Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Base- and metal-free visible-light driven site-selective α -C(sp³)-H functionalization reaction of glycine derivatives with hydroxamic acid derivatives

Shiyun He,^{*a*} Hongying Fan,^{*a*} Xue Zhang,^{*a*} Meiling Ye,^{*a*} Jian Chen,^{*a*} Jinyu Hou,^{*a*} Tianle Huang,^{*a*}, Li Guo,^{*a*} Guanghui Lv^{**b*} and Yong Wu^{**a*}

^{*a*} Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China. E-mail: wyong@scu.edu.cn

^b Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood \ Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China. E-mail: 1083947919@qq.com

Table of contents

1.General Information	3
2. Starting Materials	4
3. Optimization of Reaction conditions	6
4. Scale-up preparation	8
5. Compatibility with biomolecules	9
6. The mechanistic studies	10
7.References	11
8. Characterization of Products	11
9.NMR Spectra	23

1.General Information

Unless otherwise specified, materials were purchased from commercial suppliers and used without further purification. All manipulations were performed in a dried sealed tube equipped with a magnetic stir bar under a nitrogen atmosphere. Except for the specially mentioned dry solvent, all the solvents were treated according to general methods. All the reactions were monitored by TLC and were visualized using UV light. The product purification was done using silica gel column chromatography. TLC characterization was performed with precoated silica gel GF254 (0.2 mm), while column chromatography characterization was performed with silica gel (100-200 mesh). ¹H NMR and ¹³C NMR spectra were recorded with tetramethylsilane (TMS, δ = 0.00 ppm) as the internal standard. ¹H NMR spectra were recorded at 400 or 600 MHz (Varian), and ¹³C NMR spectra were recorded at 100 or 150 MHz (Varian). ¹⁹F NMR spectra were recorded at 376 MHz. Chemical shifts are reported in ppm downfield from CDCl₃ (δ = 7.26 ppm) for ¹H NMR, and chemical shifts for ¹³C NMR spectra are reported in ppm relative to the central CDCl₃ ($\delta = 77.0$ ppm) Coupling constants were given in Hz. The following notations were used: br-broad, s-singlet, d-doublet, t-triplet, q-quartet, m-multiplet, dd-doublet of doublet, dt-doublet of triplet, td-triplet of doublet, and ddd-doublet of doublet. Melting points were measured with a YRT-3 melting point apparatus (Shantou Keyi Instrument & Equipment Co., Ltd., Shantou, China). The blue light source (455nm) was provided by Shanghai 3S Technology Co., Ltd SSSTECH-LAL1CV 1.0 parallel reactor (Figure S1). The volume of the reaction tube is 10 ml.

Figure S1. Photoreactor and reaction tube in this study

2. Starting Materials

N-aryl protected derivatives

2.1 Preparation of Glycine Derivatives 1

Following the literature procedure:¹a mixture of aniline (10 mmol), the corresponding bromoacetate-ester (1.1 equiv), potassium carbonate anhydrous (1.2 equiv) and sodium iodide (1.2 equiv) in 30 mL of dry acetone was refluxed for 12 h. The resulting mixture was cooled to room temperature, and filtered through a celite. The celite was washed with CH_2Cl_2 , the combined organic layer was evaporated to

remove the solvent and the crude product was then purified by column chromatography. The pure product was obtained as solid or liquid.

Following the literature procedure²: In round-bottom flask, phenylglycine (1.0 equiv) were dissolved in DCM (0.33 M), HOBT (1.45 equiv) and EDCI (1.6 equiv) were added in turn. The mixture was stirred at room temperature. After 30 min, DIEA (4.0 equiv) and ester-protected amino acids (1.0 equiv) were added at 0°C. The reaction mixture was warmed to room temperature and stirred overnight. The resulting mixture was washed by citric acid solution, saturated sodium bicarbonate solution and brine. The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography and the title compounds were obtained.

2.2 Preparation of hydroxamide compounds 2

Hydroxamide compounds 2 are known compounds, and they were synthesized according to the literature procedure³

Step 1:

To a solution of carboxylic acid (1.0 equiv.) and 3-5 drops of anhydrous DMF in anhydrous CH_2Cl_2 (0.5 M) at 0 °C, oxalyl chloride (1.5 equiv.) was added dropwise over 10 minutes. The reaction was vigorously stirred at room temperature for 3 h. The solvent was removed in vacuum. Anhydrous CH_2Cl_2 was added to remove the residual of oxalyl chloride in vacuum. Then the resulting acyl chloride was redissolved in anhydrous acetonitrile and used directly for the next step without further purification. **Step 2:**

A solution of the N-(tert-butyl)hydroxylamine hydrochloride in anhydrous THF (0.4 M) was cooled to 0 °C, treated with DIPEA (2.0 equiv.) and stirred for 15 minutes. The acyl chloride (1.0 equiv.) in anhydrous acetonitrile was added dropwise over 15 minutes and the mixture was allowed to warm to room temperature overnight. The mixture was diluted with saturated NaHCO₃ and EtOAc and the layers were separated. The aqueous layer was extracted twice with EtOAc and the combined organic layers

were washed with 1 M HCl, saturated NaHCO₃ and brine, successively, and then evaporated. Purification by column chromatography on silica gel eluting with petroleum ether and EtOAc gave the hydroxylamine. **Step 3:**

To a solution of hydroxylamine (1.1 equiv.) in anhydrous CH_2Cl_2 (0.35 M) at 0 °C, Et₃N (1.5 equiv.) was added dropwise. 4-trifluoromethyl-benzoyl chloride (1.0 equiv.) was then added dropwise over 5 minutes. The reaction was vigorously stirred at room temperature for 2 h. The mixture was diluted with saturated NaHCO₃ and CH_2Cl_2 and the layers were separated. The aqueous layer was extracted twice with CH_2Cl_2 and the combined organic layers were washed with 1 M HCl, saturated NaHCO₃ and brine, successively, and then evaporated. Purification by column chromatography on silica gel eluting with petroleum ether and EtOAc gave the hydroxamide compounds 2.

3. Optimization of Reaction conditions

3.1 General Procedure for the synthesis of products 3 (3a as an example).

In a dry 10 ml sealed glass tube, add **1a** (0.10 mmol, 1.0 equiv.), **2a** (0.15 mmol, 1.5 equiv.) and photocatalyst Ph-PTZ (5 mol%). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, add solvent DMSO (1 mL). After irradiating the reaction mixture with 12W Blue LEDs for 24h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by silica gel chromatography to obtain the products **3a**.

H O N OE 1a	t +	LN 0 2a		
Entry	Photocatalyst	Base	Slovent	Yields(%) ^a
1	4CzIPN	NaHCO ₃	DMSO	715
2	4CzIPN	DABCO	DMSO	77.5
3	4CzIPN	DABCO	MeCN	trace
4	4CzIPN	None	DMSO	74.0

3.2 Optimization of the Reaction 1a, 2a

^a Reaction conditions: **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.15 mmol, 1.5 equiv.), Slovent (1.0 mL), PC (5 mol%), Base (2.0 equiv), Blue LEDs 12 W, for 24 h, under N₂, isolated yield.

Photocatalyst

H O OEt + F ₃ C	PC PC 12 W Blue Leds DMSO 2a	- H COOEt J H COOEt 3a
Entry	Photocatalyst	Yields(%) ^a
1	4CzIPN	74.0
2	4CzTPN	72.0
3	Eosin Y	68.3
4	Ph-PTZ	94.0
5	fac-Ir(ppy) ₃	trace
6	Mes-Acr ⁺ ClO ₄ ⁻	0
7	$Ru(bpy)_3Cl_2$	0
8	[Ir(dFCF ₃ ppy) ₂ (bpy)]PF ₆	trace
9	none	0

^a Reaction conditions: **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.15 mmol, 1.5 equiv.), DMSO (1.0 mL), PC (5 mol%), Blue LEDs 12 W, for 24 h, under N₂, isolated yield.

Solvent

H OEt + F ₃ C	Ph-PTZ Ph-PTZ 12 W Blue Led Slovent 2a	$\xrightarrow{s} \qquad \qquad$
Entry	Solvent	Yields(%) ^a
1	DMSO	94.0
2	DMF	50.5
3	DMA	44.7
4	NMP	0
5	THF	trace
6	Dioxane	0

7	Acetone	trace
8	EA	0
9	MeCN	trace
10	MeOH	0

^a Reaction conditions: **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.15 mmol, 1.5 equiv.), Solvent (1.0 mL), Ph-PTZ (5 mol%), Blue LEDs 12 W, for 24 h, under N₂, isolated yield.

Light source

H O OEt 1a	+ $F_{3}C$ $Ph-PTZ$ $Light Source$ DMSO $DMSO$	
Entry	Light source	Yields(%) ^a
1	425nm 12W	53.9
2	Blue LEDs 12W	94.0
3	390nm 12W	41.3
4	White LEDs 12W	60.0
5	525nm 12W	trace
6	425nm 2*40W Kessil lamp	65.0
7	455nm 2*40W Kessil lamp	78.5

^a Reaction conditions: **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.15 mmol, 1.5 equiv.), DMSO (1.0 mL), Ph-PTZ (5 mol%), Light source , for 24 h, under N₂, isolated yield.

4. Scale-up preparation

To a flame-dried 50 ml thick-walled pressure bottle equipped with magnetic stirrer, add **1a** (6.0 mmol, 1.0 equiv.), **2a** (9.0 mmol, 1.5 equiv.), photocatalyst Ph-PTZ (5 mol%) and 35 mL dry DMSO. The flask was charged with argon (three times). After irradiating the reaction mixture with 12W Blue LEDs for 24h (Figure S2). The resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. The crude product was purified by column chromatography on silica gel to give the pure product **3a**.

5. Compatibility with biomolecules

ŀ	H Q Q	\downarrow ,	Biom		OOEt
İ	OEt +	o-Ń	Ph-PT	Z (5 mol%)	∼ H ×
	1a F ₃ C	0 2a	DMSO / H ₂ 2*40 W Blu	O (4/1), 37 °C, e Leds, N ₂ , 24h 3a	0 \
Entry	Biomolecules	Yields ^a	Entry	Biomolecules	Yields ^a
1	none	65%	4	10 mg ml ⁻¹ Lysozyme	47%
2	HN H_2N N H_2N N H_2 N H H H H H H H H H H	41%	5	HO HO OH OH OH OH OH OH OH	44%
3	$\begin{array}{c} O \\ HN \\ HN \\ H \\ S \end{array} \begin{array}{c} O \\ G \\$	51%	6	C N H L-Proline 1.0 equiv	40%

In a dry 10 ml sealed glass tube, add **1a** (0.10 mmol, 1.0 equiv.), **2a** (0.15 mmol, 1.5 equiv.), photocatalyst Ph-PTZ (5 mol%) and biomolecules. Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, add solvent DMSO (0.8 ml) and H₂O (0.2 ml). The vial was sealed and exposed to Blue LEDs at 37 °C for 24 h (Figure S3).

Figure S3 The photoreactor of biomolecules reaction

6. The mechanistic studies

6.1 Radical trapping experiments

In a dry 10 ml sealed glass tube, **1a** (0.10 mmol, 1.0 equiv.), **2a** (0.15 mmol, 1.5 equiv.), photocatalyst Ph-PTZ (5 mol%) and TEMPO (0.30 mmol, 3.0 equiv) were added. Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, add solvent DMSO (1 mL). After irradiating the reaction mixture with 12W Blue LEDs ($\lambda = 455$ nm) for 24h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo.

When 3.0 equiv. of TEMPO was subjected into the reaction of 1a with 2a under the standard conditions, only a trace amount of **3a** was observed, along with the TEMPO adduct **3a'** was detected by LC-HRMS (327.3).

1a (0.10 mmol, 1.0 equiv.), 2a (0.15 mmol, 1.5 equiv.), photocatalyst Ph-PTZ (5 mol%) were added in a dry 10 ml sealed glass tube. Then, the tube was evacuated and backfilled with nitrogen (three times). Then BHT (0.3 mmol, 3.0 equiv.), and 1 mL DMSO were injected. The reaction mixture with 12W Blue LEDs ($\lambda = 455$ nm) for 24h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. The radical trapping product 4a (68%) was obtained by column chromatography on silica gel.

Only a trace amount of 3a was observed. This result indicates that a radical pathway might be involved in this transformation.

In a dry 10 ml sealed glass tube, **1a** (0.10 mmol, 1.0 equiv.), **2a** (0.15 mmol, 1.5 equiv.), photocatalyst Ph-PTZ (5 mol%) were added. Then, the tube was evacuated and backfilled with nitrogen (three times). Then 1,1-diphenylene (0.3 mmol, 3.0 equiv.), and 1 mL dry DMSO were injected. The reaction mixture with 12W Blue LEDs (λ = 455 nm) for 24h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. The radical trapping product **4a** (68%) was obtained by column chromatography on silica gel.

7.References

[1] A. V. Jerezano, E. M. Labarrios and F. E. Jiménez. Iodine-mediated one-pot synthesis of indoles and 3-dimethylaminoindoles via annulation of enaminones. *Arkivoc*, 2014, 318-53.

[2] W. Chao, G. Meng, Qi. Ru. Visible-light-driven, copper-catalyzed decarboxylative C (sp³)-H alkylation of glycine and peptides. *Angewandte Chemie*, 2018, **130(48)**, 16067-16072.

[3] H. Chen, L. Guo, S. Yu. Primary, Secondary, and Tertiary gamma-C(sp³)-H Vinylation of Amides via Organic Photoredox-Catalyzed Hydrogen Atom Transfer. *Org Lett*, 2018, **20** (19), 6255-6259.

8. Characterization of Products

Ethyl 6-(tert-butylamino)-3,3-dimethyl-6-oxo-2-(phenylamino)hexanoate (3a).

Yellow solid (94%, 32.6 mg); m.p.: 115-120 °C; $R_f = 0.30$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.12 (m, 2H), 6.76 – 6.72 (m, 1H), 6.69 – 6.61 (m, 2H), 5.26 (s, 1H), 4.17 – 4.12 (m, 2H), 3.83 (s, 1H), 2.23 – 2.04 (m, 2H), 1.79 – 1.70 (m, 2H), 1.31 (s, 9H), 1.21 (t, *J* = 7.1 Hz, 3H), 1.03 (d, *J* = 4.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.22, 172.36, 147.57, 129.48, 118.72, 114.06, 64.01, 60.93, 51.24, 36.83, 35.68, 32.58, 28.93, 24.29, 23.59, 14.42. HRMS (ESI) calcd for C₂₀H₃₃N₂O₃ [M+H]⁺ 349.4945, found 349.4940.

Ethyl 6-(tert-butylamino)-3,3-dimethyl-6-oxo-2-(p-tolylamino)hexanoate (3b).

Yellow solid (99%, 35.9 mg) ; m.p.: 120-125 °C; $R_f = 0.35$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 6.97 (d, J = 8.3 Hz, 2H), 6.60 – 6.54 (m, 2H), 5.29 (s, 1H), 4.16 – 4.09 (m, 2H), 3.78 (s, 1H), 2.22 (s, 3H), 2.18 – 2.02 (m, 2H), 1.80 – 1.65 (m, 2H), 1.31 (s, 9H), 1.21 (t, J = 7.1 Hz, 3H), 1.02 (d, J = 4.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.24, 171.30, 144.11, 128.79, 126.81, 113.09, 63.22, 59.69, 50.04, 35.60, 34.59, 31.42, 27.75, 23.15, 22.42, 19.35, 13.27. HRMS (ESI) calcd for C₂₁H₃₅N₂O₃ [M+H]⁺ 363.5215, found 363.5211.

Ethyl 6-(tert-butylamino)-2-((4-methoxyphenyl)amino)-3,3-dimethyl-6oxohexanoate (3c).

Colorless oil (98%, 36.9 mg); $R_f = 0.35$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 6.78 – 6.70 (m, 2H), 6.66 – 6.56 (m, 2H), 5.33 (s, 1H), 4.13 – 4.09 (m, 2H), 3.72 (s, 3H), 3.70 (s, 1H), 2.21 – 2.03 (m, 2H), 1.76 – 1.70 (m, 2H), 1.30 (s, 9H), 1.19 (t, J = 7.1 Hz, 3H), 1.01 (d, J = 6.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.37, 171.33, 151.89, 140.47, 114.65, 113.82, 64.34, 59.67, 54.67, 50.04, 35.52, 34.57, 31.42, 27.76, 23.14, 22.40, 13.27. HRMS (ESI) calcd for C₂₁H₃₅N₂O₄ [M+H]⁺ 379.5205, found 379.5210.

Ethyl 2-((4-(tert-butyl)phenyl)amino)-6-(tert-butylamino)-3,3-dimethyl-6oxohexanoate (3d).

Yellow oil (76%, 30.7 mg) ; $R_f = 0.30$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.14 (m, 2H), 6.63 – 6.54 (m, 2H), 5.29 (s, 1H), 4.16 – 4.11 (m, 3H), 3.80 (s, 1H), 2.24 – 2.03 (m, 2H), 1.80 – 1.66 (m, 2H), 1.31 (s, 9H), 1.22 (t, *J* = 7.2 Hz, 3H), 1.03 (d, *J* = 4.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.42, 172.41, 145.12, 141.40, 126.22, 113.70, 64.13, 60.84, 51.18, 36.82, 35.67, 33.99, 32.59, 31.61, 28.90, 24.25, 23.58, 14.39. HRMS (ESI) calcd for C₂₄H₄₁N₂O₃ [M+H]⁺ 405.6025, found 405.6026.

Ethyl 6-(tert-butylamino)-2-((4-fluorophenyl)amino)-3,3-dimethyl-6oxohexanoate (3e).

Yellow oil (99%, 33.0 mg); $R_f = 0.25$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 6.96 – 6.82 (m, 2H), 6.64 – 6.53 (m, 2H), 5.28 (s, 1H), 4.15 – 4.12 (m, 2H), 3.72 (s, 1H), 2.22 – 2.01 (m, 2H), 1.76 – 1.71 (m, 2H), 1.32 (s, 8H), 1.21 (t, J = 7.1 Hz, 3H), 1.02 (d, J = 5.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.21, 172.32, 156.57 (d, J = 236.4 Hz), 143.90 (d, J = 2.0 Hz), 115.88 (d, J = 22.3 Hz), 115.29 (d, J

= 7.5 Hz), 65.17, 60.95, 51.26, 36.72, 35.54, 32.50, 28.92, 24.26, 23.51, 14.41. 19 **F**

NMR (376 MHz, CDCl3) δ -126.02. **HRMS (ESI)** calcd for C₂₀H₃₂FN₂O₃ [M+H]⁺ 367.4849, found 367.4845.

Ethyl 6-(tert-butylamino)-2-((4-chlorophenyl)amino)-3,3-dimethyl-6oxohexanoate (3f).

Yellow oil (85%, 32.5 mg) ; $R_f = 0.25$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.05 (m, 2H), 6.60 – 6.53 (m, 2H), 5.26 (s, 1H), 4.17 – 4.11 (m, 2H), 3.76 (s, 1H), 2.19 – 2.05 (m, 2H), 1.73 (dd, J = 9.2, 6.0 Hz, 3H), 1.31 (s, 9H), 1.22 (t, J = 7.2 Hz, 3H), 1.02 (d, J = 3.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.94, 172.22, 146.19, 129.29, 123.32, 115.18, 64.33, 61.06, 51.28, 36.81, 35.46, 32.46, 28.92, 24.24, 23.52, 14.42. HRMS (ESI) calcd for C₂₀H₃₂ClN₂O₃ [M+H]⁺ 383.9365, found 383.9360.

Ethyl 2-((4-bromophenyl)amino)-6-(tert-butylamino)-3,3-dimethyl-6oxohexanoate(3g)

Yellow oil (89%, 38.0 mg); $R_f = 0.25$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, Chloroform-d) δ 7.17 (d, J = 8.3 Hz, 2H), 6.46 (d, J = 8.8 Hz, 2H), 5.21 (s, 1H), 4.12 – 4.04 (m, 2H), 3.69 (s, 1H), 2.13 – 1.96 (m, 2H), 1.70 – 1.63 (m, 2H), 1.29 – 1.23 (m, 9H), 1.17 – 1.12 (m, 3H), 0.95 (d, J = 3.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl3) δ 172.86, 172.20, 146.61, 132.17, 115.63, 110.37, 64.18, 61.07, 51.28, 36.81, 35.44, 32.44, 28.92, 24.24, 23.52, 14.42. HRMS (ESI) calcd for C₂₀H₃₂BrN₂O₃ [M+H]⁺ 428.3905, found 428.3912.

Ethyl 6-(tert-butylamino)-2-((4-iodophenyl)amino)-3,3-dimethyl-6-oxohexanoate (3h).

Yellow oil (81%, 38.0 mg); $R_f = 0.25$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.36 (m, 2H), 6.47 – 6.41 (m, 2H), 5.25 (s, 1H), 4.20 (s, 1H), 4.17 – 4.11 (m, 2H), 3.76 (d, J = 10.1 Hz, 1H), 2.20 – 2.03 (m, 2H), 1.74 – 1.68 (m, 2H), 1.31 (s, 9H), 1.22 (t, J = 7.1 Hz, 3H), 1.01 (d, J = 2.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.83, 172.17, 147.23, 138.03, 116.16, 79.51, 63.92, 61.08, 51.27, 36.82, 35.42, 32.42, 28.92, 24.23, 23.52, 14.42. HRMS (ESI) calcd for C₂₀H₃₂IN₂O₃ [M+H]⁺ 475.3910, found 475.3915.

Ethyl

6-(tert-butylamino)-3,3-dimethyl-6-oxo-2-((4-

(trifluoromethyl)phenyl)amino)hexanoate (3i)

Yellow oil (50%, 20.8 mg) ; $R_f = 0.25$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 8.4 Hz, 2H), 5.26 (s, 1H), 4.50 (d, J = 10.0 Hz, 1H), 4.19 – 4.14 (m , 2H), 3.86 (d, J = 9.2 Hz, 1H), 2.26 – 2.02 (m, 2H), 1.78 – 1.69 (m, 2H), 1.32 (s, 9H), 1.23 (t, J = 7.1 Hz, 3H), 1.03 (d, J = 2.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.54, 172.09, 150.13, 126.83 (q, J = 3.7 Hz), 124.87 (d, J = 270.5 Hz), 120.15 (q, J = 32.7 Hz), 112.98, 63.55, 61.22, 51.30, 36.97, 35.25, 32.36, 28.90, 24.19, 23.53, 14.39. ¹⁹F NMR (376 MHz, CDCl₃) δ -61.23. HRMS (ESI) calcd for C₂₁H₃₂F₃N₂O₃ [M+H]⁺ 417.4927, found 417.4928.

Ethyl

6-(tert-butylamino)-2-((4-cyanophenyl)amino)-3,3-dimethyl-6-

oxohexanoate (3j).

Yellow oil (57%, 21.3mg) ; $R_f = 0.30$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 6.64 – 6.58 (m, 2H), 5.29 (s, 1H), 4.20 – 4.15 (m, 2H), 3.86 (s, 1H), 2.22 – 2.02 (m, 3H), 1.73 (t, J = 8.2 Hz, 2H), 1.32 (s, 9H), 1.25 – 1.24 (m, 3H), 1.02 (d, J = 2.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.06, 171.97, 150.85, 133.89, 120.15, 113.26, 100.25, 63.37, 61.37, 51.34, 37.10, 34.94, 32.23, 28.90, 24.17, 23.52, 14.38. HRMS (ESI) calcd for C₂₁H₃₂N₃O₃ [M+H]⁺ 374.5045, found 374.5040.

2-((4-acetylphenyl)amino)-6-(tert-butylamino)-3,3-dimethyl-6-

oxohexanoate (3k).

Ethyl

Yellow oil (78%, 30.5mg) ; $R_f = 0.25$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.75 (m, 2H), 6.65 – 6.56 (m, 2H), 5.35 (s, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.92 (d, *J* = 8.4 Hz, 1H), 2.48 (s, 3H), 2.25 – 2.02 (m, 3H), 1.79 – 1.71 (m, 2H), 1.31 (s, 9H), 1.22 (t, *J* = 7.1 Hz, 3H), 1.03 (d, *J* = 2.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 196.50, 172.28, 172.19, 151.60, 130.88, 127.84, 112.46, 63.31, 61.25, 51.32, 37.08, 35.14, 32.31, 28.88, 26.15, 24.15, 23.52, 14.38. HRMS (ESI) calcd for C_{22H35}N₂O₄ [M+H]⁺ 391.5315, found 391.5319.

Ethyl 6-(tert-butylamino)-3,3-dimethyl-6-oxo-2-(o-tolylamino)hexanoate (3l).

Yellow oil (70%, 25.4mg) ; $R_f = 0.30$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, J = 8.0 Hz, 2H), 6.68 (t, J = 7.4 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 5.27 (s, 1H), 4.17 – 4.11 (m, 2H), 3.89 (s, 1H), 2.21 (s, 3H), 2.13 – 2.04 (m, 2H), 1.79 – 1.69 (m, 2H), 1.31 (s, 9H), 1.22 (t, J = 7.2 Hz, 3H), 1.06 (d, J = 7.6 Hz, 6H). ¹³C NMR (100MHz, CDCl₃) δ 173.35, 172.33, 145.53, 130.54, 127.21, 123.39, 118.20, 110.74, 63.51, 60.91, 51.19, 36.91, 35.87, 32.55, 28.90, 24.23, 23.66, 17.59, 14.38. HRMS (ESI) calcd for C₂₁H₃₅N₂O₃ [M+H]⁺ 363.5215, found 363.5220.

Ethyl 6-(tert-butylamino)-2-((2-methoxyphenyl)amino)-3,3-dimethyl-6oxohexanoate (3m).

Yellow oil (84%, 31.8mg) ; $R_f = 0.30$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 6.84 – 6.80 (m, 1H), 6.77 (dd, J = 8.0, 1.4 Hz, 1H), 6.68 (td, J =7.7, 1.5 Hz, 1H), 6.57 (dd, J = 7.9, 1.5 Hz, 1H), 5.30 (s, 1H), 4.17 – 4.09 (m, 2H), 3.85 (s, 3H), 2.25 – 2.03 (m, 2H), 1.78 – 1.74 (m, 2H), 1.30 (s, 9H), 1.21 (t, J = 7.1 Hz, 3H), 1.06 (d, J = 7.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.20, 172.46, 147.41, 137.40, 121.21, 117.58, 110.44, 109.97, 63.41, 60.76, 55.69, 51.12, 36.82, 35.90, 32.60, 28.85, 24.26, 23.58, 14.36. HRMS (ESI) calcd for C₂₁H₃₅N₂O₄ [M+H]⁺ 379.2594, found 379.2593.

Ethyl 6-(tert-butylamino)-2-((3-methoxyphenyl)amino)-3,3-dimethyl-6oxohexanoate (3n).

Yellow oil (88%, 33.3mg) ; $R_f = 0.35$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.06 (t, J = 8.1 Hz, 1H), 6.27 (ddd, J = 15.8, 8.1, 2.3 Hz, 2H), 6.20 (d, J = 2.4 Hz, 1H), 5.29 (s, 1H), 4.14 (qd, J = 7.2, 2.0 Hz, 2H), 3.81 (s, 1H), 3.75 (s, 3H), 2.22 – 2.04 (m, 2H), 1.75 –1.69 (m, 2H), 1.31 (s, 9H), 1.22 (t, J = 7.2 Hz, 3H), 1.02 (d, J = 4.3 Hz, 6H). ¹³C NMR (100MHz, CDCl₃)) δ 173.12, 172.33, 160.91, 148.96, 130.21, 106.82, 103.87, 99.98, 63.80, 60.91, 55.20, 51.19, 36.80, 35.60, 32.50, 28.88, 24.26, 23.58, 14.39. HRMS (ESI) calcd for C₂₁H₃₅N₂O₄ [M+H]⁺ 379.5205, found 379.5211.

Ethyl 6-(tert-butylamino)-2-((3-fluorophenyl)amino)-3,3-dimethyl-6oxohexanoate (30).

Yellow oil (65%, 23.8mg) ; $R_f = 0.25$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.08 (td, J = 8.1, 6.7 Hz, 1H), 6.43 – 6.39 (m, 2H), 6.35 – 6.31 (m, 1H), 5.29 (s, 1H), 4.18 – 4.13 (m, 2H), 3.78 (s, 1H), 2.19 – 2.08 (m, 2H), 1.75 – 1.70 (m, 2H), 1.32 (s, 9H), 1.23 (t, J = 7.2 Hz, 3H), 1.02 (d, J = 3.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.81, 172.24, 164.10 (d, J = 243.5 Hz), 149.38 (d, J = 10.5 Hz), 130.55 (d, J = 10.2 Hz), 109.82 (d, J = 2.3 Hz), 105.09 (d, J = 21.5 Hz), 100.64 (d, J =25.5 Hz), 63.91, 61.08, 51.28, 36.85, 35.42, 32.42, 28.90, 24.22, 23.55, 14.39. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.52 (dt, J = 11.6, 7.6 Hz). HRMS (ESI) calcd for C₂₀H₃₂FN₂O₃ [M+H]⁺ 367.4849, found 367.4851.

Ethyl 6-(tert-butylamino)-2-((3-chlorophenyl)amino)-3,3-dimethyl-6oxohexanoate (3p).

Yellow oil (54%, 20.7mg) ; $R_f = 0.30$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.06 (t, J = 8.0 Hz, 1H), 6.69 (dd, J = 7.9, 1.9 Hz, 1H), 6.62 (t, J = 2.2 Hz, 1H), 6.52 (dd, J = 8.2, 2.4 Hz, 1H), 5.27 (s, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.78 (s, 1H), 2.22 – 2.04 (m, 2H), 1.75 – 1.70 (m, 2H), 1.32 (s, 9H), 1.23 (t, J = 7.1 Hz, 3H), 1.02 (d, J = 3.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.77, 172.18, 148.75, 135.19, 130.44, 118.56, 113.61, 112.34, 63.81, 61.11, 51.28, 36.87, 35.43, 32.44, 28.92,

24.22, 23.56, 14.42. **HRMS (ESI)** calcd for C₂₀H₃₂ClN₂O₃ [M+H]⁺ 383.9365, found 383.9562.

Ethyl 2-((3-acetylphenyl)amino)-6-(tert-butylamino)-3,3-dimethyl-6oxohexanoate (3q)

Yellow oil (70%, 27.3mg) ; $R_f = 0.25$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 7.6 Hz, 1H), 7.24 (s, 1H), 7.23 (d, J = 2.9 Hz, 1H), 6.85 (dd, J = 8.0, 2.6 Hz, 1H), 5.31 (s, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.89 (s, 1H), 2.56 (s, 3H), 2.21 – 2.08 (m, 2H), 1.77 – 1.72 (m, 2H), 1.31 (s, 9H), 1.22 (d, J = 7.1 Hz, 3H), 1.04 (d, J = 4.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.58, 172.93, 172.23, 147.85, 138.31, 129.61, 119.08, 118.90, 112.45, 63.72, 61.08, 51.27, 36.91, 35.43, 32.46, 28.91, 26.85, 24.25, 23.60, 14.41. HRMS (ESI) calcd for C₂₂H₃₅N₂O₄ [M+H]⁺ 391.5315, found 391.5309.

Benzyl 6-(tert-butylamino)-3,3-dimethyl-6-oxo-2-(phenylamino)hexanoate (3r). Yellow oil (78%, 32.0mg) ; $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (dd, J = 4.8, 2.0 Hz, 3H), 7.17 (dt, J = 6.0, 2.5 Hz, 2H), 7.08 (t, J = 7.7 Hz, 2H), 6.68 (t, J = 7.3 Hz, 1H), 6.57 (d, J = 8.0 Hz, 2H), 5.21 (s, 1H), 5.02 (s, 2H), 3.82 (s, 1H), 3.54 (s, 1H), 2.13 – 1.97 (m, 2H), 1.72 – 1.60 (m, 2H), 1.23 (s, 9H), 0.94 (d, J = 7.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.18, 172.32, 147.41, 135.48, 129.48, 128.65, 128.54, 128.44, 118.81, 114.08, 66.82, 64.06, 51.19, 36.82, 35.61, 32.46, 28.86, 24.32, 23.55. HRMS (ESI) calcd for C₂₅H₃₅N₂O₃ [M+H]⁺ 411.5655, found 411.5653.

Ethyl 6-(tert-butylamino)-3,3-dimethyl-2-(naphthalen-2-ylamino)-6oxohexanoate (3s).

Yellow oil (65%, 26.0mg) ; $R_f = 0.35$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.48 (m, 3H), 7.28 (t, J = 7.5 Hz, 1H), 7.20 – 7.07 (m, 1H), 6.88 (dd, J = 8.8, 2.4 Hz, 1H), 6.77 (d, J = 2.4 Hz, 1H), 5.20 (s, 1H), 4.13 – 4.04 (m, 2H), 3.90 (s, 1H), 2.19 – 1.95 (m, 2H), 1.74 – 1.66 (m, 2H), 1.22 (s, 9H), 1.15 (t, J =7.1 Hz, 3H), 1.01 (d, J = 3.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.15, 172.39, 145.18, 135.02, 129.26, 128.16, 127.72, 126.54, 126.17, 122.66, 118.68, 105.92, 63.83, 60.99, 51.24, 36.80, 35.72, 32.53, 28.87, 24.36, 23.64, 14.43. HRMS (ESI) calcd for C₂₄H₃₅N₂O₃ [M+H]⁺ 399.5545, found 399.5552.

N⁶-(tert-butyl)-N¹,N¹,3,3-tetramethyl-2-(phenylamino)hexanediamide (3t).

Yellow oil (74%, 25.7mg) ; $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.19 – 7.08 (m, 2H), 6.70 (d, J = 7.3 Hz, 1H), 6.66 (d, J = 8.0 Hz, 2H), 5.28 (s, 1H), 4.23 (s, 1H), 3.10 (d, J = 1.9 Hz, 3H), 2.91 (d, J = 1.9 Hz, 3H), 2.17 – 2.07 (m, 2H), 1.88 – 1.69 (m, 2H), 1.31 (d, J = 1.9 Hz, 9H), 1.02 (d, J = 17.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.06, 172.63, 148.23, 129.52, 118.43, 114.27, 59.64, 51.22, 38.43, 38.38, 35.79, 35.50, 32.87, 28.92, 23.29, 23.16. HRMS (ESI) calcd for C₂₀H₃₄N₃O₂ [M+H]⁺ 348.5105, found 348.5110.

N⁶-(tert-butyl)-N¹,3,3-trimethyl-2-(phenylamino)hexanediamide (3u).

Yellow oil (99%, 33.0mg) ; $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, J = 7.7 Hz, 2H), 6.97 (q, J = 5.0 Hz, 1H), 6.78 (t, J = 7.3 Hz, 1H), 6.62 (d, J = 7.9 Hz, 2H), 5.91 (s, 1H), 4.95 (s, 2H), 3.52 (s, 1H), 2.76 (d, J =4.9 Hz, 3H), 2.41 – 2.26 (m, 1H), 2.09 – 2.00 (m, 1H), 1.81 – 1.73 (m, 2H), 1.32 (s, 9H), 1.05 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.33, 172.79, 147.22, 129.50, 119.17, 113.89, 65.98, 51.28, 36.77, 36.25, 32.56, 28.81, 26.13, 24.92, 24.68. HRMS (ESI) calcd for C₁₉H₃₂N₃O₂ [M+H]⁺ 334.4835, found 334.4830.

N⁶-(tert-butyl)-3,3-dimethyl-N¹-phenyl-2-(phenylamino)hexanediamide (3v).

Yellow oil (78%, 30.9mg) ; $R_f = 0.30$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 7.49 – 7.40 (m, 2H), 7.26 – 7.16 (m, 2H), 7.16 – 7.08 (m, 2H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.73 (t, *J* = 7.3 Hz, 1H), 6.67 – 6.58 (m, 2H), 5.73 (s, 1H), 3.54 (s, 1H), 2.37 – 1.98 (m, 2H), 1.86 – 1.67 (m, 2H), 1.27 (s, 9H), 1.04 (d, *J* = 3.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.96, 170.61, 147.28, 137.59, 129.58, 129.01, 124.49, 120.15, 119.55, 114.19, 66.58, 51.30, 37.31, 36.07, 32.64, 28.86, 25.20, 24.78. HRMS (ESI) calcd for C₂₄H₃₄N₃O₂ [M+H]⁺ 396.5545, found 396.5543.

Ethyl 6-(tert-butylamino)-3-methyl-6-oxo-2-(phenylamino)hexanoate (3w).

Yellow oil (91%, 30.4mg) ; 1:1 d.r ; $R_f = 0.35$ (petroleum ether/ethyl acetate = 5:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.15 (ddd, J = 9.0, 7.2, 1.9 Hz, 2H), 6.74 – 6.69 (m, 1H), 6.65 – 6.58 (m, 2H), 5.39 – 5.21 (m, 1H), 4.20 – 4.13 (m, 2H), 3.98 – 3.88 (m, 1H), 2.24 – 2.06 (m, 2H), 2.02 – 1.78 (m, 2H), 1.62 – 1.51 (m, 1H), 1.32 (d, J = 10.7 Hz, 9H), 1.25 – 1.21 (m, 3H), 1.03 – 0.97 (m, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 173.54, 171.94 (d, J = 2.6 Hz), 147.27 (d, J = 22.1 Hz), 129.40 (d, J = 2.0 Hz), 118.32 (d, J =15.4 Hz), 113.66 (d, J = 8.0 Hz), 61.36 (d, J = 43.5 Hz), 60.93 (d, J = 25.5 Hz), 51.25 (d, J = 4.6 Hz), 35.85 (d, J = 20.6 Hz), 35.13 (d, J = 22.8 Hz), 29.19 (d, J = 15.9 Hz), 28.89 (d, J = 5.1 Hz), 15.77 (d, J = 48.6 Hz), 14.37 (d, J = 1.4 Hz). **HRMS (ESI)** calcd for C₁₉H₃₁N₂O₃ [M+H]⁺ 335.4675, found 335.4680.

Ethyl 3-(2-(tert-butylamino)-2-oxoethoxy)-2-(phenylamino)butanoate (3x).

Yellow oil (81%, 27.3mg) ; 1:1 d.r ; $R_f = 0.35$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.14 (m, 2H), 6.81 – 6.71 (m, 1H), 6.65 (d, J = 8.0 Hz, 2H), 6.59 – 6.49 (m, 1H), 4.26 – 4.17 (m, 2H), 4.12 – 3.97 (m, 2H), 3.91 – 3.70 (m, 2H), 1.32 (d, J = 3.2 Hz, 9H), 1.28 – 1.24 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.00 (d, J = 67.0 Hz), 168.67 (d, J = 6.3 Hz), 146.91 (d, J = 66.2 Hz), 129.52 (d, J = 3.3 Hz), 119.00 (d, J = 13.8 Hz), 113.94 (d, J = 9.8 Hz), 77.75 (d, J = 44.0 Hz),69.22, 68.98, 61.56 (dd, J = 9.5, 4.8 Hz), 51.02 (d, J = 3.5 Hz), 28.82 (d, J = 3.2 Hz), 16.42 (d, J = 43.2 Hz), 14.38. **HRMS (ESI)** calcd for C₁₈H₂₉N₂O₄ [M+H]⁺ 337.4395, found 337.4400.

Ethyl 2-(1-(3-(tert-butylamino)-3-oxopropyl)cyclopentyl)-2-(phenylamino)acetate (3y).

Yellow oil (92%, 34.5mg) ; $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.13 (m, 2H), 6.73 (t, J = 7.3 Hz, 1H), 6.66 – 6.59 (m, 2H), 5.33 (s, 1H), 4.16 – 4.11 (m, 2H), 3.95 (s, 1H), 2.26 – 2.06 (m, 2H), 1.94 – 1.79 (m, 3H), 1.72 – 1.58 (m, 5H), 1.47 – 1.42 (m, 2H), 1.31 (s, 9H), 1.21 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.56, 172.39, 147.54, 129.44, 118.56, 113.73, 61.83, 60.98, 51.19, 48.24, 34.17, 33.97, 33.70, 33.01, 28.88, 25.56, 25.45, 14.36. HRMS (ESI) calcd for C₂₂H₃₅N₂O₃ [M+H]⁺ 375.5325, found 375.5327.

Ethyl 3-(2-(tert-butylcarbamoyl)phenyl)-2-(phenylamino)propanoate (3z). Yellow oil (68%, 25.1mg) ; $R_f = 0.25$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.29 (m, 3H), 7.25 – 7.19 (m, 1H), 7.12 – 7.04 (m, 2H), 6.67 – 6.61 (m, 1H), 6.57 – 6.51 (m, 2H), 5.86 (s, 1H), 4.31 – 4.27 (m, 1H), 4.20 – 4.12 (m, 2H), 3.32 – 3.13 (m, 2H), 1.48 (s, 9H), 1.19 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.07, 169.70, 147.32, 138.33, 135.58, 130.74, 129.98, 129.17, 126.99, 126.92, 117.71, 113.30, 61.19, 59.09, 52.09, 36.19, 28.93, 14.27. HRMS (ESI) calcd for C₂₂H₂₉N₂O₃ [M+H]⁺ 369.4845, found 369.4850.

Ethyl 6-(tert-butylamino)-6-oxo-2-(phenylamino)-3-propylhexanoate (3aa).

Yellow oil (80%, 29.0 mg) ; 1:1 d.r ; $R_f = 0.30$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.11 (m, 2H), 6.72 (t, J = 7.3 Hz, 1H), 6.66 – 6.58 (m, 2H), 5.25 (s, 1H), 4.20 – 4.14 (m, 2H), 4.01 (d, J = 5.4 Hz, 1H), 2.18 – 2.15 (m, 2H), 1.91 – 1.79 (m, 2H), 1.73 – 1.71 (m, 2H), 1.49 – 1.38 (m, 3H), 1.23 (t, J = 7.2 Hz, 3H), 0.89 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.86, 172.01, 147.40, 129.45, 118.38, 113.71, 61.14, 59.40, 51.33, 40.55, 35.11, 32.77, 28.96, 26.26, 20.34, 14.40, 14.37. HRMS (ESI) calcd for C₂₁H₃₅N₂O₃ [M+H]⁺ 363.5215, found 363.5210.

Ethyl 2-(3-(tert-butylcarbamoyl)cyclohexyl)-2-(phenylamino)acetate (3ab).

Yellow oil (86%, 31.0mg); $R_f = 0.35$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, J = 7.7 Hz, 2H), 6.72 (t, J = 7.3 Hz, 1H), 6.68 – 6.55 (m, 2H), 5.32 – 5.13 (m, 1H), 4.22 – 4.13 (m, 2H), 3.94 – 3.88 (m, 1H), 2.59 – 2.17 (m, 1H), 2.15 – 1.94 (m, 2H), 1.93 – 1.78 (m, 3H), 1.77 – 1.59 (m, 2H), 1.45 (d, J = 29.4Hz, 2H), 1.32 (dd, J = 5.9, 3.2 Hz, 9H), 1.24 – 1.18 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.80 (d, J = 8.2 Hz), 174.21 (dd, J = 51.5, 13.4 Hz), 173.46 (d, J = 11.7Hz), 147.61 – 147.10 (m), 129.45 (d, J = 2.9 Hz), 118.55 – 118.28 (m), 113.70 (dd, J =7.4, 5.0 Hz), 61.85 (d, J = 15.7 Hz), 61.17, 51.10 (d, J = 4.3 Hz), 46.26, 40.78 (d, J =2.8 Hz), 32.28 (d, J = 38.8 Hz), 30.94 (d, J = 88.5 Hz), 29.52 (d, J = 13.5 Hz), 28.95 (d, J = 2.5 Hz), 25.41 (d, J = 6.9 Hz), 14.42. **HRMS (ESI)** calcd for $C_{21}H_{33}N_2O_3$ [M+H]⁺ 361.5055, found 361.5050.

Note: d.r. cannot be determined by NMR and chiral HPLC (CHIRALCEL O-DH, CHIRALPAK IA, IB, IC, and AD-H columns).

Ethyl 3-(3-(tert-butylamino)-3-oxopropyl)-3-ethyl-2-(phenylamino)heptanoate (3ac).

Yellow oil (32%, 13.0mg) ; 1:1 d.r ; $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); ¹**H NMR** (400 MHz, CDCl₃) δ 7.19 – 7.12 (m, 2H), 6.73 (t, J = 7.3 Hz, 1H), 6.66 – 6.60 (m, 2H), 5.30 (s, 1H), 4.17 – 4.09 (m, 2H), 3.96 (s, 1H), 2.23 – 2.04 (m, 2H), 1.79 – 1.71 (m, 2H), 1.55 – 1.41 (m, 4H), 1.31 (s, 9H), 1.22 (t, J = 7.1 Hz, 3H), 0.93 – 0.88 (m, 6H).¹³**C NMR** (100MHz, CDCl₃) δ 173.82 (d, J = 2.9 Hz), 172.72, 147.66, 129.47, 118.58, 113.88 (d, J = 1.8 Hz), 62.76 (d, J = 4.8 Hz), 60.97, 51.19, 41.82, 34.67 (d, J = 1.50 Hz), 32.52 (d, J = 3.7 Hz), 28.94, 27.73, 27.44, 25.85 (d, J = 2.7 Hz), 23.80 (d, J = 3.5 Hz), 14.33, 14.20, 8.43 (d, J = 3.2 Hz). **HRMS (ESI)** calcd for C₂₄H₄₁N₂O₃ [M+H]⁺ 405.6025, found 405.6021.

Ethyl (6-(tert-butylamino)-3,3-dimethyl-6-oxo-2(phenylamino)hexanoyl)glycinate (3ad).

Yellow oil (80%, 32.4mg); $R_f = 0.35$ (petroleum ether/ethyl acetate = 1:1); ¹H NMR(400 MHz, CDCl₃) δ 7.32 (t, J = 5.8 Hz, 1H), 7.22 – 7.14 (m, 2H), 6.79 (t, J = 7.3 Hz, 1H), 6.69 – 6.57 (m, 2H), 5.73 (s, 1H), 4.18 – 4.12 (m, 3H), 3.87 – 3.81 (m, 1H), 3.53 (s, 1H), 2.40 – 2.28 (m, 1H), 2.07 – 2.00 (m, 1H), 1.84 – 1.72 (m, 2H), 1.32 (s, 9H), 1.25 – 1.21 (m, 3H), 1.10 (d, J = 2.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.89, 172.60, 169.79, 147.36, 129.53, 119.24, 113.90, 66.02, 61.52, 51.16, 41.29, 37.03, 36.16, 32.80, 28.87, 25.03, 24.81, 14.25. HRMS (ESI) calcd for C₂₂H₃₆N₃O₄ [M+H]⁺ 405.5465, found 405.5470.

Methyl (6-(tert-butylamino)-3,3-dimethyl-6-oxo-2-(phenylamino)hexanoyl)-L-

methioninate (3ae).

Yellow oil (48%, 22.3 mg) ; 3:1 d.r $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1); ¹H NMR(400 MHz, CDCl₃) δ 7.32 (d, J = 8.4 Hz, 1H), 7.22 – 7.15 (m, 2H), 6.79 (t, J = 7.2 Hz, 1H), 6.65 – 6.59 (m, 2H), 5.73 (s, 1H), 4.75 – 4.69 (m, 1H), 3.72 (s, 3H), 3.55 – 3.53 (m, 1H), 2.48 – 2.27 (m, 2H), 2.21 – 2.17 (m, 2H), 2.05 – 2.01 (m, 2H), 1.87 (s, 3H), 1.81 – 1.76 (m, 2H), 1.32 (s, 9H), 1.10 (d, J = 1.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.80, 172.40, 172.05, 146.90, 129.56, 119.38, 113.70, 65.94, 52.58, 51.71, 51.16, 36.77, 36.35, 32.72, 31.12, 29.84, 28.88, 25.06, 24.88, 15.33. HRMS (ESI) calcd for C₂₄H₄₀N₃O₄S [M+H]⁺ 466.6605 , found 466.6598.

Methyl (28)-1-(6-(tert-butylamino)-3,3-dimethyl-6-oxo-2-(phenylamino)hexanoyl)-114-pyrrolidine-2-carboxylate (3af).

Yellow oil (30%, 13.0mg) ; 10:1 d.r $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1);¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.12 (m, 2H), 6.74 – 6.70 (m, 1H), 6.66 (d, J = 8.0 Hz, 2H), 5.58 (s, 1H), 4.45 – 4.42 (m, 1H), 4.02 (s, 1H), 3.72 (s, 3H), 3.67 – 3.54 (m, 2H), 2.18 – 2.14 (m, 2H), 2.07 – 1.98 (m, 2H), 1.95 – 1.89 (m, 2H), 1.85 – 1.79 (m, 2H), 1.32 (s, 9H), 1.11 (s, 3H), 1.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.97, 172.91, 171.95, 148.08, 129.55, 118.45, 114.20, 62.16, 59.00, 52.37, 51.15, 48.14, 38.84, 35.58, 33.08, 29.84, 28.89, 25.25, 23.76, 22.87. HRMS (ESI) calcd for C₂₄H₃₉N₃O₄ [M+H]⁺ 433.5925 , found 433.5922.

N-(tert-butyl)-4,4-dimethyl-6,6-diphenylhex-5-enamide (4a).

White solid (90%, 31.4mg); m.p.: 94-97 °C; $R_f = 0.60$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 3H), 7.24 – 7.15 (m, 7H), 5.96 (s, 1H), 5.13 (s, 1H), 2.14 – 2.07 (m, 2H), 1.65 – 1.58 (m, 2H), 1.32 (s, 9H), 0.91 (s, 6H).¹³C NMR (100 MHz, CDCl₃) δ 172.75, 144.03, 140.67, 140.46, 138.11, 130.27, 128.16, 127.99, 127.09, 127.02, 126.91, 51.18, 40.02, 36.96, 33.86, 29.14, 28.95. **HRMS (ESI)** calcd for C₂₄H₃₂NO [M+H]⁺ 350.5255, found 350.5260.

9.NMR Spectra

¹H NMR and ¹³C NMR spectra for compound 3b (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3c (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3d (CDCl₃).

¹H, ¹³C NMR and ¹⁹F spectra for compound 3e (CDCl₃).

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR and ¹³C NMR spectra for compound 3f (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3g (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3h (CDCl₃).

¹H, ¹³C NMR and ¹⁹F spectra for compound 3i (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3j (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3k (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3l (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3m (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3n (CDCl₃).

¹H, ¹³C NMR and ¹⁹F spectra for compound 30 (CDCl₃).

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹H NMR and ¹³C NMR spectra for compound 3p (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3q (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3r (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3s (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3t (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3u (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3v (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3w (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3x (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3y (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3z (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3aa (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3ab (CDCl₃).

fl (ppm)

¹H NMR and ¹³C NMR spectra for compound 3ac (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3ad (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3ae (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 3af (CDCl₃).

¹H NMR and ¹³C NMR spectra for compound 4a (CDCl₃).

