Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Electronic Supplementary Information

Vaska's Complex – PMHS Combination Enabled Mild and Chemoselective Reduction of Sulfoxides to Sulfides with Low Catalyst Loading

Fang-Fang Xu, Zhong-Lei Ruan, Pei-Qiang Huang*

Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University Xiamen, Fujian 361005, P. R. China E-mail: pqhuang@xmu.edu.cn

Table of Contents

1. General information	3
2. The structures of all sulfoxides used	4
3. General procedure and the reductions of sulfoxides	5
4. Gram-scale reactions	20
4.1 Gram-scale reduction of sulfoxide 1a	20
4.2 Gram-scale reduction of sulfoxide 1w	20
4.3 Gram-scale reduction of sulfoxide 1a in 2-MeTHF	21
4.3 Gram-scale reduction of sulfoxide 1t in 2-MeTHF	21
4.4 Gram-scale reaction at 0.01 mol % catalyst loading	22
5. Gram-scale reaction at 0.001 mol % catalyst loading	22
6. Gram-scale reaction(32 mmol) at 0.01 mol % catalyst loading	23
7. Reference	23
8. NMR spectra of products	26

1. General information

All reactions were performed anhydrously under nitrogen atmosphere. All reagents were purchased from commercial suppliers without further purification. Solvent purification was conducted according to Purification of Laboratory Chemicals (Peerrin, D. D.; Armarego, W. L. and Perrins, D. R., Pergamon Press: Oxford, 1980). Yields were calculated based on the weights of chromatographically isolated products or determined by GC methods or ¹H NMR. Reactions were monitored by thin-layer chromatography (TLC) on plates (GF254) supplied by Yantai Chemicals (China). The TLC spots were visualized under ultraviolet light or by staining with an ethanolic solution of phosphomolybdic acid and cerium sulfate or iodine vapor. Flash column chromatography was performed using silica gel (200-300 mesh) from Qingdao Haiyang Chemicals. Melting points were determined on a Büchi M560 Automatic Melting Point apparatus and are uncorrected. NMR spectra were recorded on Bruker AV III 400 and Bruker AV III 500 instruments, and calibrated with tetramethylsilane (TMS) (δ H = 0.00 ppm.) and CDCl₃ ($\delta C = 77.00$ ppm.) as internal references. Multiplicities were designated as follows: s = singlet, d = doublet, t = triplet, q = quartet, dd = doubledoublet, m = multiplet. Infrared (IR) spectra were measured on a Nicolet FT-380 spectrometer using film KBr pellet techniques. High-resolution mass spectra analyses were performed on a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer (Bruker Daltonics) with a 7-T magnet (Magnex) and an electrospray ionization (ESI) source (Apollo II, Bruker Daltonics) under positive-ion mode. Optical rotations were measured on an Anton Paar MCP-500 polarimeter. THF were distilled over sodium benzophenone ketyl under N2. Dichloromethane was distilled over calcium hydride under N₂. sulfoxides $1e^1$, $1f^1$, $1g^2$, $1h^1$, $1i^1$, $1u^2$, $1v^3$, $1y^2$, $1ag^2$ were prepared according to the procedures described in the literature. All other commercially available compounds were used as received.

2. The structures of all sulfoxides used

CF3

3. General procedure and the reductions of sulfoxides

General procedure:

$$R^{1^{-}S^{-}R^{2}} R^{2} \xrightarrow{\text{IrCl(CO)(PPh_{3})_{2} (0.4 \text{ mol}\%)}{\text{PMHS (2.0 equiv)}}} R^{1^{-}S^{-}R^{2}}$$
1
THF, rt, 0.5 to 12 h
2

To a flame-dried Schlenk tube were added a sulfoxide **1** (1.0 mmol), $IrCl(CO)(PPh_3)_2$ (3.2 mg, 0.4 mol%) and THF (4 mL) under N₂ atmosphere at room temperature. After being stirred at room temperature for 5 min, poly(methylhydrosiloxane) (PMHS) (444 μ L, 2 mmol, 2 equiv) was added, and the resulting mixture was stirred at room temperature (25 °C) for 30 min to 12 h. The resulting mixture was filtered through a short pad of Celite and washed with ethyl acetate (20 mL). The filtrate was concentrated under reduced pressure, and the residue was purified by flash chromatography on silica gel eluting with EtOAc/*n*-hexane to afford the desired sulfide **2**.

Diphenylsulfane⁴

Following the general procedure, the reaction of sulfoxide **1a** (202.3 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL), 3 h gave, after FC (eluent: *n*-hexane), sulfide **2a** as a pale-yellow oil (182.5 mg, yield: 98%); IR (film) \tilde{v} : 3058, 2964, 1783, 1579, 1474, 1438, 1024, 736, 689 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.31 (m, 2H), 7.29 – 7.26 (m, 2H), 7.24 – 7.20 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 135.7, 130.9, 129.1, 126.99; HRMS (ESI) *m/z* for C₁₂H₁₁S⁺ ([M+H]⁺): 187.0576; found: 187.0575.

Bis(4-chlorophenyl)sulfane³

Following the general procedure, the reaction of sulfoxide **1b** (271.2 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2b** as a white solid (231.1 mg, yield: 91%); M. p. 86 - 88 °C (lit.: M. p. 88 - 89 °C)⁵; IR (film) \tilde{v} : 2938, 2834, 1591, 1491, 1285, 1244, 1171, 1031, 824 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 2.3 Hz, 1H), 7.26 (d, *J* = 2.5 Hz, 3H), 7.25 (d, *J* = 4.4 Hz, 3H), 7.23 (d, *J* = 2.3 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 133.9, 133.4, 132.3, 129.5; HRMS (ESI) *m*/*z* for C₁₂H₉Cl₂S⁺ ([M+H]⁺): 254.9797; found: 254.9791.

Di-*p*-tolylsulfane⁶

Following the general procedure, the reaction of sulfoxide **1c** (230.3 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2c** as a white solid (199.1 mg, yield: 93%); M. p. 56 - 58 °C (lit.: M. p. 53 – 55 °C)⁶; IR (film) \tilde{v} : 3019, 2920, 1584, 1491, 1282, 1088, 1015, 803 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.25 – 7.20 (m, 4H), 7.10 - 7.08 (m, 4H), 2.31 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 136.8, 132.6, 131.0, 129.8, 21.0 (2C); HRMS (ESI) *m/z* for C₁₄H₁₅S⁺ ([M+H]⁺): 215.0889; found: 215.0891.

Bis(4-methoxyphenyl)sulfane⁶

Following the general procedure, the reaction of sulfoxide **1d** (262.3 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2d** as a white solid (233.8 mg, yield: 95%); M. p. 47 - 49 °C (lit.: M. p. 43 - 44 °C)⁶; IR (film) \tilde{v} : 2965, 2841, 1591, 1496,

1285, 1248, 1184, 1184, 1032, 837, 813 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.24 (m, 4H), 6.85 – 6.79 (m, 4H), 3.76 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 159.0, 132.8, 127.5, 114.8, 55.4; HRMS (ESI) *m*/*z* for C₁₄H₁₅O₂S⁺ ([M+H]⁺): 247.0787; found: 247.0789.

Bis(3,4-dimethylphenyl)sulfane⁶

Following the general procedure, the reaction of sulfoxide **1e** (258.4 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2e** as a white solid (227.6 mg, yield: 94%); M. p. 144 - 146 °C (lit.: M. p. 145 - 147 °C)⁶; **IR** (film) \tilde{v} : 2975, 2933, 1592, 1449, 1023, 877, 807, 701 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.14 - 7.13 (m, 2H), 7.08 – 6.99 (m, 4H), 2.20 (s, 6H), 2.18 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 137.4, 135.4, 132.8, 132.1, 130.3, 128.5, 19.6, 19.3; HRMS (ESI) *m/z* for C₁₆H₁₉S⁺ ([M+H]⁺): 243.1202; found: 243.1213.

Bis(2,4-dimethylphenyl)sulfane⁷

Following the general procedure, the reaction of sulfoxide **1f** (258.4 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2f** as a white solid (237.3 mg, yield: 98%); M. p. 134 - 136 °C ; IR (film) \tilde{v} : 2920, 2856, 1602, 1474, 1232, 1050, 874, 810, 724 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.57 - 7.55 (m, 2H), 7.13 - 7.11 (m, 2H), 6.99 (s, 2H), 2.35 (s, 6H), 2.31 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 141.1, 138.7, 136.2, 131.4, 127.6, 125.9, 21.0, 18.23; HRMS (ESI) *m*/*z* for C₁₆H₁₉S⁺ ([M+H]⁺): 243.1202; found: 243.1209.

Naphthalen-2-yl(phenyl)sulfane⁸

Following the general procedure, the reaction of sulfoxide **1g** (252.3 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2g** as a yellow oil (214.8 mg, yield: 91%); IR (film) \tilde{v} : 3054, 2956, 1582, 1477, 1438, 1132, 1024, 813, 741, 690 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.65 (m, 4H), 7.45 – 7.32 (m, 5H), 7.28 - 7.25 (m, 2H), 7.23 – 7.19 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 135.9, 133.9, 133.1, 132.4, 131.1, 130.0, 129.4, 128.9, 128.9, 127.9, 127.5, 127.2, 126.7, 126.3; HRMS (ESI) *m*/*z* for C₁₆H₁₃S⁺ ([M+H]⁺): 237.0732; found: 237.0731.

Di(naphthalen-1-yl)sulfane⁶

Following the general procedure, the reaction of sulfoxide **1h** (302.4 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2h** as a brown solid (277.5 mg, yield: 97%); M. p. 184 - 186 °C (lit.: M. p. 176 - 178 °C)⁶; IR (film) \tilde{v} : 3053, 2919, 1562, 1502, 1379, 1254, 969, 789, 768 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.43 - 8.39 (m, 2H), 7.89 - 7.85 (m, 2H), 7.78 - 7.74 (m, 2H), 7.54 - 7.50(m, 4H), 7.35 - 7.28 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 134.1, 132.6, 132.4, 129.9, 128.6, 127.9, 126.7, 126.4, 125.9, 125.1; HRMS (ESI) *m*/*z* for C₁₉H₁₄S⁺ ([M+H]⁺): 274.0811; found: 274.0802.

Di([1,1'-biphenyl]-4-yl)sulfane⁷

Following the general procedure, the reaction of sulfoxide **1s** (354.5 mg, 1.0 mmol) with $IrCl(CO)(PPh_3)_2$ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4

mL) gave, after FC (eluent: *n*-hexane), sulfide **2s** as a white solid (308.0 mg, yield: 91%); M. p. 197 - 199 °C, IR (film) \tilde{v} : 2963, 1592, 1479, 1395, 837, 758 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.51 (m, 8H), 7.47 – 7.40 (m, 8H), 7.36 – 7.32 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 140.3, 140.1, 134.8, 131.4, 128.8, 127.9, 127.5, 126.9; HRMS (ESI) *m*/*z* for C₂₄H₁₉S⁺ ([M+H]⁺): 339.1202; found: 339.1198.

Methyl(phenyl)sulfane⁵

Following the general procedure, the reaction of sulfoxide **1j** (140.0 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2j** as a colorless oil (115.5 mg, yield: 93%); IR (film) \tilde{v} : 2958, 2873, 1465, 1378, 704 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.24 – 7.19 (m, 4H), 7.10 - 7.05 (m, 1H), 2.38 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 128.6, 126.3, 124.7, 15.5; HRMS (ESI) *m*/*z* for C₇H₉S⁺ ([M+H]⁺): 125.0419; found: 125.0413.

Methyl(*p*-tolyl)sulfane⁵

Following the general procedure, the reaction of sulfoxide **1k** (154.2 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2k** as a pale-yellow oil (129.9 mg, yield: 94%); IR (film) \tilde{v} : 2917, 1580, 1492, 799 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.19 – 7.14 (m, 2H), 7.10 – 7.06 (m, 2H), 2.44 (s, 3H), 2.29 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 135.0, 134.7, 129.6, 127.3, 20.9, 16.5; HRMS (ESI) *m/z* for C₈H₁₁S⁺ ([M+H]⁺): 139.0576; found: 139.0579.

(4-Bromophenyl)(methyl)sulfane⁵

Following the general procedure, the reaction of sulfoxide **1l** (154.2 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2l** as a white solid (174.7 mg, yield: 86%); M. p. 38 – 39 °C (lit.: M. p. 34 – 36 °C)⁵; IR (film) \tilde{v} : 2922, 1473, 1093, 1007, 806 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.36 (m, 2H), 7.15 – 7.08 (m, 2H), 2.46 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 137.7, 131.8, 128.1, 118.6, 15.9; HRMS (ESI) *m/z* for C₇H₈BrS⁺ ([M+H]⁺): 202.9525; found: 202.9527.

Benzyl(phenyl)sulfane⁹

Following the general procedure, the reaction of sulfoxide **1m** (216.3 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: EtOAc/*n*-hexane = 1: 2), sulfide **2m** as a colorless oil (168.1 mg, yield: 84%); IR (film) \tilde{v} : 2960, 1453, 1441, 1035, 743, 690 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.25 (m, 5H), 7.24 – 7.20 (m, 3H), 7.19 – 7.13 (m, 1H), 4.09 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 137.4, 136.3, 129.7, 128.8, 128.4, 127.1, 126.3, 38.9; HRMS (ESI) *m/z* for C₁₃H₁₃S⁺ ([M+H]⁺): 201.0732; found: 201.0735.

Dimethylsulfane⁵

∕s∕

Following the general procedure, the reaction of sulfoxide **1n** (78.1 mg, 1.0 mmol) with $IrCl(CO)(PPh_3)_2$ (3.2 mg, 0.4 mol%), PMHS (444 µL, 2 mmol, 2 equiv), THF (4 mL) gave. The crude reaction mixture was analyzed by GC analysis using a tetradecane as internal standard and a 91% yield of title compound **2n** was calculated. Due to the extremely volatile nature of this compound, purification was not performed.

Dodecyl(methyl)sulfane⁴

Following the general procedure, the reaction of sulfoxide **1o** (232. mg, 1.0 mmol) with $IrCl(CO)(PPh_3)_2$ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave. The crude reaction mixture was analyzed by ¹H NMR spectroscopy using a trimethoxybenzene internal standard and a 85% yield of title compound **2o** was calculated.

Dibutylsulfane⁴

Following the general procedure, the reaction of sulfoxide **1p** (162.3 mg, 1.0 mmol) with $IrCl(CO)(PPh_3)_2$ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave. The crude reaction mixture was analyzed by GC analysis using a tetradecane as internal standard and a 87% yield of title compound **2p** was calculated. Due to the extremely volatile nature of this compound, purification was not performed.

Tetrahydrothiophene⁵

Following the general procedure, the reaction of sulfoxide 1q (104.2 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 µL, 2 mmol, 2 equiv), THF (4 mL) gave. The crude reaction mixture was analyzed by GC analysis using a tetradecane as internal standard and Due to the extremely volatile nature of this compound, purification was not performed.

Dibenzylsulfane⁸

Following the general procedure, the reaction of sulfoxide **1r** (230.3 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2r** as a colorless oil (168.1 mg, yield: 82%); IR (film) \tilde{v} : 3027, 2914, 1600, 1493, 1452, 1071, 769, 695 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.25 (m, 8H), 7.25 – 7.19 (m, 2H), 3.58 (s, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 138.1, 128.9, 128.4, 126.9, 35.5; HRMS (ESI) *m/z* for C₁₃H₁₄S⁺ ([M+H]⁺): 202.0811; found: 202.0801.

Phenyl(vinyl)sulfane¹⁰

Following the general procedure, the reaction of sulfoxide **1s** (152.2 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2s** as a colorless oil (118.5 mg, yield: 87%); IR (film) \tilde{v} : 3059, 1584, 1479, 1439, 1093, 1023, 956, 744, 690 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.31 (m, 2H), 7.26 - 7.22 (m, 2H), 7.19 -7.15 (m, 1H), 6.48 (dd, *J* = 16.6, 9.6 Hz, 1H), 5.32 – 5.25 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 134.1, 131.7, 130.2, 128.9, 126.9, 115.2; HRMS (ESI) *m*/*z* for C₈H₉S⁺ ([M+H]⁺): 137.0419; found: 137.0420.

2-(Methylthio)pyridine¹¹

Following the general procedure, the reaction of sulfoxide **1t** (141.2 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2t** as a pale-yellow oil (116.3 mg, yield: 93%); IR (film) \tilde{v} : 3044, 2925, 1581, 1455, 1126, 757 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.42 - 8.41 (m, 1H), 7.46 - 7.42 (m, 1H), 7.15 - 7.13 (m, 1H), 6.95 - 6.92 (m, 1H),

2.54 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.7, 149.2, 135.5, 121.2, 118.9, 12.9; HRMS (ESI) *m*/*z* for C₆H₈NS⁺ ([M+H]⁺): 126.0372; found:126.0378.

2-(Phenylthio)thiophene¹²

Following the general procedure, the reaction of sulfoxide **1u** (208.3 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2u** as a yellow oil (176.6 mg, yield: 92%); IR (film) \tilde{v} : 3072, 2924, 1582, 1476, 1439, 1402, 1217, 1080, 1023, 847, 738, 688 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 5.4 Hz, 1H), 7.25 (d, *J* = 3.6, 1H), 7.21 – 7.15 (m, 4H), 7.12 – 7.07 (m, 1H), 7.00 (dd, *J* = 5.4, 3.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 138.6, 135.9, 131.2, 131.0, 128.9, 127.8, 127.0, 125.9; HRMS (ESI) *m*/*z* for C₁₀H₉S⁺ ([M+H]⁺): 193.0140; found: 193.0141.

Bis(phenylthio)methane⁸

Following the general procedure, the reaction of sulfoxide **1v** (264.4 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), the **2v** product as a white solid (192.6 mg, yield: 83%); M. p. 37 – 40 °C (lit.: M. p. 39 – 41 °C)⁸; IR (film) \tilde{v} : 3057, 2961, 1582, 1479, 1438, 1199, 1087, 1024, 737, 688 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.39 (m, 4H), 7.33 – 7.28 (m, 4H), 7.27 – 7.21 (m, 2H), 4.34 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 135.0, 130.8, 129.1, 127.2, 40.6; HRMS (ESI) *m/z* for C₁₃H₁₃S₂⁺ ([M+H]⁺): 233.0453; found: 233.0452.

4-(Methylthio)benzonitrile¹³

Following the general procedure, the reaction of sulfoxide **1w** (165.2 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2w** as a white solid (135.6 mg, yield: 91%); M. p. 59 – 61 °C (lit.: M. p. 61 – 63 °C)¹³; IR (film) \tilde{v} : 2928, 2222, 1596, 1484, 1402, 1087, 817 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.49 (m, 2H), 7.31 – 7.21 (m, 2H), 2.51 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 146.1, 132.1, 125.4, 118.9, 107.6, 14.6; HRMS (ESI) *m/z* for C₈H₈NS⁺ ([M+H]⁺): 150.0372; found: 150.0373.

Methyl ((benzyloxy)carbonyl)-L-methioninate¹⁴

Following the general procedure, the reaction of sulfoxide **1x** (313.4 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL), 60 °C, 8 h gave, after FC (eluent: EtOAc/*n*-hexane = 1: 2), sulfide **2x** as a white solid (220.1 mg, yield: 74%); M. p. 41 - 43 °C (lit.: M. p. 44 - 46 °C)⁶; IR (film) \tilde{v} : 3342, 3028, 2956, 1721, 1531, 1297, 1217, 1130, 1052, 754, 699 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.37 - 7.30 (m, 5H), 5.49 (s, 1H), 5.11 (s, 2H), 4.52 - 4.48 (m, 1H), 3.75 (s, 3H), 2.52 (t, *J* = 7.4 Hz, 2H), 2.19 - 2.12(m, 1H), 2.08 (s, 3H), 2.00 - 1.93 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 172.5, 155.9, 136.2, 128.6, 128.3, 128.2, 77.3, 67.1, 53.1, 52.6, 31.9, 29.9, 15.5; HRMS (ESI) *m*/*z* for C₁₄H₂₀NO₄S⁺ ([M+H]⁺): 298.1108; found: 298.1108.

9H-Thioxanthen-9-one⁸

Following the general procedure, the reaction of sulfoxide **1y** (228.3 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL), 6 h gave, after FC (eluent: EtOAc/*n*-hexane = 1: 2), sulfide **2y** as a white solid (169.8 mg, yield: 80%); M. p. 210 - 212 °C (lit.: M. p. 207 – 209 °C)⁸; IR (film) \tilde{v} : 3052, 1654, 1590, 1433, 1320, 1161, 1031, 729, 664 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.63 - 8.61 (m, 2H), 7.66 – 7.56 (m, 4H), 7.50 - 7.47 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 179.9, 137.3, 132.3, 129.9, 129.2, 126.3, 125.9; HRMS (ESI) *m*/*z* for C₁₃H₉OS⁺ ([M+H]⁺): 213.0369; found: 213.0368.

1-(4-(Methylthio)phenyl)ethan-1-one¹⁸

Following the general procedure, the reaction of sulfoxide **1z** (168.2 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (555 μ L, 2.0 mmol, 2.0 equiv), THF (4 mL) gave, after FC (eluent: PE), sulfide **2z** as a white solid (123.3 mg, yield: 81%), M. p. 80 - 81 °C (lit.: M. p. 80.5 – 81.5 °C)¹⁹; IR (film) \tilde{v} : 3010, 1605, 1580, 1273, 1103, 821 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 8.2 Hz, 2H), 2.55 (s, 3H), 2.51 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 197.0, 145.8, 133.4, 128.6, 124.9, 26.3, 14.6.

(2-Methoxyphenyl)(methyl)sulfane¹⁵

Following the general procedure, the reaction of sulfoxide **1aa** (170.2 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2aa** as a colorless oil (138.8 mg, yield: 90%); IR (film) \tilde{v} : 2919, 2835, 1576, 1450, 1240, 1062, 1023, 742 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.14 (m, 2H), 6.95 (m, 1H), 6.82 (m, 1H), 3.87 (s, 3H), 2.41 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 154.5, 132.7, 131.7, 124.2, 121.3, 110.4, 55.4, 40.9. HRMS (ESI) *m*/*z* for C₈H₁₁OS⁺ ([M+H]⁺): 155.0525 ; found: 155.0523.

(2-Bromophenyl)(methyl)sulfane⁸

Following the general procedure, the reaction of sulfoxide **1ab** (219.1 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL), gave, after FC (eluent: *n*-hexane), sulfide **2ab** as a colorless oil (199.1 mg, yield: 99%); IR (film) \tilde{v} : 2919, 1576, 1449, 1250, 1111, 1030, 744 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.47 - 7.45 (m, 1H), 7.25 - 7.21 (m, 1H), 7.07 - 7.05 (m, 1H), 6.95 - 6.92 (m, 1H), 2.40 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 139.4, 132.3, 127.6, 125.4, 125.1, 121.4, 15.4; HRMS (ESI) *m/z* for C₇H₈BrS⁺ ([M+H]⁺): 202.9525; found: 202.9524.

(2-Bromophenyl)(methyl)sulfane¹⁷

Following the general procedure, the reaction of sulfoxide **1ac** (113 mg, 0.5 mmol) with IrCl(CO)(PPh₃)₂ (1.9 mg, 0.4 mol%), PMHS (222 μ L, 1 mmol, 1 equiv), THF (2 mL) gave, after FC (eluent: PE), sulfide **2ac** as a light yellow oil (102.5 mg, yield: 82%); IR (film) \tilde{v} : 2935, 1571, 1250, 1104, 652 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.75(m, 1H), 7.34-7.29 (m, 1H), 7.09-7.06 (m, 1H), 8.84-6.80 (m, 1H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.9, 139.1, 128.6, 125.8, 124.7, 97.2, 16.9.

4-(Methylthio)phenol⁵

Following the general procedure, the reaction of sulfoxide **1ad** (156.2 mg, 1.0 mmol) with $IrCl(CO)(PPh_3)_2$ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4

mL) gave, after FC (eluent: EtOAc/*n*-hexane = 1: 2), sulfide **2ad** a white solid (116.2 mg, yield: 83%); M. p. 81 – 82 °C (lit.: M. p. 77 – 79 °C)⁵; IR (film) \tilde{v} : 3233, 2804, 1584, 1499, 1281, 1015, 833 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.24 - 7.21 (m, 2H), 6.85 – 6.70 (m, 2H), 4.88 (s, 1H), 2.44 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.1, 130.4, 128.9, 116.0, 18.0; HRMS (ESI) *m*/*z* for C₇H₉OS⁺ ([M+H]⁺): 141.0369; found: 141.0368.

10H-Phenothiazine¹⁶

Following the general procedure, the reaction of sulfoxide **1ae** (215.0 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2ae** as a white solid (197.1 mg, yield: 99%); M. p. 181 - 183 °C (lit.: M. p. 180 – 184 °C)¹⁶; IR (film) \tilde{v} : 3331, 1573, 1481, 1311, 745 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.98 (d, *J* = 7.4 Hz, 4H), 6.81 (t, *J* = 7.5 Hz, 2H), 6.52 (d, *J* = 7.9 Hz, 2H), 5.78 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 141.6, 127.3, 126.8, 122.6, 118.3, 114.4, 114.4. HRMS (ESI) *m/z* for C₁₂H₁₀NS⁺ ([M+H]⁺): 200.0528; found: 200.0531`.

Phenoxathiine⁸

Following the general procedure, the reaction of sulfoxide **1af** (216.3 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL) gave, after FC (eluent: *n*-hexane), sulfide **2af** as a white solid (188.0 mg, yield: 94%); M. p. 53 - 55 °C (lit.: M. p. 54 – 56 °C)⁸; IR (film) \tilde{v} : 3072, 1586, 1449, 1259, 1224, 1081, 760, 746 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.15 – 7.06 (m, 4H), 7.01-6.97 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 152.1, 127.7, 126.8, 124.5, 120.1, 117.8; HRMS (ESI) *m/z* for C₁₂H₉OS⁺ ([M+H]⁺): 201.0369; found: 201.0372.

Dibenzo[*b*,*d*]thiophene⁸

Following the general procedure, the reaction of sulfoxide **1ag** (200.3 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (444 μ L, 2 mmol, 2 equiv), THF (4 mL), gave, after FC (eluent: EtOAc/*n*-hexane = 1: 2), sulfide **2ag** as a white solid (160.1 mg, yield: 87%); M. p. 83 - 85 °C (lit.: M. p. 87 - 89 °C)⁸; IR (film) \tilde{v} : 2922, 1426, 1307, 1230, 1126, 1066, 734 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.13-8.10 (m, 2H), 7.84-7.81 (m, 2H), 7.48 - 7.38 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 139.4, 135.5, 126.6, 124.3, 122.8, 121.5; HRMS (ESI) *m*/*z* for C₁₂H₉S⁺ ([M+H]⁺): 185.0419; found: 185.0421.

Allyl(phenyl)sulfane²⁰

Following the general procedure, the reaction of sulfoxide **1ah** (166.2 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (555 μ L, 2.0 mmol, 2.0 equiv), THF (4 mL) gave, after FC (eluent: PE), sulfide **2ah** as a colorless oil (109.5 mg, yield: 73%); IR (film) \tilde{v} : 3063, 1514, 1479, 1437, 961, 723 cm⁻¹; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34-7.32 (m, 2H), 7.27-7.24 (m, 2H), 7.19 – 7.13 (m, 1H), 5.86 (m, 1H), 5.16 – 5.02 (m, 2H), 3.53 (dt, *J* = 6.9, 1.3 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.7, 133.5, 129.7, 128.7, 126.1, 117.6, 37.1.

Methyl (5-(propylthio)-1*H*-benzo[*d*]imidazol-2-yl)carbamate⁶

Following the general procedure, the reaction of sulfoxide **1ai** (218.3 mg, 1.0 mmol) with $IrCl(CO)(PPh_3)_2$ (3.2 mg, 0.4 mol%), PMHS (555 µL, 2.5 mmol, 2.5 equiv), THF

(4 mL), 80 °C, 12 h gave, after FC (eluent: EtOAc), sulfide **2ai** as a white solid (196.3 mg, yield: 74%); M. p. 201 - 203 °C (lit.: M. p. 206 - 208 °C)⁶; IR (film) \tilde{v} : 3323, 1713, 2956, 1633, 1443, 1326, 1195, 1269, 1096, 958, 760 cm⁻¹; ¹H NMR (400 MHz, DMSO*d*₆) δ 7.44 (d, *J* = 1.7 Hz, 1H), 7.35 (d, *J* = 8.2 Hz, 1H), 7.12-7.10 (m, 1H), 3.77 (s, 3H), 3.34 (s, 1H), 2.86 (t, *J* = 7.1 Hz, 2H), 2.52-2.50 (m, 1H), 1.59-1.50 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 154.8, 147.8, 126.8, 124.0, 115.7, 114.1, 52.5, 36.7, 22.1, 13.1; HRMS (ESI) *m*/*z* for C₁₂H₁₆N₃O₂S⁺ ([M+H]⁺): 266.0958; found: 266.0957.

5-Methoxy-2-(((4-methoxy-3,5-dimethylpyridin-2-yl)methyl)thio)-1*H*benzo[*d*]imidazole⁶

Following the general procedure, the reaction of sulfoxide **1aj** (345.4 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (555 μ L, 2.5 mmol, 2.5 equiv), THF (4 mL), 80 °C, 12 h gave, after FC (eluent: EtOAc/*n*-hexane = 2: 1), sulfide **2aj** as a colorless oil (273.2 mg, yield: 83%)⁶; IR (film) \tilde{v} : 2932, 1567, 1265, 1198, 1156, 1073, 804 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.26 (s, 1H), 7.41 (d, *J* = 8.7 Hz, 1H), 7.03 (d, *J* = 2.4 Hz, 1H), 6.83-6.81 (m, 1H), 4.37 (s, 2H), 3.84 (s, 3H), 3.78 (s, 3H), 2.31 (s, 3H), 2.27 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.0, 155.9, 155.8, 150.6, 148.3, 126.4, 125.5, 111.0, 60.0, 55.8, 35.0, 13.4, 11.2; HRMS (ESI) *m/z* for C₁₇H₂₀N₃O₂S⁺ ([M+H]⁺): 330.1271; found: 330.1266.

2-(((3-Methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl)methyl)thio)-1*H*benzo[*d*]imidazole⁶

Following the general procedure, the reaction of sulfoxide **1ak** (369.4 mg, 1.0 mmol) with IrCl(CO)(PPh₃)₂ (3.2 mg, 0.4 mol%), PMHS (555 μ L, 2.5 mmol, 2.5 equiv), THF: CH₂Cl₂= 3: 1 (4 mL), 80 °C, 12 h gave, after FC (eluent: EtOAc/*n*-hexane = 1: 2), sulfide **2ak** as a white solid (250.9 mg, yield: 71%); M. p. 154 - 156 °C (lit.: M. p. 150 - 152 °C)⁶; IR (film) \tilde{v} : 3326, 3053, 1576, 1408, 1254, 1199, 1160, 974, 760, 745 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.40 (d, *J* = 5.7 Hz, 1H), 7.60 – 7.46 (m, 2H), 7.20-7.17 (m, 2H), 6.71 (d, *J* = 5.7 Hz, 1H), 4.45 – 4.39 (m, 4H), 2.31 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.4, 157.6, 151.2, 147.4, 122.8 (q, *J*_{C-F} = 277.9 Hz), 122.0, 121.7, 105.9, 65.5 (q, *J*_{C-F} = 36.5 Hz), 34.8, 10.6; ¹⁹F NMR ((376 MHz, Chloroform-*d*) δ - 73.73; HRMS (ESI) *m*/*z* for C₁₆H₁₅F₃N₃OS⁺([M+H]⁺): 354.0882; found: 354.0877.

4. Gram-scale reactions

4.1 Gram-scale reduction of sulfoxide 1a

$$\begin{array}{ccc} O \\ II \\ Ph \\ \hline S \\ Ph \\ \hline 1a \\ 6 \text{ mmol} \end{array} \begin{array}{c} IrCl(CO)(PPh_3)_2 (0.4 \text{ mol\%}) \\ PMHS (2.0 \text{ equiv}) \\ \hline THF, \text{ rt, 3 h} \\ \hline 2a, 96\%, 1.07 \text{ g} \end{array}$$

To a flame-dried Schlenk tube were added sulfoxide **1a** (1.21 g, 6 mmol), $IrCl(CO)(PPh_3)_2$ (19.2 mg, 0.4 mol%) and THF (16 mL) under N₂ atmosphere at room temperature. After being stirred at room temperature for 5 min, PMHS (2.7 mL, 12.0 mmol) was added, and the resulting mixture was stirred at room temperature for 3 h. The resulting mixture was filtered through a short pad of Celite eluting with ethyl acetate (120 mL), the residue was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with petroleum ether to give sulfide **2a** in 96% yield (1.07 g) as a pale-yellow oil.

4.2 Gram-scale reduction of sulfoxide 1w

To a flame-dried round bottle flask were added sulfoxide **1w** (1.32 g, 8 mmol), $IrCl(CO)(PPh_3)_2$ (25.6 mg, 0.4 mol%) and THF (16 mL) under N₂ atmosphere at room temperature. After being stirred at room temperature for 5 min, PMHS (3.6 mL, 16.0 mmol) was added, and the resulting mixture was stirred at room temperature for 12 h. The resulting mixture was filtered through a short pad of Celite eluting with ethyl acetate (160 mL), the residue was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with petroleum ether to give sulfide **2w** in 93% yield (1.11 g) as a white solid.

4.3 Gram-scale reduction of sulfoxide 1a in 2-MeTHF

To a flame-dried round bottle flask were added sulfoxide **1a** (1.21 g, 6 mmol), $IrCl(CO)(PPh_3)_2$ (19.2 mg, 0.4 mol%) and 2-MeTHF (12 mL) under N₂ atmosphere at room temperature. After being stirred at room temperature for 5 min, PMHS (2.7 mL, 12.0 mmol) was added, and the resulting mixture was stirred at room temperature for 3 h. The resulting mixture was filtered through a short pad of Celite eluting with ethyl acetate (120 mL), the residue was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with petroleum ether to give sulfide **2a** in 92% yield (1.03 g) as a pale-yellow oil.

4.3 Gram-scale reduction of sulfoxide 1t in 2-MeTHF

To a flame-dried round bottle flask were added sulfoxide **1t** (1.69 g, 12 mmol), $IrCl(CO)(PPh_3)_2$ (38.4 mg, 0.4 mol%) and 2-MeTHF (24 mL) under N₂ atmosphere at room temperature. After being stirred at room temperature for 5 min, PMHS (5.3 mL, 24.0 mmol) was added, and the resulting mixture was stirred at room temperature for 6 h. The resulting mixture was filtered through a short pad of Celite eluting with ethyl acetate (200 mL), the residue was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with petroleum ether to give sulfide **2t** in 87% yield (1.31 g) as a pale-yellow oil.

4.4 Gram-scale reaction at 0.01 mol % catalyst loading

To a flame-dried round bottle flask equipped with a stir bar were added sulfoxide **1a** (1.62 g, 8 mmol), $IrCl(CO)(PPh_3)_2$ (0.64 mg, 0.01 mol%) and THF (16 mL) under N₂ atmosphere at room temperature. After being stirred at room temperature for 5 min, PMHS (3.6 mL, 16.0 mmol) was added, and the resulting mixture was stirred at 60 °C for 14 h. After cooling down to room temperature, the resulting mixture was filtered through a short pad of Celite eluting with ethyl acetate (160 mL), the residue was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with petroleum ether to give sulfide **2a** in 90% yield (1.34 g) as a pale-yellow oil.

5. Gram-scale reaction at 0.001 mol % catalyst loading

Preparation of highly diluted IrCl(CO)(PPh₃)₂/THF solution: 7.8 mg (0.01 mmol) of IrCl(CO)(PPh₃)₂ was added to 100 mL of THF, and 1.0 mL of the resultant solution was further diluted to 0.00001 mmol/ mL, from which 1.0 mL was used for the reaction. To a flame-dried round bottle flask equipped with a stir bar were added sulfoxide **1a** (1.62 g, 8 mmol), IrCl(CO)(PPh₃)₂/ THF solution (1.0 mL of the abovementioned solution, 0.001 mol %), and THF (16 mL) under N₂ atmosphere at room temperature. After being stirred at room temperature for 5 min, PMHS (3.6 mL, 16.0 mmol) was added, and the resulting mixture was stirred at reflux for 24 hours. After cooling down to room temperature, the resulting mixture was filtered through a short pad of Celite eluting with ethyl acetate (160 mL), the residue was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with petroleum ether to give sulfide **2a** in 84% yield (1.25 g) as a pale-yellow oil.

6. Gram-scale reaction(32 mmol) at 0.01 mol % catalyst loading

$$\begin{array}{ccc} & \text{IrCl(CO)(PPh_{3})_{2}} (\textbf{0.01 mol\%}) \\ & \overset{\text{II}}{\text{Ph}} & \overset{\text{PMHS}}{\xrightarrow{}} \text{Ph} & \overset{\text{PMHS}}{\xrightarrow{}} \text{Ph} \\ & \textbf{1a} & 2\text{-MeTHF, reflux, 24 h} & \textbf{2a, 85\%, 5.07g} \\ & 32 \text{ mmol} & \end{array}$$

To a flame-dried round bottle flask equipped with a stir bar were added sulfoxide **1a** (6.47 g, 32 mmol), $IrCl(CO)(PPh_3)_2$ (2.5 mg, 0.01 mol%) and 2-MeTHF (60 mL) under N₂ atmosphere at room temperature. After being stirred at room temperature for 5 min, PMHS (28.2 mL, 64.0 mmol) was added, and the resulting mixture was stirred at reflux for 24 hours. After cooling down to room temperature, the resulting mixture was filtered through a short pad of Celite eluting with ethyl acetate (160 mL), the residue was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with petroleum ether to give sulfide **2a** in 85% yield (5.07 g) as a pale-yellow oil.

6. Reference

- W. -X. Li, B.-W. Yang, X. Ying, Z.-W. Zhang, X.-Q. Chu, X.-C. Zhou, M.-T. Ma, Z.-L. Shen, J. Org. Chem. 2022, 87, 11899-11908.
- [2] X.-J. Li, Y. Sun, X. Huang, L. Zhang, L.-C. Kong, B. Peng, Org. Lett. 2017, 19, 838-841.
- [3] F. Secci, A. Frongia, P. P. Piras, Tetrahedron Lett. 2014, 55, 603-605.
- [4] N. Sakai, R. Shimada, Y. Ogiwara, Asian J. Org. Chem. 2021, 10, 845-850.
- [5] A. K. Clarke, A. Parkin, R. Taylor, W. P. Unsworth, J. A. Rossi-Ashton, ACS Catal.
 2020, 10, 5814-5820
- [6] Y. Xiao, X.-L. Pu, F.-Q. Lu, Y.-M. Wang, Y.-N. Xu, H. Zhang, Liu, Y.-J, Arabian J. Chem. 2022, 15, 103896.
- [7] L. Zhang, X.-J. Li, Y. Sun, W.-Z. Zhao, F. Luo, X. Huang, L.-H. Y. Lin, Ying; B.
 Peng, Org. Biomol. Chem. 2017, 15, 7181-7189
- [8] Z.-S. Kong, C. Pan, M. Li, L.-R. Wen, W. Guo, Green Chem., 2021, 23, 2773-2777.
- [9] J. Asha, I. Zafar and D. Saroj, ChemistrySelect, 2022, 7, e202202924.
- [10] B. Argha, H. Hiromu, Y. Taiga, T. Hayato, M. Kazushi, *Chem. Lett.* 2019, 48, 888-890.
- [11] B. Zhang, Z.-G. Fan, Z.-Q. Guo, C.-J. Xi, J. Org. Chem. 2019, 84, 8661-8667.
- [12] S. K. Sinha, S. Panja, J. Grover, P. S. Hazra, S. Pandit, Y. Bairagi, X.-I. Zhang, D.
 Maiti, J. Am. Chem. Soc. 2022, 144, 12032-12042
- [13] G.-D. Zhang, C.-Y. Zhang, Y. Tian, F. Chen, Org. Lett. 2023, 25, 917-922.
- [14] A.-G. P, M.-M. C, G.-S. D, Chem. Eur. J., 2020, 26, 10348-10354
- [15] T. C. Pijper, J. Robertus, W. R. Browne, B. L. Feringa, Org. Biomol. Chem. 2015, 13, 265-268.
- [16] M. Thérien, J. Y. Gauthier, Y. Leblanc, S. Léger, H. Perrier, P. Prasit, Z.-Y Wang, Synthesis 2001, 12, 1778 – 1779.
- [17] Z. AnAe, J. Marjan, Green Chem. Lett. Rev. 2020, 13, 341-348.
- [18] X.-D. Jin, and R. P. Davies, *Catalysis Science & Technology*, 2017, 7, 2110-2117.
- [19] Y.-R. Jiang, W.-J, Zhu, J.-W. Huang, F. Luo, X.-B. Chen, C. Fang, X. Chen, S.-H. Liu, Y.-W. Hu, S.-L. Zhang, Org. Chem. Front. 2024, 11, 12-20.

[20] C. K. Spyropoulou, E. Skolia, D. F. Flesariu, G. A. Zissimou, et al, Advanced Synthesis & Catalysis, 2023, 36, 2643-2650.

7. NMR spectra of products

Fig. 1. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2a

Fig. 2. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2b

S27

Fig. 3. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2c

Fig. 4. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of

Fig. 5. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2e

Fig. 6. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2f

Fig. 7. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of

2g

Fig. 8. ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of 2h

Fig. 9. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2i

Fig. 10. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2j

S35

Fig. 11. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2k

S36

Fig. 11. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2l

Fig. 12. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2m

Fig. 13. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2r

S39

Fig. 14. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2s

Fig. 15. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2t

Fig. 16. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2u

Fig. 17. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2v

Fig. 18. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2w

Fig. 19. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2x

Fig. 20. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2y

Fig. 21. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2z

S47

Fig. 22. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of

2aa

Fig. 23. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2ab

Fig. 24. $^1\!H$ NMR (400 MHz, CDCl₃) and $^{13}\!C$ NMR (101 MHz, CDCl₃) spectra of

2ac

Fig. 25. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of

Fig. 26. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of

2ae

Fig. 27. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2af

Fig. 28. ¹H NMR (500 MHz, CDCl₃) and ¹³C NMR (126 MHz, CDCl₃) spectra of 2ag

Fig. 29. ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (101 MHz, CDCl₃) spectra of

Fig. 30. ¹H NMR (400 MHz, DMSO-*d*₆) and ¹³C NMR (101 MHz, DMSO-*d*₆) spectra of 2ai

Fig. 31. ¹H NMR (400 MHz, CDCl₃), ¹³C NMR (101 MHz, CDCl₃) and ¹⁹F NMR spectra of 2aj

Fig. 32. ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (101 MHz, CDCl₃) spectra of 2ak

