Supporting Information

Stereoselective Strain-Release Ferrier Rearrangement: The Dual Role of Catalysts

Huajun Zhang,^{†,a} Aoxin Guo,^{†,a}, Han Ding,^{†,a}, Yuan Xu,^a Yuhan Zhang,^a Dan Yang,^a and Xue-Wei Liu*^a

^aSchool of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371,

Singapore.

[†]These authors contributed equally to this work.

*correspondence: <u>xuewei@ntu.edu.sg</u>

Table of contents

Supplementary Note	S4
Supplementary Methods	S5
Section 1. Synthesis of glycal donors.	S5
Synthesis of compound S1	S5
Synthesis of donor 1a	S5
Synthesis of compound S2	S6
Synthesis of donor 1b	S6
Synthesis of compound S4	S7
Synthesis of donor 1c	S7
Synthesis of compound S5	S8
Synthesis of compound S6	S8
Synthesis of compound S7	S9
Synthesis of donor 1d	S9
Synthesis of compound 5a	S9
Synthesis of donor 2u	S10
Section 2. Optimization of reaction conditions.	S10
Supplementary Table 1. Condition screening	S11
General procedure for the reaction development	S11
Section 3. Allylic rearrangement with 1a as the donor.	S12
Synthesis of compound 3a	S13
Synthesis of compound 3b	S13
Synthesis of compound 3c	S13
Synthesis of compound 3d	S13
Synthesis of compound 3e	S13
Synthesis of compound 3f	S13
Synthesis of compound 3 g	S14
Synthesis of compound 3h	S14

Synthesis of compound 3i	S15
Synthesis of compound 3 j	S15
Synthesis of compound 3k	S15
Synthesis of compound 3	S16
Synthesis of compound 3m	S16
Synthesis of compound 3n	S17
Synthesis of compound 30	S17
Synthesis of compound 3p	S18
Synthesis of compound 3q	S18
Synthesis of compound 3r	S18
Synthesis of compound 3s	S19
Synthesis of compound 3 t	S19
Synthesis of compound 3u	S20
Section 4. Allylic rearrangement with 1b-d as the donor.	S20
Synthesis of compound 3ba	S20
Synthesis of compound 3bb	S21
Synthesis of compound 3bc	S21
Synthesis of compound 3ca	S22
Synthesis of compound 3cb	S22
Synthesis of compound 3cc	S22
Synthesis of compound 3da	S23
Synthesis of compound 3db	S23
Synthesis of compound 3dc	S23
Section 5. Application of allylic rearrangement.	S24
Synthesis of compound 7	S24
Synthesis of compound 7 Section 6. Computational details.	S24 S24
Synthesis of compound 7 Section 6. Computational details. General computational methods	S24 S24 S24
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures	S24 S24 S24 S24 S25-65
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References	S24 S24 S24 S25-65 S66-67
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra	S24 S24 S24 S25-65 S66-67 S68
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1	S24 S24 S24 S25-65 S66-67 S68 S68
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7	S24 S24 S25-65 S66-67 S68 S68 S68 S68
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H spectrum for 5a	S24 S24 S25-65 S66-67 S68 S68 S68 S68 S68 S68 S69
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H spectrum for 5a ¹ H and ¹³ C spectra for 1a	S24 S24 S25-65 S66-67 S68 S68 S68 S68 S69 S69
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H spectrum for 5a ¹ H and ¹³ C spectra for 1a ¹ H and ¹³ C spectra for 1b	S24 S24 S25-65 S66-67 S68 S68 S68 S69 S69 S70
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H spectrum for 5a ¹ H and ¹³ C spectra for 1a ¹ H and ¹³ C spectra for 1b ¹ H and ¹³ C spectra for 1c	S24 S24 S25-65 S66-67 S68 S68 S68 S69 S69 S70 S71
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H spectrum for 5a ¹ H and ¹³ C spectra for 1a ¹ H and ¹³ C spectra for 1b ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1d	S24 S24 S25-65 S66-67 S68 S68 S68 S69 S70 S71 S72
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H and ¹³ C spectra for 1a ¹ H and ¹³ C spectra for 1b ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1d ¹ H and ¹³ C spectra for 2u	S24 S24 S25-65 S66-67 S68 S68 S68 S69 S70 S71 S72 S73
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H spectrum for 5a ¹ H and ¹³ C spectra for 1a ¹ H and ¹³ C spectra for 1b ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1d ¹ H and ¹³ C spectra for 2u ¹ H spectrum for 4a	S24 S24 S25-65 S66-67 S68 S68 S68 S69 S70 S71 S72 S73 S74
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H spectrum for 5a ¹ H and ¹³ C spectra for 1a ¹ H and ¹³ C spectra for 1b ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 2u ¹ H spectrum for 4a ¹ H spectrum for 3a	S24 S24 S25-65 S66-67 S68 S68 S69 S70 S71 S72 S73 S74 S75
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H spectrum for 5a ¹ H and ¹³ C spectra for 1a ¹ H and ¹³ C spectra for 1b ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 2u ¹ H spectrum for 3a ¹ H spectrum for 3b	S24 S24 S25-65 S66-67 S68 S68 S69 S70 S71 S72 S73 S74 S75 S75
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H spectrum for 5a ¹ H and ¹³ C spectra for 1a ¹ H and ¹³ C spectra for 1b ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 2u ¹ H spectrum for 3a ¹ H spectrum for 3b ¹ H spectrum for 3c	S24 S24 S25-65 S66-67 S68 S68 S69 S70 S71 S72 S73 S74 S75 S76
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H spectrum for 5a ¹ H and ¹³ C spectra for 1a ¹ H and ¹³ C spectra for 1b ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1d ¹ H and ¹³ C spectra for 2u ¹ H spectrum for 3a ¹ H spectrum for 3d ¹ H spectrum for 3d	S24 S24 S25-65 S66-67 S68 S68 S69 S70 S71 S72 S73 S74 S75 S76 S76
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H spectrum for 5a ¹ H and ¹³ C spectra for 1a ¹ H and ¹³ C spectra for 1b ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 2u ¹ H spectrum for 3a ¹ H spectrum for 3a ¹ H spectrum for 3d ¹ H and ¹³ C spectra for 3e	S24 S24 S25-65 S66-67 S68 S68 S69 S70 S71 S72 S73 S74 S75 S76 S77 S77
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H spectrum for 5a ¹ H and ¹³ C spectra for 1a ¹ H and ¹³ C spectra for 1b ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1d ¹ H and ¹³ C spectra for 2u ¹ H spectrum for 3a ¹ H spectrum for 3b ¹ H spectrum for 3c ¹ H spectrum for 3d ¹ H and ¹³ C spectra for 3e ¹ H spectrum for 3f ¹ H spectrum for 3f	S24 S24 S25-65 S66-67 S68 S68 S69 S70 S71 S72 S73 S74 S75 S76 S77 S78
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H spectrum for 5a ¹ H and ¹³ C spectra for 1a ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 2u ¹ H spectrum for 3a ¹ H spectrum for 3b ¹ H spectrum for 3c ¹ H spectrum for 3g ¹ H spectrum for 3g ¹ H spectrum for 3g	S24 S24 S25-65 S66-67 S68 S68 S69 S70 S71 S72 S73 S74 S75 S76 S77 S78 S78
Synthesis of compound 7 Section 6. Computational details. General computational methods Calculated coordinates and energies of the optimized structures Supplementary References NMR Spectra ¹ H spectrum for S1 ¹ H spectrum for S7 ¹ H spectrum for 5a ¹ H and ¹³ C spectra for 1a ¹ H and ¹³ C spectra for 1b ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 1c ¹ H and ¹³ C spectra for 2u ¹ H spectrum for 3a ¹ H spectrum for 3b ¹ H spectrum for 3d ¹ H spectrum for 3d ¹ H and ¹³ C spectra for 3e ¹ H spectrum for 3f ¹ H spectrum for 3g ¹ H spectrum for 3g ¹ H spectrum for 3g ¹ H spectrum for 3g ¹ H and ¹³ C spectra for 3h ¹ H spectrum for 3g ¹ H spectrum for 3g	S24 S24 S25-65 S66-67 S68 S68 S69 S70 S71 S72 S73 S74 S75 S76 S77 S78 S79

¹ H and ¹³ C spectra for $3j$	S81
¹ H and ¹³ C spectra for 3 k	S82
¹ H and ¹³ C spectra for 3 I	S83
¹ H spectrum for 3m	S84
¹ H and ¹³ C spectra for 3n	S84
¹ H and ¹³ C spectra for 30	S85
¹ H and ¹³ C spectra for 3p	S86
¹ H spectrum for 3 q	S87
¹ H and ¹³ C spectra for $3r$	S88
¹ H and ¹³ C spectra for 3s	S89
¹ H spectrum for 3 t	S90
¹ H spectrum for 3u	S90
¹ H and ¹³ C spectra for 3ba	S91
¹ H and ¹³ C spectra for 3bb	S92
¹ H and ¹³ C spectra for 3bc	S93
¹ H spectrum for 3ca	S94
¹ H spectrum for 3cb	S94
¹ H spectrum for 3cc	S95
¹ H spectrum for 3da	S95
¹ H and ¹³ C spectra for 3db	S96
¹ H and ¹³ C spectra for 3bc	S97
¹ H and ¹³ C spectra for 7	S98

Supplementary Note

All reactions were carried out under a nitrogen atmosphere with magnetic stirring unless otherwise indicated. All commercially obtained reagents were used as received, except where specified otherwise. Cu(OTf)₂, Fe(OTf)₃, and Sc(OTf)₃ were purchased from Alfa and used without further purification. Tetrahydrofuran (THF) and toluene were distilled immediately before use from sodium-benzophenone ketyl. Dichloromethane (CH₂Cl₂), pyridine, and acetonitrile were refluxed over calcium hydride and distilled before use. Anhydrous N.N-dimethylformamide (DMF), and diethyl ether (Et₂O) were purchased from Sigma-Aldrich and used without further purification. Flash column chromatography was performed on Silica Gel 60 (Merck Co.). Analytical thin-layer chromatography was performed on Silicycle SiliaPlate glass-backed plates coated with silica gel (60 mesh pore size, F-254 indicator) and visualized by exposure to ultraviolet light and/or staining with 5% sulfuric acid in ethanol. Optical rotations were determined with a JASCO P-1020 digital polarimeter. All NMR spectra were recorded with Bruker BBFO-400 (400 MHz) or Bruker AV-500 (500 MHz) NMR spectrometers at ambient temperature using CDCl₃ or CD₂Cl₂ as solvents. The NMR spectra were calibrated by using residual undeuterated chloroform ($\delta_{\rm H} = 7.26$ ppm), CDCl₃ ($\delta_{\rm C}$ = 77.16 ppm), residual undeuterated dichloromethane ($\delta_{\rm H}$ = 5.32 ppm), and CD₂Cl₂ ($\delta_{\rm C}$ = 53.84 ppm) as internal references. The following abbreviations are used to designate multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, brs = broad singlet.

Supplementary Methods

Section 1. Synthesis of glycal donors.

4,6-Di-O-acetyl-D-glucal (S1)

Supporting information Fig. 1 | Synthesis of S1

3,4,6-Tri-*O*-acetyl-D-glucal (1.5 g, 5.6 mmol, 1.0 equiv), lipase from *Pseudomonas fluorescens* (961 mg), 2-methyl-2-butanol (*t*AmOH, 15 mL) and *tert*-Butanol (*t*BuOH, 1.5 mL, 16.2 mmol) were added into a sealed tube. The mixture was stirred for 22 h at 40 °C. After raw material was consumed (determined by thin layer chromatography (TLC), the sealed tube was allowed to cool to room temperature. Then the mixture was filtered through a Büchner funnel and washed with 30 mL of chloroform. Solvents were evaporated under reduced pressure and the crude product was purified by silica gel column chromatography (hexane:EtOAc = 2:1) to obtain **S1** (1.2 g, 5.2 mmol, 91%) as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 6.40 (dd, *J* = 6.1, 1.5 Hz, 1H), 4.97 (dd, *J* = 8.9, 6.3 Hz, 1H), 4.86 (dd, *J* = 6.1, 2.8 Hz, 1H), 4.40 (dd, *J* = 12.3, 5.4 Hz, 1H), 4.33 – 4.31 (m, 1H), 4.24 (dd, *J* = 12.3, 2.5 Hz, 1H), 4.14 – 4.10 (m, 1H), 2.57 (brs, 1H), 2.13 (s, 3H), 2.09 (s, 3H). The data are identical to the literature.¹

3-O-ortho-2,2-Dimethoxycarbonylcyclopropylbenzoyl-4,6-di-O-acetyl-D-glucal (1a)

Supporting information Fig. 2 | Synthesis of 1a

To a solution of **S1** (370 mg, 1.6 mmol, 1.0 equiv) and CCBzOH² (537 mg, 1.9 mmol, 1.2 equiv) in anhydrous dichloromethane (DCM, 8.0 mL, 0.2 M) were added sequentially *N,N'*-dicyclohexylcarbodiimide (DCC, 497 mg, 2.4 mmol, 1.5 equiv) and 4-dimethylaminopyridine (DMAP, 98 mg, 0.8 mmol, 0.5 equiv). The mixture was stirred for 10 h at room temperature. The resulting mixture was filtered and washed with cold EtOAc, the organic layer was concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (toluene:EtOAc = 6:1) to afford **1a** as a colorless syrup (735 mg, 1.49 mmol, 93%, dr = 1:0.85). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.82 (dd, *J* = 7.8, 1.5 Hz, 0.9H), 7.46 – 7.41 (m, 2H), 7.34 – 7.29 (m, 2H), 7.23 (d, *J* = 7.7 Hz, 2H), 6.51 – 6.47 (m, 2H), 5.60 – 5.57 (m, 1.9H), 5.45 – 5.42 (m, 1.9H), 5.06 – 5.00 (m, 1.9H), 4.49 – 4.43 (m, 2H), 4.31 – 4.21 (m, 4H), 3.88 – 3.83 (m, 2H), 3.80 (s, 2.3H), 3.79 (s, 3H), 3.25 (s, 2.5H), 3.23 (s, 3H), 2.21 – 2.16 (m, 2H), 2.09 (s, 5.4H), 2.08 (s, 2.8H), 2.05 (s, 3H), 1.85 – 1.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7,

170.6, 170.3, 170.1, 169.6, 169.5, 167.2, 167.1, 166.1, 165.7, 145.5, 145.4, 136.7, 136.4, 132.32, 132.25, 131.0, 130.9, 130.8, 130.3, 129.7, 129.5, 127.8, 127.7, 99.5, 99.3, 74.3, 74.2, 68.9, 68.8, 67.0, 66.7, 61.6, 61.5, 52.71, 52.65, 52.2, 52.0, 36.3, 35.8, 32.7, 32.4, 20.9, 20.8, 20.7, 19.9, 19.7; HRMS (ESI) m/z Calcd for C₂₄H₂₆O₁₁Na [M + Na]⁺ 513.1373, found 513.1390.

4,6-O-Di-(*tert*-butyl)silanediyl-D-glucal (S2)

Supporting information Fig. 3 | Synthesis of S2

To a solution of 3,4,6-Tri-*O*-acetyl-D-glucal (6.0 g, 22.2 mmol, 1.0 equiv) in MeOH (45 mL, 0.5 M) was added NaH (60% dispersion in mineral oil, 438 mg, 11.1 mmol, 0.5 equiv). The mixture was stirred at 0 °C until all starting material was consumed. The reaction was then quenched with AcOH and pH was adjusted to 7. The mixture was diluted in MeOH, filtered, and concentrated *in vauco*. The crude product without purification was dissolved in anhydrous dimethylformamide (DMF, 75 mL, 0.27 M) under an N₂ atmosphere, and cooled to -45 °C. Then, under constant stirring, di-*tert*-butylsilyl ditriflate ($(tBu)_2Si(OTf)_2$, 4.7 mL, 14.4 mmol, 0.7 equiv) was added to the reaction mixture dropwise over 15 min. Stirring was continued for 45 min at -45 °C after which pyridine was added and it was allowed to warm to 0 °C. After 30 min at 0 °C, the reaction was quenched by NaHCO₃ (sat.) and diluted with EtOAc (300 mL). The organic phase was washed with brine (3 x 150 mL), dried over Na₂SO₄, then filtered and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (hexane:EtOAc = 9:1) to obtain **S2** (5.5 g, 19.2 mmol, 87% for two steps) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 6.29 – 6.23 (m, 1H), 4.76 (dd, *J* = 6.1, 1.9 Hz, 1H), 4.30 (d, *J* = 6.8 Hz, 1H), 4.18 (dd, *J* = 10.3, 5.0 Hz, 1H), 3.96 (t, *J* = 10.2 Hz, 1H), 3.92 (dd, *J* = 10.2, 7.2 Hz, 1H), 3.87 – 3.81 (m, 1H), 2.44 (brs, 1H), 1.07 (s, 9H), 0.99 (s, 9H). The data are identical to the literature.³

3-O-ortho-2,2-Dimethoxycarbonylcyclopropylbenzoyl-4,6-O-(di-tert-butyl)silanediyl-D-glucal (1b)

Supporting information Fig. 4 | Synthesis of 1b

Following the procedure for **1a**, **S2** (1.7 g, 5.9 mmol, 1.0 equiv) was transformed into **1b** (2.8 g, 5.07 mmol, 86%, dr = 1:1) as a colorless oil after purification by silica gel column chromatography (toluene:EtOAc = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.90 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.36 (t, *J* = 7.0 Hz, 2H), 7.29 – 7.24 (m, 3H), 6.39 – 6.34 (m, 2H), 5.58 – 5.52 (m, 2H), 5.01 – 4.97 (m, 2H), 4.44 – 4.34 (m, 2H), 4.27 – 4.19 (m, 2H), 4.08 – 3.88 (m, 5H), 3.81 (s, 4H), 3.75 (s, 3H),

3.29 (d, J = 6.4 Hz, 6H), 2.21 – 2.17 (m, 2H), 1.89 – 1.77 (m, 2H), 1.09 (s, 9H), 1.06 (s, 9H), 0.99 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 167.3, 167.2, 167.1, 166.5, 144.8, 144.6, 136.6, 135.9, 132.1, 131.92, 131.2, 130.1, 129.9, 129.5, 127.7, 127.6, 100.60, 100.56, 73.8, 73.5, 73.0, 72.9, 72.9, 65.89, 65.86, 52.7, 52.6, 52.17, 52.15, 36.3, 35.8, 32.8, 32.4, 29.7, 27.4, 26.7, 22.7, 22.6, 20.0, 19.87, 19.85, 19.7; HRMS (ESI) m/z Calcd for C₂₈H₃₈O₉SiNa [M + Na]⁺ 569.2183, found 569.2209.

Tips: Glucal donors are usually straightforward to separate with toluene and EtOAc eluent. Otherwise, if the product is hard to separate from the unreacted substrate, a tiny quantity of Ac_2O can help acetylate the unreacted glucal. Small adjustments to the typical procedure make silica gel column chromatography with toluene and EtOAc eluent easier to remove anomeric acetate.

4,6-Di-O-acetyl-D-galactal (S4)

Supporting information Fig. 5 | Synthesis of S4

Compound **S3**⁴ (200 mg, 0.9 mmol, 1.0 equiv) was dissolved in distilled DCM (4.4 mL) and then the system was cooled to 0 °C. Then Dess-Martin periodinane (DMP, 444 mg, 1.0 mmol, 1.2 equiv) was added into the system and the reaction was stirred at the same temperature for 1 h. Then sat.NaHCO₃ was used to quench the reaction. The system was diluted in DCM, extracted by DCM, and washed with H₂O. The combined organic layers were concentrated *in vacuo* and dried with toluene three times to get the yellow oil without further purification. Then to a solution of oil in distilled THF (4.4 mL) at -78 °C was added NaBH₄ (36 mg, 1.0 mmol, 1.1 equiv). The reaction was stirred at -78 °C for 1.5 h. After raw material was consumed (determined by TLC), the system was warmed to 0 °C and sat. NH₄Cl was added to quench the reaction. Extract the system by DCM and the organic layers were concentrated *in vacuo*. The residue was purified by silica gel column chromatography (hexane:EtOAc = 2:1) to obtain **S4** (162 mg, 0.73 mmol, 2 steps 81%) as a white solid. ¹H NMR (500 MHz, CDCl₃) 6.38 (dd, *J* = 6.2, 1.6 Hz, 1H), 5.50 – 5.48 (m, 1H), 4.90 – 4.88 (m, 1H), 4.60 – 4.58 (m, 2H), 4.30 – 4.12 (m, 2H), 2.12 (s, 3H), 2.04 (s, 3H). The data are identical to the literature.⁵

3-O-ortho-2,2-Dimethoxycarbonylcyclopropylbenzoyl-4,6-di-O-acetyl-D-galactal (1c)

Supporting information Fig. 6 | Synthesis of 1c

Following the procedure for **1a**, **S4** (160 mg, 0.7 mmol, 1.0 equiv) was transformed into **1c** (310 mg, 0.64 mmol, 91%, dr = 1:0.7) as a colorless syrup after purification by silica gel column chromatography (toluene:EtOAc = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, *J* = 7.8, 1.5 Hz, 0.7H), 7.77 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.46 - 7.42 (m, 1.9H), 7.35 - 7.29 (m, 1.9H), 7.24 - 7.21 (m, 1.9H), 6.51 - 6.47 (m, 1.8H), 5.80 - 5.74 (m, 1.7H), 5.60 - 5.56 (m, 1.9H), 4.95 - 4.90 (m, 1.7H), 4.41 - 4.37 (m, 1.7H), 4.35 - 4.23 (m, 1.9H), 7.25 - 7.29 (m, 1.9H), 7.74 - 7.21 (m, 1.9H), 7.75 - 7.29 (m, 1.9H), 7.26 - 7.42 (m, 1.7H), 5.60 - 5.56 (m, 1.9H), 7.95 - 7.90 (m, 1.7H), 4.41 - 4.37 (m, 1.7H), 4.35 - 4.23 (m, 1.9H), 7.95 - 7.90 (m, 1.7H), 4.41 - 4.37 (m, 1.7H), 4.35 - 4.23 (m, 1.9H), 7.95 - 7.90 (m, 1.7H), 4.41 - 4.37 (m, 1.7H), 4.35 - 4.23 (m, 1.9H), 7.95 - 7.90 (m, 1.7H), 4.41 - 4.37 (m, 1.7H), 4.35 - 4.23 (m, 1.9H), 7.95 - 7.90 (m, 1.7H), 4.41 - 4.37 (m, 1.7H), 4.35 - 4.23 (m, 1.9H), 7.95 - 7.90 (m, 1.7H), 4.41 - 7.90 (m, 1.7H), 4.41 - 7.90 (m, 1.7H), 7.95 - 7.9

3.7H), 3.90 - 3.80 (m, 1H), 3.80 (s, 3H), 3.79 (s, 2H), 3.73 - 3.67 (m, 1H), 3.29 (s, 2H), 3.27 (s, 3H), 2.21 - 2.15 (m, 2.5H), 2.12 (s, 2H), 2.09 (s, 8H), 1.84 (dd, J = 9.0, 5.1 Hz, 1.2H), 1.80 (dd, J = 9.0, 5.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 170.6, 170.2, 170.1, 170.0, 167.2, 167.1, 165.8, 165.4, 145.32, 145.25, 136.8, 136.1, 132.2, 131.0, 130.9, 130.8, 130.0, 129.5, 129.4, 127.7, 127.6, 99.2, 99.1, 73.1, 72.9, 64.70, 64.66, 64.1, 64.0, 62.2, 62.1, 52.7, 52.2, 52.1, 36.5, 36.0, 32.6, 32.3, 20.8, 20.71, 20.65, 19.7; HRMS (ESI) m/z Calcd for C₂₄H₂₆O₁₁Na [M + Na]⁺ 513.1373, found 513.1390.

3-O-(tert-Butyldimethylsilyl)-L-rhamal (S5)

Supporting information Fig. 7 | Synthesis of S5

To a solution of 3,4-Di-*O*-acetyl-L-rhamal (1.0 g, 4.7 mmol, 1.0 equiv) in MeOH (20 mL, 0.2 M) was added NaH (60% dispersion in mineral oil, 93 mg, 2.3 mmol, 0.5 equiv). The mixture was stirred at room temperature until all starting material was consumed (determined by TLC, typically 1.5 h). The reaction was then quenched with AcOH, pH was adjusted to 7. The mixture was filtered and concentrated *in vacuo* to afford white solid without further purification. To a solution of solid in anhydrous DMF (8 mL, 0.6 M) was added imidazole (imid, 478 mg, 7.0 mmol, 1.5 equiv) and DMAP (57.2 mg, 0.5 mmol, 0.1 equiv) under an N₂ atmosphere at 0 °C. Then *tert*-butyldimethylsilyl chloride (777 mg, 5.1 mmol, 1.1 equiv) was added in batches at the same temperature. The resulting mixture was slowly warmed up to room temperature and stirred for 10 h. TLC showed complete consumption of the starting material. The reaction mixture was diluted with water and extracted three times with diethyl ether. The combined organic layers were washed with water and brine, and then dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude silyl ether product was purified by silica gel column chromatography (hexane:EtOAc = 5:1) to obtain **S5** (952 mg, 3.9 mmol, 84% for two steps) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 6.24 (dd, J = 6.0, 1.3 Hz, 1H), 4.60 (dd, J = 6.0, 2.2 Hz, 1H), 4.21 – 4.17 (m, 1H), 3.81–3.98 (m, 1H), 3.53 – 3.63 (m, 1H), 1.36 (d, J = 6.4 Hz, 3H), 0.89 (s, 9H), 0.10 (s, 6H). The data are identical to the literature.⁶

3-O-(tert-Butyldimethylsilyl)-4-O-acetyl-L-rhamal (S6)

Supporting information Fig. 8 | Synthesis of S6

To a solution of **S5** (952 mg, 3.9 mmol, 1.0 equiv) in anhydrous pyridine (19 mL, 0.2 M) was added Ac₂O (0.6 mL, 5.8 mmol, 1.5 equiv) and DMAP (48 mg, 0.4 mmol, 0.1 equiv) at room temperature under N₂ atmosphere, and the solution was kept stirring overnight. TLC (hexane:EtOAc = 8:1) showed complete consumption of the starting material. The solution was evaporated under reduced pressure. The resulting syrup was dissolved in EtOAc, and washed sequentially with water, 1N HCl solution, sat. NaHCO₃ and brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by silica gel column chromatography (hexane:EtOAc = 8:1) to provide **S6** (1.0 g, 3.47 mmol, 88%) as a colorless syrup. ¹H NMR (400 MHz, CDCl₃) δ 6.30 (dd, *J* = 6.1, 1.4 Hz, 1H), 4.91 (dd, *J* = 8.1, 6.1 Hz,

1H), 4.67 (dd, J = 6.2, 2.8Hz, 1H), 4.29 – 4.24 (m, 1H), 4.05 – 3.97 (m, 1H), 2.10 (s, 3H), 1.29 (d, J = 6.5 Hz, 3H), 0.87 (s, 9H), 0.08 (s, 3H), 0.06 (s, 3H). The data are identical to the literature.⁷

4-O-Acetyl-L-rhamal (S7)

Supporting information Fig. 9 | Synthesis of S7

To a solution of **S6** (1.0 g, 3.5 mmol, 1.0 equiv) in CH₃CN (37 mL, 0.093 M) at 70 °C, 3HF•Et₃N (1.2 mL, 7.0 mmol, 2.0 equiv) was added under an N₂ atmosphere. After stirring at this temperature for 10 h (determined by TLC), the reaction was quenched by adding sat. NaHCO₃ and extracted with EtOAc. The combined organic layer was washed with saturated NaHCO₃ solution and brine, dried over Na₂SO₄, filtered, and evaporated *in vacuo*. The residue was purified by silica gel column chromatography (hexane:EtOAc = 4:1) to provide **S7** (480 mg, 2.80 mmol, 80%) as a colorless syrup. ¹H NMR (400 MHz, CDCl₃) δ 6.36 (dd, *J* = 6.1, 1.6 Hz, 1H), 4.82 – 4.72 (m, 2H), 4.30 – 4.27 (m, 1H), 4.01 – 3.94 (m, 1H), 2.51 (s, 1H), 2.14 (s, 3H), 1.30 (d, *J* = 6.4 Hz, 3H). The data are identical to the literature.⁷

3-O-ortho-2,2-Dimethoxycarbonylcyclopropylbenzoyl-4-O-acetyl-L-rhamal (1d)

Supporting information Fig. 10 | Synthesis of 1d

Following the procedure for **1a**, **S7** (200 mg, 1.0 mmol, 1.0 equiv) was transformed into **1d** (450 mg, 0.90 mmol, 90%, dr = 1:1) as a colorless syrup after purification by silica gel column chromatography (toluene:EtOAc = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.83 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.35 – 7.30 (m, 2H), 7.26 – 7.21 (m, 2H), 6.49 – 6.45 (m, 2H), 5.61 – 5.54 (m, 2H), 5.29 – 5.22 (m, 2H), 5.02 – 4.96 (m, 2H), 4.21 – 4.11 (m, 2H), 3.90 – 3.84 (m, 2H), 3.82 (s, 3H), 3.80 (s, 3H), 3.27 (s, 6H), 3.26 (s, 3H), 2.22 – 2.18 (m, 2H), 2.10 (s, 3H), 2.07 (s, 3H), 1.87 – 1.76 (m, 3H), 1.36 (dd, *J* = 6.5, 3.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 170.0, 169.93, 169.85, 167.2, 167.1, 166.3, 165.9, 145.82, 145.79, 136.6, 136.3, 132.2, 132.11, 131.2, 131.12, 131.06, 130.3, 129.6, 129.5, 127.7, 127.6, 99.1, 72.7, 72.6, 71.7, 71.5, 69.6, 69.3, 52.7, 52.65, 52.2, 52.0, 36.4, 35.7, 32.7, 32.3, 20.93, 20.86, 19.8, 19.7, 16.74, 16.72; HRMS (ESI) *m/z* Calcd C₂₄H₂₆O₁₁Na [M+Na]⁺ 455.1318, found 455.1311.

3-O-Benzylated-4,6-di-O-acetyl-D-glucal (5a)

Supporting information Fig. 11 | Synthesis of 5a

Compound **S1** (100 mg, 0.4 mmol, 1.0 equiv) and triethylamine (90 uL, 0.7 mmol, 1.5 equiv) were dissolved in anhydrous DCM (1 mL, 0.5 M) at 0 °C. At this temperature, benzoyl chloride (BzCl, 75 μ L, 0.7 mmol, 1.5 equiv) was added dropwise and the mixture was stirred for 10 h at room temperature. TLC

showed complete consumption of the starting material. After dilution with DCM, the solution was washed with water, sat. NaHCO₃ and brine. The combined organic phase was dried by Na₂SO₄, filtered, and evaporated in vacuo. Purification by silica gel column chromatography (hexane:EtOAc = 3:1) afforded 5a (142 mg, 0.4 mmol, 99%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 7.0, 1.4 Hz, 2H), 7.58 - 7.52 (m, 1H), 7.46 - 7.40 (m, 2H), 6.50 (dd, J = 6.2, 1.4 Hz, 1H), 5.57 - 5.53 (m, 1H), 5.43 (dd, J = 6.2, 1.4 Hz, 1H), 5.57 - 5.53 (m, 1H), 5.43 (dd, J = 6.2, 1.4 Hz, 1H), 5.57 - 5.53 (m, 1H), 5.43 (dd, J = 6.2, 1.4 Hz, 1H), 5.57 - 5.53 (m, 1H), 5.43 (dd, J = 6.2, 1.4 Hz, 1H), 5.57 - 5.53 (m, 1H), 5.43 (dd, J = 6.2, 1.4 Hz, 1H), 5.57 - 5.53 (m, 1H), 5.43 (dd, J = 6.2, 1.4 Hz, 1H), 5.57 - 5.53 (m, 2H), 5.57 - 5.53 (m, 2 7.6, 5.8 Hz, 1H), 4.99 (dd, J = 6.2, 3.2 Hz, 1H), 4.49 (dd, J = 12.1, 5.8 Hz, 1H), 4.37 - 4.31 (m, 1H), 4.25 (dd, J = 12.1, 3.2 Hz, 1H), 2.08 (s, 3H), 2.06 (s, 3H). The data are identical to the literature.⁸

3-O-ortho-2,2-Dimethoxycarbonylcyclopropylbenzoyl-4-O-acetyl-D-glucal (2u)

Supporting information Fig. 12 | Synthesis of 2u

To a mixture of **1a** (230 mg, 0.5 mmol) in 0.1 M potassium phosphate buffer (5 mL, pH = 7), diisopropyl ether ((*i*Pr)₂O, 1 mL, 0.6 M), acetone (0.6 mL) and lipase from *Candida cylindracea* (lipase CC, 75 mg) was added and this mixture was stirred at room temperature. TLC showed complete consumption of the starting material. After work-up, the mixture was filtered over celite and washed with EtOAc. The filtrate was extracted with EtOAc, and the combined organic layers were washed with brine and dried over Na₂SO₄. The solution was evaporated *in vacuo*. Purification by silica gel column chromatography (hexane:EtOAc = 2:1) obtained **2u** (130 mg, 0.3 mmol, 62%, dr = 10:7) as a colorless syrup. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, J = 7.8, 1.5 Hz, 1H), 7.81 (dd, J = 7.8, 1.5 Hz, 0.7H), 7.46 – 7.41 (m, 1.9H), 7.34 -7.29 (m, 1.9H), 7.23 (d, J = 7.7 Hz, 1.7H), 6.51 -6.49 (m, 1.7H), 5.67 -5.64 (m, 1.7H), 5.47 -5.39 (m, 1.7H), 5.01 (dd, J = 6.1, 2.7 Hz, 0.7H), 4.96 (dd, J = 6.1, 2.8 Hz, 1H), 4.10 – 4.05 (m, 1.9H), 3.86 – 3.71 (m, 11H), 3.24 (s, 2H), 3.23 (s, 2.9H), 2.54 (brs, 1.6H), 2.20 – 2.15 (m, 2H), 2.10 (s, 2.1H), 2.07 (s, 3H), 1.84 - 1.77 (m, 1.9H); ¹³C NMR (100 MHz, CDCl₃) δ 170.52, 170.47, 170.3, 170.1, 167.2, 167.1, 166.2, 165.9, 145.7, 145.6, 136.6, 136.3, 132.3, 132.2, 131.03, 131.01, 130.3, 129.7, 129.5, 127.8, 127.7, 99.3, 99.1, 76.72, 76.66, 69.3, 69.2, 67.6, 67.3, 60.7, 60.6, 52.77, 52.75, 52.2, 52.0, 36.2, 35.9, 32.7, 32.3, 20.9, 20.86, 19.8, 19.7; HRMS (ESI) m/z Calcd C₂₂H₂₄O₁₀Na [M+Na]⁺ 471.1267, found 471.1266.

Section 2. Optimization of reaction conditions.

Supplementary Table 1 | Condition screening^a

Donor	Lewis acid	Solvent	MS	Yields ^b %	Yield ^b of 4a %	α : β (selectivity) ^c
1a	Sc(OTf) ₃	DCM	5 Å	98	95	4:1
1 a	Cu(OTf) ₂	DCM	5 Å	98	95	10:1
1 a	Fe(OTf) ₃	DCM	5 Å	98	95	10:1
1 a	Fe(OTf) ₃	DCM	5 Å	53	48	10:1
1 a	Fe(OTf) ₂	DCM	5 Å	N.R.	0	N.D.
1 a	FeCl ₃	DCM	5 Å	6	trace	-
1 a	FeCl ₂	DCM	5 Å	N.R.	0	N.D.
1a	TMSOTf	DCM	5 Å	N.R.	0	N.D.
1 a	TfOH	DCM	5 Å	N.R.	0	N.D.
1 a	Cu(OTf) ₂	DCE	5 Å	98	95	10:1
1 a	Fe(OTf) ₃	DCE	5 Å	98	95	10:1
1a	Cu(OTf) ₂	Et ₂ O	5 Å	65	52	10:3
1 a	Fe(OTf) ₃	Toluene	5 Å	12	trace	10:1
1a	Fe(OTf) ₃	CH ₃ CN	5 Å	N.R.	0	N.D.
5a	Cu(OTf) ₂	DCM	5 Å	N.R.	0	N.D.
5a	Fe(OTf) ₃	DCM	5 Å	N.R.	0	N.D.
6a	Cu(OTf) ₂	DCM	5 Å	74%	-	3:1
6a	Fe(OTf) ₃	DCM	5 Å	69%	-	3:1
	Donor 1a	Donor Lewis acid 1a Sc(OTf)3 1a Cu(OTf)2 1a Fe(OTf)3 1a Fe(OTf)3 1a Fe(OTf)2 1a Fe(OTf)3 1a Fe(OTf)2 1a Fe(OTf)2 1a Fe(OTf)3 1a FeCl2 1a FeCl2 1a TfOH 1a Cu(OTf)2 1a Fe(OTf)3 1a Cu(OTf)2 1a Fe(OTf)3 1a Fe(OTf)3 1a Fe(OTf)3 1a Fe(OTf)3 1a Fe(OTf)3 1a Fe(OTf)3 5a Cu(OTf)2 5a Fe(OTf)3 6a Cu(OTf)2	DonorLewis acidSolvent1a $Sc(OTf)_3$ DCM 1a $Cu(OTf)_2$ DCM 1a $Fe(OTf)_3$ DCM 1a $Fe(OTf)_3$ DCM 1a $Fe(OTf)_2$ DCM 1a $Fe(OTf)_2$ DCM 1a $Fe(OTf)_2$ DCM 1a $FeCl_3$ DCM 1a $FeCl_2$ DCM 1a $FeCl_2$ DCM 1a $TMSOTf$ DCM 1a $TfOH$ DCM 1a $Cu(OTf)_2$ DCE 1a $Fe(OTf)_3$ DCE 1a $Fe(OTf)_3$ $Toluene$ 1a $Fe(OTf)_3$ CH_3CN 5a $Cu(OTf)_2$ DCM 5a $Fe(OTf)_3$ DCM 6a $Fe(OTf)_3$ DCM	Donor Lewis acid Solvent MS 1a $Sc(OTf)_3$ DCM $5 Å$ 1a $Cu(OTf)_2$ DCM $5 Å$ 1a $Fe(OTf)_3$ DCM $5 Å$ 1a $Fe(OTf)_3$ DCM $5 Å$ 1a $Fe(OTf)_2$ DCM $5 Å$ 1a $Fe(OTf)_2$ DCM $5 Å$ 1a $Fe(OTf)_2$ DCM $5 Å$ 1a $FeCl_3$ DCM $5 Å$ 1a $FeCl_2$ DCM $5 Å$ 1a $FeCl_2$ DCM $5 Å$ 1a $TfOH$ DCM $5 Å$ 1a $TfOH$ DCM $5 Å$ 1a $Cu(OTf)_2$ DCE $5 Å$ 1a $Fe(OTf)_3$ DCE $5 Å$ 1a $Fe(OTf)_3$ CH_3CN $5 Å$ 1a $Fe(OTf)_3$ CH_3CN $5 Å$ 1a $Fe(OTf)_3$ DCM $5 Å$	Donor Lewis acid Solvent MS Yields ^b % 1a Sc(OTf) ₃ DCM 5 Å 98 1a Cu(OTf) ₂ DCM 5 Å 98 1a Fe(OTf) ₃ DCM 5 Å 98 1a Fe(OTf) ₃ DCM 5 Å 98 1a Fe(OTf) ₃ DCM 5 Å 53 1a Fe(OTf) ₂ DCM 5 Å NR. 1a Fe(OTf) ₂ DCM 5 Å NR. 1a FeCl ₃ DCM 5 Å NR. 1a FeCl ₂ DCM 5 Å NR. 1a TGH DCM 5 Å NR. 1a TGH DCM 5 Å NR. 1a TGH DCE 5 Å 98 1a Fe(OTf) ₃ DCE 5 Å 98 1a Fe(OTf) ₃ Toluene 5 Å N.R. 5a Cu(OTf) ₂ DCM 5 Å <t< td=""><td>DonorLewis acidSolventMSYields^b%Yield^b of 4a%1aSc(OTf)3DCM5 Å98951aCu(OTf)2DCM5 Å98951aFe(OTf)3DCM5 Å98951aFe(OTf)3DCM5 Å53481aFe(OTf)2DCM5 ÅN.R.01aFeCl3DCM5 ÅN.R.01aFeCl2DCM5 ÅN.R.01aFeCl2DCM5 ÅN.R.01aFeCl2DCM5 ÅN.R.01aFeCl2DCM5 ÅN.R.01aFeCl2DCM5 ÅN.R.01aFeCl2DCM5 ÅN.R.01aFeCl3DCE5 Å98951aCu(OTf)2DCE5 Å98951aFe(OTf)3DCE5 Å98951aFe(OTf)3Toluene5 Å12trace1aFe(OTf)3CH3CN5 ÅN.R.05aCu(OTf)2DCM5 ÅN.R.05aFe(OTf)3DCM5 ÅN.R.05aFe(OTf)3DCM5 ÅN.R.06aFe(OTf)3DCM5 Å69%-</td></t<>	DonorLewis acidSolventMSYields ^b %Yield ^b of 4a%1aSc(OTf)3DCM5 Å98951aCu(OTf)2DCM5 Å98951aFe(OTf)3DCM5 Å98951aFe(OTf)3DCM5 Å53481aFe(OTf)2DCM5 ÅN.R.01aFeCl3DCM5 ÅN.R.01aFeCl2DCM5 ÅN.R.01aFeCl2DCM5 ÅN.R.01aFeCl2DCM5 ÅN.R.01aFeCl2DCM5 ÅN.R.01aFeCl2DCM5 ÅN.R.01aFeCl2DCM5 ÅN.R.01aFeCl3DCE5 Å98951aCu(OTf)2DCE5 Å98951aFe(OTf)3DCE5 Å98951aFe(OTf)3Toluene5 Å12trace1aFe(OTf)3CH3CN5 ÅN.R.05aCu(OTf)2DCM5 ÅN.R.05aFe(OTf)3DCM5 ÅN.R.05aFe(OTf)3DCM5 ÅN.R.06aFe(OTf)3DCM5 Å69%-

^aUnless otherwise noted, all reported yields are isolated and purified products. All reactions were carried out with **1a** or **5a** (0.1 mmol, 1.0 equiv), **2a** (1.2 equiv.), Lewis acid catalyst (0.1 equiv.) and 5 Å MS (50 mg) in corresponding solvent (1.0 ml, 0.1 M) under N₂ atmosphere for 2 h. MS = molecular sieve; DCE = 1,2-dichloroethane; ACN = acetonitrile; N.R. = no reaction; N.D. = no detective.

°The α/β ratios were determined by ¹H NMR analysis.

^d0.05 equiv of catalyst.

^bIsolated yields.

General procedure for the reaction development

A solution of **1a** (50 mg, 0.1 mmol, 1.0 equiv) and L-menthol **2a** (19 mg, 0.12 mmol, 1.2 equiv) in anhydrous solvent (1 mL, 0.1 M) containing freshly activated 5 Å molecular sieve was stirred at room temperature for 15 min before the catalyst (0.01 mmol, 0.1 equiv) was added. The mixture was stirred at room temperature for 2 h – 20 h until **2a** was fully consumed (determined by TLC). The reaction was then quenched with triethylamine and the mixture was directly loaded onto silica gel by concentrating the mixture *in vacuo*. The residue was further purified by silica gel column chromatography (toluene:EtOAc = 8:1) obtained the **3a** as a colorless oil, followed by changing the eluent system (toluene:EtOAc = 6:1) to afford **4a** as a colorless oil. α anomer of **3a**. ¹H NMR (400 MHz, CDCl₃) δ 5.92 – 5.81 (m, 2H), 5.26 (dd, *J* = 9.1, 1.4 Hz, 1H), 5.10 (s, 1H), 4.24 – 4.13 (m, 3H), 3.44 – 3.73 (m, 1H), 2.20 – 2.15 (m, 1H), 2.09 (s, 3H), 2.06 (s, 3H), 1.67 – 1.60 (m, 3H), 1.45 – 1.37 (m, 1H), 1.09 – 0.78 (m, 13H), 0.76 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 7.82 (d, *J* = 7.7 Hz, 1H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.53 – 7.43 (m, 2H), 5.50 (dd, *J* = 9.1, 3.2 Hz, 1H), 3.74 (s, 3H), 3.61 (s, 4H), 2.74 (ddd, *J* = 14.8, 9.4, 3.2 Hz, 1H), 2.14 (ddd, *J* = 14.4, 9.1, 5.0 Hz, 1H). The data are identical to the literature report.²

Section 3. Allylic rearrangement with 1a as the donor.

Acceptors 2a–d, 2f–h, 2j, 2m, 2o, 2q, 2s–t were commercially available. Acceptors $2e^{10}$, $2i^{11}$, 2k and $2l^{12}$, $2n^{13}$, $2p^{14}$, and $2r^{15}$ were prepared according to the reported literatures.

L-Menthyl 4,6-di-O-acetyl-2,3-dideoxy-a-D-erythro-hex-2-enopyranoside (3a)

A solution of **1a** (50 mg, 0.1 mmol, 1.0 equiv) and L-menthol **2a** (19 mg, 0.12 mmol, 1.2 equiv) in anhydrous solvent (1 mL, 0.1 M) containing freshly activated 5 Å molecular sieve was stirred at room temperature for 15 min before Fe(OTf)₃ (5.0 mg, 0.01 mmol, 0.1 equiv) or Cu(OTf)₂ (3.7 mg, 0.01 mmol, 0.1 equiv) was added. The mixture was stirred at room temperature for 2 h until **2a** was fully consumed (determined by TLC). The reaction was then quenched with triethylamine and the mixture was directly loaded onto silica gel by concentrating the mixture *in vacuo*. The residue was further purified by silica gel column chromatography (toluene:EtOAc = 8:1) to give the **3a** as a colorless oil (37 mg, 0.098 mmol, 98%).

n-Butyl 4,6-di-O-acetyl-2,3-dideoxy-a-D-erythro-hex-2-enopyranoside (3b)

Following the procedure for **3a**, **2b** (11 µL, 0.12 mmol, 1.2 equiv) was transformed into **3b** (29 mg, 0.088 mmol, 88%, α : β = 4:1) as a colorless oil after purification by silica gel column chromatography (hexane:EtOAc = 4:1). α anomer: ¹H NMR (400 MHz, CDCl₃) δ 5.89 – 5.80 (m, 2H), 5.31 – 5.28 (m, 1H), 5.03 – 5.00 (m, 1H), 4.26 – 4.21 (m, 1H), 4.17 (dd, *J* = 12.1, 2.5 Hz, 1H), 4.12 – 4.07 (m, 1H), 3.80 – 3.73 (m, 1H), 3.53 – 3.47 (m, 1H), 2.09 (s, 3H), 2.07 (s, 3H), 1.63 – 1.53 (m, 2H), 1.44 – 1.33 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H). The data are identical to the literature report.¹⁶

1-Adamantyl 4',6'-di-O-acetyl-2',3'-dideoxy-α-D-erythro-hex-2'-enopyranoside (3c)

Following the procedure for **3a**, **2c** (19 mg, 0.12 mmol, 1.2 equiv) was transformed into **3c** (21 mg, 0.056 mmol, 56%, α only) as a white solid after purification by silica gel column chromatography (hexane:EtOAc = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 5.84 (d, *J* = 10.2 Hz, 1H), 5.77 – 5.73 (m, 1H), 5.44 (t, *J* = 2.1 Hz, 1H), 5.27 (d, *J* = 9.2 Hz, 1H), 4.26 – 4.21 (m, 2H), 4.15 (d, *J* = 10.2 Hz, 1H), 2.15 (s, 3H),

2.08 (d, J = 6.0 Hz, 6H), 1.86 (dd, J = 11.5, 7.7 Hz, 6H), 1.68 – 1.57 (m, 6H). The data are identical to the literature report.⁹

para-Methoxyphenyl 4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranoside (3d)

Following the procedure for **3a**, **2d** (15 mg, 0.12 mmol, 1.2 equiv) was transformed into **3d** (24 mg, 0.07 mmol, 70%, $\alpha:\beta > 30:1$) as a white solid after purification by silica gel column chromatography (toluene:EtOAc = 4:1). When Fe(OTf)₃ as catalyst, the yield is 31 %, and $\alpha:\beta > 30:1^{1}$ H NMR (400 MHz, CDCl₃) δ 7.06 – 7.01 (m, 2H), 6.85 – 6.80 (m, 2H), 6.00 (d, *J* = 1.8 Hz, 2H), 5.56 (d, *J* = 1.9 Hz, 1H), 5.40 – 5.34 (m, 1H), 4.30 – 4.23 (m, 2H), 4.19 – 4.13 (m, 1H), 3.77 (s, 3H), 2.10 (s, 3H), 2.02 (s, 3H). The data are identical to the literature report.¹⁷

Methyl *N*-(9H-fluorenylmethoxy)carbonyl-(4,6-di-*O*-acetyl-2,3-dideoxy-α-D-erythro-hex-2enopyranosyl)-L-serine (3e)

Following the procedure for **3a**, **2e** (42 mg, 0.12 mmol, 1.2 equiv) was transformed into **3e** (44 mg, 0.078 mmol, 78%, $\alpha:\beta = 10:1$) as a foamy solid after purification by silica gel column chromatography (toluene:EtOAc = 4:1). When Fe(OTf)₃ as catalyst, the yield is 74%, and $\alpha:\beta = 10:1$. [α] $_D^{24} = +53.9$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.6 Hz, 2H), 7.62 (t, J = 7.2 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 5.91 (t, J = 9.6 Hz, 2H), 5.79 – 5.75 (m, 1H), 5.30 – 5.27 (m, 1H), 4.98 (s, 1H), 4.60 – 4.56 (m, 1H), 4.50 – 4.36 (m, 2H), 4.27 – 4.13 (m, 4H), 4.10 – 3.98 (m, 3H), 3.78 (s, 3H), 2.09 (d, J = 2.0 Hz, 3H), 2.08 (s, 1H), 2.05 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 170.5, 170.2, 156.0, 143.9, 143.7, 141.3, 129.6, 127.8, 127.1, 126.4, 125.1, 120.0, 95.3, 69.8, 67.4, 67.2, 65.1, 62.8, 54.5, 52.7, 47.1, 21.0, 20.7; HRMS (ESI) m/z Calcd C₂₉H₃₁O₁₀NNa [M+Na]⁺ 554.2026, found 554.2056.

Pregnenolonyl 4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranoside (3f)

Following the procedure for **3a**, **2f** (40 mg, 0.12 mmol, 1.2 equiv) was transformed into **3f** (44 mg, 0.082 mmol, 82%, $\alpha:\beta = 10:1$) as a white solid after purification by silica gel column chromatography

(toluene:EtOAc = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 5.90 – 5.85 (m, 1H), 5.84 – 5.80 (m, 1H), 5.36 (d, *J* = 3.9 Hz, 1H), 5.32 – 5.27 (m, 1H), 5.17 (s, 1H), 4.28 – 4.13 (m, 3H), 3.60 – 3.52 (m, 1H), 2.54 (d, *J* = 9.0 Hz, 1H), 2.45 – 2.25 (m, 3H), 2.12 (s, 3H), 2.09 (s, 3H), 2.08 (s, 3H), 2.05 – 1.96 (m, 2H), 1.94 – 1.83 (m, 3H), 1.72 – 1.41 (m, 17H), 1.32 – 1.11 (m, 10H), 1.06 – 0.80 (m, 8H), 0.63 (s, 3H). The data are identical to the literature report. ¹⁸

Cholesteryl 4,6-di-O-acetyl-2,3-dideoxy-a-D-erythro-hex-2-enopyranoside (3g)

Following the procedure for **3a**, **2g** (47 mg, 0.12 mmol, 1.2 equiv) was transformed into **3g** (50 mg, 0.082 mmol, 82%, $\alpha:\beta = 12:1$) as a white solid after purification by silica gel column chromatography (toluene:EtOAc = 4:1). When Fe(OTf)₃ as catalyst, the yield is 78%, and $\alpha:\beta = 12:1$ ¹H NMR (400 MHz, CDCl₃) δ 5.87 (dd, J = 10.2, 1.6 Hz, 1H), 5.83 – 5.79 (m, 1H), 5.36 – 5.34 (m, 1H), 5.30 – 5.29 (m, 1H), 5.18 – 5.15 (m, 1H), 4.26 – 4.14 (m, 3H), 3.59 – 3.51 (m, 1H), 2.45 – 2.28 (m, 2H), 2.08 (d, J = 5.7 Hz, 6H), 2.03 – 1.92 (m, 2H), 1.91 – 1.77 (m, 3H), 1.67 – 1.21 (m, 15H), 1.20 – 0.96 (m, 14H), 0.94 – 0.83 (m, 12H), 0.67 (s, 3H). The data are identical to the literature report.¹⁹

Diosgeninyl 4,6-di-O-acetyl-2,3-dideoxy-a-D-erythro-hex-2-enopyranoside (3h)

Following the procedure for **3a**, **2h** (51 mg, 0.12 mmol, 1.2 equiv) was transformed into **3h** (57 mg, 0.089 mmol, 89%, α : β = 10:1) as a foamy solid after purification by silica gel column chromatography (toluene:EtOAc = 6:1). [α] $_{D}^{25}$ = +0.8 (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.85 (dd, *J* = 10.3, 1.7 Hz, 1H), 5.81 – 5.78 (m, 1H), 5.35 – 5.32 (m, 1H), 5.30 – 5.24 (m, 1H), 5.17 – 5.12 (m, 1H), 4.42 – 4.36 (m, 1H), 4.27 – 4.13 (m, 3H), 3.59 – 3.50 (m, 1H), 3.47 – 3.43 (m, 1H), 3.35 (t, *J* = 10.9 Hz, 1H), 2.42 – 2.32 (m, 2H), 2.07 (d, *J* = 5.7 Hz, 6H), 2.02 – 1.93 (m, 2H), 1.88 – 1.81 (m, 3H), 1.78 – 1.37 (m, 15H), 1.34 – 0.84 (m, 17H), 0.77 – 0.76 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 170.3, 140.8, 128.9, 128.4, 121.6, 109.3, 92.8, 80.8, 78.1, 67.1, 66.84, 65.4, 63.2, 62.1, 56.5, 50.1, 41.6, 40.4, 40.3, 39.8, 37.1, 36.8, 32.1, 31.8, 31.4, 31.38, 30.3, 28.8, 28.2, 21.0, 20.9, 20.8, 19.4, 17.1, 16.3, 14.5; HRMS (ESI) *m*/*z* Calcd C₃₇H₅₅O₈ [M+H]⁺ 627.3897, found 627.3898.

Gram-scale synthesis: A solution of **1a** (990 mg, 2.0 mmol, 1.0 equiv) in anhydrous DCM (20 mL, 0.1 M) containing freshly activated 5 Å molecular sieve was stirred at room temperature for 15 min before $Cu(OTf)_2$ (73 mg, 0.2 mmol, 0.1 equiv) was added. The mixture was stirred at room temperature for 18h until **1a** was fully consumed (determined by TLC). The reaction was then quenched with triethylamine and

the mixture was directly loaded onto silica gel by concentrating the mixture in vacuo. The residue was further purified by silica gel column chromatography (toluene:EtOAc = 15:1) afforded the **3h** as a foamy solid (1.02 g, 1.62 mmol, α : β = 10:1, 81%)

Following the procedure for 3a, 2i (67 mg, 0.12 mmol, 1.2 equiv) was transformed into 3i (56 mg, 0.072 mmol, 72%, $\alpha:\beta = 10:1$) as a white solid after purification by silica gel column chromatography (toluene:EtOAc = 6:1). $[\alpha]_{D}^{25} = +78.0$ (c = 1.25, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.35 - 7.28 (m, 6H), 5.87 – 5.84 (m, 1H), 5.77 – 5.73 (m, 1H), 5.32 – 5.26 (m, 2H), 5.14 (dd, J = 3.0, 1.5 Hz, 1H), 5.09 (d, J = 12.6 Hz, 1H), 5.04 (d, J = 12.5 Hz, 1H), 4.29 - 4.17 (m, 2H), 4.16 - 4.09 (m, 1H), 3.30 (dd, J = 11.6, 4.1 Hz, 1H), 2.90 (dd, J = 13.9, 4.5 Hz, 1H), 2.08 – 2.07 (m, 6H), 2.02 – 1.94 (m, 1H), 1.86 – 1.83 (m, 2H), 1.75 - 1.08 (m, 25H), 1.07 - 1.00 (m, 4H), 0.90 (d, J = 9.1 Hz, 12H), 0.81 - 0.72 (m, 4H), 0.60 (d, J = 3.5Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.5, 170.9, 170.3, 143.7, 136.5, 128.7, 128.4, 128.0, 127.9, 122.5, 91.3, 83.8, 77.3, 67.1, 65.9, 65.3, 63.1, 55.8, 47.6, 46.8, 45.9, 41.7, 41.4, 39.3, 38.3, 38.2, 37.0, 33.9, 33.1, 32.8, 32.4, 30.7, 28.3, 27.6, 25.8, 23.7, 23.4, 23.1, 22.6, 21.0, 20.9, 18.4, 16.9, 16.5, 15.4; HRMS (ESI) m/z Calcd C₄₇H₆₆O₈Na [M+Na]⁺ 781.4655, found 781.4661.

Simvastatinyl 4,6-di-O-acetyl-2,3-dideoxy-a-D-erythro-hex-2-enopyranoside (3j)

Following the procedure for 3a, 2j (51 mg, 0.12 mmol, 1.2 equiv) was transformed into 3j (46 mg, 0.071 mmol, 71%, $\alpha:\beta = 10:1$) as a colorless oil after purification by silica gel column chromatography (toluene:EtOAc = 5:1). $[\alpha]_{D}^{24}$ = +151.6 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CD₂Cl₂) δ 5.99 (d, J = 9.7 Hz, 1H), 5.92 - 5.87 (m, 1H), 5.83 - 5.76 (m, 2H), 5.51 (t, J = 3.4 Hz, 1H), 5.34 - 5.31 (m, 2H), 5.29 - 5.275.22 (m, 1H), 5.14 (s, 1H), 4.58 – 4.52 (m, 1H), 4.36 – 4.29 (m, 1H), 4.26 – 4.07 (m, 3H), 4.03 – 3.97 (m, 1H), 2.74 – 2.62 (m, 2H), 2.48 – 2.26 (m, 4H), 2.07 (s, 3H), 2.05 (s, 3H), 1.97 – 1.94 (m, 2H), 1.84 – 1.24 (m, 17H), 1.13 - 1.04 (m, 10H), 0.89 (d, J = 7.0 Hz, 3H), 0.82 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CD₂Cl₂) & 177.3, 170.4, 170.1, 169.2, 132.9, 131.7, 129.7, 129.3, 128.3, 127.5, 93.2, 76.7, 73.0, 68.9, 67.9, 67.2, 65.2, 63.0, 42.8, 37.4, 36.7, 35.8, 34.8, 33.1, 33.0, 32.7, 30.7, 27.4, 24.6, 24.5, 24.1, 22.8, 20.8, 20.6, 13.6, 9.1; HRMS (ESI) m/z Calcd C₃₅H₅₃O₁₀ [M+H]⁺ 633.3639, found 633.3629.

Following the procedure for **3a**, **2k** (72 mg, 0.12 mmol, 1.2 equiv) was transformed into **3k** (60 mg, 0.074 mmol, 74%, $\alpha:\beta = 10:1$) as a white solid after purification by silica gel column chromatography (hexane:EtOAc = 3:1). $[\alpha]_D^{25} = +22.0$ (c = 2.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.90 (m, 4H), 7.81 – 7.77 (m, 2H), 7.54 – 7.50 (m, 4H), 7.43 – 7.35 (m, 5H), 7.33 – 7.23 (m, 5H), 5.92 – 5.85 (m, 2H), 5.77 – 5.73 (m, 1H), 5.61 (t, J = 9.7 Hz, 1H), 5.52 – 5.43 (m, 1H), 5.31 – 5.28 (m, 1H), 5.08 – 5.02 (m, 2H), 4.22 – 4.13 (m, 1H), 4.11 – 4.07 (m, 1H), 4.06 – 3.94 (m, 3H), 3.83 – 3.74 (m, 1H), 2.06 (s, 3H), 1.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 170.3, 165.8, 165.1, 165.0, 133.6, 133.3, 133.2, 132.8, 132.4, 132.1, 129.9, 129.8, 129.8, 129.7, 129.4, 129.2, 129.0, 128.88, 128.82, 128.51, 128.49, 128.4, 128.3, 128.2, 127.3, 94.5, 86.1, 77.3, 74.4, 70.5, 69.4, 66.93, 66.89, 65.1, 62.7, 21.0, 20.7; HRMS (ESI) m/z Calcd C₄₃H₄₀O₁₃SNa [M+Na]⁺ 819.2087, found 819.2103.

Phenyl 6-*O*-(4,6-di-*O*-acetyl-2,3-dideoxy-α-D-erythro-hex-2-eno-pyranosyl)-2,3,4-tri-*O*-benzyl-1-thioβ-D-glucopyranoside (31)

Following the procedure for **3a**, **2l** (66 mg, 0.12 mmol, 1.2 equiv) was transformed into **3l** (60 mg, 0.082 mmol, 82%, $\alpha:\beta = 11:1$) as a colorless syrup after purification by silica gel column chromatography (hexane:EtOAc = 4:1). $[\alpha]_D^{25} = +14.1$ (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.53 (m, 2H), 7.41 – 7.22 (m, 20H), 5.93 – 5.81 (m, 2H), 5.34 – 5.31 (m, 1H), 5.16 – 5.11 (m, 1H), 4.92 – 4.87 (m, 3H), 4.84 (d, *J* = 10.9 Hz, 1H), 4.74 (d, *J* = 10.3 Hz, 1H), 4.66 (d, *J* = 10.3 Hz, 2H), 4.25 – 4.15 (m, 1H), 4.12 – 4.04 (m, 2H), 4.01 – 3.94 (m, 1H), 3.84 (dd, *J* = 11.3, 1.9 Hz, 1H), 3.72 (t, *J* = 8.8 Hz, 1H), 3.59 (t, *J* = 9.3 Hz, 1H), 3.54 – 3.45 (m, 2H), 2.05 (s, 3H), 2.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 170.3, 138.3, 138.1, 138.0, 133.8, 131.9, 131.6, 129.1, 128.9, 128.51, 128.49, 128.46, 128.23, 128.0, 127.93, 127.91, 127.81, 127.77, 127.68, 127.5, 94.8, 87.3, 86.7, 80.9, 78.6, 77.9, 75.9, 75.5, 75.1, 67.3, 67.0, 65.2, 62.8, 21.0, 20.8; HRMS (ESI) *m/z* Calcd C₄₃H₄₆O₁₀SNa [M+Na]⁺ 777.2709, found 777.2704.

6-*O*-(4,6-Di-*O*-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranosyl)-1,2:3,4-di-*O*-isopropylidene-α-D-galactopyranoside (3m)

Following the procedure for **3a**, **2m** (32 mg, 0.12 mmol, 1.2 equiv) was transformed into **3m** (43 mg, 0.089 mmol, 89%, α : β = 3:1) as a white solid after purification by silica gel column chromatography (toluene:EtOAc = 4:1). α anomer: ¹H NMR (400 MHz, CDCl₃) δ 5.88 – 5.80 (m, 2H), 5.51 (d, *J* = 5.0 Hz, 1H), 5.33 – 5.28 (m, 1H), 5.08 – 5.07 (m, 1H), 4.59 (dd, *J* = 7.4, 2.4 Hz, 1H), 4.33 – 4.19 (m, 4H), 4.17 – 4.09 (m, 2H), 4.03 – 3.94 (m, 2H), 3.86 (dd, *J* = 10.2, 6.3 Hz, 1H), 3.78 – 3.68 (m, 1H), 2.09 (s, 3H), 2.07 (s, 3H), 1.52 (s, 3H), 1.43 (s, 3H), 1.33 (s, 3H), 1.31 (s, 3H). The data are identical to the literature report.⁹

$para-Methoxyphenyl-4-O-(4,6-di-O-acetyl-2,3-dideoxy-\alpha-D-erythro-hex-2-enopyranosyl)-2,3-O-isopropylidene-\alpha-L-rhamnopyranoside (3n)$

Following the procedure for **3a**, **2n** (38 mg, 0.12 mmol, 1.2 equiv) was transformed into **3n** (37 mg, 0.070 mmol, 70%, α only) as a white solid after purification by silica gel column chromatography (toluene:EtOAc = 5:1). When Fe(OTf)₃ as catalyst, the yield is 23%, and α only. $[\alpha]_D^{25} = +12.5$ (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.99 – 6.95 (m, 2H), 6.84 – 6.79 (m, 2H), 5.92 (dd, *J* = 10.3, 1.8 Hz, 1H), 5.84 – 5.80 (m, 1H), 5.59 (s, 1H), 5.46 (dd, *J* = 9.7, 1.6 Hz, 1H), 5.16 (d, *J* = 2.8 Hz, 1H), 4.38 (dd, *J* = 12.2, 2.9 Hz, 1H), 4.33 – 4.27 (m, 3H), 4.25 – 4.21 (m, 1H), 3.87 – 3.79 (m, 1H), 3.77 (s, 3H), 3.51 (dd, *J* = 10.1, 6.7 Hz, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 1.59 (s, 3H), 1.39 (s, 3H), 1.21 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 170.3, 155.0, 150.1, 129.7, 127.2, 117.7, 114.6, 109.5, 96.1, 95.0, 80.7, 77.2, 75.9, 66.6, 65.7, 65.0, 62.4, 55.6, 28.1, 26.5, 21.0, 20.9, 17.5; HRMS (ESI) *m*/*z* Calcd C₂₆H₃₄O₁₁Na [M+Na]⁺ 545.1999, found 545.2020.

Methyl 5-*O*-(4,6-di-*O*-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranosyl)-2,3-*O*-isopropylidene-β-D-ribofuranoside (30)

Following the procedure for **3a**, **2o** (25 mg, 0.12 mmol, 1.2 equiv) was transformed into **3o** (38 mg, 0.091 mmol, 91%, $\alpha:\beta = 3:1$) as a colorless syrup after purification by silica gel column chromatography (toluene:EtOAc = 5:1). When Fe(OTf)₃ as catalyst, the yield is 87%, and $\alpha:\beta = 3:1$. $\alpha:\beta = 3:1$: ¹H NMR (400 MHz, CDCl₃) δ 6.00 – 5.92 (m, 1H), 5.90 – 5.78 (m, 2H), 5.29 (dd, J = 9.7, 1.6 Hz, 1H), 5.18 – 5.13

(m, 1H), 5.05 - 5.00 (m, 1H), 4.94 - 4.93 (m, 1.5H), 4.70 - 4.66 (m, 1.5H), 4.57 - 4.55 (m, 1.5H), 4.39 - 4.35 (m, 1H), 4.32 - 4.21 (m, 2.6H), 4.17 (dd, J = 12.1, 2.4 Hz, 1H), 4.10 - 4.02 (m, 1.7H), 3.82 - 3.75 (m, 1.9H), 3.58 (ddd, J = 19.2, 10.2, 7.8 Hz, 1.6H), 3.30 (s, 1H), 3.29 (s, 3H), 2.09 (s, 3H), 2.08 (s, 1H), 2.07 (s, 3H), 2.06 (s, 1H), 1.46 (s, 4H), 1.30 (s, 4H); 13 C NMR (100 MHz, CDCl₃): δ 170.8, 170.2, 129.3, 127.4, 112.3, 109.3, 95.0, 85.12, 85.07, 82.1, 81.9, 72.8, 69.7, 68.7, 67.1, 65.1, 64.2, 63.5, 62.8, 54.9, 54.8, 26.5, 26.4, 25.0 24.9, 21.0, 20.8, 20.75. The data are identical to the literature report.²⁰

Methoxyl 2-*O*-(4,6-di-*O*-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranosyl)-3,4,6-*O*-tri-*O*-benzyl-α-D-mannopyranoside (3p)

Following the procedure for **3a**, **2p** (57 mg, 0.12 mmol, 1.2 equiv) was transformed into **3p** (47 mg, 0.068 mmol, 68%, α only) as a colorless syrup after purification by silica gel column chromatography (toluene:EtOAc = 4:1). $[\alpha]_D^{25} = +27.3$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.24 (m, 14H), 7.18 – 7.15 (m, 2H), 5.94 – 5.91 (m, 1H), 5.89 – 5.84 (m, 1H), 5.30 – 5.26 (m, 1H), 5.25 – 5.21 (m, 1H), 4.86 – 4.80 (m, 2H), 4.72 – 4.64 (m, 3H), 4.54 (d, J = 12.1 Hz, 1H), 4.50 (d, J = 10.8 Hz, 1H), 4.23 – 4.15 (m, 3H), 4.09 (t, J = 2.4 Hz, 1H), 3.93 – 3.83 (m, 2H), 3.79 – 3.70 (m, 3H), 3.36 (s, 3H), 2.10 (s, 3H), 2.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 170.4, 138.43, 138.38, 128.8, 128.5, 128.33, 128.30, 127.94, 127.88, 127.75, 127.7, 127.6, 127.51, 127.48, 100.3, 95.8, 80.1, 75.1, 74.9, 74.8, 73.4, 72.4, 71.7, 69.3, 67.0, 65.4, 63.2, 54.7, 29.7, 21.0, 20.8; HRMS (ESI) *m*/*z* Calcd C₃₈H₄₄O₁₁Na [M+Na]⁺ 699.2781, found 699.2766.

para-Methylphenyl 4,6-di-O-acetyl-2,3-dideoxy-erythro-hex-2-eno-1-thio-a-D-pyranoside (3q)

Following the procedure for **3a**, **2q** (15 mg, 0.12 mmol, 1.2 equiv) was transformed into **3q** (20 mg, 0.058 mmol, 58%, α only) as a white solid after purification by silica gel column chromatography (toluene:EtOAc = 6:1). When Fe(OTf)₃ as catalyst, there is no reaction. H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.2 Hz, 2H), 7.12 (d, *J* = 7.8 Hz, 2H), 6.08 – 6.04 (m, 1H), 5.86 – 5.83 (m, 1H), 5.69 – 5.67 (m, 1H), 5.39 – 5.35 (m, 1H), 4.51 – 4.46 (m, 1H), 4.30 – 4.20 (m, 2H), 2.33 (s, 3H), 2.11 (s, 3H), 2.09 (s, 3H). The data are identical to the literature report.²¹

 $1-Thio-(4,6-di-\textit{O}-acetyl-2,3-dideoxy-\alpha-D-erythro-hex-2-enopyranosyl)-2,3,4,6-tetra-\textit{O}-acetyl-\beta-D-galactopyranoside (3r)$

Following the procedure for **3a**, **2r** (45 mg, 0.12 mmol, 1.2 equiv) was transformed into **3r** (45 mg, 0.077 mmol, 77%, $\alpha:\beta = 3:1$) as a colorless syrup after purification by silica gel column chromatography (toluene:EtOAc = 4:1). When Fe(OTf)₃ as catalyst, there is no reaction. $\alpha:\beta = 3:1: {}^{1}$ H NMR (400 MHz, CDCl₃) δ 5.98 (s, 0.6H), 5.92 – 5.82 (m, 3H), 5.75 (d, *J* = 1.6 Hz, 0.3H), 5.47 – 5.40 (m, 2.4H), 5.31 (t, *J* = 9.9 Hz, 1H), 5.26 – 5.21 (m, 0.7H), 5.09 – 5.06 (dd, *J* = 8.0, 4.0 Hz, 0.3H), 5.01 (dd, *J* = 10.0, 3.3 Hz, 1H), 4.92 (d, *J* = 10.0 Hz, 0.3H), 4.63 (d, *J* = 9.9 Hz, 1H), 4.42 – 4.33 (m, 1.3H), 4.28 – 4.07 (m, 6.3H), 4.02 – 3.92 (m, 1.7H), 2.14 (d, *J* = 2.8 Hz, 4H), 2.09 – 2.03 (m, 16H), 1.97 (s, 4H); 13 C NMR (100 MHz, CDCl₃) δ 170.7, 170.6, 170.4, 170.34, 170.25, 170.20, 170.18, 170.1, 170.0, 169.7, 169.3, 129.4, 128.2, 127.8, 126.1, 83.5, 81.4, 79.9, 77.3, 75.5, 74.8, 74.5, 74.4, 72.0, 71.8, 68.4, 67.3, 67.2, 64.4, 64.2, 63.1, 62.4, 61.6, 61.4, 21.0, 20.8, 20.81, 20.77, 20.69, 20.66, 20.64, 20.60, 20.58, 20.55; HRMS (ESI) *m*/*z* Calcd C₂₄H₃₂O₁₄SNa [M+Na]⁺ 599.1410, found 599.1465.

N-(4,6-Di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranosyl)-4-methylbenzenesulfonamide (3s)

Following the procedure for **3a**, **2s** (21 mg, 0.12 mmol, 1.2 equiv) was transformed into **3s** (24 mg, 0.062 mmol, 62%, α only) as a white solid after purification by silica gel column chromatography (toluene:EtOAc = 4:1). [α] $_{D}^{25}$ = +77.4 (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.78 (m, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 5.93 – 5.90 (m, 1H), 5.82 – 5.79 (m, 2H), 5.63 – 5.55 (m, 1H), 5.28 – 5.24 (m, 1H), 3.89 (dd, *J* = 12.2, 3.6 Hz, 1H), 3.57 – 3.51 (m, 1H), 3.36 (dd, *J* = 12.2, 2.8 Hz, 1H), 2.43 (s, 3H), 2.02 (s, 6H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 170.0, 143.9, 138.6, 130.6, 129.6, 127.2, 126.7, 66.8, 64.3, 61.8, 21.5, 20.9, 20.7; HRMS (ESI) *m/z* Calcd C₁₇H₂₁O₇NS [M+H]⁺ 384.1117, found 384.1111.

3-(4,6-Di-O-acetyl-2,3-dideoxy-a-D-erythro-hex-2-enopyranosyl)-1-propene (3t)

A solution of **1a** (50 mg, 0.1 mmol, 1.0 equiv) and **2t** (33 μ L, 0.12 mmol, 1.2 equiv) in anhydrous DCM (1 mL, 0.1 M) containing freshly activated 5Å molecular sieve was stirred at room temperature for 15 min before Sc(OTf)₃ (5.0 mg, 0.01 mmol, 0.1 equiv) was added. The mixture was stirred at room temperature for 2 h until **2t** was fully consumed (determined by TLC). The reaction was then quenched with

triethylamine and the mixture was directly loaded onto silica gel by concentrating the mixture *in vacuo*. The residue was further purified by silica gel column chromatography (hexane:EtOAc = 4:1) obtained the **3t** (20 mg, 0.077 mmol, 77%, α : β > 30:1) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.96 – 5.76 (m, 3H), 5.17 – 5.07 (m, 3H), 4.31 – 4.20 (m, 2H), 4.15 (dd, *J* = 11.8, 3.5 Hz, 1H), 3.98 – 3.94 (m, 1H), 2.51 – 2.42 (m, 1H), 2.36 – 2.29 (m, 1H), 2.09 (s, 6H). The data are identical to the literature report. ²²

4-O-Acetyl-1,6-anhydro-2,3-dideoxy-β-D-erythro-hex-2-enopyranose (3u)

Supporting information Fig. 33 | Synthesis of 3u

A solution of **2u** (60 mg, 0.13 mmol, 1.0 equiv) in anhydrous DCM (1 mL, 0.1 M) containing freshly activated 5 Å molecular sieve was stirred at room temperature for 15 min before Cu(OTf)₂ (4.8 mg, 0.013 mmol, 0.1 equiv) was added. The mixture was stirred at room temperature for 3 h until **2u** was fully consumed (determined by TLC). The reaction was then quenched with triethylamine and the mixture was directly loaded onto silica gel by concentrating the mixture *in vacuo*. The residue was further purified by silica gel column chromatography (hexane:EtOAc = 4:1) afforded the **3u** as a colorless oil (18 mg, 0.083 mmol, 83%). ¹H NMR (400 MHz, CDCl₃) δ 6.20 – 6.17 (m, 1H), 5.81 – 5.77 (m, 1H), 5.59 (d, *J* = 3.4 Hz, 1H), 4.80 – 4.78 (m, 1H), 4.73 – 4.70 (m, 1H), 3.96 (dd, *J* = 8.0, 6.6 Hz, 1H), 3.53 (dd, *J* = 8.0, 2.1 Hz, 1H), 2.12 (s, 3H). The data are identical to the literature report. ²³

Gram-scale synthesis: A solution of **2u** (2.9 g, 6.5 mmol, 1.0 equiv) in anhydrous DCM (66 mL, 0.1 M) containing freshly activated 5 Å molecular sieve was stirred at room temperature for 15 min before $Fe(OTf)_3$ (325 mg, 0.65 mmol, 0.1 equiv) was added. The mixture was stirred at room temperature for 5h until **2u** was fully consumed (determined by TLC). The reaction was then quenched with triethylamine and the mixture was directly loaded onto silica gel by concentrating the mixture *in vacuo*. The residue was further purified by silica gel column chromatography (hexane:EtOAc = 4:1) afforded the **3u** as a colorless oil (951 mg, 5.5 mmol, 85%)

Section 4. Allylic rearrangement with 1b-d as donors.

L-Menthyl 4,6-O-[bis(1,1-dimethylethyl)silylene]-2,3-dideoxy-a-D-erythro-hex-2-enopyranoside (3ba)

Following the procedure for **3a**, **2a** (19 mg, 0.12 mmol, 1.2 equiv) was transformed into **3ba** (34 mg, 0.082 mmol, 82%, $\alpha:\beta = 9:1$) as a white solid after purification by silica gel column chromatography (toluene:EtOAc = 50:1). $[\alpha]_D^{25} = -0.4$ (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.01 (d, J = 10.4 Hz,

1H), 5.69 – 5.66 (m, 1H), 4.99 (t, J = 1.3 Hz, 1H), 4.39 – 4.31 (m, 1H), 4.13 (dd, J = 3.6, 8.4 Hz, 1H), 3.91 – 3.83 (m, 2H), 3.38 – 3.32 (m, 1H), 2.15 – 1.98 (m, 2H), 1.65 – 1.57 (m, 3H), 1.44 – 1.37 (m, 1H), 1.05 (s, 10H), 0.99 (s, 10H), 0.92 – 0.81 (m, 9H), 0.77 – 0.72 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 134.1, 125.2, 96.4, 80.6, 70.6, 67.1, 66.9, 48.7, 43.7, 34.3, 31.8, 27.5, 27.1, 25.6, 23.2, 22.8, 22.3, 21.2, 20.1, 16.2; HRMS (ESI) m/z Calcd C₂₄H₄₅O₄Si [M+H]⁺ 425.3087, found 425.3065.

Phenyl 6-*O*-[4,6-*O*-(bis(1,1-dimethylethyl)silylene)-2,3-dideoxy-α-D-erythro-hex-2-enopyranosyl]-2,3,4-tri-*O*-benzoyl-1-thio-β-D-glucopyranoside (3bb)

Following the procedure for **3a**, **2k** (70 mg, 0.12 mmol, 1.2 equiv) was transformed into **3bb** (65 mg, 0.078 mmol, 78%, $\alpha:\beta = 10:1$) as a foamy solid after purification by silica gel column chromatography (toluene:EtOAc = 4:1). $[\alpha]_{D}^{25} = +26.9 \ (c = 1.0, \text{CHCl}_3); {}^{1}\text{H} \text{NMR}$ (400 MHz, CDCl₃) δ 7.98 – 7.92 (m, 4H), 7.82 – 7.78 (m, 2H), 7.56 – 7.50 (m, 4H), 7.43 – 7.23 (m, 12H), 6.02 (d, J = 10.4, 1H), 5.88 (t, J = 9.5 Hz, 1H), 5.60 – 5.51 (m, 2H), 5.46 (t, J = 9.7 Hz, 1H), 5.02 (d, J = 10.0 Hz, 1H), 4.96 – 4.95 (m, 1H), 4.37 – 4.30 (m, 1H), 4.07 – 3.97 (m, 3H), 3.84 – 3.80 (m, 2H), 3.76 – 3.70 (m, 1H), 1.05 (s, 10H), 0.97 (s, 10H); {}^{13}\text{C} \text{NMR} (100 MHz, CDCl₃) δ 165.8, 165.1, 165.0, 134.5, 133.42, 133.39, 133.3, 133.2, 131.6, 129.9, 129.82, 129.78, 129.3, 129.00, 128.95, 128.9, 128.5, 128.4, 128.29, 128.25, 124.5, 94.9, 85.9, 77.3, 74.4, 70.5, 70.4, 69.7, 67.3, 67.1, 27.51, 27.47, 27.11, 27.06, 22.8, 20.0; HRMS (ESI) *m*/*z* Calcd C₄₇H₅₂O₁₁SiSNa [M+Na]⁺ 875.2897, found 875.2835.

para-Methoxyphenyl 4,6-*O*-[bis(1,1-dimethylethyl)silylene]-2,3-dideoxy-α-D-erythro-hex-2enopyranoside (3bc)

Following the procedure for **3a**, **2d** (15 mg, 0.12 mmol, 1.2 equiv) was transformed into **3bc** (19 mg, 0.049 mmol, 49%, α : β = 30:1) as a white solid after purification by silica gel column chromatography (toluene:EtOAc = 4:1). [*a*] $_{D}^{25}$ = +44.2 (*c* = 2.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.03 – 6.98 (m, 2H), 6.86 – 6.81 (m, 2H), 6.19 – 6.14 (m, 1H), 5.83 – 5.79 (m, 1H), 5.49 – 5.48 (m, 1H), 4.44 – 4.41 (m, 1H), 4.17 – 4.12 (m, 1H), 3.98 – 3.86 (m, 2H), 3.78 (s, 3H), 1.07 (s, 9H), 1.00 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 151.4, 135.2, 124.4, 118.4, 114.6, 94.4, 70.2, 68.0, 67.0, 55.7, 27.5, 27.1, 22.8, 20.1; HRMS (ESI) *m/z* Calcd C₂₁H₃₂O₅SiNa [M+Na]⁺ 415.1917, found 415.1924.

L-Menthyl 4,6-di-O-acetyl-2,3-dideoxy-a-D-threo-hex-2-enopyranoside (3ca)

Following the procedure for **3a**, **2a** (19 mg, 0.12 mmol, 1.2 equiv) was transformed into **3ca** (34 mg, 0.091 mmol, 91%, α only) as a white solid after purification by silica gel column chromatography (toluene:EtOAc = 6:1). ¹H NMR (400 MHz, CDCl₃) δ 6.13 – 6.07 (m, 1H), 6.04 (dd, J = 10.0, 2.8 Hz, 1H), 5.14 (d, J = 2.8 Hz, 1H), 5.01 (dd, J = 5.2, 2.5 Hz, 1H), 4.43 – 4.39 (m, 1H), 4.26 – 4.17 (m, 2H), 3.47 – 3.41 (m, 1H), 2.24 – 2.18 (m, 1H), 2.08 (s, 3H), 2.07 (s, 3H), 1.69 – 1.58 (m, 3H), 1.46 – 1.40 (m, 1H), 1.29 – 1.20 (m, 3H), 1.09 – 0.87 (m, 10H), 0.86 – 0.75 (m, 4H). The data are identical to the literature report.²⁴

Phenyl 6-*O*-(4,6-di-*O*-acetyl-2,3-dideoxy-α-D-threo-hex-2-enopyranosyl)-2,3,4-tri-*O*-benzoyl-1-thio-β-D-glucopyranoside (3cb)

Following the procedure for **3a**, **2k** (72 mg, 0.12 mmol, 1.2 equiv) was transformed into **3cb** (66 mg, 0.082 mmol, 82%, α only) as a colorless syrup after purification by silica gel column chromatography (toluene:EtOAc = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.96 (m, 2H), 7.95 – 7.91 (m, 2H), 7.83 – 7.79 (m, 2H), 7.56 – 7.49 (m, 4H), 7.45 – 7.36 (m, 5H), 7.35 – 7.25 (m, 6H), 6.12 – 6.08 (m, 1H), 5.98 – 5.88 (m, 2H), 5.63 (t, *J* = 9.7 Hz, 1H), 5.49 (t, *J* = 9.7 Hz, 1H), 5.17 – 5.06 (m, 2H), 4.97 (dd, *J* = 5.5, 2.5 Hz, 1H), 4.35 – 4.31 (m, 1H), 4.16 – 4.08 (m, 2H), 4.07 – 4.00 (m, 2H), 3.83 – 3.77 (m, 1H), 2.08 (s, 3H), 1.93 (s, 3H). The data are identical to the literature report.²⁵

para-Methoxyphenyl 4,6-di-O-acetyl-2,3-dideoxy-α-D-threo-hex-2-enopyranoside (3cc)

Following the procedure for **3a**, **2d** (15 mg, 0.12 mmol, 1.2 equiv) was transformed into **3cc** (22 mg, 0.065 mmol, 65%, α only) as a colorless oil after purification by silica gel column chromatography (hexane:EtOAc:Et₂O= 5:1:1). ¹H NMR (400 MHz, CDCl₃) δ 7.08 – 7.04 (m, 2H), 6.85 – 6.80 (m, 2H), 6.27 – 6.22 (m, 1H), 6.19 (dd, *J* = 10.0, 3.0 Hz, 1H), 5.62 (d, *J* = 2.9 Hz, 1H), 5.11 (dd, *J* = 5.2, 2.5 Hz, 1H), 4.54 – 4.50 (m, 1H), 4.29 – 4.19 (m, 2H), 3.78 (s, 3H), 2.10 (s, 3H), 1.96 (s, 3H). The data are identical to the literature report. ²⁵

L-Menthyl 4-O-acetyl-6-deoxy-2,3-dideoxy-a-L-erythrohex-2-enopyranoside (3da)

Following the procedure for **3a**, **2a** (19.5 mg, 0.12 mmol, 1.2 equiv) was transformed into **3da** (28 mg, 0.087 mmol, 87%, $\alpha:\beta = 11:1$) as a white solid after purification by silica gel column chromatography (toluene:EtOAc = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 5.85 – 5.82 (m, 1H), 5.73 – 5.70 (m, 1H), 5.15 – 5.11 (m, 1H), 5.04 – 5.01 (m, 1H), 3.98 – 3.91 (m, 1H), 3.56 – 3.49 (m, 1H), 2.28 – 2.22 (m, 1H), 2.08 (s, 3H), 1.68 – 1.61 (m, 2H), 1.42 – 1.17 (m, 6H), 1.09 – 0.73 (m, 14H). The data are identical to the literature report.²⁶

Phenyl 6-O-(4-O-acetyl-6-deoxy-2,3-dideoxy- α -L-erythrohex-2-enopyranosyl)-2,3,4-tri-O-benzoyl-1-thio- β -D-glucopyranoside (3db)

Following the procedure for **3a**, **2k** (73 mg, 0.12 mmol, 1.2 equiv) was transformed into **3db** (72 mg, 0.093 mmol, 93%, $\alpha:\beta = 11:1$) as a colorless syrup after purification by silica gel column chromatography (toluene:EtOAc = 12:1). $[\alpha]_D^{25} = -1.2$ (c = 2.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.94 (m, 2H), 7.93 – 7.89 (m, 2H), 7.81 – 7.77 (m, 2H), 7.54 – 7.48 (m, 4H), 7.43 – 7.22 (m, 12H), 5.92 – 5.80 (m, 2H), 5.76 – 5.72 (m, 1H), 5.56 – 5.47 (m, 2H), 5.07 – 5.01 (m, 2H), 4.99 – 4.94 (m, 1H), 4.08 – 3.91 (m, 3H), 3.76 (dd, J = 11.6, 6.3 Hz, 1H), 2.09 (s, 3H), 1.15 (d, J = 6.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 165.8, 165.3, 165.1, 133.5, 133.3, 133.2, 133.1, 132.8, 132.3, 129.9, 129.8, 129.8, 129.6, 129.2, 129.01, 128.96, 128.9, 128.8, 128.5, 128.4, 128.3, 128.2, 127.5, 95.1, 86.3, 78.2, 77.3, 74.3, 70.8, 70.7, 69.5, 67.4, 66.5, 64.9, 36.7, 29.7, 29.4, 24.7, 22.7, 21.1, 18.6, 17.9, 14.2; HRMS (ESI) *m/z* Calcd C₄₁H₃₈O₁₁SNa [M+Na]⁺ 761.2033, found 761.2054.

para-Methoxyphenyl 4-O-acetyl-6-deoxy-2,3-dideoxy-a-L-erythrohex-2-enopyranoside (3dc)

Following the procedure for **3a**, **2d** (73 mg, 0.12 mmol, 1.2 equiv) was transformed into **3dc** (72 mg, 0.078 mmol, 78%, α only) as a colorless syrup after purification by silica gel column chromatography (toluene:EtOAc = 12:1). ¹H NMR (400 MHz, CDCl₃) δ 7.05 – 7.00 (m, 2H), 6.86 – 6.81 (m, 2H), 6.02 – 5.92 (m, 2H), 5.52 (s, 1H), 5.11 (d, *J* = 9.1 Hz, 1H), 4.15 – 4.08 (m, 1H), 3.78 (s, 3H), 2.11 (s, 3H), 1.23 (d, *J* = 6.2 Hz, 3H). The data are identical to the literature report.²⁷

Section 5. Application of ferrier rearrangement.

6-O-(4,6-Di-O-acetyl-2,3-dideoxy-α-D-threo-hex-2-enopyranosyl) dapagliflozin triacetate (7)

A solution of **1c** (50 mg, 0.1 mmol, 1.0 equiv) and 6^{28} (65 mg, 0.12 mmol, 1.2 equiv) in anhydrous DCM (1 mL, 0.1 M) containing freshly activated 5 Å molecular sieve was stirred at room temperature for 15 min before Cu(OTf)₂ (3.7 mg, 0.01 mmol, 0.1 equiv) was added. The mixture was stirred at room temperature for 12 h until **6** was fully consumed (determined by TLC). The reaction was then quenched with triethylamine and the mixture was directly loaded onto silica gel by concentrating the mixture *in vacuo*. The residue was further purified by silica gel column chromatography (toluene:EtOAc:Et₂O = 4:1:1) to give the **7** as a colorless crystalline solid (59 mg, 0.078 mmol, 78%, only). [*a*] $_{D}^{25}$ = -40.7 (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.2 Hz, 1H), 7.15 (dd, *J* = 8.3, 2.2 Hz, 1H), 7.06 – 7.01 (m, 3H), 6.83 – 6.77 (m, 2H), 6.13 – 6.09 (m, 1H), 6.00 (dd, *J* = 10.0, 3.0 Hz, 1H), 5.30 – 5.17 (m, 2H), 5.07 – 4.96 (m, 3H), 4.32 – 4.23 (m, 2H), 4.19 – 4.11 (m, 2H), 4.06 – 3.99 (m, 2H), 3.99 – 3.92 (m, 2H), 3.84 (dd, *J* = 11.1, 4.6 Hz, 1H), 3.78 – 3.73 (m, 1H), 3.66 (dd, *J* = 11.1, 2.8 Hz, 1H), 2.06 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H), 1.98 (s, 3H), 1.69 (s, 3H), 1.39 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.4, 170.3, 169.5, 168.8, 157.5, 139.0, 135.4, 134.5, 131.0, 130.1, 129.80, 129.76, 125.9, 125.4, 114.5, 93.8, 74.3, 72.6, 69.2, 66.6, 66.4, 63.4, 62.5, 62.4, 38.2, 20.81, 20.79, 20.71, 20.65, 20.3, 14.9; HRMS (ESI) *m*/z Calcd C₃₇H₄₁O₁₄ClNa [M+Na]⁺ 767.2083, found 767.2054.

Section 6. Computational details.

General computational methods

To explore the mechanistic details of the stereoselective Ferrier rearrangement, we performed Density Functional Theory (DFT) simulations of the reaction employing model donor **1a** and model acceptor methanol (MeOH) and *p*-methoxyphenol (*p*-OMePhOH), and Cu(OTf)₂ and Sc(OTf)₃ as the catalyst, to investigate the mechanisms giving rise to the α -stereoselectivity of the reaction. We proposed that our Cu(OTf)₂-catalyzed Ferrier rearrangement with α -selective glycosylation proceeds in three stages: Firstly, the copper(II)-promoted CCBz ring opening resulting in the dissociation of C3-substituent and the migration of the 1,2-double bond, giving rise to an ion pair of the LG anion and glycosyl oxocarbenium. Then another copper(II) species coordinates to the 2,3-position of the glycosyl oxocarbenium, from either α - or β -face, bringing the coordinated alcohol acceptor to the proximity of the glycosyl oxocarbenium. Finally, a directed nucleophilic α -attack by the alcohol at the anomeric position forms the glycosidic bond, and the following dissociation of the copper gives rise to the 2,3-unsaturated product. We assumed that the metal center participating in coordination carries an accompanying triflate anion, which serves as a proton

acceptor in the final *O*-glycosylation step. Structures of reagents, products, catalysts, proposed intermediates, and transition states were built with GaussView6.0 and pre-optimized at B3LYP/def2-SV(P) level of theory with Grimme's empirical dispersion D3(BJ), and the pre-optimized structures were subjected to geometry optimization and frequency analysis at MN15-L/def2-TZVP/SMD (solvent = dichloromethane) level of theory. Accurate electronic energy is calculated from the optimized structures at MN15-L/def2-TZVP/SMD (solvent = dichloromethane) level of theory. MN15-L is a recent Minnesota family functional specifically parameterized for the thermochemistry of organometallic systems containing transition metals. Gibbs free energies of the intermediates were calculated as the sum of thermal corrections derived from frequency analysis at 298K and the accurate electronic energy.

Calculated coordinates and energies of the optimized structures

Charge and spin multiplicity reported as used in DFT computations in the line following the compound name, electronic energies, and thermal corrections reported in atomic units (a.u.):

Reagents

01

Electronic energy: -1756.841129 Thermal corrections: 0.412323

0	-2.99064800	-1.12933200	-0.21079700
С	-1.78873400	-0.23684500	-2.16027400
С	-3.71017400	0.96517300	-1.04386300
С	-1.74950100	1.02752000	-2.97108500
Н	-2.28321000	-1.08539300	-2.67012100
Н	-4.41700500	0.47645000	-1.75125800
С	-2.43151500	2.12966000	-2.62258800
Н	-1.07878700	1.06642800	-3.83154700
0	-3.30987000	2.22149000	-1.59356600
С	-4.43201100	1.25924400	0.27089600
Н	-4.94747600	0.36009600	0.64028800
Η	-5.15445300	2.07701000	0.11341700
Н	-2.35064900	3.07862500	-3.16153200
0	-0.40166700	-0.58694000	-1.91872400
0	-3.46963300	1.71408400	1.23015700
С	-2.49028400	0.05929100	-0.82802500
Н	-1.77817600	0.57894700	-0.16327400
С	-3.22168200	0.91841400	2.30358000
С	-2.24195600	-1.71134900	0.76059900
0	-1.18675700	-1.26412000	1.15315700
0	-3.87245000	-0.06144400	2.58528200
С	-2.91948700	-2.96084500	1.24667000
Н	-3.92579000	-2.70407400	1.61323300
Н	-3.02409500	-3.65621200	0.39847300
Н	-2.32698000	-3.41881900	2.04712500

С	-2.00703900	1.41508000	3.04704400
Η	-2.01406500	1.02819500	4.07352200
Η	-1.11468500	1.01619500	2.52861300
Η	-1.94969000	2.51254500	3.03347000
С	-0.13592600	-1.85772100	-1.55962400
0	-0.96351700	-2.74704400	-1.59242300
С	1.29767600	-2.07034800	-1.16527000
С	1.66760700	-3.42928300	-1.07128400
С	2.27303100	-1.06634400	-0.93219000
С	2.97735100	-3.81489700	-0.79728200
Η	0.88686600	-4.17514200	-1.24033100
С	3.59641600	-1.48176500	-0.68278400
С	3.95591300	-2.82898200	-0.62168300
Η	3.23603600	-4.87569200	-0.73441600
Η	4.35215900	-0.71040100	-0.49881900
Η	4.99533600	-3.10464600	-0.41926900
С	2.05861200	0.42935100	-0.91398200
Η	2.43930100	0.94497900	-1.80306100
С	0.98963900	1.13946900	-0.17463600
Η	0.59900200	2.05952700	-0.62069200
Η	0.29032600	0.53418800	0.40164600
С	2.40509900	1.19573600	0.39655400
С	2.74605900	0.29780300	1.56001900
С	3.14128800	2.49996700	0.33772800
0	3.71453800	3.02198500	1.26362100
0	3.02950900	3.06975800	-0.88571100
0	3.84801800	0.17576100	2.04021100
С	3.63600800	4.36345800	-0.98681400
Н	4.71534400	4.30118600	-0.77484800
Η	3.46177900	4.69545300	-2.01914400
Η	3.17665200	5.06317100	-0.26989900
0	1.68057100	-0.44638300	1.90764100
С	1.96747100	-1.59872600	2.70712800
Н	2.42901400	-1.30873800	3.66447700
Η	0.99753000	-2.09031500	2.86259900
Н	2.65780600	-2.26445000	2.15755400

Methanol (MeOH)

,

01

Electronic energy: -115.643892 Thermal corrections: 0.028123

Thermal co	orrections: 0.028	5125	
С	0.65915800	-0.01929900	0.00001800
Н	1.03571700	-0.54194900	0.90303700
Н	1.03438700	-0.55562900	-0.89542800
Н	1.08550600	0.99600600	-0.00811400
0	-0.74729800	0.12253600	0.00003700
Н	-1.13217600	-0.76292500	0.00010200

Electronic e	nergy: -3563.1	73710	
Thermal con	rections: 0.005	5451	
S	-2.85303900	0.65045600	-0.18579700
0	-2.56413500	0.75096000	-1.59185800
0	-4.15766500	1.01453000	0.28356300
С	-2.71297600	-1.15881800	0.17345200
F	-2.93997400	-1.41731700	1.46215300
F	-1.49078900	-1.60970700	-0.12780800
F	-3.59681600	-1.85249500	-0.54775900
0	-1.76919100	1.19616900	0.68106900
Cu	-0.00002200	1.15630000	-0.00004500
0	1.76915300	1.19610200	-0.68118700
S	2.85293200	0.65050800	0.18584200
0	4.15759700	1.01472900	-0.28329400
0	2.56378000	0.75095100	1.59185900
С	2.71311100	-1.15877300	-0.17345900
F	2.94038700	-1.41723100	-1.46212000
F	3.59687300	-1.85238300	0.54791400
F	1.49090300	-1.60976800	0.12755400

Sc(OTf)₃

0 1 Electronic energy: -3644.676415

Thermal	corrections: (0.025	834
C.	0.00216	100	0.00

Sc	0.00216400	-0.00144300	-0.32253500
0	-1.77429500	-0.41918300	0.80916300
0	0.52135100	1.74590200	0.80776700
0	1.25165500	-1.33140500	0.80879300
S	-2.44204800	-1.26901700	-0.27014600
S	0.11891400	2.74907900	-0.27224600
S	2.32455000	-1.47993700	-0.26888600
0	-1.40148100	-1.20150100	-1.39056100
0	1.02853300	3.82075900	-0.59157300
0	-0.33739000	1.81403300	-1.39410500
0	1.74597200	-0.61289500	-1.38918200
0	2.79871200	-2.80216600	-0.59225500
С	-1.47575100	3.49788100	0.36617200
С	3.77084700	-0.47219600	0.36731000
С	-2.29887900	-3.02459000	0.36547500
0	-3.82384100	-1.01432200	-0.59216900
F	4.22158900	-1.02556800	1.47946100
F	4.71677200	-0.46623100	-0.55571300
F	3.36203400	0.76409800	0.60743600
F	-1.22175500	4.13429900	1.49618700
F	-1.94072400	4.34186200	-0.53803000
F	-2.35255500	2.52829700	0.57639100
F	-2.99886100	-3.13129100	1.48134800
F	-1.02429400	-3.29510400	0.60037600
F	-2.77544200	-3.84725400	-0.55268900

Fe(OTf)₃

06

Electronic energy: -4146.455570 Thermal corrections: 0.028901

	<i>,,,</i> ,,	
-1.09299900	1.47982700	0.57610800
1.82328800	0.20542000	0.57813200
-0.73725900	-1.68410200	0.57459000
-2.22049500	1.37035100	-0.42232200
2.29508600	1.23340700	-0.42195600
-0.07667000	-2.60436700	-0.42379200
-1.79653800	0.29172500	-1.38954600
3.63814900	1.10092700	-0.96375400
1.14857200	1.40879500	-1.38781100
0.64717600	-1.69682900	-1.38843900
-0.85710100	-3.70461200	-0.96729200
2.34904800	2.83130000	0.54523400
1.28153400	-3.44464700	0.54665600
-3.62734500	0.61293800	0.54686500
-2.78234000	2.59794100	-0.96311900
0.73519600	-4.25063300	1.46248400
2.02518700	-4.18552100	-0.27918200
2.06267900	-2.56888800	1.15995500
3.31500100	2.75789400	1.46648100
2.63003600	3.84152700	-0.28185800
1.19829800	3.07839800	1.15110900
-4.05075600	1.48669400	1.46568200
-3.26007100	-0.50349700	1.15613200
-4.64174300	0.34316300	-0.27891200
-0.00146800	0.00104800	-0.38813000
	-1.09299900 1.82328800 -0.73725900 -2.22049500 2.29508600 -0.07667000 -1.79653800 3.63814900 1.14857200 0.64717600 -0.85710100 2.34904800 1.28153400 -3.62734500 -2.78234000 0.73519600 2.02518700 2.06267900 3.31500100 2.63003600 1.19829800 -4.05075600 -3.26007100 -4.64174300 -0.00146800	-1.092999001.479827001.823288000.20542000-0.73725900-1.68410200-2.20495001.370351002.295086001.23340700-0.07667000-2.60436700-1.796538000.291725003.638149001.100927001.148572001.408795000.64717600-1.69682900-0.85710100-3.704612002.349048002.831300001.28153400-3.44464700-3.627345000.61293800-2.782340002.597941000.73519600-4.250633002.02518700-4.185521002.06267900-2.568888003.315001002.757894002.630036003.841527001.198298003.07839800-4.050756001.48669400-3.26007100-0.50349700-4.641743000.34316300-0.001468000.00104800

Products

Glycoside Product α

01

Electronic energy: -879.685306 Thermal corrections: 0.222459

i normai v	01100110113. 0.222	457	
0	0.93542800	1.29609900	-0.63859700
С	-0.92080600	1.78877000	0.83616900
С	-0.83835900	-0.30529100	-0.48634700
С	-2.22899900	1.56186300	0.98675000
Н	-0.45951800	2.74877100	1.09564900
Н	-1.30303200	0.18628700	-1.36952700
Н	-2.91691900	2.33088400	1.35042200
0	-1.84449300	-0.77003600	0.40661600
С	-0.02554700	-1.50135500	-0.97397500

Η	0.62726800	-1.20247700	-1.80870700
Н	-0.71264200	-2.30336900	-1.29129300
0	0.76499800	-2.03310600	0.10030400
С	-0.00768600	0.72428400	0.28355900
Н	0.54084400	0.22726400	1.10604500
С	2.09048000	-1.75439500	0.08295200
С	2.16040300	1.59486900	-0.13744500
0	2.45036100	1.48567400	1.03234800
0	2.66887900	-1.24531600	-0.85110800
С	3.08695800	2.03334000	-1.24210000
Н	3.42896600	1.12268200	-1.76117800
Н	2.56123800	2.66488700	-1.97261900
Н	3.95208700	2.55652300	-0.81678500
С	2.72585300	-2.11265300	1.40290300
Н	3.78638600	-2.35219200	1.25378600
Н	2.66287200	-1.21263900	2.04061900
Н	2.19361600	-2.93287300	1.90339800
С	-2.82754900	0.21055500	0.66709700
Н	-3.39305400	-0.19820500	1.53561200
0	-3.69916300	0.38572200	-0.42159200
С	-4.42885200	-0.79038700	-0.72765000
Н	-5.16650700	-0.52159700	-1.49784800
Н	-3.76767400	-1.59002700	-1.11255500
Н	-4.95738700	-1.17380900	0.16973900

Glycoside Product β

Electronic energy: -879.682601 Thermal corrections: 0.222125

		-	
0	-1.18641800	-1.31740400	-0.59998300
С	0.86009400	-1.87292800	0.57505200
С	0.69540400	0.13257300	-0.88444500
С	2.18620400	-1.77695100	0.43802200
Η	0.38164300	-2.74473800	1.03642100
Η	0.91050000	-0.45195500	-1.81109600
Η	2.87139100	-2.56737500	0.75952900
0	1.90266000	0.52987500	-0.26128300
С	-0.10114000	1.37276500	-1.28832700
Η	-0.92639100	1.08887800	-1.95973600
Η	0.56955400	2.09202900	-1.78543300
0	-0.62231700	2.02759400	-0.12252300
С	-0.05327000	-0.77301600	0.10115000
Η	-0.41209500	-0.18113600	0.96324800
С	-1.94304600	1.86216600	0.13322400
С	-2.31744100	-1.48726900	0.13014500
0	-2.37777000	-1.29895000	1.32391300
0	-2.72766300	1.35325800	-0.63573600
С	-3.46182300	-1.89692500	-0.76074800
Η	-3.82110000	-0.98672100	-1.26892200
Η	-3.12942500	-2.60815400	-1.53059800
Η	-4.27260300	-2.31999800	-0.15524000
С	-2.28049400	2.34372100	1.52156400

Н	-3.32576900	2.67620100	1.55723700
Η	-2.17419200	1.47318800	2.19361600
Н	-1.59437300	3.13192600	1.85961100
0	3.89093100	-0.16518800	0.61468100
С	4.62932700	0.90969100	0.05428800
Η	5.53168000	1.03159900	0.67079700
Η	4.92617700	0.67758700	-0.98993300
Η	4.04674300	1.84771600	0.05991500
С	2.82021900	-0.55041300	-0.17518000
Н	3.17867200	-0.77301700	-1.22042600

TfOH

 \mathcal{N}

0 1 Electronic energy: -961.8227

Electronic energy: -961.822763 Thermal corrections: 0.007241

S	-0.85818900	-0.13588100	-0.00000200
0	-1.26619600	-0.69774100	-1.24247100
0	-1.26621800	-0.69765200	1.24250200
С	0.99338600	-0.00560000	0.00000500
F	1.40785900	0.63485500	1.08005600
F	1.40786900	0.63480900	-1.08007000
F	1.47881500	-1.23658500	0.00003300
0	-1.07419000	1.43038000	-0.00005500
Н	-2.02734500	1.63009000	0.00002800

CCBz ring opening leaving group

Electronic energy: -992.824106 Thermal corrections: 0.206330

Thermal col	100115. 0.200	5550	
0	-1.48299100	-1.01260600	1.28943800
С	-1.33554000	-1.91938100	0.26758900
0	-2.26721200	-2.49747100	-0.21742400
С	0.11028400	-1.99123700	-0.04107400
С	0.76757700	-2.75802200	-1.00150900
С	0.79198400	-1.12382600	0.80937700
С	2.15677900	-2.64251400	-1.08371300
Н	0.20061100	-3.41946200	-1.66125200
С	2.18033600	-1.02001900	0.74567000
С	2.85320900	-1.78628700	-0.21359700
Н	2.71108400	-3.22331200	-1.82637000
Н	2.73139000	-0.35769100	1.41609200
Н	3.94290600	-1.71838300	-0.28724100
С	-0.22081800	-0.46791200	1.71947500
Н	-0.06820700	-0.80673100	2.76078200
С	-0.30983100	1.06229200	1.75701300
Н	-1.20313600	1.29996500	2.35672100
Н	0.56539200	1.45120400	2.29944500
С	-1.47992300	1.17745500	-0.49352500

С	0.86749700	2.06432600	-0.35251400
0	0.92278300	2.38997000	-1.50759800
0	1.95283300	1.97392000	0.44200900
0	-1.25199400	0.42578600	-1.40487700
С	3.20672100	2.22275100	-0.19108200
Н	3.39240600	1.47246500	-0.97761300
Н	3.22047400	3.22643500	-0.64651000
Н	3.96671000	2.14722700	0.60020500
0	-2.70743400	1.52111900	-0.08553400
С	-3.79150900	0.82207900	-0.70971000
Н	-3.78470100	0.99533100	-1.79811700
Н	-3.70657900	-0.25915200	-0.51273000
Н	-4.70751100	1.22956100	-0.25877200
С	-0.42815000	1.81553600	0.41215300
Н	-0.80041900	2.82535000	0.65992200

Intermediates and Transition States

I. Activation of the glycal donor through CCBz ring opening I.I Cu-Catalyzed ring opening without coordination IM1

12

Electronic energy: -4357.809783 Thermal corrections: 0.427682

I normal con	1001101101101121	002	
0	2.52758800	-3.28315200	-0.29945300
С	1.82527000	-1.61786700	-1.86329900
С	0.35202100	-3.58040400	-1.28092900
С	0.60886700	-1.04618600	-2.54216700
Н	2.43110600	-2.20840100	-2.57256000
Н	0.89634300	-4.29101000	-1.93039400
С	-0.55164300	-1.78469700	-2.60639800
Н	0.75933800	-0.21154600	-3.23309900
0	-0.70453600	-3.00168200	-2.05853500
С	-0.36018000	-4.35909200	-0.17693400
Н	0.36307900	-4.82890200	0.50262400
Н	-1.00787000	-5.12145500	-0.63446800
Н	-1.38937200	-1.53395000	-3.26401900
0	2.68610500	-0.50131000	-1.53836000
0	-1.15078300	-3.45820700	0.58244100
С	1.37832300	-2.55853400	-0.73816700
Н	0.93774700	-2.00993400	0.10042300
С	-2.50059300	-3.46247500	0.36574600
С	2.70704700	-3.46430100	1.03410200
0	1.83806000	-3.31196100	1.85150800
0	-3.05600200	-4.29078700	-0.30651300
С	4.12666400	-3.86883500	1.32654200
Н	4.51225900	-4.55487200	0.55549000
Н	4.74785300	-2.95506300	1.30934000
Н	4.18748100	-4.32606100	2.32472500
С	-3.15414500	-2.30835900	1.07149000

Н	-4.24640000	-2.40429000	1.00072700
Н	-2.83954300	-2.27840700	2.12713800
Н	-2.83966200	-1.36033200	0.60393200
С	2.97622400	-0.04917900	-0.31085800
0	2.82338600	-0.68205000	0.70893000
С	3.52670000	1.34372800	-0.34878800
С	4.30224000	1.76792900	-1.43451300
С	3.23741100	2.24173100	0.70941500
С	4.82160500	3.06362300	-1.47234600
Н	4.49469800	1.07157000	-2.25313000
С	3.74401400	3.54274500	0.64210900
С	4.54089100	3.95168800	-0.43157300
Н	5.43615900	3.38140600	-2.31926100
Н	3.50537900	4.24602000	1.44382600
Н	4.93532200	4.97167600	-0.45727600
С	2.31888100	1.81583700	1.80780200
Н	2.64487800	0.92004500	2.33779600
С	1.34819700	2.67796100	2.53516800
Н	1.12443700	2.40197500	3.56758000
Н	1.28733500	3.74342800	2.30495200
С	0.79967200	1.76284400	1.46357500
С	0.16896500	0.44590700	1.78303900
С	0.43576500	2.37157100	0.14314500
0	0.28885200	1.73209100	-0.89005400
0	0.39018100	3.68637400	0.16259400
0	-0.27533500	-0.33840500	0.96341200
С	0.02434600	4.34380100	-1.06519700
Н	-0.99740600	4.03815700	-1.34175900
Н	0.07382800	5.41838400	-0.84273800
Н	0.73684800	4.07502900	-1.86124800
0	0.23373100	0.16207900	3.07382900
С	-0.20650600	-1.14925100	3.46936600
Н	0.32727600	-1.92136600	2.89477700
Н	0.02225500	-1.22043400	4.54161900
Н	-1.29024200	-1.23679600	3.29933600
Cu	-0.65688600	-0.11638200	-1.20326200
0	-2.58489200	0.40059300	-0.93464300
S	-2.89065200	1.74439100	-0.29800900
0	-2.92457700	2.85643200	-1.25637200
0	-2.16800300	1.97704200	0.96844000
С	-4.66462100	1.49104800	0.21688400
F	-5.13336800	2.61040700	0.76549700
F	-4.75188600	0.50816300	1.11807200
F	-5.41871300	1.17655000	-0.83275400

1 2 Electronic energy: -4357.747158 Thermal corrections: 0.427805

0	-5.15958700	-0.21838600	1.06216200
С	-3.88987000	-2.28682600	1.05456400
С	-5.49505700	-1.71558500	-0.78140000
С	-3.52019700	-3.43820000	0.17217000
Н	-4.60711300	-2.57374600	1.83925700
Н	-6.30673600	-2.24154600	-0.24095000
С	-3.99482700	-3.52344700	-1.07972300
Н	-2.84769100	-4.20767700	0.55708100
0	-4 85820500	-2.65468300	-1 64829900
Č	-6 12453500	-0.63223000	-1 64172800
H	-6 80655700	-0.01713800	-1 03873100
н	-6 67374000	-1 11053600	-2 46771500
н	-3 72370100	-4 32724700	-1 76989700
0	-2 77538200	-1 80237100	1 86424300
0	-5 11630100	0.19457500	-2 22158700
C	-1 48784700	-1 15454700	0.22398800
с u	3 60050000	-1.13434700	0.223788000
II C	5.05035000	1 40011400	1 85271100
C	-5.00221200	0.02221200	1 26604600
	-4.30087000	1 14075000	1.30004000
0	-3.30182200	1.140/5000	1.02/49800
0 C	-3.83341700	2.00/85100	-1.09800300
	-5.58549700	1.88303300	2.11372000
H	-5.98414500	2.43021700	1.30412000
H	-0.0/343800	1.54800500	2.78707800
H	-4.76723400	2.60319100	2.6/36/600
C	-3.8/066600	2.18313100	-2.46164900
H	-4.04213800	3.26888200	-2.49250500
H	-2.99/18100	1.98446900	-1.81524200
H	-3.64996400	1.78696600	-3.46464800
С	-1.70840500	-1.27833600	1.30895700
0	-1.50569900	-1.24434400	0.08089500
С	-0.68700300	-0.69135700	2.16041200
С	-0.60767000	-0.73753000	3.55577600
С	0.30252800	-0.07882000	1.36836800
С	0.51142800	-0.18052900	4.17074300
Н	-1.39894200	-1.22114900	4.13298500
С	1.42500100	0.46013900	1.99686800
С	1.52131000	0.40073500	3.38940400
Н	0.61518400	-0.21677400	5.25837600
Н	2.23289800	0.89747900	1.41475200
Н	2.41971800	0.79786100	3.86890000
С	0.03452300	-0.14675900	-0.09535900
Н	0.64190700	-0.86670800	-0.65255600
С	-0.46342900	1.01233900	-0.88141600
Н	-0.90738100	0.68017200	-1.82903100
Н	-1.16341000	1.63220700	-0.30962100
С	0.88440800	1.67252600	-1.07151300
С	1.31175000	2.69881300	-0.17880100
С	1.78893900	1.16991600	-2.07921200
0	2.92858700	1.57342900	-2.31557600
0	1.27018300	0.13502900	-2.78370300
0	2.46950100	3.15271000	-0.03687600
C	2.19495000	-0.57062200	-3.60995000
Ĥ	3.02113400	-0.96093000	-2.99457500
Н	1.62312400	-1.39647800	-4.05920500
Н	2 60176600	0.08671100	-4 39581500
0	0 33135100	3 17318900	0.62335900
<u> </u>	5.55155100	5.1,510,00	5.52555700

С	0.72008200	4.07077900	1.65366400
Н	1.16668500	4.98733200	1.23443000
Н	-0.20172200	4.31036000	2.20423900
Н	1.45383600	3.59813900	2.32930900
Cu	3.91052800	1.82655200	-0.36007800
0	4.97218100	0.27525200	0.08271900
S	4.18447500	-0.98795400	0.38362400
0	2.91708100	-1.07975800	-0.37562200
0	4.12949400	-1.32731300	1.80655000
С	5.27638000	-2.27275700	-0.40798100
F	5.37311100	-2.05053000	-1.72186400
F	6.49642400	-2.24938600	0.12112100
F	4.75063900	-3.48466100	-0.22198500

1 2 Electronic energy: -4357.758453 Thermal corrections: 0.426589

0	-5.05001900	-0.53217200	0.82820800
С	-3.94260100	-2.57980100	0.13076600
С	-5.13348400	-1.07557800	-1.49968500
С	-3.58948000	-3.36352400	-1.08931800
Η	-4.76358200	-3.03075700	0.70727000
Η	-6.08556200	-1.62147300	-1.34897600
С	-3.82365100	-2.86889800	-2.31528300
Η	-3.11932600	-4.34225700	-0.97378300
0	-4.43458000	-1.69771000	-2.57889800
С	-5.46623700	0.35070100	-1.90783600
Η	-6.17589800	0.78705400	-1.19133900
Н	-5.90747600	0.33132500	-2.91691900
Η	-3.53825500	-3.38960100	-3.23390100
0	-2.86783600	-2.58985400	1.15357200
0	-4.29291100	1.15914100	-1.97563800
С	-4.30009500	-1.13470500	-0.21947600
Η	-3.38521800	-0.55855600	-0.39788500
С	-4.18519500	2.21068500	-1.11815200
С	-4.37667100	0.29192200	1.68067200
0	-3.17866200	0.42130900	1.64355600
0	-5.00959200	2.44678400	-0.26758000
С	-5.31546200	1.01051300	2.60219900
Η	-5.67531400	1.90242400	2.05865000
Η	-6.18291700	0.38385500	2.86126500
Η	-4.77515200	1.33279700	3.50417300
С	-2.93916000	3.01377000	-1.36370200
Η	-3.22958300	4.06255100	-1.54725800
Η	-2.31011800	2.99902200	-0.45707800
Η	-2.35878900	2.62827400	-2.21265200
С	-1.73818400	-1.99906900	0.93600700
0	-1.36761300	-1.68324600	-0.25895700

С	-0.81116000	-1.57431400	1.93663600
С	-0.80336300	-1.74927500	3.32880900
С	0.15696400	-0.80609800	1.25741900
С	0.23428100	-1.15354000	4.03427800
Н	-1.57657900	-2.33928600	3.82581200
С	1.17827700	-0.19501800	1.97960700
С	1.21165700	-0.38990000	3.36107200
Н	0.30015200	-1.27728300	5.11838500
Н	1.93860600	0.40408600	1.48624000
Н	2.03148900	0.05559400	3.93062000
С	-0.16879800	-0.78866300	-0.20106900
Н	0.60622700	-1.25689300	-0.82384900
С	-0.62110800	0.55445900	-0.81256500
Н	-1.02031700	0.32152300	-1.81133100
Н	-1.43005300	0.94168200	-0.18252300
С	0.52811100	1.51223500	-0.87698100
С	0.74118600	2.42650900	0.17803700
С	1.54332600	1.31435200	-1.87427700
0	2.59965900	1.93835200	-2.00510500
0	1.25246500	0.28686300	-2.72027300
0	1.78711300	3.06200900	0.46545800
С	2.31232500	-0.11506300	-3.58208900
Н	3.18686000	-0.42061600	-2.98619800
Н	1.92266900	-0.96865400	-4.15817800
Н	2.60264600	0.70321500	-4.26202000
0	-0.33603400	2.57402200	1.00716400
С	-0.12839700	3.27928900	2.21878600
Н	0.14691400	4.33068400	2.03124000
Н	-1.08398900	3.22254500	2.76210600
Н	0.67294700	2.80974100	2.81627600
Cu	3.43720800	2.06441800	0.04089900
0	4.75757400	0.65956900	0.21441000
S	4.20270700	-0.74655400	0.34428600
0	2.97776600	-0.97520000	-0.45459400
0	4.19484800	-1.25667600	1.71839800
С	5.51546400	-1.72073100	-0.54866200
F	5.57978200	-1.35147400	-1.83088000
F	6.70760100	-1.53220900	0.01068300
F	5.21912400	-3.02091300	-0.49777100

TS2

1 2 Electronic energy: -4357.736235 Thermal corrections: 0.426446

Inclinal confections. 0.420440					
0	-5.40307800	-0.46653200	0.43686100		
С	-4.32840600	-2.62352300	0.58134500		
С	-4.62830700	-1.51254400	-1.59014200		
С	-3.73234000	-3.66919200	-0.11576800		
Н	-4.89682600	-2.77675200	1.49573700		

Н	-5.56368100	-2.08453600	-1.73967500
С	-3.24950300	-3.42492200	-1.39344500
Н	-3.55183900	-4.63862400	0.35180000
0	-3.56200000	-2.36814800	-2.09999600
С	-4.71212200	-0.26590400	-2.44335400
Н	-5.66669000	0.23991500	-2.23477400
н	-4 68073100	-0 57058100	-3 50314900
н	-2 59/60800	-1 11500300	-1 93/92/00
0	2.37400000	-4.11377300	2 27274500
0	-2.88007400	-2.11213800	2.27374300
C C	-3.03739300	1 28007100	-2.21183700
	-4.36463000	-1.2690/100	-0.09832300
П	-3.40647700	-0.78934800	0.01204200
C	-3.94655300	1.89350800	-1./9158100
C	-4.9936/600	0.68539900	1.06545100
0	-3.83378000	0.96317800	1.21083000
0	-5.07842100	2.22660700	-1.53753800
С	-6.17000900	1.52080300	1.47056900
Н	-6.45848200	2.12051800	0.58840000
Н	-7.02547000	0.89472300	1.76756700
Н	-5.87567700	2.20141500	2.28254600
С	-2.72905500	2.75671800	-1.67640400
Н	-3.00102100	3.79376200	-1.92746400
Н	-2.37202800	2.73873500	-0.63164700
Н	-1.90501500	2.39479500	-2.30784700
С	-1.82844500	-1.60831100	1.90622400
0	-1.39892700	-1.73447100	0.64502100
Ċ	-0.86427000	-0.80852100	2.66000500
C	-0.84403500	-0.46970500	4 01601900
Č	0.13669200	-0.40521700	1 76842400
C	0.23633600	0.28392700	4 47193200
ч	-1 6/338100	-0.70807300	4 68457700
C C	1 22110100	0.33074400	2 22830000
C	1.22119100	0.33974400	2.22639900
	1.23643300	0.07230300	5.56519900
H	0.30192400	0.56355600	5.52/15400
H	2.02694400	0.63399000	1.56139300
H	2.11494200	1.23677300	3.96492100
C	-0.22838400	-0.88456200	0.39463100
Н	0.54893000	-1.51045800	-0.06462400
С	-0.69259700	0.21445400	-0.58171100
Н	-1.11802600	-0.29635800	-1.45779700
Н	-1.49834100	0.76435700	-0.07838800
С	0.42411300	1.13149900	-0.98224200
С	0.68784500	2.30361800	-0.23327800
С	1.36482400	0.69045600	-1.96859900
0	2.39409400	1.27365500	-2.34104700
0	1.04983900	-0.51682600	-2.50554700
0	1.73365000	3.00118700	-0.21573000
С	2.05973100	-1.11271700	-3.31236300
H	2.98877500	-1.22705700	-2.73233900
Н	1 66598400	-2.09866300	-3 60474300
Н	2 26380400	-0 50366500	-4 20923500
0	-0.32609700	2.67067800	0.60131800
č	-0.04618000	3 69413900	1 54332300
й	0.19106500	4 64724500	1.04181200
Н	-0.95753200	3 79683800	2 1517200
Ч	0.75755200	3.17003000	2.13172300
П Сч	0.00343000	3.41213400	2.10309400
Cu	3.3804/400	1.9/202600	-0.38412300
0	4.80655000	0.75576600	-0.07399900
---	------------	-------------	-------------
S	4.31600500	-0.58176500	0.45642400
0	3.01577200	-0.99090900	-0.11917100
0	4.48415900	-0.74284600	1.90082900
С	5.54626600	-1.73853900	-0.33116600
F	5.45574700	-1.67583100	-1.66379000
F	6.78937700	-1.42647300	0.02551500
F	5.29308100	-2.99208800	0.04929600

IM3

1 2 Electronic energy: -4357.736373 Thermal corrections: 0.426589

0	5.46751800	0.30350700	0.48980500
С	4.39958900	2.17473500	1.58028400
С	4.56391300	2.07708400	-0.86510100
С	3.74815400	3.38215500	1.43063900
Н	4.90278900	1.88683100	2.50084200
Н	5.48439800	2.68836200	-0.80869700
С	3.17974200	3.68241300	0.19097800
Н	3.57447800	4.05148500	2.27508000
0	3.46259400	3.03635600	-0.90911900
С	4.60635900	1.31068100	-2.16814200
Н	5.57749300	0.79860800	-2.24157400
Н	4.50739400	2.03126000	-2.99763800
Н	2.46536900	4.49725400	0.03330200
0	2.90295900	0.81435800	3.11645100
0	3.55935900	0.36328700	-2.28000800
С	4.41604900	1.24732500	0.40965400
Н	3.44459200	0.71774600	0.37361800
С	3.91024000	-0.94675400	-2.46107400
С	5.10136300	-1.01772900	0.57734600
0	3.95316500	-1.36783300	0.63301500
0	5.06076000	-1.31103800	-2.45155700
С	6.30400900	-1.91150300	0.53506000
Н	6.53236700	-2.09277900	-0.53093500
Н	7.17688900	-1.43724700	1.00910500
Н	6.06511700	-2.87201600	1.01443800
С	2.71044600	-1.82385500	-2.63699900
Н	2.97393600	-2.66633900	-3.29483400
Н	2.41890700	-2.23066900	-1.65297500
Н	1.84675500	-1.26504900	-3.02590400
С	1.85929700	0.54347700	2.55136000
0	1.43943100	1.24034400	1.47118800
С	0.86524200	-0.49768300	2.84027600
С	0.81603600	-1.41704600	3.89102900
С	-0.13224900	-0.42318000	1.86407500
С	-0.28930400	-2.26585100	3.95198100
Н	1.61320200	-1.45024200	4.63809900

С	-1.24537900	-1.25928400	1.93382500
С	-1.31049400	-2.17531400	2.98794200
Н	-0.37550400	-2.99448500	4.76309700
Н	-2.05263900	-1.18456200	1.21005000
Н	-2.18766200	-2.82368300	3.06903900
С	0.26573900	0.62076900	0.86026600
Н	-0.49906600	1.39905300	0.72688100
С	0.72451900	0.07166100	-0.50593000
Н	1.14541200	0.91867500	-1.06636400
Н	1.53426400	-0.64163200	-0.30243800
С	-0.38700600	-0.57554600	-1.27632700
С	-0.65891900	-1.95863300	-1.11146400
С	-1.30934700	0.25013300	-1.99489600
0	-2.32366500	-0.11680600	-2.61296400
0	-1.00064500	1.56887000	-1.94909700
0	-1.70467100	-2.58813900	-1.41050400
С	-2.00029300	2.45407600	-2.44423000
Н	-2.94383500	2.30057200	-1.89784100
Н	-1.61401400	3.46977500	-2.26712200
Н	-2.17321700	2.29534900	-3.52206500
0	0.34376100	-2.65346800	-0.51240500
С	0.05717300	-3.98264800	-0.10384400
Н	-0.16845400	-4.62753600	-0.96943300
Н	0.96168400	-4.33585400	0.41363700
Н	-0.80272000	-4.00005400	0.58676700
Cu	-3.36002300	-1.49378400	-1.41795700
0	-4.83549200	-0.66345700	-0.47171600
S	-4.37835700	0.30843900	0.60682800
0	-3.06010200	0.91244100	0.31142200
0	-4.60255100	-0.17354200	1.96895100
С	-5.58874400	1.70234800	0.35452000
F	-5.45287200	2.22084800	-0.87082100
F	-6.84021200	1.27588900	0.49920900
F	-5.35689000	2.66569400	1.24720200

I.II Cu-Catalyzed ring opening with coordination to 3-CCBz carbonyl groups IM1'_Cu_ α _coordination

Electronic energy: -4357.817686 Thermal corrections: 0.433645

i nermai et	Thermal confections. 0.+550+5			
0	-0.22162800	2.93135300	0.40825800	
С	0.41037200	1.07654600	-0.98910600	
С	-1.93251300	1.37024100	-0.19240800	
С	-0.18400400	-0.11109300	-1.72306400	
Η	0.87002500	0.77530800	-0.03571500	
Η	-1.67914000	0.70321500	0.65474400	
С	-1.55082700	-0.25732700	-1.84057300	

Н	0.46129400	-0.62089700	-2.44412000
0	-2.43998700	0.55108100	-1.24263100
С	-3.04232100	2.29702600	0.26464500
Н	-2.78470800	2.75217800	1.23026700
Н	-3.96639200	1.70741100	0.36025700
Н	-2.03591700	-0.96221300	-2.51891200
0	1.43509600	1.66888500	-1.81108700
0	-3.27136900	3.32435800	-0.70173300
Ċ	-0.66553700	2.09741800	-0.66276700
Ĥ	-0.88652700	2.70924500	-1.54750400
C	-3 08531400	4 61116800	-0 32677000
C	0.06354300	4 23351100	0 14691100
0	0.01072000	4 71565400	-0.95551000
Ő	-2 79254700	4 94310400	0.79713700
C	0.40692800	4.96708600	1 41350100
с u	0.40072800	5 28300700	1.41330100
	-0.34073400	<i>J.28309700</i> <i>4.21461000</i>	2 12212000
	0.94028400	5 96222900	2.12213900
П	0.99973700	5.60225600	1.1/505900
	-3.22989100	5.54419000	-1.49/24800
H	-3.54115000	6.53/93100	-1.14211100
H	-2.23335800	5.63610900	-1.966/2300
H	-3.9361/300	5.14977200	-2.24349600
C	2.66682200	1.10636200	-1.64815900
0	3.17673800	0.46110800	-2.52777500
C	3.31478100	1.40290700	-0.32705000
C	3.17224400	2.69354400	0.20154100
С	4.07279000	0.43064600	0.36917400
С	3.78878200	3.04129800	1.40425700
Н	2.58783000	3.42829400	-0.35529500
С	4.66909700	0.79228600	1.58278300
С	4.53632900	2.08572900	2.09633700
Н	3.68491600	4.05588500	1.79843000
Н	5.25317000	0.05234700	2.13360700
Н	5.02329400	2.34601900	3.04052500
С	4.16412300	-0.95995600	-0.16664000
Н	4.34703800	-1.00593500	-1.24115200
С	4.54349600	-2.16363300	0.61001300
Н	5.07349800	-2.95265800	0.07234900
Н	4.78502200	-2.06919600	1.67014000
С	3.07110200	-2.00348400	0.27123200
С	2.46156300	-2.77757600	-0.85362600
С	2.13140800	-1.52987200	1.33874100
0	0.98465600	-1.17263700	1.14727300
0	2.69674200	-1.46671300	2.53920000
Ő	1 27143800	-2.89963800	-1.06617300
Č	1 90441100	-0.89434900	3 58978000
н	0.96608900	-1 45804100	3 70851100
н	2 52171500	-0.96236200	4 49570800
н	1 67367200	0.15721700	3 35363400
0	3 38811200	-3 31106000	-1 6/7/6900
C	2 01010700	-3.98527800	-2 82299700
ч	2.21210/00	-3.70327000	-2.02299700
и П	2.30403000	1 36762500	3 3 2 2 1 1 2 0 0 3 0 0
и П	J.01702100	4 80012200	-3.32344000
11 Cu	2.2423/200	-4.00712200	-2.34/03300
Cu O	-0.31303/00	-1.0/008500	-0.43770400
U C	-1.58240200	-2.91//2300	0.02233800
2	-2.97785200	-3.25/38100	0.11260300

0	-3.21007100	-2.77235400	-1.25809400
0	-3.40795800	-4.60509000	0.46765200
С	-4.01392100	-2.13279400	1.18796100
F	-3.62602900	-0.84841200	1.04732000
F	-5.29949600	-2.21097300	0.85362800
F	-3.88525200	-2.45488200	2.47480700

 $IM1'_Cu_\beta_coordination$

Electronic energy: -4357.817686 Thermal corrections: 0.422645

Thermal cor	rections: 0.433	3645	
0	-1.58358200	3.66085000	0.22440900
С	-1.42513900	1.91858000	-1.43297200
С	0.40448200	3.63321300	-1.09936500
С	-0.46426700	1.24723800	-2.38165200
Н	-2.13331500	2.54792800	-1.99677500
Н	-0.09210400	4.40266900	-1.72147100
С	0.79599100	1.77241200	-2.56730200
Н	-0.87968900	0.57463800	-3.13620500
0	1.27201300	2.86736400	-1.93867000
С	1.31292400	4.31707600	-0.08118700
Н	0.70940400	4.89034400	0.63805400
Н	2.02169200	4.98203100	-0.59624200
Н	1.45597300	1.46651100	-3.38476600
0	-2.21011100	0.96709200	-0.67808800
0	2.02463600	3.32016200	0.63786200
С	-0.66858000	2.76970600	-0.42505900
Н	-0.19626900	2.12379500	0.31986100
С	3.30126700	3.04187600	0.21389500
С	-1.99670000	3.35033500	1.47502100
0	-1.58321800	2.41031600	2.10765200
0	3.91246700	3.76518000	-0.52492000
С	-3.04674900	4.32361300	1.94402800
Н	-2.73601000	5.36124500	1.73897600
Н	-3.98133000	4.14322100	1.38310200
Н	-3.23195800	4.17975200	3.01792700
С	3.78204000	1.73997800	0.78529900
Н	4.85048200	1.61116400	0.56364200
Н	3.61072600	1.70548600	1.87261700
Н	3.21193500	0.90849200	0.33625100
С	-3.13116800	0.29401800	-1.39524000
0	-3.29820600	0.50410100	-2.57616300
С	-3.95775300	-0.68990000	-0.62678200
С	-5.07129700	-1.16113300	-1.34856900
С	-3.72597700	-1.16833400	0.68709800
С	-5.97174500	-2.06663300	-0.79759700
Н	-5.20757200	-0.78758700	-2.36459300
С	-4.65093500	-2.08239300	1.22081000
С	-5.76185400	-2.52519200	0.50399800
Η	-6.83087600	-2.41083800	-1.38001200
Н	-4.49308100	-2.45175200	2.23611200

Н	-6.45808800	-3.23274600	0.96381800
С	-2.58240300	-0.77169200	1.57766300
Н	-2.61128000	0.26049400	1.94347600
С	-1.95353500	-1.79219600	2.47573000
Н	-1.63525400	-1.48409400	3.47226600
Н	-2.27978700	-2.82982500	2.38152300
С	-1.14160900	-1.26567900	1.32343100
С	-0.05030800	-0.27932800	1.62076300
С	-0.92687400	-2.11370400	0.10480500
0	-0.57773500	-1.67389700	-0.98277700
0	-1.21950800	-3.38248000	0.28616600
0	0.59786700	0.32737700	0.78864500
С	-0.94566000	-4.26977000	-0.81503000
Н	0.13091000	-4.22960100	-1.04825800
Н	-1.24150000	-5.26740600	-0.46354200
Н	-1.53701700	-3.97233300	-1.69558400
0	0.12281300	-0.09386800	2.91738100
С	1.14872400	0.82821400	3.30013400
Н	1.01187100	1.79083100	2.78598300
Н	1.05325900	0.94205200	4.38879100
Н	2.12898200	0.40019900	3.03717200
Cu	0.73068900	-0.06620700	-1.37032200
0	2.46915600	-1.01949600	-1.06564900
S	2.50322200	-2.33810800	-0.31484600
0	2.39417700	-3.51615200	-1.18191400
0	1.69569700	-2.35136800	0.92349500
С	4.26250300	-2.33159600	0.30343300
F	4.52352300	-3.47883700	0.92636500
F	4.44153000	-1.32853700	1.17351800
F	5.12098600	-2.18025200	-0.70064000

TS1'

1 2 Electronic energy: -4357.754018 Thermal corrections: 0.430127

0	-1.27841200	3.85657700	-0.76515500
С	-0.69073900	1.86648900	-1.86132800
С	1.07634300	3.51500200	-1.11010100
С	0.28569300	1.22818000	-2.61826800
Н	-1.77060400	1.78192000	-2.07409300
Н	0.93635800	4.30493500	-1.86808900
С	1.64403400	1.51730200	-2.33810000
Н	0.03903200	0.51594000	-3.41067500
0	2.03592800	2.57085000	-1.67987800
С	1.75932600	4.07794000	0.13141100
Н	1.04871300	4.72231400	0.67002400
Н	2.65957000	4.64334500	-0.15091000
Н	2.47576400	0.95673100	-2.77665000
0	-2.23882100	0.93075700	-0.01774400
0	2.10883800	3.00613300	0.99249400
С	-0.27602900	2.85498000	-0.80802200

Н	-0.22209700	2.34887300	0.16746800
С	3.40330700	2.55231900	0.93682100
С	-2.01814800	3.93889800	0.38933900
0	-1.55426500	3.67777700	1.46643600
0	4.26425300	3.12205000	0.32230800
С	-3.41411800	4.38353100	0.07976500
Н	-3.39964200	5.28337700	-0.55828300
Н	-3 88709000	3 57161600	-0 50544400
Н	-3 96975500	4 57389400	1 00875300
C	3 56158800	1 28117100	1 72122500
н	4 61983300	0.98808700	1 72733700
ц	3 10001100	1 / 197/000	2 75306300
и П	2 95960600	0.47960700	2.75300300
n C	2.75700000	0.47200700	0.73770300
	-3.24011900	1 24075100	1 72195900
0 C	-5.01440100	1.34073100	-1.72103000
C	-4.03/24400	-0.00845800	-0.423/8800
C	-5.011/2800	-0.99593800	-1.35491000
C	-3.81691900	-1.42208900	0.71340200
C	-5.75217300	-2.166/1000	-1.19040400
H	-5.16109700	-0.34231700	-2.21652900
C	-4.56919700	-2.59547000	0.87016500
C	-5.52904300	-2.97238300	-0.07072300
Н	-6.50368600	-2.45037600	-1.93362500
Н	-4.40580100	-3.21903300	1.75274500
Н	-6.10413700	-3.89177900	0.07549300
С	-2.81760900	-1.04500700	1.75790100
Н	-2.94976600	-0.03730700	2.15690500
С	-2.09391300	-2.00707600	2.62583800
Н	-1.84794600	-1.68993700	3.64103700
Н	-2.25733000	-3.07783300	2.48952600
С	-1.30113500	-1.33685800	1.51426000
С	-0.43457300	-0.16899100	1.82405600
С	-1.03080300	-2.10385200	0.26547900
0	-0.62583000	-1.61588700	-0.78576000
0	-1.35404400	-3.37472700	0.34675300
0	0.37664200	0.36246200	1.07497100
Č	-1 16559600	-4 17401100	-0.83634000
H	-0 10444000	-4 14228700	-1 12919100
н	-1 47531600	-5 18824300	-0 55069700
н	-1 80046900	-3 78722700	-1 64921800
0	-0 64873200	0 29419900	3 04322700
C	0.00053700	1 51087200	3 /1799/00
с u	0.35536100	2 33865000	2 77631000
	-0.33330100	2.33803900	2.77031900
H	-0.28383900	1.08830100	4.40320700
H	1.09010700	1.41105300	3.32376000
Cu	0.62045700	-0.01282300	-0.95993600
0 Ő	2.39/59200	-0.92468100	-1.025/0600
S	2.43481400	-2.30822200	-0.36743200
0	2.09451700	-3.39643400	-1.28804600
0	1.82460300	-2.31603400	0.97124600
С	4.27099100	-2.47728600	-0.07866200
F	4.52452200	-3.67101100	0.45003900
F	4.70268900	-1.53603900	0.76365500
F	4.93404100	-2.36106100	-1.22614900

IM2'

Electronic energy: -4357.75574852 Thermal corrections: 0.429905

i normai oc	1100010115. 0. 12)	//05	
0	-1.11089600	3.76061000	-0.88280700
С	-0.39427700	1.71981600	-1.77615300
С	1.27076400	3.51213300	-1.03195400
С	0.59290900	1.23282700	-2.63435300
Н	-1.47844600	1.51089900	-1.91466600
Н	1.10645400	4.36220300	-1.71398100
С	1 92797100	1 64101400	-2,41441500
Ĥ	0 38294200	0 50730100	-3 42533700
0	2 26793200	2 66391700	-1 70805900
C	1 94880700	3 97079500	0.25075600
ч	1.24030700	4 60433800	0.23073000
П Ц	2 87635200	4 51701000	0.02307000
	2.87035200	4.31701000	0.02397900
	2.78333000	1.13436200	-2.87080400
0	-2.44455700	1.19340900	1.05746500
0	2.23130000	2.83724400	1.03/40300
C	-0.0/145/00	2.80220600	-0.78123400
H	-0.08033100	2.3/463/00	0.231/4100
C	3.50331200	2.32467400	1.02196300
C	-1.85402500	3.97694900	0.25534300
0	-1.36775200	3.89341400	1.35201800
0	4.40089900	2.85753700	0.42672100
С	-3.25386000	4.36115100	-0.10772100
Н	-3.24523200	5.28182400	-0.71798300
Н	-3.66697000	3.54785200	-0.73138900
Η	-3.85092500	4.51381600	0.80206000
С	3.58136400	1.04124600	1.79895600
Н	4.62431300	0.69895600	1.83198400
Н	3.19415100	1.18673500	2.82099400
Н	2.95801100	0.27192500	1.31537000
С	-3.20560100	0.78104400	-0.61422700
0	-3.29965300	1.29808800	-1.75602100
С	-4.06518800	-0.46233400	-0.36208400
С	-5.03282400	-0.78472300	-1.32478600
C	-3.90564100	-1.32080200	0.75072600
Ċ	-5 84047400	-1 91539300	-1 19662200
н	-5 11928800	-0 11600000	-2.18342800
C	-4 71069200	-2 46282400	0.86523400
C	-5 67874700	-2 76099100	-0.09520800
н	-6 59298500	-2 14146200	-1.95856500
П Ц	4 57748200	3 12/13500	1 72585000
п u	-4.37748200	-3.12413300	0.01632400
	-0.30230000	1 02777000	1 70440000
	-2.88138100	-1.0277800	1./9449900
П	-2.99009900	-0.04542400	2.25504400
U	-2.12222100	-2.03886100	2.56308/00
H	-1.82852800	-1.78407800	3.58370900
H	-2.28342900	-3.10060700	2.36499400
C	-1.37390800	-1.29534100	1.46061900
C	-0.50295700	-0.14329100	1.79501500

-1.15215100	-1.98577700	0.16058800
-0.72430100	-1.44764500	-0.85902600
-1.54490200	-3.23837300	0.15407300
0.33614100	0.37798000	1.06406700
-1.42102600	-3.95913700	-1.08601100
-0.36030100	-3.98926000	-1.38014100
-1.80875100	-4.96451800	-0.87403500
-2.02449700	-3.46453400	-1.86337000
-0.72335300	0.31689300	3.01101400
-0.11381200	1.56581100	3.37816300
-0.55016900	2.37662400	2.77513200
-0.34715400	1.69870000	4.44348800
0.97203400	1.52260100	3.21465300
0.68036600	0.05068000	-0.92939900
2.38443000	-0.97193900	-0.94836100
2.29756200	-2.38510300	-0.35935700
1.90676500	-3.39681400	-1.34411300
1.64113500	-2.40459600	0.95675400
4.10472900	-2.70754600	-0.02420000
4.25006900	-3.94266600	0.44572200
4.57549200	-1.84665200	0.88056800
4.81291600	-2.58200000	-1.14345300
	-1.15215100 -0.72430100 -1.54490200 0.33614100 -1.42102600 -0.36030100 -1.80875100 -2.02449700 -0.72335300 -0.11381200 -0.55016900 -0.34715400 0.97203400 0.68036600 2.38443000 2.29756200 1.90676500 1.64113500 4.10472900 4.57549200 4.81291600	-1.15215100-1.98577700-0.72430100-1.44764500-1.54490200-3.238373000.336141000.37798000-1.42102600-3.95913700-0.36030100-3.98926000-1.80875100-4.96451800-2.02449700-3.46453400-0.723353000.31689300-0.113812001.56581100-0.550169002.37662400-0.347154001.698700000.972034001.522601000.680366000.050680002.38443000-0.971939002.29756200-2.385103001.90676500-3.396814001.64113500-2.707546004.10472900-2.707546004.57549200-1.846652004.81291600-2.58200000

IM2'_relaxed

Electronic energy: -4357.7588431 Thermal corrections: 0.4301042

0	-1.11089600	3.76061000	-0.88280700
С	-0.39427700	1.71981600	-1.77615300
С	1.27076400	3.51213300	-1.03195400
С	0.59290900	1.23282700	-2.63435300
Н	-1.47844600	1.51089900	-1.91466600
Н	1.10645400	4.36220300	-1.71398100
С	1.92797100	1.64101400	-2.41441500
Н	0.38294200	0.50730100	-3.42533700
0	2.26793200	2.66391700	-1.70805900
С	1.94880700	3.97079500	0.25075600
Н	1.24434500	4.60433800	0.81017700
Н	2.87635200	4.51701000	0.02397900
Н	2.78355000	1.13458200	-2.87680400
0	-2.44433700	1.19340900	0.30190600
0	2.23156600	2.83724400	1.05746500
С	-0.07145700	2.80220600	-0.78123400
Н	-0.08033100	2.37463700	0.23174100
С	3.50331200	2.32467400	1.02196300
С	-1.85402500	3.97694900	0.25534300
0	-1.36775200	3.89341400	1.35201800
0	4.40089900	2.85753700	0.42672100
С	-3.25386000	4.36115100	-0.10772100
Н	-3.24523200	5.28182400	-0.71798300
Н	-3.66697000	3.54785200	-0.73138900

Н	-3.85092500	4.51381600	0.80206000
С	3.58136400	1.04124600	1.79895600
Н	4.62431300	0.69895600	1.83198400
Н	3.19415100	1.18673500	2.82099400
Н	2.95801100	0.27192500	1.31537000
С	-3.20560100	0.78104400	-0.61422700
0	-3.29965300	1.29808800	-1.75602100
С	-4.06518800	-0.46233400	-0.36208400
С	-5.03282400	-0.78472300	-1.32478600
С	-3.90564100	-1.32080200	0.75072600
С	-5.84047400	-1.91539300	-1.19662200
Н	-5.11928800	-0.11600000	-2.18342800
С	-4.71069200	-2.46282400	0.86523400
С	-5.67874700	-2.76099100	-0.09520800
Н	-6.59298500	-2.14146200	-1.95856500
Н	-4.57748200	-3.12413500	1.72585900
Н	-6.30250800	-3.65320300	0.01632400
С	-2.88138100	-1.02777800	1.79449900
Н	-2.99009900	-0.04542400	2.25504400
С	-2.12222100	-2.03886100	2.56308700
Н	-1.82852800	-1.78407800	3.58370900
Н	-2.28342900	-3.10060700	2.36499400
С	-1.37390800	-1.29534100	1.46061900
С	-0.50295700	-0.14329100	1.79501500
С	-1.15215100	-1.98577700	0.16058800
0	-0.72430100	-1.44764500	-0.85902600
0	-1.54490200	-3.23837300	0.15407300
0	0.33614100	0.37798000	1.06406700
С	-1.42102600	-3.95913700	-1.08601100
Н	-0.36030100	-3.98926000	-1.38014100
Н	-1.80875100	-4.96451800	-0.87403500
Н	-2.02449700	-3.46453400	-1.86337000
0	-0.72335300	0.31689300	3.01101400
C	-0.11381200	1.56581100	3.37816300
Н	-0.55016900	2.37662400	2.77513200
Н	-0.34715400	1.69870000	4.44348800
Н	0.97203400	1.52260100	3.21465300
Cu	0.68036600	0.05068000	-0.92939900
0	2.38443000	-0.97193900	-0.94836100
S	2.29756200	-2.38510300	-0.35935700
õ	1.90676500	-3.39681400	-1.34411300
Ő	1.64113500	-2.40459600	0.95675400
C	4.10472900	-2.70754600	-0.02420000
F	4.25006900	-3.94266600	0.44572200
F	4.57549200	-1.84665200	0.88056800
F	4.81291600	-2.58200000	-1.14345300

TS2'

1 2 Electronic energy: -4357.699113

Thermal cor	rections: 0.424	299	
0	-1.33563000	3.54932800	-1.11322800
С	-0.37677500	1.46851000	-1.61750600
С	1.08540700	3.53009300	-1.12010600
C	0.56477000	1.09003200	-2.58476400
Н	-1.37991600	1.03135200	-1.53639000
Н	0.81307300	4.41912100	-1.71015000
C	1.81132400	1.74123700	-2.58604200
H	0.40931400	0.24590700	-3.26034800
0	2.07209000	2.83817900	-1.96084800
Č	1.81931000	3.97266800	0.13872200
Н	1.16618000	4.68354400	0.66758800
Н	2 77445700	4 44714500	-0 13481300
Н	2.66568100	1 36669500	-3 16159200
0	-3 64892500	0.60357500	1 81053300
Õ	2 03662900	2 89669700	1.03460600
Č	-0.20260100	2 73155100	-0.82051700
н	-0 22895300	2 47065800	0.24690800
C	3 23405600	2.22915800	0.97361800
C	-2 02577500	4 02143700	-0.02898400
0	-1 53618100	4.08347400	1.06773900
0	4 07726400	2 50336800	0.16109700
Č	-3 41729600	4 42018400	-0.41719500
н	-3 86566500	5.04262200	0.37006100
н	-3 42523600	4 94018300	-1 38883100
Н	-3 98550500	3 47877300	-0 52267500
C	3 30724400	1 15849600	2 02247300
н	4 35896200	0.88624300	2.02247300
Н	2 83251700	1 49420800	2.10472100
н	2.05251700	0.26379400	1 67271200
C	-3 53268200	0.44294900	0.58809500
0	-2 93250800	1 15588400	-0 25244400
Č	-4 32494100	-0 71900000	-0.01041600
Č	-5 27403300	-0 36094000	-0 97933400
C	-4 24698000	-2 10597800	0.37288600
C	-6 12863100	-1 29572800	-1 55668500
н	-5 31628900	0.68543700	-1 28922500
C	-5 14039100	-3 04421400	-0 24668800
C	-6.06531900	-2 65536000	-1 19073100
н	-6 85169700	-0.97193300	-2 31214100
н	-5.06288100	-4 09687400	0.04010800
н	-6 73397500	-3 38645900	-1 65201000
C	-3 36575500	-2 66257600	1 31883200
н	-3 54033900	-3 72693800	1.51575900
C	-2 29525100	-2 03078700	2 09688000
н	-2 77640600	-1 18936300	2.69666600
Н	-1 87677900	-2 74974400	2.04050500
n C	-1 25389100	-1 39071100	1 20505100
C	-0.61597100	-0.20978100	1.65024900
C	-0 89948700	-2 02771700	-0.01217300
0	-0 21358800	-1 58184600	-0.95118400
õ	-1.41514300	-3.27718200	-0.14335800
õ	0 24453900	0 47985700	1 03784600
Č	-0 99311000	-4 02391600	-1 28642000
Ĥ	0.10768000	-4.04532100	-1.33742700
Н	-1.40230100	-5.03582000	-1.14703400
Н	-1.39141900	-3.57621400	-2.21292200

0	-0.96915800	0.17812600	2.87737700
С	-0.71696400	1.53121600	3.25576000
Н	-1.37824100	2.20175800	2.68400300
Н	-0.95900600	1.58751800	4.32701300
Н	0.33460300	1.80358400	3.07874400
Cu	0.93780400	0.12617100	-0.76829300
0	2.73157900	-0.69885300	-0.78626800
S	2.78220900	-2.12369900	-0.21766800
0	2.50908600	-3.16304200	-1.21325700
0	2.13712800	-2.22027900	1.09839600
С	4.61483100	-2.25775900	0.10990800
F	4.88770100	-3.46917300	0.59211500
F	5.00785400	-1.34722600	1.00325800
F	5.30558500	-2.07763700	-1.01439000

IM3'

1 2 Electronic energy: -4357.795185 Thermal corrections: 0.430812

0	-1.22349700	2.49387400	-1.82283300
С	-0.30356000	0.44235600	-1.20874500
С	1.12771800	2.56709600	-1.13950500
С	0.68662600	-0.15612400	-1.99511400
Н	-1.28279700	-0.02742100	-1.09810200
Н	0.99576800	3.51600000	-1.67254900
С	1.83584000	0.58381700	-2.33448500
Н	0.61102400	-1.17738700	-2.36957900
0	2.03022600	1.81730900	-2.02639000
С	1.88577100	2.88051900	0.13131200
Н	1.27528500	3.57228400	0.73134700
Н	2.83991000	3.37301200	-0.12339300
Н	2.64417500	0.14145900	-2.92134100
0	-4.20495300	0.45238600	1.50456600
0	2.16275000	1.69401800	0.86199000
С	-0.25545100	1.91957000	-0.93496900
Η	-0.57836200	2.11314700	0.09780500
С	2.21488200	1.83022500	2.23171500
С	-1.69066400	3.72102300	-1.44322800
0	-1.16495300	4.35658400	-0.56715000
0	1.91309800	2.86252100	2.77037300
С	-2.89241200	4.12287400	-2.24690100
Η	-2.81069900	3.77586000	-3.28923500
Η	-3.76803000	3.63720900	-1.78212400
Η	-3.02033500	5.21430900	-2.20529300
С	2.68349600	0.58040900	2.91310500
Η	2.94732600	0.82550600	3.95207600
Η	1.86612600	-0.15804900	2.90140700
Н	3.53040000	0.12924600	2.37863500
С	-3.77886500	0.96569300	0.33095200
0	-3.33793100	2.08716400	0.22805000

С	-3.96071500	-0.07693700	-0.70642600
С	-3.73139300	-0.02049100	-2.08322000
С	-4.42946300	-1.22929200	-0.07728800
С	-3.99683200	-1.17076800	-2.82934600
Н	-3.34687000	0.89164800	-2.54569200
С	-4.69605400	-2.37768700	-0.81958800
С	-4.47916400	-2.33330900	-2.20143800
Н	-3.83391300	-1.17108600	-3.91089200
Н	-5.04708300	-3.29462500	-0.34024500
Н	-4.68378300	-3.22175000	-2.80623200
С	-4.46399500	-0.96591200	1.40688600
Н	-5.45736100	-1.14370300	1.85139200
С	-3.37674100	-1.72590700	2.20460200
Н	-3.45138800	-1.39459400	3.25042800
Н	-3.62518900	-2.79716600	2.17084900
С	-1.98650500	-1.48466800	1.66173500
С	-1.26620000	-0.34516000	2.09175800
С	-1.44627900	-2.37294600	0.68372000
0	-0.39724200	-2.25333300	0.02006200
0	-2.20989200	-3.47279000	0.46746800
0	-0.16525800	0.10654900	1.65296600
С	-1.77573200	-4.36493000	-0.54841200
Н	-0.76154600	-4.74269600	-0.33983600
Н	-2.49972600	-5.19368500	-0.54852800
Н	-1.77300100	-3.86672000	-1.53357100
0	-1.84237200	0.33214700	3.09646400
С	-1.39654600	1.65784900	3.36891300
Н	-1.57468400	2.30733400	2.49451800
Н	-2.01184300	2.00496700	4.21150100
Н	-0.33022100	1.68707300	3.63995800
Cu	0.87115400	-0.56101300	0.10026300
0	2.64119900	-1.35035900	0.51030600
S	3.65971700	-1.87586500	-0.48273800
0	3.19314300	-1.78053000	-1.88386700
0	4.32320900	-3.09845000	-0.05407200
С	4.96575300	-0.54128500	-0.38430100
F	6.00978000	-0.85481700	-1.14488100
F	5.38622300	-0.36671100	0.86981500
F	4.46473000	0.62933700	-0.82170600

I.III Sc-Catalyzed ring opening without coordination IM1

2 1 Electronic energy: -3477.56361755 Thermal corrections: 0.4009827

0	5.09132200	0.48771300	0.87759200
С	4.51343800	1.81604500	-1.04619700
С	5.97700100	-0.21437800	-1.23714400
С	4.63408400	1.84858700	-2.53753100

Н	5.22180800	2.51853400	-0.57665100
Н	6.86938200	0.41801600	-1.07116600
С	5.19647300	0.82401400	-3.21803200
Н	4.24463100	2.71108400	-3.08259800
0	5.72784800	-0.25849100	-2.64749600
С	6.31785100	-1.62304800	-0.77975000
Н	6.76675100	-1.59718200	0.22257100
Н	7.02818700	-2.05815900	-1.49898300
Н	5.26516700	0.79216600	-4.30922000
0	3 24575600	2 31244600	-0 55096100
Ő	5 16307800	-2.46472600	-0 77559500
Č	4 78167100	0.41402200	-0 50679400
н	3 89279900	-0.21265300	-0 64998200
C	4 71069300	-2 92871800	0.04770200
C	4.08037100	0.22746000	1 7/335000
0	2 04504800	0.22740000	1.74333000
0	2.94394800	2 68256700	1.37390700
C C	<i>J.23010000</i> <i>4 59211500</i>	-2.08230700	2 15740200
	4.36511300	0.10020900	3.13740200
п	4.97907900	-0.83298000	3.313/1800
H	5.39992600	0.88397400	3.32971300
H	3./5513600	0.33772000	3.86054300
C	3.45401600	-3./4016100	0.23595800
H	3.34204800	-4.43349000	1.08233000
H	2.59/9/700	-3.04099900	0.23680500
H	3.46061300	-4.28468500	-0.72076100
C	2.11026300	1.70837200	-0.90862700
0	2.04115600	0.70317300	-1.57773400
С	0.89977700	2.38039300	-0.33015100
С	0.93731300	3.72978400	0.05573400
С	-0.32273400	1.68517200	-0.29542100
С	-0.22726300	4.40286600	0.43085300
Н	1.89274200	4.25451400	0.03006000
С	-1.49300200	2.38168700	0.04785500
С	-1.45466400	3.73118200	0.40792100
Н	-0.17998500	5.45814100	0.71181500
Н	-2.45534200	1.86701800	-0.01093300
Н	-2.38083800	4.25955700	0.65022100
С	-0.40325200	0.22708300	-0.61858800
Н	-0.95640300	-0.02332600	-1.53152100
С	0.52662700	-0.77821500	-0.12140800
Н	0.71971600	-1.64664200	-0.75599700
Н	1.35179800	-0.45719600	0.52361300
С	-0.85299700	-0.79682700	0.57014800
С	-0.98392200	-0.15650200	1.88583900
C	-1.83417500	-1.85171300	0.22482500
0	-2.81797300	-2.18338200	0.96605200
0	-1.61119300	-2.44704200	-0.88647600
Ő	-2.11484500	-0 12505400	2 50305300
Č	-2 53647200	-3 44721600	-1 41234600
н	-3 52681500	-2 98564700	-1 52191300
Н	-2 11746700	-3 73219300	-2 38480900
Н	-2 56972300	-4 30663800	-0 72712500
0	0.04775300	0 37877/00	2 37996700
C	0.04775500	1 21111200	2.37730000
ч	-0.2003100	0.60173600	A A3387700
Ч	1 06310000	1 5/781800	4.43302/00
11 U	0.65570200	2 05506000	3.07200100
11	-0.03372200	2.03390900	3.40043200

0	-5.69897300	-0.42163700	0.94547600
S	-5.21885200	0.38948900	-0.31892500
0	-3.75458400	0.00851300	-0.26762700
0	-5.52389000	1.79537300	-0.23414500
С	-6.09898100	-0.40281000	-1.79317600
F	-5.76871500	-1.68519100	-1.80906300
F	-7.37979000	-0.24717700	-1.61489200
F	-5.66809900	0.20732900	-2.86611400
Sc	-3.95176000	-0.71078100	1.84703500

II. Nucleophilic attack by the acceptor II.I Cu-OTf directed attack by MeOH IM4α

Electronic energy: -3481.153151 Thermal corrections: 0.245176

i nermai coi	100115. 0.245	170	
0	1.08011900	-1.13734200	-0.24607100
С	0.77845200	0.90942700	-1.55357600
С	1.64583800	0.82332600	0.83065700
С	0.66947200	2.30740300	-1.42738800
Η	0.62387500	0.41375600	-2.51788300
Η	0.69412800	0.63879400	1.35623600
С	1.20562100	2.92678500	-0.26746100
Η	0.36600200	2.95459700	-2.25642400
0	1.70916400	2.30124300	0.72201200
С	2.78830300	0.39214500	1.72966000
Η	2.65626600	-0.68137100	1.93623200
Η	2.74355000	0.96492800	2.66884300
Η	1.24565600	4.01956100	-0.15921300
0	4.05603800	0.64637800	1.15073800
С	1.59174500	0.13888100	-0.53872500
Н	2.59644300	0.03902200	-0.98881900
С	4.68258500	-0.40845300	0.53093600
С	1.16612100	-2.07191000	-1.26350800
0	1.62972700	-1.76739700	-2.32747900
0	4.11440700	-1.44682900	0.31921100
С	0.57921000	-3.38105800	-0.84475100
Η	0.93825900	-3.66632100	0.15691400
Η	-0.51967000	-3.27783700	-0.79701100
Н	0.84054400	-4.14997800	-1.58506300
С	6.10419900	-0.06969100	0.19225700
Η	6.50473600	-0.81443400	-0.50979100
Η	6.17573900	0.94607800	-0.22942800
Η	6.70673800	-0.08304700	1.11855900
Cu	-1.08707300	1.27289300	-0.87512700
0	-3.08002700	-2.51273400	-0.57662800
S	-2.79158900	-1.13189000	-0.25211100
0	-1.61951200	-0.57024100	-1.07819500
0	-3.89115600	-0.14592100	-0.15495400
С	-2.05462200	-1.11899900	1.47276200

F	-1.08103900	-2.00384500	1.59483000
F	-1.52217800	0.12175600	1.69562700
F	-2.98345700	-1.33454600	2.37682600
0	-2.74822700	2.17866500	-0.34533100
Н	-3.41192000	1.42252600	-0.30649000
С	-2.94329800	3.07201100	0.75883200
Н	-2.76974900	2.55621800	1.71948600
Н	-2.23549100	3.90767200	0.64546300
Н	-3.97052100	3.47010500	0.73070900

TS4α

1 2 Electronic energy: -3481.14259729 Thermal corrections: 0.246309

i normai coi		507	
0	1.88277700	-1.25533700	-0.54302200
С	0.85507800	0.27008900	-2.09439200
С	1.13843800	0.82449700	0.32339700
С	-0.00711200	1.35767300	-2.18202000
Н	1.09366400	-0.33211900	-2.97946300
Н	0.18708800	0.34663800	0.61420400
С	0.09003000	2.40475600	-1.13204700
Н	-0.47650700	1.65519900	-3.12613000
0	0.81906600	2.20134400	-0.07704800
С	2.03835300	0.88063300	1.54097100
Н	2.04153900	-0.10927400	2.02193200
Н	1.64326600	1.63053700	2.24573000
Н	0.10119000	3.44901200	-1.46047400
0	3.35898700	1.24903400	1.18564500
С	1.73816100	0.10661800	-0.88552800
Н	2.73110300	0.52889800	-1.12649400
С	4.34685500	0.31558700	1.39987000
С	3.13160200	-1.82068900	-0.76921500
0	3.99862600	-1.20430500	-1.32340600
0	4.10982100	-0.77139400	1.85707100
С	3.20658400	-3.20085800	-0.20175000
Н	3.50378700	-3.09600600	0.85810300
Н	2.23247400	-3.71127400	-0.24542000
Н	3.98209600	-3.77524500	-0.72899000
С	5.68080300	0.81647100	0.93673000
Н	6.47647700	0.34140100	1.52971900
Н	5.80622500	0.50418600	-0.11668100
Н	5.74635100	1.91318500	0.99341500
Cu	-1.06729300	-0.25891800	-1.53885800
0	-1.90472900	-1.79405700	-0.50149800
S	-3.14721100	-1.01903300	-0.11249100
0	-2.94479300	0.35050700	-0.78809100
0	-4.44019300	-1.63656500	-0.25660000
С	-2.90044000	-0.61336100	1.69861200
F	-1.72525800	0.03933000	1.83000800

F	-3.86898500	0.18618900	2.10435800
F	-2.86879100	-1.71306500	2.41355300
С	-1.83563100	3.26096900	0.73695200
Н	-2.90900900	3.43875400	0.91319600
Н	-1.42066700	2.62767600	1.53783200
Η	-1.30646900	4.22389300	0.69531800
0	-1.70411800	2.63076300	-0.54899100
Н	-2.25829600	1.79136900	-0.59232000

IM5a

1 2 Electronic energy: -3481.160701 Thermal corrections: 0.245627

0	2.00903200	-1.27890600	-0.05510200
С	1.09672200	-0.28275900	-2.00897000
С	1.33480200	1.00509800	0.12801000
C	0.06582500	0.56797900	-2.31874400
Н	1.40541300	-1.08020600	-2.69803500
Н	0.43120700	0.58572800	0.61607200
С	-0.08085300	1.88038500	-1.56751200
Η	-0.50108500	0.46050500	-3.25111700
0	0.94935800	2.11987200	-0.67816600
С	2.26324900	1.47337200	1.24149300
Η	2.26379100	0.72814700	2.04967100
Н	1.89613400	2.44013600	1.61968900
Н	-0.05385100	2.71269600	-2.29269300
0	3.59225600	1.66895100	0.77940000
С	1.95296800	-0.05524600	-0.78875100
Н	2.96551300	0.24035600	-1.10356000
С	4.53441800	0.76807900	1.19304400
С	3.20099500	-1.99072100	-0.12557100
0	4.06618100	-1.66986500	-0.88981700
0	4.26710600	-0.16391000	1.90922400
С	3.22551600	-3.10397400	0.87226600
Н	3.58402800	-2.66942600	1.82349300
Н	2.22331200	-3.52863800	1.03732100
Н	3.93526500	-3.87826900	0.54688000
С	5.87794200	1.05989400	0.59350500
Н	6.66691600	0.76430700	1.30160900
Н	5.98416800	0.43174500	-0.31051200
Н	5.97807000	2.11754000	0.30901100
Cu	-0.59579000	-1.06397000	-1.10065800
0	-2.17426000	-1.53707300	-0.11968700
S	-3.47728800	-0.79387100	-0.06373100
0	-3.41119800	0.43479500	-1.04171900
0	-4.70202500	-1.52024600	-0.23616900
С	-3.42717100	0.02957300	1.62708500
F	-2.28400400	0.71836600	1.70181400
F	-4.44758700	0.85156700	1.73659800

F	-3.45922300	-0.89780800	2.55361600
С	-1.72381100	3.17280000	-0.34997300
Η	-2.69884800	3.03308600	0.13716900
Η	-0.97097200	3.48544700	0.38888100
Η	-1.80914000	3.92616900	-1.15191100
0	-1.35464900	1.89782500	-0.91171900
Η	-2.52610600	0.98019700	-1.03667600
IM46			

12

Electronic energy: -3481.158986 Thermal corrections: 0.2504325

0	-2.31271100	-0.54718500	-1.65248400
С	-0.40383800	0.90271500	-1.20147000
С	-2.78559500	1.67254800	-0.94300200
С	-0.01960200	2.19735500	-0.84412700
Н	0.12231100	0.37958600	-2.00951200
Н	-2.87890300	1.98374600	-1.99981600
С	-0.95415000	3.04871100	-0.27039600
Н	1.00457300	2.54576400	-0.97471900
0	-2.24043300	2.80956500	-0.22419500
С	-4.17671100	1.39448500	-0.39069400
Н	-4.62157000	0.56499000	-0.96179100
Н	-4.78764200	2.30153500	-0.51129000
Н	-0.69394400	4.02960400	0.14270600
0	-4.17678700	1.10784000	1.00219000
С	-1.81475800	0.50121200	-0.83352800
Н	-1.83747100	0.16416800	0.21626400
С	-4.11188700	-0.18864100	1.40512600
С	-1.81038300	-1.75881300	-1.42845300
0	-0.79323200	-1.92143400	-0.75563800
0	-3.86045800	-1.09084000	0.64052800
С	-2.59916400	-2.86662200	-2.02870100
Н	-3.43054900	-3.07657300	-1.32865800
Н	-3.03696700	-2.55896100	-2.99119300
Н	-1.97924600	-3.76740200	-2.13860200
С	-4.38558600	-0.31767600	2.87451900
Н	-4.11833300	-1.32726700	3.21663200
Н	-3.83152800	0.44856300	3.44122400
Н	-5.46119800	-0.14248200	3.05745100
Cu	0.50468900	-0.68616600	0.09906900
0	3.41960800	-0.61698100	1.70261300
S	3.05119900	0.65358300	1.05141300
0	1.51947400	0.76116900	0.84878600
0	3.61450000	1.90617600	1.50745400
С	3.57769100	0.42500700	-0.73236700
F	2.93006200	-0.65440200	-1.23593500
F	3.21363800	1.48345700	-1.45916000
F	4.87201000	0.23465400	-0.83351400
0	1.34586000	-2.17072000	1.21283200
Н	2.14548100	-1.75360600	1.63337100

С	1.70501600	-3.43379900	0.64507600
Н	2.00008900	-4.13319000	1.44559300
Η	0.81823500	-3.82901000	0.12888900
Η	2.53733600	-3.32094200	-0.07327100

TS4β

Electronic energy: -3481.141687 Thermal corrections: 0.2496671

0	2 29226700	1 24920200	1 20201000
0	-2.38226700	-1.34839200	-1.39291000
C	-0.03303700	0.13130000	-2.29193000
C	-2.39343000	0.94043000	-0.90027300
	-0.208/8300	1.41032700	-2.51895200
н	-0.10380000	-0.70131300	-2.82431000
H	-3.383/5300	0.82200100	-1./2/32800
C	-0.88618500	2.48359500	-1./5825300
H	0.51142600	1.6//34900	-3.23499900
0	-2.03981400	2.26529000	-1.18590400
C	-3.24993600	0.9/48/600	0.40630700
H	-3.66242100	-0.01969700	0.63281900
Н	-4.05915100	1.71858100	0.41366500
Н	-0.69476100	3.51174900	-2.05704700
0	-2.33143000	1.39946100	1.41800300
С	-1.58385600	-0.18236500	-1.17788000
Н	-0.97090400	-0.35192600	-0.29239200
С	-1.61804200	0.48982000	2.10458300
С	-2.02948700	-2.52035800	-0.82536700
0	-0.98650300	-2.71168200	-0.21878100
0	-1.65146800	-0.69795700	1.82572700
С	-3.05528700	-3.58199300	-1.06399900
Н	-3.89380500	-3.42964500	-0.35875400
Н	-3.46182700	-3.51249500	-2.08534300
Н	-2.61454200	-4.57202500	-0.88068300
С	-0.77450200	1.09775600	3.18067300
Н	-0.84980800	0.47965000	4.08998500
Н	0.28239400	1.07820400	2.85886200
Н	-1.06835200	2.13546400	3.39089100
Cu	0.22207300	-1.79305200	1.06871600
0	2.00318300	-1.04294000	1.45088200
S	2.18867000	0.18536200	0.59113200
0	0.83313400	0.45720900	-0.03061000
0	2.82844300	1.34250500	1.18869200
С	3.26920900	-0.41743500	-0.80616100
F	2.68233700	-1.46773400	-1.38047800
F	3.39805200	0.55475300	-1.70176300
F	4.44753500	-0.76029800	-0.33315200
0	0.29622100	2.94115500	-0.14784400
й	0.29229600	1 94858500	-0.00289700
**	5.272275000	1.7 1020200	0.00207700

С	-0.44160700	4.05938300	0.33693000
Η	-0.23761400	4.19766800	1.41212900
Η	-0.05901400	4.93193000	-0.21540700
Н	-1.52863200	3.99032100	0.19274500

II.II Cu-OTf directed attack by *p*-OMePhOH IM4 α '

12

Electronic energy: -3787.227385 Thermal corrections: 0.322812

0	2.02682800	1.17733100	-0.32231600
С	0.56094300	0.71521900	-2.20682700
С	-0.27113300	1.33414700	0.07888400
С	-0.76948700	0.43549900	-2.55735000
Н	1.36760400	0.66703500	-2.94701700
Н	-0.24622400	0.30089400	0.45923300
С	-1.80995100	0.95430600	-1.71121500
Н	-1.05684700	0.11084100	-3.56229700
0	-1.60022400	1.46579100	-0.56170800
С	-0.23432400	2.28287500	1.25758300
Н	0.67070600	2.05393800	1.84016500
Н	-1.13214300	2.11921900	1.87348000
Н	-2.84174800	1.05958200	-2.05783400
0	-0.24453600	3.64012800	0.84844300
С	0.82797800	1.52914000	-0.96300000
Н	0.87806300	2.58328800	-1.29683200
С	0.95047500	4.31503200	0.86746800
С	3.16846300	1.75382300	-0.85295000
0	3.11115700	2.38255300	-1.87375000
0	1.99293100	3.76573100	1.10751800
С	4.35956500	1.47143700	0.00226500
Н	4.22258000	1.98431900	0.97033100
Н	4.43800000	0.39051300	0.19846300
Н	5.26564300	1.84376200	-0.49520800
С	0.75049500	5.77250700	0.56964600
Н	1.71733400	6.23489200	0.32575100
Н	0.03049000	5.91163500	-0.25280800
Н	0.32907900	6.26666100	1.46384200
Cu	0.14416500	-1.20043000	-1.64872100
0	2.88387000	-3.80555200	0.18355700
S	1.78509200	-2.87082400	0.26525600
0	1.77308200	-1.83336700	-0.86716900
0	0.40885300	-3.39213100	0.51216400
С	2.09932000	-1.79287100	1.76218100
F	3.24508000	-1.14303100	1.63505300
F	1.10239200	-0.88653400	1.87399900
F	2.11799500	-2.53323800	2.85147200
0	-1.35138300	-2.46392400	-1.07764700
Н	-0.80331600	-3.03313800	-0.43165600

С	-2.34200900	-1.75532000	-0.40793300
С	-2.19995300	-1.41244400	0.94357300
С	-3.47481400	-1.35215200	-1.12136300
С	-3.17885100	-0.64091600	1.55896200
Н	-1.32959000	-1.76057800	1.50363900
С	-4.46911300	-0.58418500	-0.49607400
Н	-3.59466300	-1.68060100	-2.15742600
С	-4.32296200	-0.21051900	0.84896200
Н	-3.09548700	-0.36625500	2.61329700
Н	-5.35769600	-0.30586700	-1.06418200
0	-5.19965200	0.52996300	1.54243700
С	-6.41179000	0.93964800	0.93287200
Н	-6.96508700	1.50166000	1.69849600
Н	-6.22060600	1.59743600	0.06372800
Н	-7.01206800	0.06812200	0.61260100

TS4α'

1 2 Electronic energy: -3787.214139 Thermal corrections: 0.323938

0	2.60009400	-0.99859400	-0.10468200
С	1.91566100	-0.35144600	2.10938600
С	0.29796300	-1.21324900	0.40451600
С	0.79658700	0.09376100	2.81594700
Н	2.92722700	-0.24353700	2.51759700
Н	0.12962400	-0.21663500	-0.03559000
С	-0.49864600	-0.51964800	2.52089600
Η	0.88758500	0.59985600	3.78332800
0	-0.64639700	-1.32345200	1.52281100
С	-0.06170600	-2.25451400	-0.63369400
Η	0.40363700	-1.97103300	-1.58951100
Η	-1.15751000	-2.27548800	-0.74783800
Н	-1.21671700	-0.67796900	3.32806000
0	0.37999000	-3.54445000	-0.24460700
С	1.72119200	-1.30671600	0.95931600
Η	1.92876200	-2.33099500	1.31950000
С	1.35726500	-4.12849800	-1.01268700
С	3.64639600	-1.88211600	-0.32207800
0	3.84392400	-2.80473100	0.41899500
0	1.82886800	-3.58146200	-1.97517000
С	4.39211600	-1.53126200	-1.56917000
Η	3.87085800	-2.03089300	-2.40643200
Η	4.38891400	-0.44552800	-1.74965300
Η	5.41811000	-1.92250200	-1.50909700
С	1.77092500	-5.45696200	-0.45538000
Н	2.10419000	-6.11059800	-1.27541000
Η	2.63406300	-5.28248900	0.21360000

Н	0.96124000	-5.92769600	0.12158000
Cu	1.36329700	1.50329400	1.44048700
0	2.16052300	2.81207400	0.12086000
S	0.82350200	3.39703100	-0.29182900
0	-0.18106000	2.69021300	0.62980100
0	0.69579600	4.82397500	-0.44724500
С	0.50438300	2.60027800	-1.95756200
F	0.64405200	1.27072100	-1.83091300
F	-0.73516600	2.86161900	-2.34709800
F	1.36844600	3.05101500	-2.83831300
0	-1.80258000	1.02500900	1.95186900
Н	-1.31979000	1.77114300	1.50469800
С	-2.74960700	0.49178400	1.09798900
С	-2.65395100	0.65512000	-0.29312600
С	-3.78328300	-0.26616000	1.65301100
С	-3.60215500	0.06872000	-1.11832900
Н	-1.86275200	1.27173500	-0.72029400
С	-4.73050800	-0.86645100	0.82604800
Н	-3.85320300	-0.37297900	2.73867100
С	-4.64880300	-0.70555000	-0.57240700
Н	-3.56596400	0.20121800	-2.20176000
Н	-5.53563200	-1.44744100	1.27659200
0	-5.50775900	-1.23754600	-1.44998000
С	-6.60995500	-2.00375000	-0.99108800
Н	-7.27236000	-1.40031900	-0.34364900
Н	-7.16161600	-2.31229600	-1.89031800
Н	-6.27072500	-2.90209300	-0.44273900

1	2
1	4

Electronic energy: -3787.238794 Thermal corrections: 0.3240211

0	3.29112400	-0.57228000	0.03411100
С	2.11524000	-0.35072800	-2.03120500
С	1.52485100	1.02614600	-0.02065000
С	0.82027900	-0.16353600	-2.44035100
Н	2.81800500	-0.92477300	-2.64807700
Н	0.94431100	0.24334500	0.50887100
С	-0.03577500	0.91239800	-1.80198000
Н	0.44836800	-0.60612400	-3.37212600
0	0.65737200	1.71314500	-0.92268900
С	2.03181200	1.99160400	1.04464300
Н	2.34875500	1.41494200	1.92577900
Н	1.21826000	2.68163400	1.31712400
Н	-0.44047700	1.57410300	-2.58191100
0	3.12240000	2.77098800	0.57650700
С	2.65452900	0.37441000	-0.82423300
Н	3.38265800	1.13523700	-1.14370900
С	4.36152200	2.47099600	1.07621900

С	4.67909400	-0.54008300	0.07103100
0	5.30366700	0.12897600	-0.70285500
0	4.53862200	1.59015300	1.87975000
С	5.21129800	-1.41470200	1.16045200
Н	5.21289900	-0.80376900	2.08192900
Н	4.57446400	-2.29757600	1.32557500
Н	6.24469000	-1.71022800	0.92840300
С	5.41707100	3.37169300	0.50871000
Н	6.20215600	3.53775400	1.26187000
Н	5.87570900	2.84397000	-0.34808000
Н	4.99663500	4.32577700	0.15826200
Cu	0.96056300	-1.77724600	-1.03557200
0	-0.17539300	-2.92921700	-0.01401900
S	-1.66816600	-2.98496900	0.10725200
0	-2.29959400	-2.08040000	-1.02278800
0	-2.31660700	-4.26262600	0.15680200
С	-2.00560300	-2.00816600	1.68454600
F	-1.41938800	-0.81528100	1.55162700
F	-3.30213200	-1.86014900	1.83742100
F	-1.47740300	-2.65544900	2.69937900
0	-1.16106700	0.25476600	-1.15964300
Н	-1.84316800	-1.16274100	-1.13918500
С	-2.21790500	1.09107800	-0.72527400
С	-2.11308400	1.80629400	0.46006700
С	-3.37646900	1.13199000	-1.50502500
С	-3.19967900	2.58222300	0.87242700
Н	-1.22190100	1.74402300	1.08471700
С	-4.45614100	1.90964200	-1.09285600
Н	-3.42654600	0.57135900	-2.44136100
С	-4.37073000	2.64248600	0.10679600
Н	-3.15484500	3.15629300	1.79861100
Н	-5.34998700	1.95950500	-1.71471200
0	-5.34303300	3.46890100	0.55057900
С	-6.69956900	3.12782400	0.26919900
Н	-7.31383300	3.93477300	0.70480400
Н	-6.91370200	3.06884300	-0.81653500
Н	-6.96218500	2.16254800	0.74836600

ΙΜ4β'

12

Electronic energy: -3787.229597 Thermal corrections: 0.329167 0 -1.92749600 -1.44920100 -1.51564600 С -1.73473800 0.91433600 -0.94712500 Ċ -3.95568700 -0.23123400 -1.19485300С $-2.45299500 \quad 2.07929300 \quad -0.62837500$ Η -0.91662400 0.96292500 -1.67799100Η -4.01131300 -0.01258100 -2.27751700 С -3.80100100 1.98741300 -0.32957200Η -1.96991200 3.05584700 -0.61005900 0 -4.52894400 0.90378900 -0.50466200 С -4.82833700 -1.44376700 -0.90106400

Н	-4.42807400	-2.30987700	-1.44997700
Н	-5.85230900	-1.22590200	-1.23943000
Н	-4.39691200	2.83749200	0.01863000
0	-4.93289400	-1.73045900	0.48891900
С	-2.49731800	-0.37799300	-0.77086200
Н	-2.49937100	-0.65755400	0.29499300
С	-4.08520700	-2.63582800	1.03927200
С	-0.81675200	-1.96943000	-1.00778000
0	-0.17923300	-1.38769300	-0.12923900
0	-3.13147700	-3.07968200	0.44324900
С	-0.44145600	-3.29953000	-1.55431300
Н	-1.05396900	-4.04627300	-1.01427200
Н	-0.69232300	-3.36669800	-2.62465200
Н	0.62531800	-3.49581200	-1.37511200
С	-4.49851300	-2.98736600	2.43905300
Н	-3.68921300	-3.53637200	2.94052100
Н	-4.76753500	-2.08035900	3.00468900
Н	-5.40038900	-3.62464200	2.39855500
Cu	-0.08130100	0.48417100	0.46457800
0	2.25124400	2.59182700	1.49910800
S	1.05261400	3.26241400	0.94546800
0	-0.17271600	2.32804800	0.98881500
0	0.72841900	4.61363600	1.34507900
С	1.36065400	3.28897500	-0.90154600
F	1.53152900	2.01179400	-1.32401600
F	0.29772900	3.78214800	-1.53551400
F	2.43156800	3.98625800	-1.20427100
0	1.63028100	0.06474700	1.57264600
Н	2.00502500	0.98546500	1.73276800
С	2.58437900	-0.75703100	0.99781100
С	2.49455800	-2.13360100	1.20855500
С	3.60377900	-0.22287300	0.19445600
С	3.42318000	-2.99333000	0.61958400
Н	1.69705900	-2.52377800	1.84405100
С	4.53263500	-1.07435900	-0.38606700
Н	3.66813500	0.85680300	0.04256100
С	4.45453800	-2.46875000	-0.18329400
Н	3.34911400	-4.06505200	0.80799100
Н	5.34598700	-0.68650400	-1.00326800
0	5.40168300	-3.20644400	-0.78715200
С	5.43537700	-4.60689000	-0.59199300
Н	4.51531800	-5.08925200	-0.97375700
Н	6.30048900	-4.97570900	-1.16170000
Н	5.56646800	-4.86030600	0.47667500

ΤS4β'

1 2 Electronic energy: -3787.2355482 Thermal corrections: 0.3281563 O -2.38226700 -1.34839200 -1.39291000

С	-0.63503700	0.13156600	-2.29195600
С	-2.59345600	0.94643600	-0.96627500
С	-0.26878300	1.41052700	-2.51895200
Н	-0.16586000	-0.70151300	-2.82451000
Н	-3.29839264	0.77430604	-1.79855542
С	-0.88618500	2.48359500	-1.75825300
Н	0.51142600	1.67734900	-3.23499900
0	-2.03981400	2.26529000	-1.18590400
С	-3.43488162	0.80615734	0.29391585
Н	-3.78296218	-0.23364458	0.38490435
Н	-4.30132534	1.47994288	0.23674489
Н	-0.69476100	3.51174900	-2.05704700
0	-2.70888593	1.21501367	1.45719623
С	-1.58385600	-0.18236500	-1.17788000
Н	-0.97090400	-0.35192600	-0.29239200
С	-2.01870221	0.30996011	2.17293764
C	-2.02948700	-2.52035800	-0.82536700
0	-0.98650300	-2.71168200	-0.21878100
0	-1.90496225	-0.84878128	1.80677678
С	-3.05528700	-3.58199300	-1.06399900
Н	-3.89380500	-3.42964500	-0.35875400
Н	-3.46182700	-3.51249500	-2.08534300
Н	-2.61454200	-4.57202500	-0.88068300
С	-1.39225086	0.88951224	3.40208110
Н	-1.53729423	0.19250187	4.24333807
Н	-0.30342042	0.98131012	3.23777899
Н	-1.80550535	1.87903242	3.64176396
Cu	0.22207300	-1.79305200	1.06871600
0	2.00318300	-1.04294000	1.45088200
S	2.18867000	0.18536200	0.59113200
0	0.83313400	0.45720900	-0.03061000
0	2.82844300	1.34250500	1.18869200
С	3.26920900	-0.41743500	-0.80616100
F	2.68233700	-1.46773400	-1.38047800
F	3.39805200	0.55475300	-1.70176300
F	4.44753500	-0.76029800	-0.33315200
0	0.29622100	2.94115500	-0.14784400
Н	0.29317219	1.94872876	-0.00189503
С	-0.44434088	4.06352638	0.33872624
С	-1.33674929	3.90368139	1.39916400
С	-0.27446509	5.31809759	-0.24671498
С	-2.05957727	4.99807745	1.87354645
Н	-1.47101956	2.91431371	1.85999462
С	-0.99670678	6.41313168	0.22833993
Н	0.42898228	5.44429500	-1.08239736
С	-1.88927024	6.25330336	1.28820898
Н	-2.76346662	4.87203459	2.70898017
Н	-0.86225624	7.40227041	-0.23318131
0	-2.63047317	7.37521425	1.77486510
С	-2.46694239	8.58849666	1.03587696
Н	-3.05919510	9.36017032	1.48158594
Н	-1.43678254	8.87749520	1.04814619
ц	-2.78248740	8.43566475	0.02494979

II.III Sc-OTf directed attack IM5a_Sc

3 1 Electronic energy: -2601.580906 Thermal corrections: 0.2041366

i nermai co	1100113. 0.20-	+1500	
0	1.30824100	-1.24790300	0.19968600
С	1.03557000	0.87373100	-1.11738200
С	2.21092700	0.70102000	1.13377200
С	0.98041200	2.26750000	-0.99832600
Н	0.63911400	0.33427800	-1.99553800
Н	1.44047100	0.56018300	1.91167300
С	1.73634200	2.85548800	0.07246200
Н	0.68622200	2.93081700	-1.82623100
0	2.31440000	2.18375400	0.98122400
С	3.55113400	0.22761300	1.70300100
Н	3.52059000	-0.86961700	1.81538800
Н	3.67703700	0.68157800	2.69780700
Н	1.91710600	3.94169300	0.13281100
0	4.69542200	0.60706100	0.94293700
С	1.77444600	0.03553300	-0.17442200
Н	2.79433900	-0.14865700	-0.74495900
С	5.14544800	-0.07237200	-0.13699900
С	1.31382800	-2.31830900	-0.74544600
0	1.52331300	-2.06002000	-1.88799000
0	4.43220500	-0.82460900	-0.79174500
С	1.04503200	-3.64159800	-0.10154100
Н	1.65246400	-3.76942600	0.80891000
Н	-0.01813100	-3.69585000	0.19547900
Н	1.25081700	-4.45328600	-0.81719300
С	6.56893800	0.20212700	-0.47907800
Н	6.81327000	-0.15337900	-1.49168100
Н	6.78837100	1.27944700	-0.37381100
Н	7.20030400	-0.32800500	0.26140500
0	-3.25838900	-2.69348300	-0.74350300
S	-3.31309700	-1.31674600	-0.36519900
0	-2.09486600	-0.41923600	-1.13116500
0	-4.47702800	-0.44778500	-0.31452400
С	-2.46401300	-1.03446300	1.31741900
F	-1.41130900	-1.75958500	1.46651100
F	-2.00692900	0.37228600	1.09122300
F	-3.27799600	-1.03138200	2.29666700
0	-3.26947900	2.48726700	-0.61801500
Н	-4.03407700	1.86235300	-0.73014400
С	-3.82074400	3.75028000	-0.00540300
Н	-4.08007700	3.52936500	1.04087700
Н	-3.04219100	4.52131600	-0.08496200
Н	-4.70508900	4.03756300	-0.59508400
Sc	-1.57520900	1.37219100	-0.66451100

II.IV Cu-OTf blocked attack $IM5 \alpha_blocked_from_coordinated_route$

0 2 Electronic energy: -5434.491190 Thermal corrections: 0.495046

Thermal COI	100115. 0.49.	0040	
0	2.39222600	0.33754700	1.67013900
С	0.43347500	0.11593400	0.43408100
С	0.50316100	-0.74808500	2.81083700
С	0.04010000	-1.13441900	0.03103800
Н	0.64791000	0.89414600	-0.30074200
Н	1.28458800	-0.80478900	3.58016900
Н	-0.12507500	-1.36889300	-1.02268500
0	0.44215300	-2.06341700	2.26670800
С	-0.76268400	-0.41460100	3.59004900
Н	-0.68399600	0.59616800	4.01892500
Н	-0.86903800	-1.13176200	4.42145200
0	0.52868000	4.87277800	0.18488500
0	-1.92713700	-0.51105200	2.77022200
С	0.94936300	0.33723900	1.81919700
Н	0.66359200	1.32365900	2.20876800
С	-3.06486700	0.02230100	3.29002400
С	3.12551400	0.83642500	2.68356200
0	2.65804800	1.17227400	3.74468900
0	-3.08327100	0.55880200	4.37169700
С	4.58365500	0.90052100	2.30233900
Н	4.90662400	-0.04938500	1.84658000
Н	4.71827500	1.69976200	1.55207300
Н	5.18681500	1.13083200	3.19259100
С	-4.24226500	-0.13217600	2.36961700
Н	-5.16823000	-0.06234700	2.96036900
Н	-4.20964600	0.69772900	1.64285000
Н	-4.19259500	-1.06452100	1.78924800
С	1.38013300	3.82815000	0.34086700
0	1.79194500	3.46988400	1.41716600
С	1.66549200	3.28595900	-1.00782500
С	2.51562900	2.24440900	-1.37987200
С	0.90562300	3.99726800	-1.93300400
С	2.58819600	1.92342600	-2.73647700
Н	3.07329500	1.68859500	-0.62560900
С	0.97625300	3.68042800	-3.28829700
С	1.82680900	2.63879200	-3.67783600
Н	3.23261300	1.10530400	-3.06972900
Н	0.36729700	4.20719900	-4.02651700
Н	1.89202800	2.36667000	-4.73588300
С	0.05259000	4.98329000	-1.17417300
Н	0.23569600	6.02544300	-1.49166500
С	-1.46383400	4.67958800	-1.21492900
Н	-1.95414100	5.41501300	-0.55883800

Н	-1.80578600	4.86508300	-2.24566400
С	-1.79820400	3.27079700	-0.79276500
С	-1.98032100	2.96502400	0.57979000
С	-1.88829800	2.23113800	-1.76837900
0	-1.99174000	1.01183000	-1.58532200
0	-1.84991400	2.67772900	-3.06274000
0	-2.13326900	1.84182800	1.11848900
С	-1.85424700	1.65901800	-4.05245200
Н	-2.69688300	0.96289400	-3.90924000
Н	-1.93391200	2.17902100	-5.02076600
Н	-0.91900900	1.07173300	-4.01473300
0	-1.99673100	4.05342200	1.39238500
С	-1.85520900	3.81986500	2.78440200
Н	-0.86359100	3.38467100	3.00474700
Н	-1.93022600	4.80910900	3.26225800
Н	-2.63622400	3.14697100	3.17474400
Cu	-1.62923500	0.04043600	0.29941300
0	-2.97342000	-1.47607400	-0.10901600
S	-3.08952600	-2.12143400	-1.46896700
0	-1.79280900	-2.40683100	-2.11618400
0	-4.16404100	-1.59831400	-2.31387500
С	-3.68275300	-3.81423400	-0.94418900
F	-3.91495400	-4.58761200	-2.00889500
F	-4.80959300	-3.73445600	-0.23064400
F	-2.75738000	-4.42914200	-0.18470700
С	0.05784300	-2.31805700	0.95647200
Н	-0.90922600	-2.84934100	0.92952800
С	0.66079100	-4.14774200	-0.55260100
Н	0.10058900	-3.61840100	-1.34122000
Н	1.59013700	-4.57537300	-0.95650000
Н	0.01720200	-4.94476200	-0.13794900
0	3.38542000	-2.54525400	1.04486900
0	1.05517200	-3.25556400	0.48940200
Н	2.40420400	-2.87115300	0.81634800
S	4.41143000	-2.80653400	-0.10983300
С	4.02717700	-1.38897100	-1.27207100
0	4.07968500	-4.01163600	-0.86348000
0	5.75370700	-2.55822200	0.38839500
F	4.66900100	-1.58055200	-2.42426000
F	2.72141600	-1.32795800	-1.51373500
F	4.43391900	-0.23361300	-0.75075300

$IM5 \alpha_blocked_from_non_coordinated_route$

0 2 Electronic energy: -5434.453294 Thermal corrections: 0.489944 O -3.73528800 3.25650500 0.95848300

С	-3.18323600	0.90516800	1.07177000
С	-3.51442900	2.01986900	-1.10834300
С	-3.20787700	-0.25925600	0.41900000
Н	-3.21845500	0.96058400	2.16265000
Н	-4.60284600	1.81599300	-1.08774600
Н	-3.28081600	-1.21363100	0.94290100
0	-2.82762800	0.91181400	-1.68167200
C	-3.28881000	3.22936600	-1.99611500
Н	-3.96633500	4.04541000	-1.70653900
Н	-3.48157700	2.94341000	-3.04363100
0	-0.44920600	1.21273300	1.85683900
Ő	-1 94070600	3 68078400	-1 90516700
Č	-3.01081000	2 19229300	0 32491400
н	-1 94781000	2.19229300	0.31288300
C	-1.71772000	4 97103600	-1 55930700
C	3 01108300	4.37105000	1 /1233500
0	1 811/1800	4.31003300	1.41253500
0	-1.61144600	4.38038900	1.33330300
0 C	-2.00400400	5.76112100	1.02804200
	-3.91003300	5.40298500	1.92604200
П	-4.09329700	0.09839900 5.00484800	1.08823100
H	-4.8/414900	5.00484800	2.28088300
H	-3.39385800	5.95298700	2.72894700
C	-0.2539/300	5.22859700	-1.34046600
H	0.38169300	4.53628800	-1.91082100
H	-0.02616800	6.28073900	-1.57242800
H	-0.05854100	5.05431200	-0.26/52900
C	-0.10305200	2.04188800	2.8/4/8900
0	-0.90513300	2.45413000	3.67687400
С	1.35860600	2.26143000	2.77665300
С	2.20019400	3.00403400	3.60638000
С	1.84261400	1.53340600	1.68806300
С	3.56711500	2.99286100	3.32182700
Н	1.78779500	3.56058700	4.45269300
С	3.21001000	1.50544400	1.41188600
С	4.06213900	2.24175400	2.24013200
Н	4.26304700	3.55467400	3.95284300
Н	3.60791600	0.90330400	0.59647400
Н	5.13928100	2.21216900	2.05018300
С	0.67732900	0.87781200	1.00114500
Н	0.77158900	-0.21816200	0.99255200
С	0.38531500	1.38223900	-0.42416600
Н	-0.60519500	1.00923100	-0.70944000
Н	0.33125300	2.47818400	-0.39464400
С	1.42204200	0.91946800	-1.41226200
С	2.50204500	1.75013700	-1.76438100
С	1.41354300	-0.44739600	-1.84232100
0	2.23668500	-1.02551500	-2.56112700
0	0.34940900	-1.15962100	-1.34696900
Ő	3.58608600	1.44206700	-2.33496300
Č	0.43427500	-2.57168500	-1.50459200
н	1 35347300	-2 94948200	-1 02832900
Н	-0.46000800	-2.98729800	-1.01539900
Н	0.44584300	-2 85235900	-2 57211200
0	2 35513700	3 06151600	-1 39179100
Č	2.55515700	3 86800000	-1 44213600
н	3.91396/100	3 94560000	-2 46774600
Ч	3.21320400	1 86767600	-1.070/1000
11	5.20521100	+.00207000	-1.0/241000

Н	4.30633700	3.46546700	-0.78635400
Cu	4.23503800	-0.33671700	-1.84580800
0	5.04494700	-1.76450100	-0.82781300
S	4.42359200	-1.96895900	0.54425100
0	2.98577500	-1.64457700	0.59872500
0	5.26598300	-1.50115700	1.64704200
С	4.47176800	-3.82943000	0.65241600
F	4.01189000	-4.23182600	1.84104400
F	3.71087000	-4.38215200	-0.29850500
F	5.71842000	-4.28734400	0.50971300
С	-3.01352900	-0.32165500	-1.06641200
Н	-2.12416200	-0.91971000	-1.32532200
С	-3.97899200	-1.41345200	-2.98318900
Н	-4.94178700	-1.81878300	-3.33187800
Н	-3.67976000	-0.55992800	-3.61232900
Н	-3.20457700	-2.20044700	-3.01844900
0	-4.17652500	-0.97265700	-1.64066400
0	-5.28152500	-2.87777600	-0.44929100
Н	-4.82704900	-2.02308300	-0.86709900
S	-4.25937000	-4.08061400	-0.35700200
0	-4.85553000	-5.29285800	-0.88649500
0	-2.92552000	-3.63973300	-0.75856500
С	-4.21824200	-4.31084300	1.49878000
F	-3.39260600	-5.31125900	1.78162900
F	-5.43354600	-4.60290100	1.94765000
F	-3.78642200	-3.20490300	2.09977600

Supplementary References

- 1. T. Zamysłowski, K. Gorczyca, Y. Zhang, M. Poterała, M. Malinowski, Operationally simple enzymatic deprotection of C-3 position on 3,4,6-tri-*O*-acetyl-D-glucal, *Carbohydr. Res.* 2023, **529**, 108848.
- H. Ding, J. Lyu, X.-L. Zhang, X. Xiao, X.-W. Liu, Efficient and versatile formation of glycosidic bonds via catalytic strain-release glycosylation with glycosyl *ortho-2,2*dimethoxycarbonylcyclopropylbenzoate donors, *Nat. Commun.* 2023, 14, 4010.
- 3. Y. Mori, H. Hayashi, Practical Synthesis of 1,3-*O*-Di-*tert*-butylsilylene-Protected D- and L-Erythritols as a Four-Carbon Chiral Building Block, *J. Org. Chem.* 2001, **66**, 8666–8668.
- 4. L. Alberch, G. Cheng, S.-K. Seo, X. Li, F. P. Boulineau, A. Wei, Stereoelectronic Factors in the Stereoselective Epoxidation of Glycals and 4-Deoxypentenosides, *J. Org. Chem.* 2011, **76**, 2532–2547.
- M. Filice, J. M. Guisan, M. Terreni, J. M. Palomo, Regioselective monodeprotection of peracetylated carbohydrates, *Nat. Protoc.* 2012, 7, 1783–1796.
- S. Yalamanchili, T.-A. Nguyen, A. Zsikla, G. Stamper, A. E. DeYong, J. Florek, O. Vasquez, N. L. B. Pohl, C. S. Bennett, Automated, Multistep Continuous-Flow Synthesis of 2,6-Dideoxy and 3-Amino-2,3,6-trideoxy Monosaccharide Building Blocks, *Angew. Chem. Int. Ed.* 2021, 60, 23171–23175.
- S. Zhang, Y. Ma, J. Li, J. Ma, B. Yu, X. Xie, Molecular matchmaking between the popular weight-loss herb Hoodia gordonii and GPR119, a potential drug target for metabolic disorder, *Proc. Natl. Acad. Sci.* U.S.A. 2014, 111, 14571–14576.
- 8. K. B. Pal, J. Lee, M. Das, X.-W. Liu, Palladium(II)-catalyzed stereoselective synthesis of C-glycosides from glycals with diaryliodonium salts, *Org. Biomol. Chem.* 2020, **18**, 2242–2251.
- W. Yuan, Y. Liu, C. Li, From the Studies of Hydration and Hydrolysis Reactions to the Discovery of a New Organocatalyst and Its Further Applications in Acetalization and Glycosylation, *Asian J. Org. Chem.* 2017, 6, 1428–1439.
- E. I. Balmond, D. Benito-Alifonso, D. M. Coe, R. W. Alder, E. M. McGarrigle, M. C. Galan, A 3,4trans-Fused Cyclic Protecting Group Facilitates α-Selective Catalytic Synthesis of 2-Deoxyglycosides, *Angew. Chem. Int. Ed.* 2014, **53**, 8190–8194.
- F. J. Reyes-Zurita, M. Medina-O'Donnell, R. M. Ferrer-Martin, E. E. Rufino-Palomares, S. Martin-Fonseca, F. Rivas, A. Mart nez, A. Garc n-Granados, A. Pérez-Jiménez, L. Garc n-Salguero, J. Peragón, K. Mokhtari, P. P. Medina, A. Parra, J. A. Lupi áñez, The oleanolic acid derivative, 3-Osuccinyl-28-O-benzyl oleanolate, induces apoptosis in B16–F10 melanoma cells *via* the mitochondrial apoptotic pathway, *RSC Adv.* 2016, 6, 93590–93601.
- E. I. Balmond, D. M.Coe, M. C. Galan, E. M. McGarrigle, α-Selective Organocatalytic Synthesis of 2-Deoxygalactosides, *Angew. Chem. Int. Ed.* 2012, **51**, 9152–9155.
- 13. D. B. Werz, P. H. Seeberger, Total Synthesis of Antigen *Bacillus Anthracis* Tetrasaccharide— Creation of an Anthrax Vaccine Candidate, *Angew. Chem. Int. Ed.* 2005, **44**, 6315–6318.
- T. Ogawa, K. Katano, K. Sasajima, M. Matsui, Synthetic studies on cell surface glycans 3: Branching pentasaccharides of glycoprotein, *Tetrahedron* 1981, 37, 2779-2786
- N. Floyd, B.Vijayakrishnan, J. R. Koeppe, B. G. Davis, Thiyl Glycosylation of Olefinic Proteins: S-Linked Glycoconjugate Synthesis, *Angew. Chem. Int. Ed.* 2009, 48, 7798–7802.

- Y. Liu, T. Song, W. Meng, Y. Xu, P. G.Wang, W. Zhao, Hafnium(IV) triflate as a highly efficient catalyst for Ferrier rearrangement of *O*- and *S*-nucleophiles with glycals, *Tetrahedron Lett.* 2016, 57, 2758–2762.
- K. De, J. Legros, B. Crousse, D. Bonnet-Delpon, Synthesis of 2,3-unsaturated glycosides via metal-free Ferrier reaction, *Tetrahedron* 2008, 64, 10497–10500.
- 18. B. K. Gorityala, S. Cai, J. Ma, X.-W. Liu, (S)-Camphorsulfonic acid catalyzed highly stereoselective synthesis of pseudoglycosides, *Bioorg. Med. Chem. Lett.* 2009, **19**, 3093–3095.
- G. Narasimha, B. Srinivas, P. R. Krishna, S. Kashyap, Zn(OTf)₂-Catalyzed Glycosylation of Glycals: Synthesis of 2,3-Unsaturated Glycosides via a Ferrier Reaction, *Synlett* 2014, 25, 523–526.
- B. Srinivas, T. R. Reddy, P. R. Krishna, S. Kashyap, Copper(II) Triflate as a Mild and Efficient Catalyst for Ferrier Glycosylation: Synthesis of 2,3-Unsaturated O-Glycosides, Synlett 2014, 25, 1325– 1330.
- 21. P. Chen, S. Li, Y(OTf)₃ as a highly efficient catalyst in Ferrier Rearrangement for the synthesis of *O*and *S*-2,3-unsaturated glycopyranosides, *Tetrahedron Lett.* 2014, **55**, 5813–5816.
- 22. M. Takumi, H. Sakaue, A. Nagaki, Flash Electrochemical Approach to Carbocations, *Angew. Chem. Int. Ed.* 2022, **61**, e202116177.
- H. Grugel, F. Albrecht, M. M. K. Boysen, *pseudo* Enantiomeric Carbohydrate Olefin Ligands Case Study and Application in Kinetic Resolution in Rhodium(I)-Catalysed 1,4-Addition, *Adv. Synth.Catal.* 2014, **356**, 3289–3294.
- 24. J. Zhou, H. Chen, J. Shan, J. Li, G. Yang, X. Chen, K. Xin, J. Zhang, J. Tang, FeCl₃ 6H₂O/C: An Efficient and Recyclable Catalyst for the Synthesis of 2,3-Unsaturated *O* and *S*-Glycosides, *J. Carbohydr. Chem.* 2014, **33**, 313–325.
- 25. A. Sau, C. Palo-Nieto, M. C. Galan, Substrate-Controlled Direct α-Stereoselective Synthesis of Deoxyglycosides from Glycals Using B(C₆F₅)₃ as Catalyst, J. Org. Chem. 2019, 84, 2415–2424.
- 26. J. Wang, C. Deng, Q. Zhang, Y. Chai, Tuning the Chemoselectivity of Silyl Protected Rhamnals by Temperature and Brønsted Acidity: Kinetically Controlled 1,2-Addition vs Thermodynamically Controlled Ferrier Rearrangement, *Org. Lett.* 2019, **21**, 1103–1107.
- 27. P. Chen, B. Bi, Preparation of 2,3-unsaturated pseudoglycosides with Ferrier Rearrangement promoted by Tm(OTf)₃ as a highly efficient catalyst, *Tetrahedron Lett.* 2015, **56**, 4895–4899.
- M.-C. Yuan, T.-K. Yeh, C.-T. Chen, J.-S. Song, Y.-C. Huang, T.-C. Hsieh, C.-Y. Huang, Y.-L. Huang, M.-H. Wang, S.-H. Wu, C.-H. Yao, Y.-S. Chao, J.-C. Lee, Identification of an oxime-containing Cglucosylarene as a potential inhibitor of sodium-dependent glucose co-transporter 2, Eur. J. Med. Chem. 2018, 143, 611–620.

NMR Spectra

¹H spectrum for **S1**

¹H spectrum for **5a**

¹H and ¹³C spectra for **1a**

 ^1H and ^{13}C spectra for 1b

 ^1H and ^{13}C spectra for 1c

 $^1\!H$ and $^{13}\!C$ spectra for $\boldsymbol{1d}$

 ^1H and ^{13}C spectra for 2u

5.5 10.0 9.5 9.0 8.5 8.0 7.5 6.5 6.0 5.0 4.5 fl (ppm) 3.0 1.0 0.0 7.0 2.5 2.0 1.5 0.5 4.0 3.5

¹H spectrum for **3b**

¹H spectrum for **3c**

¹H spectrum for **3d**

 1 H and 13 C spectra for **3e**

¹H spectrum for **3f**

10.0 9.5 9.0

8.5

8.0

7.5 7.0 6.5

S78

4.0

3.0

0.5 0.0

1.5 1.0 -0.5

¹H and ¹³C spectra for **3h**

 1 H and 13 C spectra for **3i**

¹H and ¹³C spectra for **3j**

¹H and ¹³C spectra for **3k**

 1 H and 13 C spectra for **3**l

¹H spectrum for **3m**

 1 H and 13 C spectra for **3n**

¹H and ¹³C spectra for **30**

¹H and ¹³C spectra for **3p**

¹H spectrum for 3q

 1 H and 13 C spectra for **3r**

¹H and ¹³C spectra for **3s**

¹H spectrum for **3t**

¹H spectrum for **3u**

¹H and ¹³C spectra for **3ba**

¹H and ¹³C spectra for **3bb**

S92

¹H and ¹³C spectra for **3bc**

¹H spectrum for **3ca**

¹H spectrum for **3cb**

4.5 fl (ppm)

¹H spectrum for **3cc**

¹H spectrum for **3da**

¹H and ¹³C spectra for **3db**

¹H spectrum for **3dc**

 ^1H and 13 C spectra for 7

