H), 4.16 (s, 2H), 3.78 (s, 3H), 2.35 (s, 3H), 1.31 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 151.7, 143.5, 135.9, 134.9, 131.2, 129.5, 127.7, 127.6, 125.0, 119.0, 86.0, 80.8, 52.0, 46.8, 37.8, 34.7, 31.0, 21.4. HRMS (ESI): m/z calcd for C₂₅H₃₀NO₄S [M+H]⁺ 440.1890, found 440.1897.

Methyl 4-(3-((*N*-(2-(methoxycarbonyl)allyl)-4-methylphenyl)sulfonamido)-prop-1-yn-1-yl)benzoate (3h)

Gray solid (438 mg, 74% on 1.3 mmol scale). mp 87–88 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.90 (m, 2H), 7.79 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.12–7.10 (m, 2H), 6.43 (d, J = 0.8 Hz, 1H), 6.00 (d, J = 0.8 Hz, 1H), 4.33 (s, 2H), 4.15 (s, 2H), 3.91 (s, 3H), 3.77 (s, 3H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 166.2, 143.8, 135.9, 134.8, 131.4, 129.8, 129.6, 129.3, 127.8, 127.75, 126.6, 85.1, 84.8, 52.3, 52.1, 47.1, 37.8, 21.5. HRMS (ESI): m/z calcd for C₂₃H₂₄NO₆S [M+H]⁺ 442.1319, found 442.1325.

Methyl 2-(((*N*-(3-(4-fluorophenyl)prop-2-yn-1-yl)-4-methylphenyl)sulfonamido)methyl)acrylate (3i)

White solid (342 mg, 74% on 1.2 mmol scale). mp 99–100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.07–7.03 (m, 2H), 6.95–6.91 (m, 2H), 6.42 (s, 1H), 5.99 (s, 1H), 4.29 (s, 2H), 4.14 (s, 2H), 3.76 (d, *J* = 1.6 Hz, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 162.5 (d, *J*_{C-F} = 248.6 Hz), 143.6, 136.0, 134.9, 133.4 (d, *J*_{C-F} = 8.4 Hz), 129.5, 127.8, 127.6, 118.1 (d, *J*_{C-F} = 3.4 Hz), 115.4 (d, *J*_{C-F} = 21.9 Hz), 84.8, 81.5, 52.0, 47.0, 37.7, 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -110.4. HRMS (ESI): m/z calcd for C₂₁H₂₁FNO₄S [M+H]⁺ 402.1170, found 402.1176.

Methyl 2-(((*N*-(3-(4-chlorophenyl)prop-2-yn-1-yl)-4-methylphenyl)sulfonamido)methyl)acrylate (3j) White solid (351 mg, 77% on 1.1 mmol scale). mp 125–126 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.23–7.20 (m, 2H), 7.00–6.98 (m, 2H), 6.42 (d, *J* = 1.2 Hz, 1H), 6.00 (d, *J* = 0.8 Hz, 1H), 4.30 (s, 2H), 4.14 (s, 2H), 3.77 (s, 3H), 2.35 (s, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 143.7, 136.0, 134.8, 134.6, 132.7, 129.6, 128.5, 127.8, 127.7, 120.5, 84.7, 82.8, 52.1, 47.0, 37.7, 21.5. HRMS (ESI): m/z calcd for C₂₁H₂₁ClNO₄S [M+H]⁺ 418.0874, found 418.0878.

Methyl 2-(((4-methyl-*N*-(3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)phenyl)sulfonamido)methyl)acrylate (3k)

White solid (349 mg, 78% on 1.0 mmol scale). mp 105–106 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 6.43 (d, *J* = 0.8 Hz, 1H), 6.00 (d, *J* = 1.2 Hz, 1H), 4.33 (s, 2H), 4.15 (s, 2H), 3.77 (s, 3H), 2.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 143.7, 135.9, 134.8, 131.7, 130.2 (q, *J*_{C-F} = 32.7 Hz), 129.6, 127.8, 127.7, 125.8, 125.81, 123.7 (q, *J*_{C-F} = 271 Hz), 125.0 (q, *J*_{C-F} = 3.8 Hz), 84.44, 52.1, 47.1, 37.7, 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9. HRMS (ESI): m/z calcd for C₂₂H₂₁F₃NO₄S [M+H]⁺ 452.1138, found 452.1144.

Methyl 2-(((*N*-(3-(4-cyanophenyl)prop-2-yn-1-yl)-4-methylphenyl)sulfonamido)methyl)acrylate (3l)

White solid (337 mg, 73% on 1.1 mmol scale). mp 167–168 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.0 Hz, 2H), 7.54–7.52 (m, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.16–7.14 (m, 2H), 6.42 (d, J = 0.8 Hz, 1H), 5.99 (d, J = 1.2 Hz, 1H), 4.33 (s, 2H), 4.14 (s, 2H), 3.76 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 143.8, 135.9, 134.7, 132.0, 131.8, 129.6, 127.8, 126.9, 118.2, 111.9, 86.5, 84.1, 52.1, 47.1, 37.7, 21.4. HRMS (ESI): m/z calcd for C₂₂H₂₁N₂O₄S [M+H]⁺ 409.1217, found 409.1222.

Methyl 2-(((4-methyl-*N*-(3-(thiophen-2-yl)prop-2-yn-1-yl)phenyl)sulfonamido)methyl)acrylate (3m)

White solid (355 mg, 76% on 1.2 mmol scale). mp 78–79 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.77 (m, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.20 (dd, *J* = 5.2, 1.2 Hz, 1H),

6.94–6.89 (m, 2H), 6.42 (d, J = 1.2 Hz, 1H), 5.98 (d, J = 1.2 Hz, 1H), 4.33 (s, 2H), 4.12 (s, 2H), 3.77 (s, 3H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 166.2, 143.7, 135.8, 134.9, 132.3, 129.7, 127.7, 127.3, 126.7, 121.9, 85.7, 79.1, 52.0, 47.0, 37.9, 21.5. HRMS (ESI): m/z calcd for C₁₉H₂₀NO₄S₂ [M+H]⁺ 390.0828, found 390.0830.

Methyl 2-(((4-methyl-*N*-(3-(naphthalen-2-yl)prop-2-yn-1-yl)phenyl)sulfonamido)methyl)acrylate (3n)

White solid (312 mg, 72% on 1.0 mmol scale). mp 97–98 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85–7.83 (m, 2H), 7.80–7.69 (m, 3H), 7.58 (s, 1H), 7.51–7.47 (m, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.10 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.45 (d, *J* = 0.8 Hz, 1H), 6.04 (d, *J* = 1.2 Hz, 1H), 4.37 (s, 2H), 4.20 (s, 2H), 3.78 (s, 3H), 2.31 (s, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 143.7, 136.0, 134.9, 132.8, 132.7, 131.5, 129.6, 128.0, 127.9, 127.8, 127.7, 127.5, 126.8, 126.6, 119.3, 86.2, 82.0, 52.1, 47.0, 37.9, 21.5. HRMS (ESI): m/z calcd for C₂₅H₂₄NO₄S [M+H]⁺ 434.1421, found 434.1426.

4-Methyl-*N*-(pent-2-yn-1-yl)-*N*-(2-phenylallyl)benzenesulfonamide (3p)

White solid (697 mg, 67% on 3.0 mmol scale). mp 89–90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 7.2 Hz, 2H), 7.37–7.28 (m, 5H), 5.57 (s, 1H), 5.34 (s, 1H), 4.24 (s, 2H), 3.96 (t, J = 2.0 Hz, 2H), 2.43 (s, 3H), 1.92–1.85 (m, 2H), 0.88 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 141.5, 137.8, 135.8, 129.2, 128.4, 128.04, 128.0, 126.4, 116.9, 87.9, 71.4, 49.9, 36.0, 21.4, 13.5, 12.0. HRMS (ESI): m/z calcd for C₂₁H₂₄NO₂S [M+H]⁺ 354.1522, found 354.1527.

2-Ethyl 4,4-dimethyl oct-1-en-6-yne-2,4,4-tricarboxylate (3u)

Colorless oil (531 mg, 75% on 2.4 mmol scale). ¹H NMR (400 MHz, CDCl₃) δ 6.26 (d, J = 1.6 Hz, 1H), 5.78 (d, J = 1.6 Hz, 1H), 4.10 (q, J = 14.4, 7.2 Hz, 2H), 3.67 (s, 6H), 3.05 (s, 2H), 2.65 (q, J = 5.2, 2.4 Hz, 2H), 1.72 (t, J = 2.8 Hz, 3H), 1.23 (t, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 166.5, 135.5, 129.4, 79.2, 73.4, 60.7, 56.6, 52.5, 33.4, 23.0, 14.0, 3.3. HRMS (ESI): m/z calcd for C₁₅H₂₁O₆ [M+H]⁺ 297.1333, found 297.1339.

Trimethyl oct-1-en-6-yne-2,4,4-tricarboxylate (3v)

White solid (546 mg, 81% on 2.4 mmol scale). mp 59–60 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.28–6.27 (m, 1H), 5.80 (s, 1H), 3.68–3.66 (m, 9H), 3.06 (d, *J* = 3.2 Hz, 2H), 2.67–2.64 (m, 2H), 1.74–1.72 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 167.0, 135.2, 129.9, 79.3, 73.3, 56.5, 52.6, 51.8, 33.5, 23.0, 3.3. HRMS (ESI): m/z calcd for C₁₄H₁₉O₆ [M+H]⁺ 283.1176, found 283.1180.

Methyl (*E*)-4-((*N*-(3-(4-cyanophenyl)prop-2-yn-1-yl)-4-methylphenyl)sulfonamido)but-2-enoate (3w)

White solid (129 mg, 72% on 0.5 mmol scale). mp 141–142 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78–7.75 (m, 2H), 7.56–7.54 (m, 2H), 7.29–7.27 (m, 2H), 7.19–7.17 (m, 2H), 6.90–6.83 (m, 1H), 6.09–6.05 (m, 1H), 4.32 (s, 2H), 4.04 (dd, *J* = 6.0, 1.6 Hz, 2H), 3.74 (s, 3H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.9, 144.0, 141.5, 135.6, 132.0, 131.8, 129.7, 127.8, 126.7, 124.3, 118.1, 112.0, 86.0, 84.4, 51.8, 47.7, 37.5, 21.5. HRMS (ESI): m/z calcd for C₂₂H₂₁N₂O₄S [M+H]⁺ 409.1217, found 409.1214.

Methyl 3-methyl-4-(prop-1-en-2-yl)-1-tosylpyrrolidine-3-carboxylate (2a)

Prepared with protocol A. **2a** was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 96%, dr = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.69 (m, 4H), 7.33–7.31 (m, 4H), 4.87 (s, 1H), 4.76 (s, 1H), 4.63 (s, 1H), 4.57 (s, 1H), 3.73 (d, *J* = 10.4 Hz, 1H), 3.66 (d, *J* = 9.6 Hz, 1H), 3.62–3.57 (m, 4H), 3.49 (dd, *J* = 10.0, 8.0 Hz, 1H), 3.39 (s, 3H), 3.32 (t, *J* = 8.8 Hz, 2H), 3.25 (dd, *J* = 9.6, 2.4 Hz, 2H), 3.13 (t, *J* = 8.4 Hz, 1H), 2.62 (t, *J* = 7.6 Hz, 1H), 2.42 (s, 6H), 1.57 (d, *J* = 5.6 Hz, 6H), 1.25 (s, 3H), 0.92 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 173.6, 143.5, 143.4, 141.5, 140.6, 134.0, 133.8, 129.6, 129.5, 127.5, 127.4, 113.8, 113.76, 58.3, 56.5, 54.5, 52.4, 52.3, 51.6, 51.0, 50.8, 50.6, 49.7, 23.6, 22.7, 22.0, 21.5, 21.4, 16.5. HRMS (ESI): m/z calcd for C₁₇H₂₄NO₄S [M+H]⁺ 338.1421, found 338.1418.

Methyl (*Z*)-4-benzylidene-3-methyl-1-tosylpyrrolidine-3-carboxylate (2b)

Prepared with protocol A. **2b** was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 96%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.37–7.32 (m, 4H), 7.28–7.24 (m, 1H), 7.15 (d, *J* = 7.2 Hz, 2H), 6.43 (t, *J* = 2.8 Hz, 1H), 4.26 (dd, *J* = 14.0, 2.0 Hz, 1H), 4.14 (dd, *J* = 14.4, 2.8 Hz, 1H), 3.82 (d, *J* = 9.6 Hz, 1H), 3.62 (s, 3H), 3.15 (d, *J* = 9.6 Hz, 1H), 2.42 (s, 3H), 1.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 143.7, 139.3, 135.8, 132.9, 129.7, 128.5, 128.3, 127.8, 127.5, 124.5, 56.4, 53.2, 52.6, 50.8, 22.8, 21.5. HRMS (ESI): m/z calcd for C₂₁H₂₄NO₄S [M+H]⁺ 386.1421, found 386.1426.

Methyl (*Z*)-4-(2-methoxybenzylidene)-3-methyl-1-tosylpyrrolidine-3-carboxylate (2c)

Prepared with protocol A. **2c** was obtained as a yellow oily liquid after flash chromatography (PE/EA = 8/1) (0.2 mmol, 89%). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 7.6 Hz, 2H), 7.27–7.23 (m, 1H), 7.04 (dd, *J* = 7.6, 2.0 Hz, 1H), 6.96–6.92 (m, 1H), 6.87–6.85 (m, 1H), 6.69 (t, *J* = 2.4 Hz, 1H), 4.17 (dd, *J* = 14.0, 2.0 Hz, 1H), 4.08 (dd, *J* = 14.0, 2.8 Hz, 1H), 3.83–3.80 (m, 4H), 3.61 (s, 3H), 3.15 (d, *J* = 9.6 Hz, 1H), 2.43 (s, 4H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.8, 156.8, 143.6, 139.0, 133.1, 129.7, 129.0, 128.7, 127.8, 124.9, 120.4, 119.6, 110.6, 56.6, 55.5, 53.1, 52.6, 50.8, 22.7, 21.5. HRMS (ESI): m/z calcd for C₂₂H₂₆NO₅S [M+H]⁺ 416.1526, found 416.1531.

Methyl (*Z*)-3-methyl-4-(4-methylbenzylidene)-1-tosylpyrrolidine-3-carboxylate (2d)

Prepared with protocol A. **2d** was obtained as a colorless oil after flash chromatography (PE/EA = 8/1) (0.2 mmol, 83%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 8.0

Hz, 2H), 6.39 (t, J = 2.4 Hz, 1H), 4.25 (dd, J = 14.4, 2.4 Hz, 1H), 4.13 (dd, J = 14.0, 2.4 Hz, 1H), 3.81 (d, J = 9.6 Hz, 1H), 3.61 (s, 3H), 3.13 (d, J = 9.6 Hz, 1H), 2.42 (s, 3H), 2.35 (s, 3H), 1.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 143.7, 138.2, 137.4, 133.0, 132.9, 129.7, 129.2, 128.2, 127.8, 124.3, 56.4, 53.1, 52.6, 50.8, 22.8, 21.5, 21.1. HRMS (ESI): m/z calcd for C₂₂H₂₆NO₄S [M+H]⁺ 400.1577, found 400.1580.

Methyl 3-methyl-1-tosyl-4-vinylpyrrolidine-3-carboxylate (2e)

Prepared with protocol A. **2e** was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 85%, dr = 1/0.86). ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.70 (m, 3.72H), 7.33 (d, *J* = 8.0 Hz, 3.72H), 5.63–5.54 (m, 0.86H), 5.46–5.37 (m, 1H), 5.12–5.01 (m, 3.72H), 3.68 (d, *J* = 10.4 Hz, 1H), 3.64–3.57 (m, 4.86H), 3.48 (dd, *J* = 9.6, 7.6 Hz, 0.86H), 3.40 (s, 2.58H), 3.28–3.09 (m, 3.72H), 3.04 (dd, *J* = 16.0, 7.6 Hz, 0.86H), 2.58 (dd, *J* = 15.6, 7.8 Hz, 1H), 2.43 (s, 5.58H), 1.20 (s, 3H), 1.00 (s, 2.58H); ¹³C NMR (101 MHz, CDCl₃) δ 174.3, 173.5, 143.6, 143.4, 134.1, 133.8, 133.3, 133.2, 129.7, 129.6, 127.5, 127.4, 118.7, 118.6, 57.0, 56.0, 52.4, 52.3, 52.2, 51.7, 51.4, 51.3, 50.3, 48.4, 21.7, 21.5, 21.48, 17.2. HRMS (ESI): m/z calcd for C₁₆H₂₂NO₄S [M+H]⁺ 324.1264, found 324.1270.

Ethyl 3-methyl-1-tosyl-4-vinylpyrrolidine-3-carboxylate (2f)

Prepared with protocol A. **2f** was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 87%, dr = 1/0.72). ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.69 (m, 3.44H), 7.31 (d, *J* = 8.4 Hz, 3.44H), 5.62–5.53 (m, 0.72H), 5.48–5.39 (m, 1H), 5.10–4.99 (m, 3.44H), 4.09–3.83 (m, 3.44H), 3.73–3.57 (m, 2.72H), 3.48 (dd, *J* = 10.0, 8.0 Hz, 0.72H), 3.27–3.08 (m, 3.44H), 3.03 (dd, *J* = 16.0, 7.6 Hz, 0.72H), 2.55 (dd, *J* = 15.6, 7.6 Hz, 1H), 2.41 (s, 5.16H), 1.19–1.14 (m, 5.16H), 1.05 (t, *J* = 7.2 Hz, 3H), 0.97 (s, 2.16H); ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 172.9, 143.5, 143.4, 134.1, 133.8, 133.3, 133.2, 129.6, 129.5, 127.4, 127.36, 118.5, 118.47, 61.1, 60.7, 57.0, 55.9, 52.3, 52.0, 51.4, 51.2, 50.3, 48.3, 21.8, 21.4, 21.42, 17.1, 14.0, 13.95. HRMS (ESI): m/z calcd for C₁₇H₂₄NO₄S [M+H]⁺ 338.1421, found 338.1423.

3-Methyl-3-phenyl-4-(prop-1-en-2-yl)-1-tosylpyrrolidine (2g)

Prepared with protocol A. **2g** was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 96%, dr = 1/0.55). ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.76 (m, 3.1H), 7.36 (d, *J* = 8.0 Hz, 3.1H), 7.28–7.26 (m, 4H), 7.23–7.17 (m, 2.75H), 7.14–7.12 (m, 1H), 4.79 (s, 1H), 4.66 (t, *J* = 1.6 Hz, 0.55H), 4.54 (s, 1.55H), 3.89 (d, *J* = 9.6 Hz, 0.55H), 3.66–3.60 (m, 2.55H), 3.46 (t, *J* = 10.0 Hz, 1H), 3.41–3.30 (m, 2.1H), 2.98 (t, *J* = 8.8 Hz, 1H), 2.66 (t, *J* = 7.6 Hz, 0.55H), 2.46–2.45 (m, 4.65H), 1.31 (s, 1.65H), 1.23 (s, 3H), 1.09 (s, 3H), 0.97 (s, 1.65H); ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 143.4, 142.8, 142.5, 141.2, 134.2, 134.1, 129.7, 129.66, 128.3, 127.9, 127.3, 127.31, 126.6, 126.56, 126.4, 126.0, 115.0, 112.9, 62.3, 59.0, 55.8, 54.7, 50.7, 50.1, 48.6, 47.2, 28.0, 26.8, 23.6, 21.5, 21.48, 20.4, 19.1. HRMS (ESI): m/z calcd for C₂₁H₂₆NO₂S [M+H]⁺ 356.1679, found 356.1685.

3-Methyl-4-(prop-1-en-2-yl)-3-(p-tolyl)-1-tosylpyrrolidine (2h)

Prepared with protocol A. **2h** was obtained as a colorless oil after flash chromatography (PE/EA = 20/1) (0.2 mmol, 99%, dr = 1/0.52). ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.76 (m, 3.04H), 7.36 (d, *J* = 8.0 Hz, 3.04H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 7.02 (s, 2.08H), 4.79 (s, 1H), 4.67 (t, *J* = 1.6 Hz, 0.52H), 4.54 (s, 1.52H), 3.87 (d, *J* = 9.6 Hz, 0.52H), 3.65–3.59 (m, 2.52H), 3.46 (t, *J* = 10.0 Hz, 1H), 3.39–3.30 (m, 2.04H), 2.96 (t, *J* = 8.8 Hz, 1H), 2.63 (t, *J* = 7.6 Hz, 0.52H), 2.46 (s, 3H), 2.45 (s, 1.56H), 2.30 (s, 3H), 2.29 (s, 1.56H), 1.29 (s, 1.56H), 1.25 (s, 3H), 1.07 (s, 3H), 1.00 (s, 1.56H); ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 142.6, 141.3, 141.2, 139.7, 136.1, 135.9, 134.3, 134.2, 129.7, 129.6, 129.0, 128.6, 127.34, 127.3, 126.5, 125.9, 114.8, 112.7, 62.3, 59.1, 55.8, 54.6, 50.7, 50.1, 48.3, 46.9, 28.0, 23.6, 21.5, 20.8, 20.75, 20.5, 19.1. HRMS (ESI): m/z calcd for C₂₂H₂₈NO₂S [M+H]⁺ 370.1835, found 370.1839.

3-(4-Fluorophenyl)-3-methyl-4-(prop-1-en-2-yl)-1-tosylpyrrolidine (2i)

Prepared with protocol A. **2i** was obtained as a colorless oil after flash chromatography (PE/EA = 20/1) (0.2 mmol, 98%, dr = 1/0.58). ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.75 (m, 3.16H), 7.36 (d, J = 8.0 Hz, 3.16H), 7.27–7.22 (m, 2H), 7.14–7.10 (m, 1.16H), 6.98 – 6.88 (m, 3.16H), 4.80 (s, 1H), 4.69 (t, J = 1.2 Hz, 0.58H), 4.53 (s, 1.58H), 3.85 (d, J = 9.6 Hz, 0.58H), 3.64–3.58 (m, 2.58H), 3.44 (t, J = 10.0 Hz, 1H), 3.37–3.34 (m, 1.58H), 3.30 (dd, J = 10.4, 8.0 Hz, 0.58H), 2.93 (t, J =

8.8 Hz, 1H), 2.62 (t, J = 8.0 Hz, 0.58H), 2.46 (s, 3H), 2.45 (s, 1.74H),1.30 (s, 1.74H), 1.25 (s, 3H), 1.07 (s, 3H), 1.01 (s, 1.74H); ¹³C NMR (101 MHz, CDCl₃) δ 161.3 (d, $J_{C-F} = 244.4$ Hz), 143.5, 143.51, 142.1, 141.0, 140.1(d, $J_{C-F} = 3.2$ Hz), 138.5 (d, $J_{C-F} =$ 3.3 Hz), 134.1, 134.06, 129.7, 129.69, 128.2 (d, $J_{C-F} = 7.7$ Hz), 127.7 (d, $J_{C-F} = 7.9$ Hz), 127.3, 127.31, 115.2, 115.1 (d, $J_{C-F} = 20.8$ Hz) 114.7 (d, $J_{C-F} = 21$ Hz), 113.1, 62.2, 59.2, 55.8, 54.9, 50.5, 50.1, 48.2, 46.9, 29.6, 27.9, 23.6, 21.5, 20.6, 19.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.3. HRMS (ESI): m/z calcd for C₂₁H₂₅FNO₂S [M+H]⁺ 374.1585, found 374.1588.

3-(4-Chlorophenyl)-3-methyl-4-(prop-1-en-2-yl)-1-tosylpyrrolidine (2j)

Prepared with protocol A. **2j** was obtained as a white solid after flash chromatography (PE/EA = 20/1) (0.2 mmol, 99%, dr = 1/0.55). mp 150–151 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.75 (m, 3.1H), 7.36 (d, *J* = 8.0 Hz, 3.1H), 7.27–7.17 (m, 5.1H), 7.09–7.07 (m, 1.1H), 4.81 (s, 1H), 4.69 (t, *J* = 1.2 Hz, 0.55H), 4.54 (s, 1.55H), 3.83 (d, *J* = 9.6 Hz, 0.55H), 3.65–3.57 (m, 2.55H), 3.44 (t, *J* = 10.0 Hz, 1H), 3.38–3.28 (m, 2.1H), 2.93 (t, *J* = 8.8 Hz, 1H), 2.64 (t, *J* = 7.6 Hz, 0.55H), 2.46 (s, 3H), 2.45 (s, 1.65H), 1.29 (s, 1.65H), 1.26 (s, 3H), 1.07 (s, 3H), 1.02 (s, 1.65H); ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 143.1, 142.0, 141.3, 140.9, 134.1, 134.0, 132.4, 132.3, 129.7, 129.69, 128.4, 128.1, 128.0, 127.5, 127.33, 127.3, 115.3, 113.2, 62.1, 59.0, 55.7, 54.8, 50.5, 50.1, 48.3, 47.0, 27.9, 23.6, 21.5, 20.6, 19.2. HRMS (ESI): m/z calcd for C₂₁H₂₅ClNO₂S [M+H]⁺ 390.1289, found 390.1294.

3-Methyl-3-(naphthalen-2-yl)-4-(prop-1-en-2-yl)-1-tosylpyrrolidine (2k)

Prepared with protocol A. **2k** was obtained as a colorless oil after flash chromatography (PE/EA = 20/1) (0.2 mmol, 95%, dr = 1/0.32). ¹HNMR (400 MHz, CDCl₃) δ 7.85–7.65 (m, 7.6H), 7.53 (d, J = 1.6 Hz, 0.32H), 7.47–7.34 (m, 6.28H), 7.29 (dd, J = 8.4, 2.0 Hz, 0.32H), 4.80 (s, 1H), 4.64 (t, J = 1.6 Hz, 0.32H), 4.59 (s, 0.32H), 4.58 (s, 1H), 4.03 (d, J = 10.0 Hz, 0.32H), 3.75 (d, J = 10.4 Hz, 1H), 3.72–3.65 (m, 1.32H), 3.54–3.49 (m, 1.32H), 3.43–3.36 (m, 1.32H), 3.12 (t, J = 8.4 Hz,1H), 2.79 (t, J = 7.2 Hz, 0.32H), 2.45 (s, 3H), 2.44 (s, 0.96H), 1.37 (s, 0.96H), 1.23 (s, 3H), 1.19 (s, 3H), 1.00 (s, 0.96H); ¹³C NMR (101 MHz, CDCl₃) δ 143.5, 142.7, 141.7, 141.3, 140.5, 134.4, 134.1, 133.0, 132.9, 132.0, 131.9, 129.7, 129.68, 128.1, 127.9, 127.4, 127.3, 127.28, 126.1, 125.9, 125.7, 125.5, 124.9, 124.7, 124.2, 115.1, 112.9,

62.0, 58.9, 55.8, 54.3, 50.9, 50.2, 48.9, 47.5, 28.5, 23.7, 21.5, 21.47, 20.6, 19.4. HRMS (ESI): m/z calcd for $C_{25}H_{28}NO_2S$ [M+H]⁺ 406.1832, found 406.1839.

3-Methyl-3-phenyl-1-tosyl-4-vinylpyrrolidine (21)

Prepared with protocol A. **21** was obtained as a colorless oil after flash chromatography (PE/EA = 20/1) (0.2 mmol, 89%, dr = 1/0.5). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.4 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.37–7.33 (m, 3H), 7.30–7.18 (m, 6.5H), 7.11–7.09 (m, 1H), 5.66–5.57 (m, 1H), 5.10–5.06 (m, 1H), 5.01 (t, *J* = 1.2 Hz, 0.5H), 4.96 (t, *J* = 1.2, 0.5 Hz, 1H), 4.95–4.92 (m, 1H), 4.89–4.85 (m, 0.5H), 3.83 (d, *J* = 9.6 Hz, 0.5H), 3.64–3.54 (m, 1.5H), 3.51 (s, 2H), 3.38 (d, *J* = 9.6 Hz, 0.5H), 3.19 (dd, *J* = 10.0, 7.2 Hz, 0.5H), 2.94 (dd, *J* = 17.2, 8.0 Hz, 1H), 2.57–2.51 (m, 0.5H), 2.45 (s, 1.5H), 2.44 (s, 3H), 1.28 (s, 1.5H), 1.13 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.4, 143.4, 142.4, 135.1, 134.3, 134.0, 133.9, 129.7, 129.66, 128.4, 128.0, 127.3, 127.31, 126.85, 126.6, 126.4, 125.7, 118.3, 117.5, 60.6, 58.6, 53.1, 51.5, 51.4, 50.9, 48.6, 47.7, 26.3, 21.5, 20.9. HRMS (ESI): m/z calcd for C₂₀H₂₄NO₂S [M+H]⁺ 342.1522, found 342.1530.

3,4-Dimethyl-3-phenyl-1-tosylpyrrolidine (2m) and

3-Methyl-4-methylene-3-phenyl-1-tosylpyrrolidine (2m')

Prepared with protocol A. **2m** and **2m**' mixture were obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 35%, **2m/2m'** = 1/1). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.33–7.17 (m, 14H), 5.08 (t, *J* = 2.0 Hz, 1H), 4.88 (t, *J* = 2.4 Hz, 1H), 3.99–3.90 (m, 2H), 3.74 (d, *J* = 9.6 Hz, 1H), 3.57 (dd, *J* = 10.0, 8.0 Hz, 1H), 3.42 (s, 2H), 3.21 (d, *J* = 9.6 Hz, 1H), 3.03 (t, *J* = 10.0 Hz, 1H), 2.43–2.40 (m, 7H), 1.42 (s, 3H), 1.08 (s, 3H), 0.82 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 151.7, 144.2, 144.1, 143.4, 143.3, 134.3, 133.1, 129.6, 129.58, 128.4, 128.37, 127.6, 127.4, 126.6, 126.5, 126.3, 125.8, 108.4, 61.3, 61.27, 53.4, 52.3, 50.2, 47.3, 42.0, 25.5, 21.52, 21.50, 19.2, 11.8. HRMS (ESI): m/z calcd for C₁₉H₂₄NO₂S [M+H]⁺ 330.1522, found 330.1525 (**2m**). HRMS (ESI): m/z calcd for C₁₉H₂₂NO₂S [M+H]⁺ 328.1366, found 328.1369 (**2m'**).

3,3-Dimethyl-4-(prop-1-en-2-yl)-1-tosylpyrrolidin-2-one (2n)

Prepared with protocol A. **2n** was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.89 (m, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 4.93 (t, *J* = 1.6 Hz, 1H), 4.73 (d, *J* = 0.8 Hz, 1H), 3.93 (dd, *J* = 10.0, 7.2 Hz, 1H), 3.67 (dd, *J* = 10.0, 8.0 Hz, 1H), 2.60 (t, *J* = 7.6 Hz, 1H), 2.41 (s, 3H), 1.66 (s, 3H), 1.16 (s, 3H), 0.80 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.5, 145.1, 140.8, 134.9, 129.6, 127.9, 114.3, 49.4, 47.1, 45.1, 24.4, 22.5, 21.6, 18.5. HRMS (ESI): m/z calcd for C₁₆H₂₂NO₃S [M+H]⁺ 308.1315, found 308.1316.

3-Methyl-4-(prop-1-en-2-yl)-1-tosylpyrrolidin-2-one (20)

Prepared with protocol A. **20** was obtained as a white solid after flash chromatography (PE/EA = 10/1) (0.2 mmol, 29%). mp 108–109 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94–7.91 (m, 2H), 7.35–7.32 (m, 2H), 4.93–4.91 (m, 1H), 4.83 (d, *J* = 1.2 Hz, 1H), 4.03 (dd, *J* = 9.6, 7.6 Hz, 1H), 3.44 (t, *J* = 10.0 Hz, 1H), 2.60–2.53 (m, 1H), 2.45–2.37 (m, 4H), 1.72 (s, 3H), 1.10 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.8, 145.1, 140.9, 135.2, 129.7, 128.0, 113.8, 49.3, 47.8, 41.7, 21.7, 19.7, 13.3. HRMS (ESI): m/z calcd for C₁₅H₂₀NO₃S [M+H]⁺ 294.1158, found 294.1162.

Methyl (*Z*)-4-benzylidene-3-methyltetrahydrofuran-3-carboxylate (2p)

Prepared with protocol A. **2p** was obtained as a colorless oil after flash chromatography (PE/EA = 20/1) (0.2 mmol, 37%). ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.34 (m, 2H), 7.25–7.22 (m, 1H), 7.16 (d, *J* = 7.2 Hz, 2H), 6.46 (t, *J* = 2.4 Hz, 1H), 4.79–4.69 (m, 2H), 4.41 (d, *J* = 8.8 Hz, 1H), 3.74 (s, 3H), 3.66 (d, *J* = 8.4 Hz, 1H), 1.51 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 144.2, 136.7, 128.6, 128.2, 127.1, 122.3, 76.8, 70.7, 53.9, 52.6, 22.3. HRMS (ESI): m/z calcd for C₁₄H₁₇O₃ [M+H]⁺ 233.1172, found 233.1178.

4-Ethylidene-3-methyl-3-phenyltetrahydrofuran (2q)

Prepared with protocol A. **2q** was obtained as a colorless oil after flash chromatography (PE/EA = 40/1) (0.2 mmol, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 0.54H), 7.30–7.21 (m, 4.54H), 7.15–7.12 (m, 1.27H), 6.46 (d, J =

1.2 Hz, 1H), 6.16 (s, 0.27H), 5.80–5.68 (m, 1.27H), 5.66–5.57 (m, 1.27H), 4.40 (dd, J = 14.8, 6.4 Hz, 0.54H), 4.25 (dd, J = 15.2, 6.4 Hz, 2H), 1.97 (d, J = 0.8 Hz, 3H), 1.88 (d, J = 0.8 Hz, 0.81H), 1.70 (d, J = 6.4 Hz, 4.81H); 13C NMR (101 MHz, CDCl₃) δ 143.4, 142.9, 140.8, 138.4, 130.23, 129.98, 128.3, 127.8, 127.4, 126.89, 126.86, 125.85, 125.76, 125.0, 114.7, 114.3, 73.2, 72.9, 18.4, 17.8, 13.3, 12.7. HRMS (ESI): m/z calcd for C₁₃H₁₇O [M + H]⁺ 189.1274, found 189.1276.

(1-((3-Methylbut-2-en-1-yl)oxy)prop-1-en-2-yl)benzene (2r)

Prepared with protocol A. **2r** was obtained as a colorless oil after flash chromatography (PE/EA = 40/1) (0.2 mmol, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.66–7.63 (m, 0.94H), 7.33–7.26 (m, 4.94H), 7.19–7.15 (m, 1.47H), 6.51 (dd, J = 2.4, 1.2 Hz, 1H), 6.20 (d, J = 2.8, 1.6 Hz, 0.47H), 5.44–5.40 (m, 1.47H), 4.38 (d, J = 6.8 Hz, 2H), 4.34 (d, J = 6.8 Hz, 0.94H), 2.00 (d, J = 1.2 Hz, 3H), 1.92 (d, J = 1.6 Hz, 1.41H), 1.78–1.77 (m, 4.41H), 1.73–1.71 (m, 4.41H); ¹³C NMR (101 MHz, CDCl₃) δ 143.6, 143.1, 140.9, 138.5, 137.9, 137.6, 128.3, 127.8, 127.4, 125.8, 125.7, 124.9, 120.5, 120.4, 114.4, 110.5, 69.1, 68.8, 25.8, 25.79, 18.4, 18.2, 12.7. HRMS (ESI): m/z calcd for C₁₄H₁₉O [M+H]⁺ 203.1430, found 203.1426.

Trimethyl 3-methyl-4-vinylcyclopentane-1,1,3-tricarboxylate (2s)

Prepared with protocol A. **2s** was obtained as a colorless oil after flash chromatography (PE/EA = 12/1) (0.2 mmol, 92%, dr = 1/0.8). ¹H NMR (400 MHz, CDCl₃) δ 5.77–5.68 (m, 0.8H), 5.65–5.56 (m, 1H), 5.08–5.02 (m, 3.6H), 3.73–3.71 (m, 10.8H), 3.66 (s, 2.4H), 3.58 (s, 3H), 3.08–3.01 (m, 0.8H), 2.91 (d, *J* = 14.4 Hz, 1H), 2.82 (d, *J* = 14.0 Hz, 0.8H), 2.56–2.46 (m, 2.8H), 2.39–2.31 (m, 1.8H), 2.25–2.14 (m, 1.8H), 1.26 (s, 3H), 1.07 (s, 2.4H); ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 175.6, 173.4, 172.4, 172.0, 135.9, 135.7, 117.0, 116.8, 58.6, 57.8, 54.6, 52.9, 52.93, 52.87, 52.85, 52.7, 52.0, 51.9, 51.5, 49.7, 44.8, 44.7, 38.8, 37.4, 22.7, 18.9. HRMS (ESI): m/z calcd for C₁₄H₂₁O₆ [M+H]⁺ 285.1333, found 285.1336.

3-Ethyl 1,1-dimethyl 3-methyl-4-vinylcyclopentane-1,1,3-tricarboxylate (2t)

Prepared with protocol A. **2t** was obtained as a colorless oil after flash chromatography (PE/EA = 12/1) (0.2 mmol, 84%, dr = 1/0.5). ¹H NMR (400 MHz, CDCl₃) δ 5.77–5.59 (m, 1.5H), 5.08–5.02 (m, 3H), 4.14–4.01 (m, 3H), 3.73–3.71 (m, 9H), 3.08–3.01 (m, 0.5H), 2.92 (d, *J* = 14.4 Hz, 1H), 2.83 (d, *J* = 14.4 Hz, 0.5H), 2.58–2.47 (m, 2.5H), 2.36–2.31 (m, 1.5H), 2.25–2.14 (m, 1.5H), 1.26 (s, 3H), 1.24–1.17 (m, 4.5H), 1.07 (s, 1.5H); ¹³C NMR (101 MHz, CDCl₃) δ 176.0, 175.1, 173.5, 172.5, 172.4, 172.0, 136.0, 135.7, 117.0, 116.7, 60.7, 60.5, 58.7, 57.8, 54.5, 52.9, 52.86, 52.8, 52.76, 52.7, 51.8, 49.6, 44.7, 44.67, 38.9, 37.5, 29.6, 22.8, 18.9, 14.1. HRMS (ESI): m/z calcd for C₁₅H₂₃O₆ [M+H]⁺ 299.1489, found 299.1491.

3-Ethyl 1,1-dimethyl 3-methyl-4-(prop-1-en-2-yl)cyclopentane-1,1,3-tricarboxylate (2u)

Prepared with protocol A. **2u** was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 98%, dr = 1/0.5). ¹H NMR (400 MHz, CDCl₃) δ 4.85 (s, 0.5H), 4.82 (s, 1H), 4.74 (s, 1H), 4.69 (s, 0.5H), 4.13 (q, *J* = 14.4, 7.2 Hz, 1H), 4.01 (q, *J* = 14.4, 7.2 Hz, 2H), 3.74–3.71 (m, 9H), 3.16 (dd, *J* = 13.2, 6.0 Hz, 0.5H), 2.92 (d, *J* = 14.4 Hz, 1H), 2.81 (d, *J* = 14.0 Hz, 0.5H), 2.72 (t, *J* = 13.2 Hz, 1H), 2.55–2.47 (m, 1.5H), 2.35–2.23 (m, 3H), 1.69 (s, 3H), 1.59 (s, 1.5H), 1.36 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 1.5H), 1.18 (t, *J* = 7.2 Hz, 3H), 1.01 (s, 1.5H); ¹³C NMR (101 MHz, CDCl₃) δ 176.9, 175.5, 173.5, 172.4, 172.3, 172.0, 142.7, 142.3, 112.7, 112.3, 60.8, 60.5, 58.1, 57.6, 56.4, 52.9, 52.8, 52.81, 52.6, 52.3, 52.1, 50.3, 46.5, 45.2, 38.3, 36.8, 24.3, 23.0, 22.4, 18.5, 14.0, 13.96. HRMS (ESI): m/z calcd for C₁₆H₂₅O₆ [M+H]⁺ 313.1646, found 313.1647.

3-Ethyl 1,1-dimethyl (*E***)-4-Benzylidene-3-methylcyclopentane-1,1,3-tricarboxyl**ate (**2v**)

Prepared with protocol A. **2v** was obtained as a colorless oil after flash chromatography (PE/EA = 15/1) (0.2 mmol, 26%). ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.28 (m, 4H), 7.24–7.21 (m, 1H), 6.44 (t, J = 2.4 Hz, 1H), 4.12 (q, J = 14.0, 7.2 Hz, 2H), 3.75 (s, 3H), 3.70 (s, 3H), 3.49 (dd, J = 17.2, 2.8 Hz, 1H), 3.23 (dd, J = 17.2, 2.0 Hz, 1H), 3.10 (d, J = 14.0 Hz, 1H), 2.41 (d, J = 14.0 Hz, 1H), 1.48 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 172.2, 171.7, 144.4, 137.2,

128.6, 128.3, 126.8, 124.4, 61.2, 58.9, 53.6, 53.0, 52.9, 43.7, 38.8, 24.8, 14.0. HRMS (ESI): m/z calcd for $C_{20}H_{25}O_6 [M + H]^+$ 361.1646, found 356.1654.

Dimethyl 3-methyl-3-phenyl-4-(prop-1-en-2-yl)cyclopentane-1,1-dicarboxylate (2w)

Prepared with protocol A. **2w** was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 99%, dr = 1/0.64). ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.45 (m, 1.28H), 7.33–7.29 (m, 1.28H), 7.26–7.16 (m, 5.64H), 4.77 (s, 0.64H), 4.68 (t, *J* = 1.6 Hz, 1H), 4.62 (s, 1.64H), 3.79–3.76 (m, 9.84H), 3.06–2.99 (m, 1.64H), 2.87 (d, *J* = 14.8 Hz, 0.64H), 2.72–2.65 (m, 2.64H), 2.50–2.42 (m, 3.28H), 1.53 (s, 3H), 1.23 (s, 1.92H), 1.17 (s, 1.92H), 1.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 173.3, 173.0, 172.6, 148.0, 145.9, 144.0, 143.4, 128.1, 127.6, 127.1, 126.3, 125.9, 125.8, 113.3, 111.7, 58.3, 57.3, 57.0, 56.4, 52.9, 52.8, 52.76, 51.3, 49.0, 47.8, 47.6, 38.0, 37.6, 29.8, 23.6, 20.9, 20.4. HRMS (ESI): m/z calcd for C₂₁H₂₆NO₂S [M+H]⁺ 356.1679, found 356.1684.

Methyl 3-methyl-4-methylene-1-tosylpyrrolidine-3-carboxylate (4a)

Prepared with protocol B. **4a** was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 67%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 5.11 (t, *J* = 2.0 Hz, 1H), 5.05 (t, *J* = 2.0 Hz, 1H), 3.96 (dt, *J* = 13.6, 2.0 Hz, 1H), 3.83 (dt, *J* = 13.6, 2.4 Hz, 1H), 3.75 (d, *J* = 10 Hz, 1H), 3.59 (s, 3H), 3.16 (d, *J* = 9.6 Hz, 1H), 2.44 (s, 3H), 1.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.4, 147.2, 143.8, 132.7, 129.7, 127.9, 109.0, 57.4, 52.6, 52.1, 52.08, 22.8, 21.5. HRMS (ESI): m/z calcd for C₁₅H₂₀NO₄S [M+H]⁺ 310.1108, found 310.1105.

Methyl 4-ethylidene-3-methyl-1-tosylpyrrolidine-3-carboxylate (4b)

Prepared with protocol B. **4b** was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 83%, E/Z = 1/0.5). ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.66 (m, 3H), 7.34–7.32 (m, 3H), 5.50–5.44 (m, 0.5H), 5.41–5.34 (m, 1H), 3.97–3.93 (m, 1.5H), 3.75–3.71 (m, 1H), 3.65–3.61 (m, 4H), 3.57 (s, 1.5H), 3.35 (d, J = 9.6 Hz, 1H), 3.29 (d, J = 9.2 Hz, 1H), 3.10 (d, J = 9.6 Hz, 0.5H), 2.43 (s, 4.5H),

1.56–1.54 (m, 1.5H), 1.52–1.49 (m, 3H), 1.42 (s, 3H), 1.34 (s, 1.5H); ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 173.8, 143.8, 143.7, 138.8, 138.7, 132.7, 131.9, 129.6, 129.63, 128.0, 127.8, 119.4, 119.2, 56.0, 57.4, 53.3, 52.4, 52.41, 51.8, 50.8, 49.5, 23.0, 21.8, 21.5, 14.6, 13.4. HRMS (ESI): m/z calcd for C₁₆H₂₂NO₄S [M+H]⁺ 324.1264, found 324.1271.

Methyl 4-benzylidene-3-methyl-1-tosylpyrrolidine-3-carboxylate (4c)

Prepared with protocol B. **4c** was obtained as a white solid after flash chromatography (PE/EA = 10/1) (0.2 mmol, 62%, E/Z = 1/0.1). mp 68–69 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.73 (m, 2.2H), 7.38–7.34 (m, 2.2H), 7.30–7.20 (m, 3.3H), 7.17 (d, J = 7.6 Hz, 0.2H), 7.07 (d, J = 7.2 Hz, 2H), 6.49 (s, 1H), 6.44 (t, J = 2.4 Hz, 0.1H), 4.27 (dd, J = 14.4, 2.4 Hz, 0.1H), 4.20–4.13 (m, 1.1H), 4.03 (dd, J = 13.6, 2.0 Hz, 1H), 3.83 (d, J = 9.6 Hz, 0.1H), 3.63 (s, 0.3H), 3.52 (d, J = 9.2 Hz, 1H), 3.33–3.31 (m, 4H), 3.16 (d, J = 9.6 Hz, 0.1H), 2.47 (s, 3H), 2.44 (s, 0.3H), 1.51 (s, 0.3H), 1.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 173.4, 143.8, 143.75, 140.0, 139.3, 135.8, 135.6, 132.9, 132.8, 129.7, 128.5, 128.3, 128.26, 128.0, 127.8, 127.78, 127.5, 127.3, 124.7, 124.5, 60.4, 56.4, 54.1, 53.2, 52.6, 52.2, 51.4, 50.8, 29.6, 22.9, 21.5. HRMS (ESI): m/z calcd for C₂₁H₂₄NO₄S [M+H]⁺ 386.1421, found 386.1423.

Methyl 4-(2-methoxybenzylidene)-3-methyl-1-tosylpyrrolidine-3-carboxylate (4d) Prepared with protocol B. 4d was obtained as a white solid after flash chromatography (PE/EA = 6/1) (0.2 mmol, 56%, E/Z = 1/0.12). mp 168–169 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.4 Hz, 2.24H), 7.36–7.31 (m, 2.24H), 7.23– 7.19 (m, 1.12H), 7.04 (dd, J = 7.6, 1.2 Hz, 0.12H), 6.97 (dd, J = 7.6, 1.2 Hz, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.82–6.79 (m, 1.24H), 6.69 (t, J = 3.2 Hz, 0.12H), 6.47 (s, 1H), 4.19–4.09 (m, 2.24H), 3.81 (d, J = 9.6 Hz, 0.12H), 3.79 (s, 0.36H), 3.76 (s, 3H), 3.60 (d, J = 3.6 Hz, 1H), 3.57 (s, 0.36H), 3.33 (s, 3H), 3.25 (d, J = 9.6 Hz, 1H), 3.15 (d, J =9.6 Hz, 0.12H), 2.45 (s, 3H), 2.42 (s, 0.36H), 1.25 (s, 0.36H), 1.23 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.6, 156.8, 143.7, 139.8, 133.3, 129.7, 129.65, 129.0, 127.7, 124.6, 120.8, 119.9, 110.1, 60.3, 55.3, 54.1, 52.1, 51.4, 21.5, 20.9. HRMS (ESI): m/z calcd for C₂₂H₂₆NO₅S [M+H]⁺ 416.1526, found 416.1531.

Methyl 4-(4-methoxybenzylidene)-3-methyl-1-tosylpyrrolidine-3-carboxylate (4e) Prepared with protocol B. 4e was obtained as a white solid after flash chromatography (PE/EA = 5/1) (0.2 mmol, 67%, E/Z = 1/0.18). mp 136–138 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75–7.71 (m, 2.36H), 7.36–7.32 (m, 2.36H), 7.09 (d, J = 8.4 Hz, 0.36H), 6.98 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.8 Hz, 0.36H), 6.81–6.77 (m, 2H), 6.39 (s, 1H), 6.35 (t, J = 2.4 Hz, 0.18H), 4.23 (dd, J = 14.0, 2.0 Hz, 0.18H), 4.15–4.09 (m, 1.18H), 3.99 (dd, J = 13.6, 2.0 Hz, 1H), 3.81–3.79 (m, 0.72H), 3.76 (s, 3H), 3.60 (s, 0.54H), 3.49 (d, J = 9.2 Hz, 1H), 3.35 (s, 3H), 3.29 (d, J = 9.6 Hz, 1H), 3.12 (d, J = 9.6 Hz, 0.18H), 2.44 (s, 3H), 2.42 (s, 0.54H), 1.47 (s, 0.54H), 1.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 173.6, 158.9, 158.7, 143.8, 143.7, 138.5, 136.9, 132.9, 132.7, 129.7, 129.67, 129.6, 128.6, 128.0, 127.8, 127.75, 124.3, 123.8, 114.0, 113.4, 60.5, 56.4, 55.2, 55.1, 54.2, 53.1, 52.6, 52.3, 51.3, 50.8, 22.8, 21.5, 21.3. HRMS (ESI): m/z calcd for C₂₂H₂₆NO₅S [M+H]⁺ 416.1526, found 416.1529.

Methyl 4-(4-ethylbenzylidene)-3-methyl-1-tosylpyrrolidine-3-carboxylate (4f)

Prepared with protocol B. **4f** was obtained as a white solid after flash chromatography (PE/EA = 8/1) (0.2 mmol, 62%, E/Z = 47/4). mp 106–108 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 6.96 (d, J = 8.0 Hz, 2H), 6.44 (s, 1H), 4.18–4.14 (m, 1H), 4.02–3.99 (m, 1H), 3.49 (d, J = 9.6 Hz, 1H), 3.32–3.30 (m, 4H), 2.60 (q, J = 15.2, 7.6 Hz, 2H), 2.45 (s, 3H), 1.33 (s, 3H), 1.19 (t, J = 7.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 143.8, 143.5, 139.3, 132.9, 132.85, 129.7, 128.3, 127.8, 127.5, 124.7, 60.5, 54.2, 52.2, 51.4, 28.5, 21.5, 21.48, 15.4. HRMS (ESI): m/z calcd for C₂₃H₂₈NO₄S [M+H]⁺ 414.1734, found 414.1739.

Methyl 4-(4-(*tert*-butyl)benzylidene)-3-methyl-1-tosylpyrrolidine-3-carboxylate (4g)

Prepared with protocol B. **4g** was obtained as a colorless oil after flash chromatography (PE/EA = 7/1) (0.2 mmol, 44%, E/Z = 7.7/1). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.0 Hz, 2H), 6.43 (s, 1H), 4.17 (dd, J = 13.6, 2.0 Hz, 1H), 4.00 (dd, J = 13.6, 2.0 Hz, 1H), 3.48 (d, J = 9.2 Hz, 1H), 3.32 (d, J = 9.6 Hz, 1H), 3.28 (s, 3H), 2.45 (s, 3H), 1.35 (s, 3H), 1.28 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 150.4, 143.8, 139.4, 132.9, 132.6, 129.7, 128.0, 127.8, 124.9, 124.6, 60.5, 54.2, 52.2, 51.4, 34.5, 31.2, 21.6. HRMS (ESI): m/z calcd for C₂₅H₃₂NO₄S [M+H]⁺ 442.2047, found 442.2051.

Methyl 4-(4-(methoxycarbonyl)benzylidene)-3-methyl-1-tosylpyrrolidine-3-carboxylate (4h)

Prepared with protocol B. **4h** was obtained as a white solid after flash chromatography (PE/EA = 5/1) (0.2 mmol, 66%, E/Z = 1/0.13). mp 130–131 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.4 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 6.48 (s, 1H), 4.17 (dd, J = 14.0, 2.0 Hz, 1H), 4.03 (dd, J = 14.0, 2.0 Hz, 1H), 3.89 (s, 3H), 3.51 (d, J = 9.2 Hz, 1H), 3.33 (s, 3H), 3.30 (d, J = 9.6 Hz, 1H), 2.45 (s, 3H), 1.31 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 166.6, 144.0, 141.9, 140.3, 132.7, 129.8, 129.4, 129.0, 128.3, 127.8, 123.8, 60.4, 54.2, 52.4, 52.1, 51.6, 21.6, 21.5. HRMS (ESI): m/z calcd for C₂₃H₂₆NO₆S [M+H]⁺ 444.1475, found 444.1480.

Methyl 4-(4-fluorobenzylidene)-3-methyl-1-tosylpyrrolidine-3-carboxylate (4i)

Prepared with protocol B. **4i** was obtained as a white solid after flash chromatography (PE/EA = 7/1) (0.2 mmol, 70%, E/Z = 56/5). mp 139–141 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.04–7.01 (m, 2H), 6.97–6.92 (m, 2H), 6.41 (s, 1H), 4.16–4.12 (m, 1H), 4.02–3.98 (m, 1H), 3.51 (d, J = 9.2 Hz, 1H), 3.34 (s, 3H), 3.28 (d, J = 9.2 Hz, 1H), 2.44 (s, 3H), 1.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.3, 161.9 (d, $J_{C-F} = 245.8$ Hz), 143.9, 140.3, 132.7, 131.6, (d, $J_{C-F} = 3.5$ Hz), 130.0 (d, $J_{C-F} = 8.0$ Hz), 129.7, 127.8, 123.7, 115.0 (d, $J_{C-F} = 21.3$ Hz), 60.4, 54.1, 52.3, 51.4, 21.5, 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.2. HRMS (ESI): m/z calcd for C₂₁H₂₃FNO₄S [M+H]⁺ 404.1326, found 404.1330.

Methyl 4-(4-chlorobenzylidene)-3-methyl-1-tosylpyrrolidine-3-carboxylate (4j) Prepared with protocol B. 4j was obtained as a white solid after flash chromatography (PE/EA = 7/1) (0.2 mmol, 69%, E/Z = 43/15). mp 137–138 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.70 (m, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.25–7.21 (m, 2H), 6.99 (d, J = 8.4 Hz, 2H), 6.40 (s, 1H), 4.16–4.12 (m, 1H), 4.02–3.98 (m, 1H), 3.51 (d, J = 9.2 Hz, 1H), 3.35 (s, 3H), 3.28 (d, J = 9.2 Hz, 1H), 2.44 (s, 3H), 1.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 143.9, 140.8, 134.0, 133.2, 132.7, 129.7, 129.65, 128.2, 127.8, 123.5, 60.4, 54.1, 52.3, 51.5, 21.5, 21.4. HRMS (ESI): m/z calcd for C₂₁H₂₃ClNO₄S [M+H]⁺ 420.1031, found 420.1034.

Methyl 3-methyl-1-tosyl-4-(4-(trifluoromethyl)benzylidene)pyrrolidine-3-carboxylate (4k)

Prepared with protocol B. **4k** was obtained as a white solid after flash chromatography (PE/EA = 7/1) (0.2 mmol, 71%, E/Z = 55/9). mp 126–127 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 6.48 (s, 1H), 4.19–4.15 (m, 1H), 4.05–4.01 (m, 1H), 3.53 (d, J = 9.6 Hz, 1H), 3.33 (s, 3H), 3.29 (d, J = 9.2 Hz, 1H), 2.45 (s, 3H), 1.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.1, 144.0, 142.1, 139.2, 132.7, 129.8, 129.4 (q, $J_{C-F} = 32.3$ Hz), 128.7, 127.8, 125.0 (q, $J_{C-F} = 3.8$ Hz), 123.9 (q, $J_{C-F} = 270.4$ Hz), 123.4, 60.3, 54.1, 52.3, 51.6, 21.5, 21.48; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6. HRMS (ESI): m/z calcd for C₂₂H₂₃F₃NO₄S [M+H]⁺ 454.1294, found 454.1302.

Methyl 4-(4-cyanobenzylidene)-3-methyl-1-tosylpyrrolidine-3-carboxylate (4l) Prepared with protocol B. **4l** was obtained as a white solid after flash chromatography (PE/EA = 5/1) (0.2 mmol, 56%, E/Z = 40/6). mp 161–163 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.70 (m, 2H), 7.57–7.55 (m, 2H), 7.36 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 6.45 (s, 1H), 4.18–4.14 (m, 1H), 4.05–4.01 (m, 1H), 3.53 (d, J = 9.6 Hz, 1H), 3.36 (s, 3H), 3.28 (d, J = 9.6 Hz, 1H), 2.45 (s, 3H), 1.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.0, 144.0, 143.0, 140.3, 132.6, 131.8, 129.8, 129.0, 127.8, 123.1, 118.5, 111.0, 60.3, 54.2, 52.4, 51.7, 21.5, 21.4. HRMS (ESI): m/z calcd for C₂₂H₂₃N₂O₄S [M+H]⁺ 411.1373, found 411.1378.

Methyl 3-methyl-4-(thiophen-2-ylmethylene)-1-tosylpyrrolidine-3-carboxylate (4m)

Prepared with protocol B. **4m** was obtained as a colorless oil after flash chromatography (PE/EA = 7/1) (0.2 mmol, 47%, E/Z = 1/0.26). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.0 Hz, 0.52 H), 7.71 (d, J = 8.4 Hz, 2H), 7.36–7.33 (m, 2.78H), 7.23 (dd, J = 4.8, 0.8 Hz, 1H), 7.05–7.03 (m, 0.26H), 6.95–6.93 (m, 1.26H), 6.80 (d, J = 3.2 Hz, 1H), 6.63 (t, J = 2.4 Hz, 0.26 H), 6.46 (s, 1H), 4.25–4.21 (m, 0.26 H), 4.18–4.14 (m, 1H), 4.08–4.04 (m, 0.26 H), 3.94–3.90 (m, 1H), 3.83 (d, J = 9.6 Hz, 0.26H), 3.64 (s, 0.78 H), 3.48 (s, 3H), 3.40–3.35 (m, 2H), 3.14 (d, J = 9.6 Hz, 0.26 H), 2.45 (s, 3H), 2.43 (s, 0.78 H), 1.49 (s, 3H), 1.47 (s, 0.78H); ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 144.0, 139.9, 137.6, 132.2, 129.8, 127.9, 127.4, 127.2, 126.0, 116.8, 60.7, 54.5, 52.5, 51.6, 21.5, 20.9. HRMS (ESI): m/z calcd for C₁₉H₂₂NO₄S₂ [M+H]⁺ 392.0985, found 392.0988.

Methyl 3-methyl-4-(naphthalen-2-ylmethylene)-1-tosylpyrrolidine-3-carboxylate (4n)

Prepared with protocol B. **4n** was obtained as a colorless oil after flash chromatography (PE/EA = 7/1) (0.2 mmol, 53%, E/Z = 38/8). mp 137–139 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79–7.73 (m, 5H), 7.52 (s, 1H), 7.48–7.43 (m, 2H), 7.37 (d, J = 8.0 Hz, 2H), 7.19 (dd, J = 8.4, 1.6 Hz, 1H), 6.62 (s, 1H), 4.25–4.21 (m, 1H), 4.10–4.06 (m, 1H), 3.53 (d, J = 9.2 Hz, 1H), 3.34 (d, J = 9.6 Hz, 1H), 3.25 (s, 3H), 2.46 (s, 3H), 1.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 143.9, 140.4, 133.1, 132.9, 132.8, 132.3, 129.8, 127.9, 127.8, 127.6, 127.5, 127.3, 126.3, 126.27, 126.2, 124.7, 60.5, 54.3, 52.2, 51.6, 21.6, 21.5. HRMS (ESI): m/z calcd for C₂₅H₂₆NO₄S [M+H]⁺ 436.1577, found 436.1581.

4-Ethylidene-3-methyl-3-phenyl-1-tosylpyrrolidine (40)

Prepared with protocol B. **40** was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 90%, E/Z = 1/0.68). ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.55 (m, 3.36H), 7.24–7.10 (m, 11.76H), 5.31 (dd, J = 14.4, 7.2 Hz, 1H), 5.18–5.13 (m, 0.68H), 4.00 (d, J = 12.8 Hz, 1H), 3.90 (d, J = 14.0 Hz, 0.68H), 3.79 (d, J = 14.0 Hz, 0.68H), 3.67 (d, J = 12.8 Hz, 1H), 3.62 (d, J = 9.2 Hz, 0.68H), 3.29 (d, J = 9.2 Hz, 1H), 3.09 (d, J = 9.2 Hz, 0.68H), 3.00 (d, J = 9.2 Hz, 1H), 2.35 (s, 3H), 2.34 (s, 2.04H), 1.54 (s, 3H), 1.52 (dd, J = 6.8, 1.2 Hz, 2.04H), 1.34 (s, 2.04H), 1.08 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.0, 144.6, 143.6, 143.4, 143.2, 142.8, 133.0, 131.9, 129.6, 128.4, 128.2, 128.0, 127.6, 126.4, 126.3, 118.5, 118.3, 65.1, 61.5, 54.3, 49.8, 49.7, 48.7, 25.6, 23.8, 21.5, 21.48, 14.4, 13.9. HRMS (ESI): m/z calcd for C₂₀H₂₄NO₂S [M+H]⁺ 342.1522, found 342.1523.

3-Methyl-3-phenyl-4-propylidene-1-tosylpyrrolidine (4p)

Prepared with protocol B. **4p** was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 89%, E/Z = 1/0.54). ¹H NMR (400 MHz, CDCl₃) δ 7.67–7.62 (m, 3.08H), 7.31 (d, J = 7.6 Hz, 2H), 7.27–7.23 (m, 7.24H), 7.21–7.16 (m, 1.54H), 5.28–5.23 (m, 1H), 5.19–5.15 (m, 0.54H), 4.08 (dd, J = 12.8, 1.2 Hz, 1H), 4.00–3.96 (m, 0.54H), 3.88–3.83 (m, 0.54H), 3.78–3.73 (m, 1H), 3.69 (d, J = 9.2 Hz, 0.54H), 3.35 (d, J = 9.2 Hz, 1H), 3.17 (d, J = 9.6 Hz, 0.54H), 3.07 (d, J = 9.2 Hz, 1H), 2.43 (s, 3H), 2.41 (s, 1.62H), 2.00–1.93 (m, 1H), 1.61–1.51 (m, 4.08H), 1.50–1.44 (m, 1H), 1.42 (s, 1.62H), 0.94 (t, J = 7.6 Hz, 1.62H), 0.66 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.0, 145.0, 143.6, 143.4, 141.6, 141.5, 133.1, 131.9, 129.6, 129.5, 128.3, 128.2, 128.0, 127.6, 126.4, 126.0, 125.8, 65.1, 61.4, 54.3, 49.7, 49.5, 48.9, 25.7, 24.4, 22.5, 21.6, 21.5, 21.47, 13.6, 13.3. HRMS (ESI): m/z calcd for C₂₁H₂₆NO₂S [M+H]⁺ 356.1679, found 356.1681.

4-Benzylidene-3-methyl-3-phenyl-1-tosylpyrrolidine (4q)

Prepared with protocol B. **4q** was obtained as a white solid after flash chromatography (PE/EA = 10/1) (0.2 mmol, 72%, E/Z = 1/0.73). mp 139–141 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.56 (m, 3.46H), 7.30–7.07 (m, 16.3H), 6.96–6.91

(m, 2.73H), 6.72–6.70 (m, 1.73H), 6.45 (s, 1H), 6.11 (t, J = 2.4 Hz, 0.73H), 4.22 (dd, J = 14.8, 2.4 Hz, 0.73H), 4.16 (dd, J = 14.8, 2.4 Hz, 0.73H), 4.10 (d, J = 2.0 Hz, 2H), 3.65 (d, J = 9.6 Hz, 0.73H), 3.34 (d, J = 9.2 Hz, 1H), 3.21 (d, J = 9.2 Hz, 1H), 3.16 (d, J = 9.6 Hz, 0.73H), 2.36 (s, 3H), 2.33 (s, 2.19H), 1.49 (s, 2.19H), 1.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 144.6, 144.4, 143.7, 143.6, 143.5, 136.2, 135.5, 133.1, 132.5, 129.7, 129.6, 128.8, 128.6, 128.4, 128.39, 128.3, 127.8, 127.6, 127.5, 127.2, 126.7, 126.6, 126.5, 126.4, 124.4, 124.1, 65.4, 60.3, 55.5, 51.4, 50.9, 49.6, 25.7, 23.2, 21.54, 21.5. HRMS (ESI): m/z calcd for C₂₅H₂₆NO₂S [M+H]⁺ 404.1679, found 404.1680.

4-(4-Methoxybenzylidene)-3-methyl-3-phenyl-1-tosylpyrrolidine (4r)

Prepared with protocol B. **4r** was obtained as a white solid after flash chromatography (PE/EA = 10/1) (0.2 mmol, 72%, E/Z = 1/0.23). mp 133–134 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67–7.64 (m, 2.46H), 7.31–7.17 (m, 8.61H), 7.10 (d, J = 8.8 Hz, 0.46H), 6.90 (d, J = 8.8 Hz, 0.46H), 6.74 (d, J = 8.8 Hz, 2H), 6.56 (d, J = 8.8 Hz, 2H), 6.47 (s, 1H), 6.14 (s, 0.23H), 4.30–4.21 (m, 0.46H), 4.16 (d, J = 1.6 Hz, 2H), 3.82 (s, 0.69H), 3.74 (d, J = 9.2 Hz, 0.23H), 3.68 (s, 3H), 3.40 (d, J = 9.6 Hz, 1H), 3.29 (d, J = 9.6 Hz, 1H), 3.22 (d, J = 9.6 Hz, 0.23H), 2.43 (s, 3H), 2.41 (s, 0.69H), 1.56 (s, 0.69H), 1.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 158.3, 144.8, 143.5, 143.46, 141.9, 141.7, 133.1, 132.4, 130.1, 129.6, 129.56, 129.54, 129.0, 128.4, 128.36, 128.0, 127.8, 127.5, 126.6, 126.5, 126.48, 126.3, 123.9, 123.4, 114.0, 113.0, 65.4, 60.3, 55.6, 55.3, 55.0, 51.2, 50.9, 49.5, 25.6, 23.0, 21.5, 21.45. HRMS (ESI): m/z calcd for C₂₆H₂₈NO₃S [M+H]⁺ 434.1784, found 434.1788.

Methyl 4-((4-methyl-4-phenyl-1-tosylpyrrolidin-3-ylidene)methyl)benzoate (4s)

Prepared with protocol B. **4s** was obtained as a white solid after flash chromatography (PE/EA = 6/1) (0.2 mmol, 60%, E/Z = 1/0.18). mp 124–125 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 0.36H), 7.76–7.73 (m, 4.36H), 7.40–7.34 (m, 4.36H), 7.29–7.23 (m, 4.26H), 6.90 (d, J = 8.0 Hz, 2H), 6.60 (s, 1H), 6.29 (t, J = 2.8 Hz, 0.18H), 4.36–4.23 (m, 2.36H), 4.01 (s, 0.54H), 3.92 (s, 3H), 3.81 (d, J = 9.2 Hz, 0.18H), 3.46 (d, J = 9.6 Hz, 1H), 3.39 (d, J = 9.6 Hz, 1H), 3.34 (d, J = 9.2 Hz, 0.18H), 2.53 (s, 3H), 2.49 (s, 0.54H), 1.67 (s, 0.54H), 1.57 (s, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 166.7, 146.4, 144.2, 143.7, 140.2, 132.4, 129.7, 128.8, 128.7, 128.5, 128.2, 127.9, 126.8, 126.3, 123.3, 65.3, 55.6, 52.0, 49.7, 23.2, 21.6. HRMS (ESI): m/z calcd for C₂₇H₂₈NO₄S [M+H]⁺ 462.1734, found 462.1738.

Trimethyl 3-methyl-4-methylenecyclopentane-1,1,3-tricarboxylate (4t)

Prepared with protocol B. **4t** was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 79%). ¹H NMR (400 MHz, CDCl₃) δ 5.07 (t, J = 2.0 Hz, 1H), 5.01 (t, J = 2.0 Hz, 1H), 3.73 (s, 3H), 3.71 (s, 3H), 3.63 (s, 3H), 3.21 (dt, J = 16.4, 2.4 Hz, 1H), 3.03 (d, J = 14.0 Hz, 1H), 2.91 (d, J = 16.4 Hz, 1H), 2.37 (d, J = 14.0 Hz, 1H), 1.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 172.1, 171.6, 151.7, 109.2, 57.9, 52.9, 52.85, 52.4, 51.8, 44.6, 41.1, 24.7. HRMS (ESI): m/z calcd for C₁₃H₁₉O₆ [M+H]⁺ 271.1176, found 271.1172.

3-Ethyl 1,1-dimethyl 4-ethylidene-3-methylcyclopentane-1,1,3-tricarboxylate (4u) Prepared with protocol B. 4u was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 82%, E/Z = 1/0.73). ¹H NMR (400 MHz, CDCl₃) δ 5.47–5.41 (m, 1.73H), 4.18–4.03 (m, 3.46H), 3.72–3.71 (m, 10.38H), 3.10– 2.89 (m, 5.19H), 2.41 (d, J = 14 Hz, 1H), 2.31 (d, J = 14.0 Hz, 0.73H), 1.62 (d, J =6.8 Hz, 2.19H), 1.52 (d, J = 7.2 Hz, 3H), 1.35 (s, 3H), 1.30 (s, 2.19H), 1.23–1.17 (m, 5.19H); ¹³C NMR (101 MHz, CDCl₃) δ 175.8, 175.4, 172.4, 172.0, 171.8, 171.3, 142.8, 142.6, 119.5, 118.9, 60.9, 58.6, 58.1, 52.8, 52.7, 52.69, 51.9, 50.0, 47.5, 44.5, 42.6, 37.0, 24.9, 23.4, 14.7, 14.1, 14.0, 13.8. HRMS (ESI): m/z calcd for C₁₅H₂₃O₆ [M+H]⁺ 299.1489, found 299.1490.

Trimethyl 4-ethylidene-3-methylcyclopentane-1,1,3-tricarboxylate (4v)

Prepared with protocol B. **4v** was obtained as a colorless oil after flash chromatography (PE/EA = 10/1) (0.2 mmol, 85%, E/Z = 1/0.72). ¹H NMR (400 MHz, CDCl₃) δ 5.46–5.40 (m, 1.72H), 3.72–3.71 (m, 10.32H), 3.65 (s, 3H), 3.60 (s, 2.16H), 3.11–2.87 (m, 5.16H), 2.42 (dd, J = 13.6, 0.4 Hz, 1H), 2.31 (d, J = 14.0 Hz, 0.72H), 1.62 (dt, J = 6.8, 1.6 Hz, 2.16H), 1.51 (dt, J = 7.2, 2.0 Hz, 3H), 1.36 (s, 3H), 1.31 (s, 2.16H); ¹³C NMR (101 MHz, CDCl₃) δ 176.3, 175.9, 172.3, 171.9, 171.8, 171.3, 142.7, 142.5, 119.6, 119.1, 58.6, 58.1, 52.8, 52.76, 52.7, 52.2, 52.1, 51.9, 49.9, 47.5,

44.6, 42.5, 36.9, 24.9, 23.4, 14.7, 13.6. HRMS (ESI): m/z calcd for $C_{14}H_{21}O_6$ [M+H]⁺ 285.1333, found 285.1335.

Methyl 2-(4-(4-cyanobenzylidene)-1-tosylpyrrolidin-3-yl)acetate (4w)

Prepared with protocol B. **4w** was obtained as a white solid after flash chromatography (PE/EA = 3/1) (0.2 mmol, 60%, E/Z = 27/16). mp 157–158 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.70 (m, 2H), 7.64–7.61 (m, 2H), 7.34–7.32 (m, 2H), 7.22–7.19 (m, 2H), 6.32–6.30 (m, 1H), 4.18–4.13 (m, 1H), 4.02 (dd, J = 2.4 Hz, J = 15.2 Hz, 1H), 3.69 (s, 3H), 3.48–3.44 (m, 1H), 3.29–3.23 (m, 1H), 3.14–3.10 (m, 1H), 2.65–2.60 (m, 1H), 2.53–2.47 (m, 1H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 144.0, 143.3, 140.5, 132.5, 132.4, 129.9, 128.6, 127.8, 122.3, 118.6, 110.7, 51.9, 50.5, 41.2, 37.6, 21.5. HRMS (ESI): m/z calcd for C₂₂H₂₃N₂O₄S [M+H]⁺ 411.1373, found 411.1370.

8. References

- S. Žukauskaitė, G. Mangelinckx, C. Callebaut, A. Wybon, Šačkus and N. De Kimpe, Synthesis of 1,5-Diazaspiro[2.3]Hexanes, a Novel Diazaspirocyclic System, *Tetrahedron*, 2013, 69, 3437–3443.
- (2) K. H. Kim, J. W. Lim, J. Lee, M. J. Go and J. N. Kim, Thermal Intramolecular [2+2] Cycloaddition: Synthesis of 3-Azabicyclo[3.1.1]Heptanes from Morita-Baylis-Hillman Adduct-Derived 4,4-Diaryl-1,3-Dienes, *Adv. Synth. Catal.*, 2014, **356**, 3363–3369.
- (3) Y. X. Tan, S. Li, L. Song, X. Zhang, Y. D. Wu and J. Sun, Ruthenium-Catalyzed Geminal Hydroborative Cyclization of Enynes, *Angew. Chem.*, *Int. Ed.*, 2022, 61, e202204319.
- (4) S. Gao, C. Wang, J. Yang and J. Zhang, Cobalt-Catalyzed Enantioselective Intramolecular Reductive Cyclization via Electrochemistry, *Nat. Commun.*, 2023, 14, 1301.
- (5) P.-T. Li, R. Yang, Y.-P. Ma, J.-L. Zhao, S.-N. Liu, Z.-D. Qiu, Y.-T. Ding, Z.-F. Shi, Y. Miao, M. Zhao and X.-P. Cao, Anthracene-Triphenylamine Materials with High Luminance and Negligible Efficiency Roll-off for Organic Light-Emitting Diodes, *Dyes Pigm.*, 2024, **224**, 112041.
- (6) Z.-P. Wu, G.-J. Liu, C.-C. Zhu, Z.-M. Li, X.-C. Gao and Q.-Y. Cao, Violet-Blueor Pure-Blue-Emitting Triphenylamine Derivatives: Synthesis and Properties, *Can. J. Chem.*, 2013, **91**, 1043–1047.

- (7) J. Xu, J. Cao, X. Wu, H. Wang, X. Yang, X. Tang, R. W. Toh, R. Zhou, E. K. L. Yeow and J. Wu, Unveiling Extreme Photoreduction Potentials of Donor– Acceptor Cyanoarenes to Access Aryl Radicals from Aryl Chlorides, *J. Am. Chem. Soc.*, 2021, 143, 13266–13273.
- (8) D. Nicewicz, H. Roth and N. Romero, Experimental and Calculated Electrochemical Potentials of Common Organic Molecules for Applications to Single-Electron Redox Chemistry, *Synlett*, 2015, 27, 714–723.
- (9) A. Suzuki, Y. Kamei, M. Yamashita, Y. Seino, Y. Yamaguchi, T. Yoshino, M. Kojima and S. Matsunaga, Photocatalytic Deuterium Atom Transfer Deuteration of Electron-Deficient Alkenes with High Functional Group Tolerance, *Angew. Chem., Int. Ed.*, 2022, **62**, e202214433.

S58

140 130 120 110 100 f1 (ppm) ò

S62

¹⁹F NMR (CDCl₃, 376 MHz)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20 f1 (ppm)

S66

(11) ¹H NMR (CDCl₃, 400 MHz)

7 (2) 7

S68

(1t) ¹H NMR (CDCl₃, 400 MHz)

S76

¹⁹F NMR (CDCl₃, 376 MHz)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20(f1 (ppm)

¹⁹F NMR (CDCl₃, 376 MHz)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

S90

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

(2c) ¹H NMR (CDCl₃, 400 MHz)

7.7.7.2 7.7.7.2 7.7.7.2 7.7.7.2 7.7.7.2 7.7.7 7.7.7 7.5.2 7.5.5.2 7.5.

(2e) ¹H NMR (CDCl₃, 400 MHz)

 $\begin{array}{c} -7.7.73\\ -7.7.$

(2f) ¹H NMR (CDCl₃, 400 MHz)

 $\begin{array}{c} -2.5 \\ -2$

(2g) ¹H NMR (CDCl₃, 400 MHz)

7,810 7,777 7,778 7,778 7,778 7,778 7,778 7,778 7,7777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7,777 7

 $\begin{array}{c} + 4 \\ + 4 \\ + 5 \\ - 5 \\$

(2i) ¹H NMR (CDCl₃, 400 MHz)

 $\begin{array}{c} 7.7803\\ 7.777337\\ 7.773377\\ 7.773377\\ 7.773377\\ 7.773377\\ 7.773377\\ 7.773377\\ 7.773377\\ 7.773377\\ 7.773235\\ 7.7772255\\ 7.7772255\\ 7.7772255\\ 7.7772255\\ 7.7772255\\ 7.7772255\\ 7.7772255\\ 7.7772255\\ 7.7772255\\ 7.7772255\\ 7.77255\\ 7.772555\\ 7.772555\\ 7.77255\\ 7.772555\\ 7.7725555\\ 7.772555\\ 7.772555\\ 7.772555\\ 7.772555\\ 7.772555\\ 7.772555\\ 7.7$

¹⁹F NMR (CDCl₃, 376 MHz)

<-116.252
<-116.333</pre>

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

(2j) ¹H NMR (CDCl₃, 400 MHz)

(2k) ¹H NMR (CDCl₃, 400 MHz)

(2l) ¹H NMR (CDCl₃, 400 MHz)

(2m and 2m') ¹H NMR (CDCl₃, 400 MHz) ¹H NMR (CDCl₃, 400 MHz) ¹E (2222) ¹E (222) ¹

(20) ¹H NMR (CDCl₃, 400 MHz)

4,915 4,9154,915 4,915 4,915 4,9154,915 4,915 4,915 4,9154,915 4,915 4,9154,915 4,915

(2q) ¹H NMR (CDCl₃, 400 MHz)

(2r) ¹H NMR (CDCl₃, 400 MHz)

 $\begin{array}{c} 7.657\\ 7.657\\ 7.658\\ 7.75\\ 7.658\\ 7.75\\ 7$

(2s) ¹H NMR (CDCl₃, 400 MHz)

(2t) ¹H NMR (CDCl₃, 400 MHz)

(2u) ¹H NMR (CDCl₃, 400 MHz)

(4b) ¹H NMR (CDCl₃, 400 MHz)

(4d) ¹H NMR (CDCl₃, 400 MHz)

(4e) ¹H NMR (CDCl₃, 400 MHz)

NOE Experiment (CDCl₃, 600 MHz)

(4h) ¹H NMR (CDCl₃, 400 MHz) -1.314 7.735 7.734 7.734 7.734 7.734 7.369 7.369 7.369 7.369 7.121 $\begin{array}{c} 4,19\\ 4,16\\ 4,158\\ 4,158\\ 4,005\\ 4,005\\ 3,518\\ 3,2890\\ 5,312\\ 8,228\\ 3,2$ -2.454 -6.480 CO₂Me MeO_2C Ts 2.02 ⊣ 2.10 ⊣ 2.02⊣ 1.99⊣ 3.14⊣ **|**3.18*-*≖ 8 4.0 f1 (ppm) 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 ¹³C NMR (CDCl₃, 101 MHz) 143.961 141.876 140.254 132.673 129.788 129.788 129.358 128.953 128.320 127.846 123.828 -173.116 -166.617 60.422 54.213 52.373 52.117 51.619 -77.318 -77.001 -76.683 $\stackrel{21.571}{<}^{21.571}_{21.513}$ 129.788 -129.358 -128.953 -128.320 -127.846 .CO₂Me MeO₂C 130.0 129.5 129.0 128.5 128.0 127.5 f1 (ppm) Ts

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

S128

¹⁹F NMR (CDCl₃, 376 MHz)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

(4m) ¹H NMR (CDCl₃, 400 MHz)

S135

(40) ¹H NMR (CDCl₃, 400 MHz)

1.2
2.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3
3.3</th

(4p) ¹H NMR (CDCl₃, 400 MHz)

(4q) ¹H NMR (CDCl₃, 400 MHz)

(4r) ¹H NMR (CDCl₃, 400 MHz)

(4s) ¹H NMR (CDCl₃, 400 MHz)

(4w) ¹H NMR (CDCl₃, 400 MHz)

