A retro-Mannich mediated transformation of Morita-Baylis-Hillman ketones to saturated imidazo[1,2-a]pyridines

Sachin Sharma, Ajit Kumar Jha and Srinivasan Easwar*
Department of Chemistry, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Rajasthan 305817, India

Ph.: +91-1463-257508; +91-1463-257504
e-mail: easwar.srinivasan@curaj.ac.in

SUPPORTING INFORMATION

Contents

S. No.	Detail	Page No.
1	Control experiments for the degradative dimerisation of acyclic MBH ketones	2
2	Synthesis of MBH ketones	2
3	Optimisation of the synthesis of 5-alkylidene octahydrimidazo[1,2-a]pyridines from MBH ketones	3
4	X-ray crystal structure of an analog	4
5	Monitoring the progress of reaction by LC-MS	5
6	References	18
7	${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the synthesised products	19

I. Control experiments for the degradative dimerisation of acyclic MBH Ketones

The control experiments carried out to study the mechanism of the degradative dimerisation of acyclic MBH Ketones in our previous communication ${ }^{1}$ are reproduced as such below (Table S1) for reference.

Table S1. Control experiments - degradative dimerisation of acyclic MBH ketones (Note: compound numbers are reproduced from the published article in reference ${ }^{l}$)

		$\xrightarrow[\substack{\text { Dioxane }(500 \mu \mathrm{~L} \\ \mathrm{rt}}]{2(1.2 \mathrm{eq} .)}$		
Entry	2	$\begin{aligned} & \mathbf{H}_{2} \mathbf{O} \\ & (\mu \mathrm{~L}) \\ & \hline \end{aligned}$	Time (min)	Yield (\%)
1	${ }^{\text {n }}{ }^{\text {rNHH}} 2$ (2d)	-	90	${ }^{a}$
2	$\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NMe}_{2}(\mathbf{2 e})$	-	120	- ${ }^{\text {b }}$
3	$\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}(\mathbf{(2 f)}$	-	30	60
4	$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right) 4 \mathrm{NH}_{2}(\mathbf{2 g})$	-	120	65
5^{c}	$\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}(\mathbf{2 c})$	-	0.5	56 (33)
$6^{d, e}$	$2 c^{f}$	-	15	70
$7^{\text {d,e }}$	$2 \mathrm{c}^{f, g}$	-	15	53
$8{ }^{e}$	$2 \mathrm{c}^{f}$	10	15	74
$9{ }^{\text {e }}$	$2 \mathrm{c}^{f}$	25	15	84

${ }^{a}$ Complex ${ }^{1} \mathrm{H}$ NMR spectrum of an isolated product. ${ }^{b}$ Complex reaction mixture. ${ }^{c} \mathrm{CHCl}_{3}$ was used as the solvent; the figure in parenthesis represents the yield of methyl 3-oxo-3-phenylpropanoate isolated from this reaction. ${ }^{d}$ Reaction was carried out under inert conditions. ${ }^{e}$ Anhydrous dioxane was used. ${ }^{f}$ Anhydrous $2 \mathbf{2 c}$ was used. ${ }^{g} 0.5$ eq. of $2 \mathbf{c}$ was used.

- The above experiments clearly revealed the requirement of both the amino groups for a successful reaction. The importance of the $2^{\text {nd }}$ amino group in providing the 'trigger' for the transformation is corroborated by the failed attempt in its absence, as also by the decreased efficiency when its proximity is compromised.
- The reactions under moisture-free conditions and in the presence of added water were indicative of the significance of water in accelerating the transformation.
- Based on the control experiments and the above aspects, a mechanistic pathway for the reaction had been proposed in our earlier communication (also depicted in the main text of the present manuscript).

II. Synthesis of MBH ketones:

The MBH ketones used in this work were synthesized from the corresponding MBH adducts using a literature protocol. ${ }^{2}$
The MBH ketone $\mathbf{4 a}$ utilized in this work is reported in the literature. ${ }^{3}$
The data for the MBH ketone 4s is tabulated below.

2-(cyclohexanecarbonyl)cyclohex-2-en-1-one (4s):

Synthesised from $1 \mathrm{mmol}(208 \mathrm{mg})$ of the precursor MBH adduct; yield: 202 mg (98%); pale yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.42(\mathrm{t}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 3.09-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.45(\mathrm{~m}, 4 \mathrm{H}), 2.04(\mathrm{p}, 2 \mathrm{H}$, $J=6.5 \mathrm{~Hz}), 1.85-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 205.3,196.8,154.5,140.6,48.9,38.8,28.5,26.3,26.0,25.7,22.3$. HRMS (ESITOF): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}$: 229.1199; found: 229.1189 .

III. Optimisation studies on the synthesis of 5-alkylidene octahydroimidazo[1,2-a]pyridines from MBH Ketones

The first experiment in the study was a reaction of the MBH ketone $\mathbf{4 a}$ with the diamine 2a to yield the imidazopyridine 5a (Table S2, Scheme) A brief optimisation study was carried out on the reaction, the details of which are collated in Table $\mathbf{S} 2$ below.

Table S2. Optimisation of the conditions for the conversion of $\mathbf{4 a}$ to $\mathbf{5 a}{ }^{a}$

entry	2a, equiv	solvent $[500 \mu \mathrm{~L}]$	time [min	additive [equiv]	5a / yield (\%) ${ }^{b}$
1	1.2	dioxane	45	-	45
2	2.0	dioxane	10	-	51
3	5.0	dioxane	20	-	51
4	2.0	$\mathrm{CH}_{3} \mathrm{CN}$	10	-	65
5	2.0	$\mathrm{CH}_{3} \mathrm{CN}$	5	$\mathrm{In}(\mathrm{OTf})_{3,} 20 \mathrm{~mol} \%$	48
6	2.0	$\mathrm{CH}_{3} \mathrm{CN}$	5	$\mathrm{Ca}(\mathrm{OTf})_{2}(20 \mathrm{~mol} \%$	43

${ }^{a}$ All reactions were carried out on 0.5 mmol of 4 a at room temperature. ${ }^{b}$ Refers to isolated yield after column chromatographic purification.

Our studies started with the reaction of MBH ketone 4a, derived from cyclohex-2-en-1-one, with 1.2 equiv of ethylenediamine (2a) using dioxane as a solvent; to our delight, the reaction produced the product 5a, but in modest yield (Table S2, entry 1). Increasing the equiv of ethylenediamine resulted in only marginally better yields of $\mathbf{5 a}$ (entries $2 \& 3$). The use of $\mathrm{CH}_{3} \mathrm{CN}$ as the solvent resulted in a more efficient reaction and afforded 5a in 65% yield (entry 4). Further, the reaction was also carried out using Lewis acid additives in an attempt to enhance the yield; however, to our disappointment, the additives had a determinantal impact on the reaction efficiency (entries $5 \& 6$). Eventually, we switched to a one-pot
protocol that involved a direct conversion of MBH adducts to the corresponding heterocycles, the details of which are described in the manuscript.

IV. X-ray crystal structure of 5a

The colourless crystal for single crystal X-ray analysis was grown in toluene.

Crystal data and structure refinement for 5a

Identification code (CCDC Number) 2293832

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
$a=7.7284(5) \AA$
$\mathrm{b}=7.7936(5) \AA$
$\mathrm{c}=11.5229(8) \AA$
Volume
Z

Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$
242.31

297(2) K
0.71073 Å

Triclinic
P-1
$\alpha=77.928(2)^{\circ}$.
$\beta=71.564(2)^{\circ}$.
$\gamma=85.819(2)^{\circ}$.
$643.85(7) \AA^{3}$
2
$1.250 \mathrm{Mg} / \mathrm{m}^{3}$
$0.079 \mathrm{~mm}^{-1}$
260
$0.150 \times 0.150 \times 0.100 \mathrm{~mm}^{3}$
2.778 to 24.999°.
$-9<=\mathrm{h}<=9,-9<=\mathrm{k}<=9,-13<=1<=13$
27882
$2267[\mathrm{R}(\mathrm{int})=0.0675]$

Completeness to theta $=24.999^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
99.7 \%

Semi-empirical from equivalents
0.7456 and 0.5029

Full-matrix least-squares on F^{2}
2267/72 / 197
1.057
$\mathrm{R} 1=0.0563, \mathrm{wR} 2=0.1465$
$R 1=0.0730, w R 2=0.1676$
n/a
0.199 and - 0.223 e. \AA^{-3}

V. Monitoring the progress of reaction by LC-MS

A reaction of MBH ketone 4s, derived from cyclohexane carbaldehyde, was set up with the diamine $\mathbf{2 b}$ to yield the imidazopyridine $7 \mathbf{s}$ under the conditions given in the Scheme below. The reaction was monitored at regular intervals by LC-HRMS (Conditions: Eclipse C8 column [0.1\% formic acid in water/ Acetonitrile $=1: 1$; flow rate of $0.1 \mathrm{~mL} / \mathrm{min}]$), in an attempt to observe the intermediates I and II corresponding to the proposed mechanistic pathway (structures given in the Table below), and the eventual conversion to the saturated imidazopyridine.

Compounds	Retention time (approx.) on LC analysis (min)	m/z
	5.4	206.1307
	-	280.2151

| | 280.2151 |
| :---: | :---: | :---: |

- At the outset, the LC retention times of the starting MBH ketone $\mathbf{4 s}(\sim 5.4 \mathrm{~min})$ and the heterocyclic product $7 \mathbf{s}(\sim 1.7 \mathrm{~min})$ were clearly determined with the help of mass spectral correlation.
- The MBH ketone reacted quite rapidly upon the interaction with diamine $\mathbf{2 b}$; just 1 min after the addition of $\mathbf{2 b}$, nearly 50% conversion to the product $7 \mathbf{s}$ could be observed using the LC-MS.
- Two minor peaks were also observed with retention times of $\sim 3.3 \mathrm{~min}$ and $\sim 4.5 \mathrm{~min}$. Neither of these peaks exhibited a mass signal corresponding the expected m / z of 280 of the intermediates \mathbf{I} and II.
- Interestingly, the above two peaks were observed with nearly similar intensity ($5-7 \%$) almost throughout the duration of the reaction, and started disappearing towards the end of the reaction. Although a mass signal of $\mathrm{m} / \mathrm{z} 263$ - corresponding to the m / z of the final product itself, could be observed for both these peaks, they could not be assigned to either of the intermediates I or II unambiguously.
- Lastly, over time, the intensity of the peak at $\sim 5.4 \mathrm{~min}$ corresponding to MBH Ketone $\mathbf{4 s}$ gradually fades away, whereas the intensity of the peak at $\sim 1.7 \mathrm{~min}$ corresponding to that of the product $7 \mathbf{s}$ shows a $\sim 92 \%$ conversion after 2 h of the reaction.

The entire study including the chromatograms along with the corresponding mass spectral analysis are reproduced below for reference. For convenience, the mass scans for the minor peaks at ~ 3.3 min and $\sim 4.5 \mathrm{~min}$ are provided only for the "After 1 min " chromatogram.

Chromatograms and Mass Spectral analysis

Chromatograms and MS analysis of samples of the substrate and the product:

MBH Ketone 4s

Saturated Imidazopyridine 7s

Sample Chromatograms

Chromatogram Peaks							
Peak	Start	RT	End	Height	Area	Area Sum \%	SNR
1	1.355	1.660	2.396	139235841	3618442909	100.00	

Sample Spectra

Chromatograms and MS analysis of samples of the reaction mixture:

(i) After 1 min
Sample Chromatograms

[^0]
+ Scan (rt: 2.899-4.118 min)

+ Scan (rt: 4.143-4.964 min)

(ii) After 5 min

Sample Chromatograms

Chromatogram Peaks						
Peak	Start	RT	End	Height	Area	Area Sum \%
1	1.316	1.655	2.789	234676644	8902971223	63.42
2	2.840	3.229	4.059	25454591	908858886	6.47
3	4.152	4.448	4.745	8676838	123864963	0.88
4	5.092	5.481	6.505	146109357	4101592886	29.22

+ Scan (rt: 1.232-2.772 min)

+ Scan (rt: 5,024-6,632 min)

(iii) After 10 min

Sample Chromatograms

Chromatogram Peaks						
Peak	Start	RT	End	Height	Area	Area Sum \%
1	1.221	1.656	2.720	215742118	8942086047	77.84
2	2.787	2.957	3.913	7600439	369580376	3.22
3	4.040	4.350	4.887	14336408	307063854	2.67
4	4.997	5.400	6.190	61183830	1869229853	16.27

+ Scan (rt: 1.094-2.770 min)

+ Scan (rt: 4.971-6.393 min)

(iv) After 20 min

Sample Chromatograms

+ Scan (rt: 1.025-2.786 min)

+ Scan (rt: 5.071-6.163 min)

(v) After 1 h

Sample Chromatograms

Chromatogram Peaks						
Peak	Start	RT	End	Height	Area	Area Sum \%
1	1.238	1.669	2.753	246645655	10490002042	91.71
2	2.795	2.937	3.633	6585160	244347876	2.14
3	4.150	4.404	4.869	6209703	136362790	1.19
4	5.047	5.419	6.164	18471362	567930419	4.97

+ Scan (rt: 1.162-2.787 min)

+ Scan (rt: 4.996-6.223 min)

(vi) After 2 h

Sample Chromatograms

Chromatogram Peaks							
Peak	Start	RT	End	Height	Area	Area Sum \%	SNR
1	1.059	1.698	2.786	222640041	10613015719	91.95	
2	2.828	2.828	3.378	0	191512085	1.56	
3	4.910	5.418	5.943	24965537	738153308	6.39	

+ Scan (rt: 1.118-2.786 min)

VI. References:

1. A. K. Jha, A. Kumari and S. Easwar, Diamine-mediated Degradative Dimerisation of Morita-Baylis- Hillman Ketones Chem. Commun., 2020, 56, $2949-2952$.
2. A. K. Jha, R. Kumari and S. Easwar, A Hydrazine Insertion Route to N'-Alkyl Benzohydrazides by an Unexpected Carbon-Carbon Bond Cleavage, Org. Lett., 2019, 21, 8191-8195.
3. X. Tang, A.J. Blake, W. Lewis and S. Woodward, Asymmetric conjugate additions to 1,1'-diactivated cyclic enones-A comparative study, Tetrahedron: Asymmetry, 2009, 20, 1881-1891.

ES-SS-324R re,1H, CDCl3,11-07-2022

ES-SS-282, 1H, CDCl3,22-06-2022

BRUKER

ES-SS-282_19F_CDC13_26-12-2023

ERUKERR

ES-SS-277, 1H, CDCl3, 06-06-2022

BRUKER

ES-SS-290, 1H, CDC13, 13-06-2022

ES-SS-289 r, 1H, CDCl3, 06-06-2022

ES-SS-289, 13C, CDCl3, 06-06-2022

979.06-

ES-SS-276R, 1H, CDCl3, 09-07-2022

ES-SS-276R, 13C, CDC13, 09-07-2022

$\stackrel{m}{\mathrm{o}}$	¢ 0 0		듯NN
$\stackrel{\sim}{\infty}$	\bigcirc	\bigcirc	${ }_{\sim}^{\infty} \stackrel{\sim}{N}$
\cdots	-	\cdots	
		\checkmark	$1 /$

ES-SS-286,1H, CDC13, 06-06-2022

BRUKER

ES-SS-286, 13C, CDC13, 06-06-2022

\%	$\stackrel{\text { ¢ }}{6}$	
$\dot{\infty}$	¢	¢ ¢ ¢
\cdots		V

Cls)

$$
\begin{aligned}
& \text { BUKER }
\end{aligned}
$$

ES-SS-280, 13C, CDC13, 07-06-2022

ES-SS-310R3_1H_CDC13_10-09-2023

ES-SS-310R3 13C CDCl3 10-09-2023

пи

ES-SS-300, 13C, CDCl3,15-06-2022

ES-SS-298R3_1H_CDC13_07-09-2023

BRYKER

ES-SS-298R3 13C CDCl3 07-09-2023

ES-SS-2-114_1H_CDC13_20-11-2023

ES-SS-2-114_13C_CDCl3 20-11-2023

ES-SS-2-77, 1H, CDCl3, 13-05-2022

ES-SS-2-77, 13C, CDC13,17-05-2022

BRUKER

ES-SS-PBP-26, 1H, CDC13, 13-05-2022

ES-SS-2-82R_1H_CDC13_08-09-2023

ES-SS-2-82R_13C_CDC13_08-09-2023

ES-SS-2-78, 1H, CDC13, 13-05-2022

ES-SS-78; 13C, CDCl3,17-05-2022

ES-SS-2-79, 1H, CDC13, 04-06-2022
 о

ES-SS-2-79, 13C, CDC13, 04-06-2022

$\begin{aligned} & \stackrel{\circ}{\mathrm{a}} \end{aligned}$	$\underset{\sim}{\mathrm{M}}$	$\mathbf{N}_{0}^{\infty} \text { N్ N }$	¢
¢	¢	$\stackrel{\infty}{\infty} \stackrel{\infty}{\infty}$	Nom
-	1	${ }^{-1}$	

ES-SS-2-86, 13C, CDC13, 13-06-2022

$\stackrel{\circ}{\square}$			
	¢		
	®		

ES-SS-2-86_19F_CDCl3_26-12-2023

BRUKER

ES-SS-2-93_19F_CDC13_26-12-2023

ES-SS-2-80, 1H, CDC13, 03-06-2022

S-SS-2-80, 13C, CDC13, 03-06-2022
$\stackrel{\sim}{\sim}$

$\begin{array}{llllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

ES-SS-2-89R_1H_CDC13_04-09-2023

ES-SS-2-85, 1H, CDCl3, 04-06-2022

ES-SS-2-83,1H, CDC13, 02-06-2022

ES-SS-2-87, 1H, CDC13, 12-06-2022

BRUKER

ES-SS-pbp-27r_1H_CDCl3_19-09-2023

 N-
C-Me

ES－SS－pbp－27r＿13C＿CDC13＿19－09－2023

ন্ন	「	 	$\mathbf{O}_{\infty}^{\infty}$		－${ }_{\text {In }}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\sim}{\sim}$	\％ूㅇ．	
$\stackrel{\text { ¢ }}{\substack{\text {－} \\ \sim \\ \sim \\ \sim}}$	${ }_{-1}^{\circ}{ }_{-1}^{0}$		ぶं ${ }^{\text {g }}$	のペが	ก	$\stackrel{\circ}{\square}$	m	－	
V	V1	N／	V	以V				／	

ES-SS-PBP-27_19F_CDCl3_26-12-2023

ES-SS-2-88 R_1H_CDC13_19-09-2023

$\left.)^{\infty}\right)^{\infty}$

ES-SS-2-88 R 13C CDCl3 19-09-2023

ES-SS-2-91R 1H CDC13 10-09-2023

ES-SS-2-91R_13C_CDC13_10-09-2023

ES-SS-2-90R_1H_CDC13_17-09-2023

ES-SS-2-90R_13C_CDC13_17-09-2023

BRUKER

ES-SS-2-123_1H_CDC13_03-12-2023

ES-SS-2-118_1H_CDC13_30-11-2023

ES-SS-7-43_1H_CDC13_22-12-2023

$\underset{\infty}{\sim} \underset{\infty}{\sim}$	$\stackrel{\circ}{N}$
$\stackrel{\text { ri}}{ }$	

ES-SS-7-45_1H_CDC13_25-12-2023

ES-SS-2-117_1H_CDC13_29-11-2023

为

BRUKER

ES-SS-7-44_1H_CDC13_21-12-2023

ES-SS-7-46_1H_CDC13_13-12-2023

ES-SS-2-130_1H_CDC13_21-12-2023

$\underbrace{1, \infty}$

ES-SS-2-130_13C_CDC13 21-12-2023

¢ ¢	\%	氙通	
$\stackrel{\dot{m}}{\sim}$	-	-iom	¢ismm
\|		11	V/V/1

NMR Spectra of the product 8: The ${ }^{1} \mathrm{H}$ and NMR ${ }^{13} \mathrm{C}$ spectra given below (pages $106 \& 107$) belong to an inseparable mixture of two products (two regioisomers OR a diastereomeric pair in the ratio $\sim 3: 1(77: 23)$) of the four possible products $\mathbf{8 a - d}$ obtained in the reaction of the MBH ketone $\mathbf{4 a}$ with 1,2-diaminopropane (2e). $\mathbf{8 a} \& \mathbf{8 b}$ and $\mathbf{8 c} \& \mathbf{8 d}$ represent the possible diastereomeric pairs, defined by the relative stereochemistry of the ring junction.

ES-SS-2-122_1H CDC13 02-12-2023

8a \& 8b: $\mathrm{R}=\mathrm{CH}_{3}$; $\mathrm{R}^{\prime}=\mathrm{H}$
8c \& 8d: $\mathrm{R}=\mathrm{H} ; \mathrm{R}^{\prime}=\mathrm{CH}_{3}$

ES-SS-MBH-DY-08 R1_1H_CDCl3_18-09-2023

BRUKER

ES-SS-MBH-DY-08 R1_13C_CDC13_18-09-2023

6 m

ES-SS-7-40_13C_CDC13_09-11-2023

$4 s$

BRUKER

[^0]: + Scan (rt: 1.214-2.839 min)

 Counts vs. Mass-to-Charge (m / z)

