Supporting Information

Alkyl/Aryl Carboxylic Acids Meet Sulfur Fluoride (SO₂F₂): A Platform for Decarboxylative Dehydrogenation and Decarboxylative Cross-Coupling

Chenfei Guan,^a Huijie Qi,^a Linjun Han,^a Guofu Zhang,^{*a} Jinghui Lyu, Chengrong Ding^{*a}

^a College of Chemical Engineering, Zhejiang University of Technology Hangzhou, P. R. China

Table of Contents

I. EXPERIMENTAL SECTION	3
General Information	3
Reaction Conditions and Screening	4
General procedure for the optimization of decarboxylative dehydrogenation.	4
General procedure for the optimization of decarboxylative dehydrogenation.	7
List of ligands used	13
General procedure for decarboxylative dehydrogenation (standard conditions 1)	14
General procedure for decarboxylative dehydrogenation at room temperature.	14
General procedure for decarboxylative dehydrogenation on a gram scale	15
General procedure for solid sulfuryl fluoride reagent-mediated decarboxylative dehydrogenation	15
General procedure for decarboxylative cross-coupling (standard conditions 2).	16
Unsuccessful substrates	17
Sample (5e) Preparation for X-ray	19
Synthetic Applications	
Mechanism Experiments	
1. Free radical inhibition experiment	24
2. Reaction rate experiments	25
3. Hammett Competition Experiments.	26
4. Possible intermediates.	27
5. Kinetic Isotope Effect Experiments	29
Computational Details	
II. EXPERIMENTAL CHARACTERIZATION DATA	
Alkenylation Products of Alkyl Carboxylic Acids.	
Biarylation Products of Aryl Carboxylic Acids	49
Other Products	
III. REFERENCE	62
IV. SPECTROSCOPIC DATA	66
V. CARTESIAN COORDINATES OF THE STRUCTURES	230

I. Experimental Section

General Information

All source materials and reagents were purchased from commercial suppliers and are used without pretreatment unless otherwise indicated. All experiments involving palladium were performed using standard Schlenk techniques under nitrogen unless stated otherwise. All results were detected using thin-layer chromatography (TLC) on commercial silica gel plates. Visualization of the developed plates was performed under UV light (254 nm). Rapid column chromatography was performed on silica gel. Column chromatography was performed with silica gel (200-300 mesh) using various combinations of non-aqueous organic solvents as eluents.

NMR spectra were recorded in CDCl₃ or DMSO-d₆ on Bruker AVANCE III 400/600 MHz (¹HNMR), 101 MHz (¹³CNMR) and 377 MHz (¹⁹FNMR) instruments with TMS as the internal standard and the following abbreviations were used to identify the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, br = broad and all combinations thereof can be explained by their integral parts. Coupling constant (J) was reported in hertz unit (Hz). High-resolution mass spectrometry analysis was performed on the ThermoFlisher ITQ1100. Single crystals was selected and on a Bruker D8 VENTURE TXS PHOTON II diffractometer. DFT calculations were performed with Gaussian 16 program.

Reaction Conditions and Screening

General procedure for the optimization of decarboxylative dehydrogenation.

A 25 mL Schlenk flask equipped with a stirring bar is filled with alkylcarboxylic acid (neat, 0.2 mmol, 1.0 equiv.), base ($0.5 \sim 5.0$ equiv.), Pd catalyst (typically, 5 mol%), ligand (typically, 6 mol%), solvent (0.2 M). Under positive pressure of SO₂F₂ gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at room temperature for 4 hours. Then increase to 100°C for 12 h. The mixture was allowed to react. After the reaction is completed, the reaction was quenched with water and the reaction mixture was extracted with dichloromethane for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.

 Table S1. Optimization of decarboxylative dehydrogenation conditions: screening of base^a

COOH	Base, Dioxane Pd(OAc) ₂ , XantPhos	
1a'		4a
Entry	Base (x equiv.)	Yield 4a (%)
1	TEA (4.0)	75
2	DBU (4.0)	n.r.
3	DIPEA (4.0)	69
4	DMAP (4.0)	n.r.
5	DBACO (4.0)	n.r.
6	NaOAc (4.0)	41
7	KOAc (4.0)	59
8	$K_{3}PO_{4}(4.0)$	28
9	Li ^{<i>t</i>} OBu (4.0)	n.r.
10	TEA (5.0)	82
11	TEA (3.0)	77
12	TEA (2.0)	90
13	TEA (1.0)	87
14	TEA (0.5)	81

^{*a*} Reaction conditions: **1a'** (0.2 mmol), **Base (x mmol, x eq.)**, dioxane (0.2 M), Pd(OAc)₂ (10 mol%), XantPhos (12 mol%), 45 °C, 4 h, then 100 °C, 18.0 h; Under SO₂F₂ gas atmosphere. n.r. = no reaction.

 Table S2. Optimization of decarboxylative dehydrogenation conditions: screening of solvent^a

СООН	Base, Solvent Pd(OAc)₂, XantPhos	
1a'		4a
Entry	Solvent	Yield 4a (%)
1	Dioxane	90
2	CH ₃ CN	88
3	CH ₃ OH	n.r.
4	THF	n.r.
5	Toluene	90
6	DMF	59
7	DMSO	n.r.
8	NMP	n.r.
9	HFIP	n.r.
10	Octane	93
11	DCE	95

^{*a*} Reaction conditions: **1a'** (0.2 mmol), TEA (0.4 mmol, 2 eq.), **Solvent (0.2 M)**, Pd(OAc)₂ (10 mol%), XantPhos (12 mol%), 45 °C, 4 h, then 100 °C, 18.0 h; Under SO₂F₂ gas atmosphere. n.r. = no reaction.

 Table S3. Optimization of decarboxylative dehydrogenation conditions: screening of

 Pd catalysts and Ligands^a

	СООН —	Base, Solvent	
	1a'		4a
Entry	Pd catalysts (x mol%)	Ligand (x mol%)	Yield 4a ^{<i>a</i>} (%)
1	$Pd(OAc)_2$ (10)	L17 (12)	95
2	$PdCl_2(10)$	L17 (12)	n.r.
3	$Pd(acac)_2$ (10)	L17 (12)	n.r.
4	$Pd(dba)_2(10)$	L17 (12)	87
5	PdTEF (10)	L17 (12)	94
6	$Pd(PPh_3)_4Cl_2(10)$	L17 (12)	87
7	$Pd(dppf)_2Cl_2(10)$	L17 (12)	81
8	Ni(DME)Cl ₂	L17 (12)	n.r.
9	$Cu(OAc)_2$	L17 (12)	n.r.
10	$Pd(OAc)_2$ (10)	L2 (10)	n.r.
11	$Pd(OAc)_{2}(10)$	L6 (10)	61
12	$Pd(OAc)_{2}(10)$	L7 (10)	52
13	$Pd(OAc)_2$ (10)	L11 (10)	73
14	$Pd(OAc)_{2}(10)$	L13 (10)	90
15	$Pd(OAc)_{2}(10)$	L19 (10)	65
16	$Pd(OAc)_{2}(10)$	L22 (10)	57
17	$Pd(OAc)_2(5)$	L17(6)	96
18	$Pd(OAc)_2(2)$	L17 (3)	81
19^{b}	$Pd(OAc)_2(5)$	L17 (6)	97
20°	$Pd(OAc)_2(5)$	L17 (6)	93

^{*a*} Reaction conditions: **1a'** (0.2 mmol), TEA (0.4 mmol, 2 eq.), DCE (0.2 M), [Pd] (x mol%), Ligand (x mol%), 45 °C, 4 h, then 100 °C, 18.0 h; Under SO₂F₂ gas atmosphere. n.r. = no reaction. ^{*b*} 12.0 h instead of 18.0 h. ^{*c*} Reacts at 100°C for 12 h.

General procedure for the optimization of decarboxylative dehydrogenation.

A 25 mL Schlenk flask equipped with a stirring bar is filled with Arylcarboxylic acid (neat, 0.2 mmol, 1.0 equiv.), base (1.0~7.0 equiv.), solvent (1~2 mL). Under positive pressure of SO_2F_2 gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at 45°C for few hours. After the reaction is completed, the reaction bottle is purged with nitrogen. Then a one-time addition Pd catalyst (typically, 6 mol%), ligand (typically, 8 mol%), arylboronic acid (1.0~3.0 equiv.), additives (0~2.0 equiv.), solvent (0~1 mL). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The mixture was allowed to react at T °C. The reaction was quenched with water and the reaction mixture was extracted with ethyl acetate for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.

Table S4. Optimization of decarboxylative cross-coupling conditions: screening of

	Organic Base	Ph
	Then PhB(OH) ₂	
61	Pa/[L], Solvent	81
Entry	Base (x equiv.)	Yield 8I (%)
1	DIPEA (3.0)	47
2	DBU (3.0)	10
3	TEA (3.0)	50
4	DMAP (3.0)	30
5	pyridine (3.0)	n.r.
6	^{<i>t</i>} BuONa (3.0)	n.r.
7	KF (3.0)	n.r.
8	CsF (3.0)	n.r.
9	TEA (1.0)	34
10	TEA (2.0)	37
11	TEA (4.0)	52
12	TEA (5.0)	47
13	TEA (7.0)	45

base^a

^{*a*} Reaction conditions: **61** (0.2 mmol), **Base (x mmol, x eq.)**, dioxane (0.2 M), 45 °C, 4 h, under SO₂F₂ gas atmosphere. Then add PhB(OH)₂ (0.4 mmol, 2.0 eq.), Pd(OAc)₂ (6 mol%), Ruphos (8 mol%), dioxane (0.2 M), 110 °C, 18.0 h; Under nitrogen atmosphere. n.r.=no reaction.

СООН	Organic Base	Ph
61	Then PhB(OH) ₂ Pd/[L], Solvent	81
Entry	Time-1 (h)	Yield 8I (%)
1	1.0	39
2	2.0	41
3	4.0	52
4	8.0	51

Table S5. Optimization of decarboxylative cross-coupling conditions: screening of time-1^{*a*}

^{*a*} Reaction conditions: **61** (0.2 mmol), TEA (0.8 mmol, 4.0 eq.), dioxane (0.2 M), 45 °C, **x** h, under SO₂F₂ gas atmosphere. Then addition PhB(OH)₂ (0.4 mmol, 2.0 eq.), Pd(OAc)₂ (6 mol%), Ruphos (8 mol%) , dioxane (0.2 M), 110 °C, 18.0 h; Under nitrogen atmosphere.

Table S6. Optimization of decarboxylative cross-coupling conditions: screening of temperature- 2^a

6l	OCH Organic Base <i>Then</i> PhB(OH) ₂ Pd/[L], Solvent	Ph 8l
Entry	Temperature-2 (°C)	Yield 8I (%)
1	r.t.	trace
2	80	49
3	90	46
4	100	52
5	110	52
6	140	39

^{*a*} Reaction conditions: **11** (0.2 mmol), TEA (0.8 mmol, 4.0 eq.), dioxane (0.2 M), 45 °C, 4 h, under SO₂F₂ gas atmosphere. Then addition PhB(OH)₂ (0.4 mmol, 2.0 eq.), Pd(OAc)₂ (6 mol%), Ruphos (8 mol%), dioxane (0.2 M), **x** °C, 18.0 h; Under nitrogen atmosphere.

 Table S7. Optimization of decarboxylative cross-coupling conditions: screening of [B]
 equivale.^a

	COOH Organic Base	Ph
el el	PnB(OH) ₂ Pd/[L], Solvent	81
0		01
Entry	[B] source (x equiv.)	Yield 8I (%)
Entry 1	[B] source (x equiv.) PhB(OH) ₂ (1.0)	Yield 8I (%) 30
Entry 1 2	[B] source (x equiv.) PhB(OH) ₂ (1.0) PhB(OH) ₂ (1.5)	Yield 8I (%) 30 39
Entry 1 2 3	[B] source (x equiv.) PhB(OH) ₂ (1.0) PhB(OH) ₂ (1.5) PhB(OH) ₂ (2.0)	Yield 8I (%) 30 39 52

^a Reaction conditions: **11** (0.2 mmol), TEA (0.8 mmol, 4.0 eq.), dioxane (0.2 M), 45 °C, 4 h, under SO₂F₂ gas atmosphere. Then addition [**B**] (**x mmol, x eq.**), Pd(OAc)₂ (6 mol%), Ruphos (8 mol%) , dioxane (0.2 M), 100 °C, 18.0 h; Under nitrogen atmosphere.

		Ph	
COOH	Organic Base		+
	Then PhB(OH) ₂		
61	Pd/[L], Solvent	81	81'

Entry	Pd (x mol%)	[L] (x mol%)	Additives (x mol%)	Yield 8l (%)	Yield 8l' (%)
1	Pd(OAc) ₂ (6)	L1 (8)	-	12	14
2	$Pd(OAc)_2$ (6)	L2 (8)	-	22	22
3	$Pd(OAc)_2$ (6)	L3 (8)	-	28	22
4	$Pd(OAc)_2$ (6)	L4 (8)	-	n.r.	n.r.
5	$Pd(OAc)_2$ (6)	L5 (8)	-	7	n.r.
6	$Pd(OAc)_2$ (6)	L6 (8)	-	56	13
7	$Pd(OAc)_2$ (6)	L7 (8)	-	13	14
8	$Pd(OAc)_2$ (6)	L8 (8)	-	15	n.r.
9	$Pd(OAc)_2(6)$	L9 (8)	-	39	20
10	$Pd(OAc)_2(6)$	L10 (8)	-	29	16
11	$Pd(OAc)_2(6)$	L11 (8)	-	40	19
12	$Pd(OAc)_2$ (6)	L12 (8)	-	n.r.	n.r.
13	$Pd(OAc)_2(6)$	L13 (8)	-	39	n.r.
14	$Pd(OAc)_2(6)$	L14 (8)	-	n.r.	n.r.
15	$Pd(OAc)_2(6)$	L15 (8)	-	33	n.r.
16	$Pd(OAc)_2$ (6)	L16 (8)	-	43	11
17	$Pd(OAc)_2(6)$	L17 (8)	-	73	13
18	$Pd(OAc)_2(6)$	L18 (8)	-	48	9
19	Pd(OAc) ₂ (6)	L19 (8)	-	30	n.r.
20	$Pd(OAc)_2(6)$	L20 (8)	-	25	n.r.
21	$Pd(OAc)_2$ (6)	L21 (8)	-	34	n.r.
22	$Pd(OAc)_2(6)$	L22 (8)	-	47	n.r.
23	$Pd(OAc)_2(6)$	L23 (8)	-	43	19
24	$Pd(OAc)_2(6)$	L24 (8)	-	21	13
25	$Pd(OAc)_2$ (6)	L25 (8)	-	23	10
26	$Pd(OAc)_2$ (6)	L26 (8)	-	n.r.	n.r.
27	$PdCl_2(6)$	L17 (8)	-	10	n.r.
28	$Pd(acac)_2$ (6)	L17 (8)	-	64	11
29	$Pd(dba)_2(6)$	L17 (8)	-	n.r.	n.r.
30	$Pd(TEF)_2(6)$	L17 (8)	-	54	17
31	$Pd(OAc)_2$ (3)	L17 (6)	-	63	9
32	$Pd(OAc)_2$ (10)	L17 (ÌŚ)	-	68	20
33	$Pd(OAc)_2$ (6)	L17 (8)	CuBr (10)	72	15
34			$C_{\rm L}(OTf)$ (10)	70	2

 $\frac{34 \text{ Pd}(OAc)_2(6)}{Pd(OAc)_2(6)} \frac{L17(8)}{L17(8)} \frac{Cu(OTf)_2(10)}{Cu(OTf)_2(10)} \frac{72}{78} \frac{15}{2}$ ^a Reaction conditions: **61** (0.2 mmol), TEA (0.8 mmol, 4.0 eq.), dioxane (0.2 M), 45 °C, 4 h, under SO₂F₂ gas atmosphere. Then addition PhB(OH)₂ (0.6 mmol, 3.0 eq.), [Pd] (x mol%), [L] (x mol%), Additives (10 mol%), dioxane (0.2 M), 100 °C, 18.0 h; Under nitrogen atmosphere. n.r.=no reaction.

 Table S8. Optimization of decarboxylative cross-coupling conditions: screening of

 Pd/Ligand and additives.^a

	СООН	nic Base	Ph
ĺ			Y Y ¥
	Then Ph	B(OH) ₂	
	6l Pd/[L], Solvent	81
Entry	Solvent-1 (x M)	Solvent-2 (x M)	Yield 8I (%)
1	ACN (0.2)	ACN (0.2)	NR
2	DMF (0.2)	dioxane (0.2)	10
3	DMSO (0.2)	dioxane (0.2)	NR
4	ACN (0.2)	dioxane (0.2)	25
5	ACN (0.2)	octane (0.2)	34
6	ACN (0.2)	fluorobenzene (0.2)	NR
7	dioxane (0.2)	dioxane (0.2)	78
8	dioxane (0.2)	-	65
9	THF (0.2)	-	50
10	octane (0.2)	-	54
11	heptane (0.2)	-	53
12	hexane (0.2)	-	44
13	MBTE (0.2)	-	38
14	toluene (0.2)	-	NR
15	xylol (0.2)	-	NR
16 ^b	ACN (0.2)	-	37
17 ^b	octane (0.2)	-	66
18 ^b	ACN: dioxane=0.5:0.5 (0.2)	-	50
19 ^b	dioxane:octane=8:2 (0.2)	-	72
20 ^b	dioxane:octane=5:5 (0.2)	-	80
21 ^b	dioxane:octane=3:7 (0.2)	-	87
22 ^b	dioxane:octane=2:8 (0.2)	-	86
23 ^b	dioxane:octane=1:9 (0.2)	-	85

 Table S9. Optimization of decarboxylative cross-coupling conditions: screening of solvent^a

^{*a*} Reaction conditions: **61** (0.2 mmol), TEA (0.8 mmol, 4.0 eq.), **Solvent-1 (x M)**, 45 °C, 4 h, under SO₂F₂ gas atmosphere. Then addition PhB(OH)₂ (0.6 mmol, 3.0 eq.), Pd(OAc)₂ (6 mol%), Ruphos (8 mol%), **Solvent-2 (x M)**, 100 °C, 18.0 h; Under nitrogen atmosphere. NR=no reaction.

addition Fine(O(1)₂ (0.6 mmol, 5.0 eq.), Fe(O(Ac)₂ (6 mol²), the place (6 mol²)

6t	TEA Then 4-OMe-PhB(OH) ₂ Pd(OAc) ₂ , XantPhos Solvent Additives	8t	+ 0 8t'
Entry	Additives	Yield 8t (%)	Yield 8t' (%)
1	CuBr	40	22
2	Cul	39	23
3	CuBr ₂	40	34
4	Cu(acac) ₂	36	32
5	Cu(OAc) ₂	70	5
6	Cu(OTf) ₂	77	0
7	Ag ₂ CO ₃	11	15
8	AgOAc	15	11
9	AgOTf	21	15
10	Co(OTf) ₂	44	35
11	In(OTf) ₃	0	0
12	AI(OTf) ₃	48	30
13	Ba(OTf) ₂	43	37
14	Ca(OTf) ₂	41	38
15	Zn(OTf) ₂	46	34

Table S10. Optimization of decarboxylative cross-coupling conditions: screening of additive ^a

^{*a*} Reaction conditions: **6t** (0.2 mmol), TEA (0.8 mmol, 4.0 eq.), octane : dioxane = 7 : 3 (0.2 M), 45 °C, 4 h, under SO₂F₂ gas atmosphere. Then addition PhB(OH)₂ (0.6 mmol, 3.0 eq.), Pd(OAc)₂ (6 mol%), XantPhos (8 mol%), additive (10 mol%), 100 °C, 18.0 h; Under nitrogen atmosphere.

List of ligands used.

General procedure for decarboxylative dehydrogenation (standard conditions 1).

A 25 mL Schlenk flask equipped with a stirring bar is filled with alkylcarboxylic acid 1 (neat, 0.2 mmol, 1.0 equiv.), Et₃N (0.4 mmol, 2.0 equiv.), Pd(OAc)₂ (5 mol%), XantPhos (6 mol%), dichloroethane (1 mL, 0.2 M). Under positive pressure of SO_2F_2 gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at 45 °C for 4~8 hours. After the reaction is completed, the reaction bottle is purged with nitrogen. Then heat up to 100 °C. The mixture was allowed to react for 12 h. The reaction was quenched with water and the reaction mixture was extracted with dichloromethane for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.

General procedure for decarboxylative dehydrogenation at room temperature.

A 25 mL Schlenk flask equipped with a stirring bar is filled with alkylcarboxylic acid 1 (neat, 0.2 mmol, 1.0 equiv.), Et₃N (0.4 mmol, 2.0 equiv.), Pd(OAc)₂ (5 mol%), XantPhos (6 mol%), dichloroethane (1 mL, 0.2 M). Under positive pressure of SO_2F_2 gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at 45 °C for 8 hours. After the reaction is completed, the reaction bottle is purged with nitrogen. Then heat up to 25 °C. The mixture was allowed to react for 24 h. The reaction was quenched with water and the reaction mixture was extracted with dichloromethane for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.

General procedure for decarboxylative dehydrogenation on a gram scale.

A 25 mL Schlenk flask equipped with a stirring bar is filled with naproxen (neat, 10 mmol, 2.3 g), Et_3N (20 mmol, 2.0 equiv.), $Pd(OAc)_2$ (5 mol%), XantPhos (6 mol%), dichloroethane (30 mL). Under positive pressure of SO_2F_2 gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at 45 °C for 12 hours under positive pressure of SO_2F_2 balloon. After the reaction is completed, the reaction bottle is purged with nitrogen. Then heat up to 100 °C. The mixture was allowed to react for 12 h. The reaction was quenched with water and the reaction mixture was extracted with dichloromethane for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.

General procedure for solid sulfuryl fluoride reagent-mediated decarboxylative

dehydrogenation.

A 25 mL Schlenk flask equipped with a stirring bar is filled with alkylcarboxylic acid 1 (neat, 0.2 mmol, 1.0 equiv.), fluorosulfuryl imidazolium salt (0.4 mmol, 2.0 equiv.), Et₃N (0.4 mmol, 2.0 equiv.), Pd(OAc)₂ (5 mol%), XantPhos (6 mol%), dichloroethane (1 mL, 0.2 M). The heat up to 100 °C. The mixture was allowed to react for 16 h. The reaction was quenched with water and the reaction mixture was extracted with dichloromethane for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.

General procedure for decarboxylative cross-coupling (standard conditions 2).

A 25 mL Schlenk flask equipped with a stirring bar is filled with Arylcarboxylic acid **6** (neat, 0.2 mmol, 1.0 equiv.), Et₃N (0.8 mmol, 4.0 equiv.), dioxane:octane=3:7 (1 mL, 0.2 M). Under positive pressure of SO_2F_2 gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at room temperature for 4 hours. After the reaction is completed, the reaction bottle is purged with nitrogen. Then a one-time addition Pd(OAc)₂ catalyst (6 mol%), XantPhos (8 mol%), Arylboronic acid **7** (0.6 mmol, 3.0 equiv.), Cu(OTf)₂ (10 mol%). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The mixture was allowed to react for 18 h. The reaction was quenched with water and the reaction mixture was extracted with ethyl acetate for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.

Unsuccessful substrates

1S-o

1S-p

1S-q

AcÓ 1S-r

Sample (5e) Preparation for X-ray

For compound 5e: compound 5e (10 mg) was dissolved in ethyl acetate (0.5 mL) in a 10 mL vial at room temperature. Hexane (3.0 mL) was dropped carefully to the mixture. Then, the vial was capped with thin film. Finally, a lamellar crystal was obtained for 4 days.

Crystal data and structure refinement for compound 5e.

Identification code	5e
CCDC number	2327303
Empirical formula	C ₁₃ H ₁₂ O
Formula weight	184.23
Temperature/K	193.00
Crystal systemmonoclinic	orthorhombic
Space group	Pbca
a/Å	5.9974(4)
b/Å	8.0073(6)
c/Å	41.526(3)
α/° 90	
β/°	90
γ/°	90
Volume/Å3	1994.2(2)
Ζ	8
pcalcg/cm3	1.227
μ/mm-1	0.076
F(000)	784.0

Crystal size/mm3	0.12 imes 0.1 imes 0.09
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	5.886 to 55.25
Index ranges	$-7 \le h \le 7, -10 \le k \le 10, -44 \le l \le 54$
Reflections collected	16218
Independent reflections	2311 [Rint = 0.0793, Rsigma = 0.0461]
Data/restraints/parameters	2311/0/129
Goodness-of-fit on F2	1.051
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0697, wR_2 = 0.1678$
Final R indexes [all data]	$R_1 = 0.1070, wR_2 = 0.1913$
Largest diff. peak/hole / e Å-3	0.31/-0.20

Experimental procedure for the synthesis of 9a from 5e: A 25 mL Schlenk flask equipped with a stirring bar is filled with 1,1'-bis(diphenylphosphino)ferrocene (dppf) (16.6 mg, 0.03 mmol, 0.1 equiv) and bismuththiol (4.5 mg, 0.03 mmol, 0.1 equiv). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. Then 5e (0.30 mmol, 1 equiv) and anhydrous MeCN (0.5 mL) were added. The reaction mixture was heated to 80 °C and allowed to react for 15 h. The reaction was quenched with water and the reaction mixture was extracted with ethyl acetate for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.¹

Experimental procedure for the synthesis of 9b from 5e: A 25 mL Schlenk flask equipped with a stirring bar is filled with MeOH (3.6 mL), *t*BuOH (3.6 mL), PdCl₂(MeCN)₂ (1.6 mg, 0.006 mmol), *p*-benzoquinone (0.0973 g, 0.9 mmol), H₂O (27 μ L) and the 5e (0.60 mmol). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The reaction mixture was heated to 70 °C and allowed to react for 3 h. Then HCOONH₄ (380 mg, 6 mmol), Ir-OMe (3.7 mg, 0.006 mmol), and formic acid/triethylamine (5:2) complex (0.6 mL) were added. The mixture was stirred at 70 °C for another 8 h. The mixture was evaporated and NaHCO3 was added. The reaction mixture was extracted with dichloromethane for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.²

Experimental procedure for the synthesis of 9c from 5e: A dry 5 mL vial with a screw cap and PTFE septum was charged with a magnetic stirrer bar and a solution of the potassium bis(anthracene)cobaltate (0.05 mmol) in Toluene (1 mL). After adding a solution of the 5e (0.5 mmol) in Toluene (1 mL) with a pipette, the vial was closed and the septum was punctured with a short needle. The vial was placed into a high-pressure reactor, which was sealed. After 6 h at room temperature under an atmosphere of hydrogen (2 bar), the pressure was released, the vial was removed, and the reaction was quenched with a saturated aqueous solution of NaHCO₃ (1 mL). The residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.³

Experimental procedure for the synthesis of 9d from 5e: A 25 mL Schlenk flask equipped with a stirring bar is filled with 5e (0.2 mmol, 1.0 equiv.) and 4DPAIPN (2.4 mg, 0.003 mmol). Under a positive pressure of CO₂ and five evacuations/backfilling cycles under high vacuum. Then anhydrous NMP (2.0 mL) and *N*, *N*-dicyclohexylmethylamine (0.3 mmol, 58.5 mg, 64 μ L) were added. After that, under a positive pressure of CO₂ and five evacuations/backfilling cycles under high vacuum. The mixture was irradiated with a 40 W 456 nm Kessil LED (3 cm away, with a cooling fan to keep the reaction temperature at room temperature). After 24 hours, the reaction was quenched with HCl (2N) and extracted by ethyl acetate for 5 times. The combined organic layers were washed with brine and concentrated in vacuo. The residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.⁴

Experimental procedure for the synthesis of 9e: phenylpropanoic acid (22.5 g, 150 mmol, 1.0 eq.) was taken in a round bottle flask, and cooled to 10-15 °C. Chlorosulfonic acid (100 mL) was added to the reaction mass slowly in a dropwise manner at below 15 °C. The reaction mixture was stirred at 10-15 °C for 1 h slowly allowed to warm to room temperature and stirred for 2-3 h. The reaction mixture was added to cold water (300 mL) slowly in a dropwise manner at below 20 °C. The resulting mixture was allowed to room temperature, stirred for 2-3 h, filtered, washed with water (100 mL), and dried for 1 h. The wet product was dissolved in CH₂Cl₂ (500 mL) and washed with water (100 mL) followed by brine (100 mL). The organic layer was dried over Na₂SO₄ and concentrated to up to 100 mL. *n*-Hexane (200 mL) was added to the reaction mass at room temperature, and the resulting mixture was stirred for 1 h, filtered, and washed with n-hexane (100 mL). The wet product was taken into a round bottom flask, and dried at 40-45 °C under vacuum to give 12.3 g of 2-(4(chlorosulfonyl)phenyl)propanoic acid 9e (yellow solid, 49.5 mmol, 33% yield).⁵

Experimental procedure for the synthesis of 9f: KHF₂ (42.5 mmol, 2.5 equiv.) was dissolved in H₂O (7 mL) to make a saturated solution, which was treated with a solution of 9e (17 mmol, 1 equiv.) in acetonitrile (20 mL). The reaction mixture was stirred at room temperature for 4-10 hours and was measured by HPLC. The aqueous phase was extracted with EtOAc (3×10 mL) and the combined organic extracts were washed with 10% NaCl aqueous solution (2x), saturated sodium chloride (1x), dried with sodium sulfate, filtered, and concentrated by rotary evaporation to obtain the crude product, which was purified by column chromatography on silica gel to obtain the pure product 9f (black solid, 3.6 g, 15.6 mmol, 92% yield). ⁶

Experimental procedure for the synthesis of 9h: 0.6 g 4-vinylphenol sulfurofluoridate and 10 mg AIBN were added to a 25 mL round-bottomed flask containing 5 mL of DMSO. Then the flask was sealed and cycled between vacuum and argon three times before the reaction was allowed to stir at 85 °C

for 24 h. Then, the mixture was washed petroleum ether (3 x 100 mL). The resulting polymer 9h was obtained. 7

mass (m/z) Figure S1. MALDI-TOF mass spectrum of 9h.

Mechanism Experiments

1. Free radical inhibition experiment.

Free radical inhibitors 2,2,6,6-Tetramethylpiperidoxyl (TEMPO, 2.0 equiv.) or Butylated hydroxytoluene (BHT, 2.0 equiv.) or 1,1-Diphenylethene (DPE) (2.0 equiv.) were added to the reaction programme under standard conditions, respectively, and the yields were observed by ¹H NMR after completion of the reaction (1,3,5-trimethoxybenzene was used as an internal standard).

2. Reaction rate experiments.

A 25 mL Schlenk flask equipped with a stirring bar is filled with 4-Methoxyphenylpropionic acid (neat, 0.2 mmol, 1.0 equiv.), Et_3N (0.4 mmol, 2.0 equiv.), $Pd(OAc)_2$ (5 mol%), XantPhos (6 mol%), dichloroethane (1 mL, 0.2 M). Under positive pressure of SO_2F_2 gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at 45 °C for 8 hours. After the reaction is completed, the reaction bottle is purged with nitrogen. Then heat up to 100 °C. The mixture was allowed to react for 0 h, 1 h, 2 h, 4 h, 6 h, 8 h or 12 h. After completion of the reaction 0.5 mL of reaction solution was taken and mixed with the internal standard (1,3,5-Trimethoxybenzene) and the yield was detected by ¹H NMR. NMR analysis was used to determine the 4-nitrostyrene concentration and yields at the various timepoints.

3. Hammett Competition Experiments.

Procedure for Hammett Competition Experiments. A 25 mL Schlenk flask equipped with a stirring bar is filled with alkylcarboxylic acid (neat, 0.2 mmol, 1.0 equiv.), Et₃N (0.4 mmol, 2.0 equiv.), dichloroethane (1 mL, 0.2 M). Under positive pressure of SO_2F_2 gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at 45 °C for 8 hours. The reaction bottle is purged with nitrogen. After Pd(OAc)₂ (5 mol%), XantPhos (6 mol%) were added. Then heat up to 100 °C. The mixture was allowed to react for 4 h. After completion of the reaction 0.5 mL of reaction solution was taken and mixed with the internal standard (1,3,5-Trimethoxybenzene) and the yield was detected by ¹H NMR. A crude NMR spectrum of the residue was obtained in 0.6 mL CDCl₃.

Data Analysis. ¹H NMR yield of each product was obtained by integration of the aromatic peak of the 1,3,5-trimethoxybenzene internal standard (6.08 ppm) and the product resonances. After the yields of each product were obtained by NMR spectroscopy, the ratios of substituted product (P_R , R = Ome, Me, F, Cl, CN) to unsubstituted product (P_H , R = H) were determined (P_R/P_H) and the logarithm of these value was calculated for use in the Hammett plot ($log(P_R/P_H)$). The data was fit using the substituent constants, σ_p .

Entry	Substitution	Average (P _R /P _H)	Average log(P _R /P _H)	σ _p
1	OMe	1.18	0.072	-0.27
2	Me	1.05	0.021	-0.17
3	Н	1.00	0	0
4	F	0.95	-0.022	0.06
5	Cl	0.75	-0.125	0.23
6	CN	0.35	-0.456	0.66

Table S11. Data for Hammett competition experiments

Entries 1-6 are comprised of an average of 3 trials each.

4. Possible intermediates.

Preparation of alkylcarboxylic acid activation intermediate 10a. A 25 mL Schlenk flask equipped with a stirring bar is filled with alkylcarboxylic acid **1m** (neat, 0.2 mmol, 1.0 equiv.), Et₃N (0.4 mmol, 2.0 equiv.), dichloroethane (1 mL, 0.2 M). Under positive pressure of SO_2F_2 gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at 45 °C for 4 hours. The reaction was quenched with water and the reaction mixture was extracted with dichloromethane for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.

Preparation of arylcarboxylic acid activation intermediate 10b. A 25 mL Schlenk flask equipped with a stirring bar is filled with Arylcarboxylic acid **61** (neat, 0.2 mmol, 1.0 equiv.), Et_3N (0.8 mmol, 4.0 equiv.), dioxane:octane=3:7 (1 mL, 0.2 M). Under positive pressure of SO_2F_2 gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at room temperature for 4 hours. The reaction was quenched with water and the reaction mixture was extracted with ethyl acetate for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.

Experimental procedure for the preparation of 2m from intermediate 10a. A 25 mL Schlenk flask equipped with a stirring bar is filled with **10a** (0.2 mmol, 1.0 equiv.), Et_3N (0.4 mmol, 2.0 equiv.), $Pd(OAc)_2$ (5 mol%), XantPhos (6 mol%), dichloroethane (1 mL, 0.2 M). Then heat up to 100 °C. The mixture was allowed to react for 12 h. The reaction was quenched with water and the reaction mixture was extracted with dichloromethane for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.

Experimental procedure for the preparation of 7t from intermediate 10b. A 25 mL Schlenk flask equipped with a stirring bar is filled with 10b (0.2 mmol, 1.0 equiv.), Et₃N (0.8 mmol, 4.0 equiv.),

 $Pd(OAc)_2$ catalyst (6 mol%), XantPhos (8 mol%), 4-methoxyphenylboronic acid (0.6 mmol, 3.0 equiv.), $Cu(OTf)_2$ (10 mol%), and dioxane:octane=3:7 (1 mL, 0.2 M). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The mixture was allowed to react for 18 h. The reaction was quenched with water and the reaction mixture was extracted with ethyl acetate for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.

Experimental procedure for the preparation of 7l or 7x from intermediate 10c or 10d. A 25 mL Schlenk flask equipped with a stirring bar is filled with **10c** or **10d** (0.2 mmol, 1.0 equiv.), Et_3N (0.8 mmol, 4.0 equiv.), $Pd(OAc)_2$ catalyst (6 mol%), XantPhos (8 mol%), $Cu(OTf)_2$ (10 mol%), and dioxane:octane=3:7 (1 mL, 0.2 M). Under a positive pressure of nitrogen and five evacuations/backfilling cycles under high vacuum. The mixture was allowed to react for 18 h. The reaction was quenched with water and the reaction mixture was extracted with ethyl acetate for three times. The combined organic layer was washed with brine and dried over anhydrous Na_2SO_4 . The solvent was removed under vacuum and the residue was purified by a flash column chromatography on silica gel using ethyl acetate and petroleum as eluent.

5. Kinetic Isotope Effect Experiments.

Preparation of deuterated substrate 1m-D. A 25 mL Schlenk flask equipped with a stirring bar is filled with alkylcarboxylic acid **1m** (neat, 0.5 mmol, 1.0 equiv.), 10%Pd/C (7.5 mg, 10 wt%), heavy water (1 mL, 0.5 M). Under positive pressure of H₂, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at 55 °C for 24 hours. The reaction was quenched with water and the reaction mixture was extracted with ethyl acetate for three times. The combined organic layer was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum to give the product **1m-D** (D content 92%, ¹H NMR analysis was used to determine D content).

Procedure for Kinetic Isotope Effect from Parallel Reactions. A 25 mL Schlenk flask equipped with a stirring bar is filled with 1m (0.1 mmol, 0.5 equiv.), 1m-D (0.1 mmol, 0.5 equiv.), Et₃N (0.4 mmol, 2.0 equiv.), dichloroethane (1 mL, 0.2 M). Under positive pressure of SO_2F_2 gas, five evacuation/backfill cycles are performed under high vacuum to fill the reaction tube and vigorous stirring at 45 °C for 8 hours. The reaction bottle is purged with nitrogen. After Pd(OAc)₂ (5 mol%), XantPhos (6 mol%) were added. Then heat up to 100 °C. The mixture was allowed to react for 4 h. After completion of the reaction 0.5 mL of reaction solution was taken and mixed with the internal standard (1,3,5-Trimethoxybenzene, 0.1 mmol) and the deuterated product content was detected by ¹H NMR. A crude NMR spectrum of the residue was obtained in 0.6 mL CDCl₃.

Data Analysis. After Fourier transform of the FID, an auto-baseline correction protocol was applied to the spectra and the spectra were manually integrated. The integration values of the aromatic peak of the methyl 1,3,5-Trimethoxybenzene standard (6.00 ppm, single-peak) and the H_b proton of the styrene product (5.17 ppm) were used to calculate the concentration of product (2m and 2m-D) in the reaction. Subsequently, based on the ratio of the peak areas of the two products (P(Ha)/P(H_b-H_a)), a KIE of 2.7 was obtained. (Calculated by taking the average of five experiments.)

Computational Details

DFT calculations were performed with Gaussian 16^9 program. All molecular geometries were optimized in gas phase at the B3LYP¹⁰ /6-31G(d)¹¹ (SDD¹² basis set for Pd and Cu) level of theory at 298.15 K&337.15K and 1 atm with Grimme's D3¹³ dispersion correction using SMD¹⁴ as the solvation mode in Octane. Optimized minima and transition states (TSs) were verified by harmonic vibrational analysis to have no and one proper imaginary frequency, respectively. To refine calculated energies, single point calculations with larger basis set 6-311G(d,p)¹⁵ were then performed based on these optimized structures by using the same B3LYP-D3BJ functional with SMD^[14] as the solvation mode in Octane.

Table S12: Summary of barriers to each key step in acyl fluoride formation.

Barrier	Substrate (kcal/mol)
Ph(C=O)OSO ₂ F	103.6
Ph(C=O)F	102.9

Table S13: Summary of the barriers for each key step in the catalytic cycle.

Barrier	Substrate (kcal/mol)	
Oxidative addition	13.1	
Decarbonylation from Ph-[Pd ^{II}]-(C=O)(F)	7.8	
Transmetallisation	31.8	
Reductive elimination	45.2	

Figure S3. TS1s.log.

Figure S4. TS2s.log.

Figure S5. TS3s.log.

II. Experimental Characterization Data

Alkenylation Products of Alkyl Carboxylic Acids.

1-ethyl-4-vinylbenzene (2a)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether). Colourless oil, 93% yield, 24.6 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 6.70 (dd, J = 17.6, 10.9 Hz, 1H), 5.71 (d, J = 17.6 Hz, 1H), 5.19 (d, J = 10.9 Hz, 1H), 2.65 (q, J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 144.07, 136.73, 135.08, 128.05, 126.20, 112.87, 28.64, 15.61.

HRMS (EI-TOF) calcd for $C_{10}H_{12}$: 132.0939; Found : 132.0940.

NMR spectroscopic data agreed with literature values.¹⁶

1-methoxy-4-vinylbenzene (2b)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Colourless oil, 99% yield, 26.5 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 6.69 (dd, J = 17.6, 10.9 Hz, 1H), 5.64 (d, J = 17.6 Hz, 1H), 5.15 (d, J = 10.9 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.36, 136.22, 130.44, 127.40, 111.60, 55.32. HRMS (EI-TOF) calcd for C₉H₁₀O: 134.0732; Found : 134.0735. NMR spectroscopic data agreed with literature values.¹⁶

4-vinyl-1,1'-biphenyl (2c)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether). white solid, 97% yield, 26.0 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 (dd, J = 12.7, 7.7 Hz, 4H), 7.51 (d, J = 7.4 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.36 (t, J = 7.3 Hz, 1H), 6.89 – 6.69 (m, 1H), 5.82 (d, J = 17.6 Hz, 1H), 5.31 (s, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 140.77, 140.62, 136.63, 136.44, 128.82, 127.35, 127.27, 127.01, 126.68, 113.94.

HRMS (EI-TOF) calcd for C₉H₁₀O: 134.0732; Found : 134.0735.

NMR spectroscopic data agreed with literature values.¹⁷

1-phenoxy-4-vinylbenzene (2d)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). Colourless oil, 94% yield, 36.8 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.51 – 7.34 (m, 4H), 7.18 (t, J = 7.4 Hz, 1H), 7.10 (d, J = 8.1 Hz, 2H), 7.05 (d, J = 8.6 Hz, 2H), 6.77 (dd, J = 17.6, 10.9 Hz, 1H), 5.74 (d, J = 17.6 Hz, 1H), 5.27 (d, J = 10.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 157.24, 157.09, 136.14, 132.93, 129.88, 127.70, 123.45, 119.03, 118.96, 112.95.

HRMS (EI-TOF) calcd for $C_{14}H_{12}O$: 196.0888; Found : 196.0889.

NMR spectroscopic data agreed with literature values.¹⁸

4-vinylphenyl acetate (2e)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Colourless oil, 81% yield, 26.3 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.6 Hz, 2H), 7.05 (d, J = 8.6 Hz, 2H), 6.70 (dd, J = 17.6, 10.9 Hz, 1H), 5.70 (d, J = 17.6 Hz, 1H), 5.24 (d, J = 10.9 Hz, 1H), 2.30 (s, 3H).

 13 C NMR (101 MHz, CDCl₃) δ 169.50, 150.20, 135.90, 135.40, 127.20, 121.64, 114.07, 21.16.

HRMS (EI-TOF) calcd for $C_{10}H_{10}O_2$: 162.0681; Found : 162.0686.

NMR spectroscopic data agreed with literature values.¹⁹

1-(trifluoromethoxy)-4-vinylbenzene (2f)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Colourless oil, 83% yield, 31.2 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 8.8 Hz, 2H), 7.17 (d, J = 8.5 Hz, 2H), 6.70 (dd, J = 17.5, 10.9 Hz, 1H), 5.73 (d, J = 17.6 Hz, 1H), 5.29 (d, J = 11.0 Hz, 1H). ¹⁹F NMR (377 MHz, CDCl₃) δ -57.86. HRMS (EI-TOF) calcd for C₉H₇F₃O: 188.0449; Found : 188.0450.

NMR spectroscopic data agreed with literature values.¹⁷

1-fluoro-4-vinylbenzene (2g)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether). Colourless oil, 87% yield, 21.2 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 (dd, J = 8.9, 5.4 Hz, 2H), 7.07 (t, J = 8.7 Hz, 2H), 6.74 (dd, J = 17.6, 10.9 Hz, 1H), 5.73 (d, J = 17.5 Hz, 1H), 5.28 (d, J = 11.0 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃) δ 163.76, 161.31, 135.75, 133.80 (d, J = 2.9 Hz), 127.79 (d, J = 8.0 Hz), 115.44 (d, J = 21.1 Hz), 113.52 (d, J = 2.2 Hz). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -114.25.

HRMS (EI-TOF) calcd for C_8H_7F : 122.0532; Found : 122.0536.

NMR spectroscopic data agreed with literature values.¹⁷

4-vinylbenzonitrile (2h)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). yellow oil, 96% yield, 24.8 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 6.72 (dd, J = 17.6, 10.9 Hz, 1H), 5.87 (d, J = 17.5 Hz, 1H), 5.44 (d, J = 11.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.90, 135.37, 132.41, 126.76, 118.95, 117.77, 111.11. HRMS (EI-TOF) calcd for C₉H₇N: 129.0578; Found : 129.0577. NMR spectroscopic data agreed with literature values.²¹

1-(trifluoromethyl)-4-vinylbenzene (2i)

Reaction performed according to condition 1; purified by chromatography on silica gel

(Petroleum ether). Colourless oil, 99% yield, 34.0 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 6.75 (dd, J = 17.6, 10.9 Hz, 1H), 5.85 (d, J = 17.6 Hz, 1H), 5.39 (d, J = 10.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.94, 135.64, 129.87 (q, J = 32.3 Hz), 126.40, 125.51 (q, J = 4.0 Hz), 123.01, 116.50. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.51. HRMS (EI-TOF) calcd for C₉H₇F₃: 172.0500; Found : 172.0505. NMR spectroscopic data agreed with literature values.¹⁶

4-vinylbenzaldehyde (2j)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Colourless oil, 90% yield, 23.8 mg. ¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.83 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 8.4 Hz, 2H), 6.76 (dd, J = 17.6, 10.9 Hz, 1H), 5.90 (d, J = 17.6 Hz, 1H), 5.43 (d, J = 10.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.70, 143.43, 135.88, 135.66, 130.08, 126.74, 117.46. HRMS (EI-TOF) calcd for C₉H₈O: 132.0575; Found : 132.0575.

NMR spectroscopic data agreed with literature values.²¹

1-(4-vinylphenyl)ethan-1-one (2k)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). yellow solid, 84% yield, 24.5 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.4 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 6.76 (dd, J = 17.6, 10.9 Hz, 1H), 5.88 (d, J = 17.6 Hz, 1H), 5.40 (d, J = 10.9 Hz, 1H), 2.60 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.63, 142.10, 136.29, 135.94, 128.74, 126.32, 116.76, 26.64.

HRMS (EI-TOF) calcd for $C_{10}H_{10}O$: 146.0732; Found : 146.0732. NMR spectroscopic data agreed with literature values.²¹

methyl 4-vinylbenzoate (2l)

Reaction performed according to condition 1; purified by chromatography on silica gel
(Petroleum ether : Ethyl acetate = 10 : 1). White solid, 65% yield, 21.1 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 6.74 (dd, J = 17.6, 10.9 Hz, 1H), 5.85 (d, J = 17.5 Hz, 1H), 5.37 (d, J = 11.0 Hz, 1H), 3.90 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 166.81, 141.90, 136.01, 129.88, 129.27, 126.11, 116.44, 52.04.

HRMS (EI-TOF) calcd for $C_{10}H_{10}O_2$: 162.0681; Found : 162.0686.

NMR spectroscopic data agreed with literature values.²¹

1-chloro-4-vinylbenzene (3a)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether). Yellow oil, 96% yield, 26.5 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.31 (q, J = 8.6 Hz, 4H), 6.67 (dd, J = 17.6, 10.9 Hz, 1H), 5.73 (d, J = 17.6 Hz, 1H), 5.27 (d, J = 10.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 136.04, 135.68, 133.44, 128.70, 127.45, 114.49.

HRMS (EI-TOF) calcd for C₈H₇Cl: 138.0236; Found : 138.0238.

NMR spectroscopic data agreed with literature values.²²

1-chloro-3-vinylbenzene (3b)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether). Yellow oil, 89% yield, 24.6 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.31 δ 7.43 (s, 1H), 7.27 (t, J = 6.4 Hz, 3H), 6.69 (dd, J = 17.5, 10.9 Hz, 1H), 5.79 (d, J = 17.5 Hz, 1H), 5.34 (d, J = 10.9 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 139.46, 135.67, 134.57, 129.79, 127.81, 126.24, 124.52, 115.36.

HRMS (EI-TOF) calcd for C₈H₇Cl: 138.0236; Found : 138.0238.

NMR spectroscopic data agreed with literature values.²²

1-chloro-2-vinylbenzene (3c)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether). Yellow oil, 81% yield, 22.4 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.61 (d, J = 7.6 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.29 – 7.13 (m, 3H), 5.79 (d, J = 17.6 Hz, 1H), 5.43 (d, J = 11.0 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 135.75, 133.23, 133.15, 129.68, 128.85, 126.85, 126.59, 116.56. HRMS (EI-TOF) calcd for C₈H₇Cl: 138.0236; Found : 138.0238. NMR spectroscopic data agreed with literature values.²²

N,N-dimethyl-4-vinylaniline (3d)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Yellow solid, 86% yield, 25.3 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.9 Hz, 2H), 6.81 – 6.66 (m, 3H), 5.63 (d, J = 17.6 Hz, 1H), 5.11 (d, J = 10.9 Hz, 1H), 3.03 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 150.33, 136.71, 127.23, 126.28, 112.40, 109.40, 40.57.

HRMS (EI-TOF) calcd for $C_{10}H_{13}N$: 147.1048; Found : 147.1058.

NMR spectroscopic data agreed with literature values.²¹

1,3-dichloro-2-vinylbenzene (3e)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether). Yellow oil, 64% yield, 22.0 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.0 Hz, 2H), 7.11 (t, J = 8.1 Hz, 1H), 6.75 (dd, J = 17.9, 11.7 Hz, 1H), 5.88 - 5.72 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 135.05, 134.29, 130.93, 128.44, 128.25, 122.94.

HRMS (EI-TOF) calcd for C₈H₆Cl₂: 171.9847; Found : 171.9850.

NMR spectroscopic data agreed with literature values.²²

1,2-dimethoxy-4-vinylbenzene (3f)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 5 : 1). Yellow oil, 92% yield, 30.2 mg.

¹**H** NMR (400 MHz, $CDCl_3$) δ 7.01 – 6.91 (m, 2H), 6.82 (d, J = 8.1 Hz, 1H), 6.65 (dd, J = 17.5, 10.9 Hz, 1H), 5.62 (d, J = 17.5 Hz, 1H), 5.15 (d, J = 10.8 Hz, 1H), 3.91 (s, 3H), 3.88 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 149.01, 148.97, 136.50, 130.73, 119.47, 111.84, 111.01, 108.49, 55.94, 55.83.

HRMS (EI-TOF) calcd for $C_{10}H_{12}O_2$: 164.0837; Found : 164.0841. NMR spectroscopic data agreed with literature values.¹⁷

1,4-dimethoxy-2-vinylbenzene (3g)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 5 : 1). Yellow solid, 99% yield, 32.5 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.12 – 6.93 (m, 2H), 6.80 (d, J = 4.4 Hz, 2H), 5.73 (dt, J = 17.8, 1.2 Hz, 1H), 5.28 (dt, J = 11.1, 1.2 Hz, 1H), 3.80 (d, J = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 153.69, 151.23, 131.52, 127.61, 114.72, 113.80, 112.25, 111.88, 56.26, 55.76.

HRMS (EI-TOF) calcd for $C_{10}H_{12}O_2$: 164.0837; Found : 164.0841. NMR spectroscopic data agreed with literature values.²³

1-fluoro-2-methoxy-4-vinylbenzene (3h)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Pink oil, 73% yield, 22.2 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.03 (dd, J = 10.9, 8.3 Hz, 2H), 6.96 – 6.90 (m, 1H), 6.66 (dd, J = 17.6, 10.9 Hz, 1H), 5.67 (d, J = 17.5 Hz, 1H), 5.23 (d, J = 10.9 Hz, 1H), 3.91 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 153.46, 151.01, 147.65 (d, J = 10.9 Hz), 136.03, 134.22 (d, J = 4.4 Hz), 119.08 (d, J = 7.3 Hz), 116.07, 115.88, 113.63 (d, J = 2.9 Hz), 110.84 (d, J = 2.2 Hz), 56.17.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -136.02.

HRMS (EI-TOF) calcd for C₉H₉FO: 152.0637; Found : 152.0631.

NMR spectroscopic data agreed with literature values.

1,2,3,4,5-pentafluoro-6-vinylbenzene (3i)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Colourless oil, 51% yield, 19.8 mg. ¹H NMR (400 MHz, CDCl₃) δ 6.62 (dd, J = 18.1, 11.9 Hz, 1H), 6.07 (d, J = 18.0 Hz, 1H), 5.71 (d, J = 11.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.38 – 145.89 (m), 143.94 – 143.38 (m), 141.63 –

140.97 (m), 139.21 - 138.42 (m), 136.80 - 135.94 (m), 123.49 (td, J = 7.3, 2.9 Hz), 121.35 (d, J = 2.9 Hz), 112.17 (td, J = 13.8, 4.4 Hz). ¹⁹F NMR (377 MHz, CDCl₃) HRMS (EI-TOF) calcd for C₈H₃F₅: 194.0155; Found : 194.0156.

NMR spectroscopic data agreed with literature values.²⁴

1-vinylnaphthalene (3j)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 30 : 1). Colourless oil, 69% yield, 21.2 mg.

¹**H** NMR (400 MHz, $CDCl_3$) δ 8.13 (d, J = 7.8 Hz, 1H), 7.83 (dd, J = 25.5, 7.9 Hz, 2H), 7.64 (d, J = 7.3 Hz, 1H), 7.57 - 7.38 (m, 4H), 5.80 (d, J = 18.8 Hz, 1H), 5.49 (d, J = 9.5 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 135.61, 134.39, 133.59, 131.11, 128.52, 128.10, 126.06, 125.76, 125.64, 123.77, 123.63, 117.12.

HRMS (EI-TOF) calcd for $C_{12}H_{10}$: 154.0783; Found : 154.0788.

NMR spectroscopic data agreed with literature values.¹⁸

2-vinylnaphthalene (3k)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 30 : 1). Colourless oil, 91% yield, 28.0 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (dd, J = 7.9, 4.7 Hz, 3H), 7.81 (s, 1H), 7.70 (d, J = 8.6 Hz, 1H), 7.65 – 7.38 (m, 2H), 6.94 (dd, J = 17.5, 10.9 Hz, 1H), 5.94 (d, J = 17.5 Hz, 1H), 5.40 (d, J = 10.9 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 136.99, 135.06, 133.61, 133.21, 128.20, 128.10, 127.72, 126.44, 126.28, 125.96, 123.23, 114.23.

HRMS (EI-TOF) calcd for $C_{12}H_{10}$: 154.0783; Found : 154.0788.

NMR spectroscopic data agreed with literature values.¹⁸

9-vinylanthracene (31)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 30 : 1). Yellow solid, 88% yield, 35.9 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.38 – 8.28 (m, 2H), 8.08 – 7.96 (m, 2H), 7.57 – 7.45 (m, 5H), 6.03 (d, J = 11.5 Hz, 1H), 5.66 (d, J = 17.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 133.68, 133.57, 131.45, 129.26, 128.63, 126.36, 126.03, 125.39, 125.14, 122.93.

HRMS (EI-TOF) calcd for $C_{16}H_{12}$: 204.0939; Found : 204.0944.

NMR spectroscopic data agreed with literature values.¹⁸

7-vinyl-2,3-dihydrobenzofuran (3m)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Colourless oil, 77% yield, 22.5 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.17 (t, J = 7.8 Hz, 1H), 7.05 (d, J = 7.8 Hz, 1H), 6.77 (dd, J = 17.2, 9.6 Hz, 2H), 5.77 (d, J = 17.6 Hz, 1H), 5.40 (d, J = 11.1 Hz, 1H), 4.63 (t, J = 8.8 Hz, 2H), 3.29 (t, J = 8.8 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 160.37, 134.81, 134.46, 128.16, 124.92, 117.78, 115.64, 108.54, 71.08, 29.15.

HRMS (EI-TOF) calcd for $C_{10}H_{10}O$: 146.0732; Found : 146.0736.

NMR spectroscopic data agreed with literature values.²⁵

2-vinylthiophene (3n)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). Yellow oil, 86% yield, 18.9 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, J = 4.5 Hz, 1H), 6.97 (d, J = 4.6 Hz, 2H), 6.81 (dd, J = 17.3, 10.8 Hz, 1H), 5.57 (d, J = 17.3 Hz, 1H), 5.14 (d, J = 10.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.06, 129.87, 127.32, 125.79, 124.33, 113.26. HRMS (EI-TOF) calcd for C₆H₆S: 110.0190; Found : 110.0192. NMR spectroscopic data agreed with literature values.²¹

2-vinylisoindoline-1,3-dione (30)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Yellow solid, 60% yield, 20.8 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 5.4, 3.1 Hz, 2H), 7.75 (dd, J = 5.6, 3.1 Hz, 2H), 6.88 (dd, J = 16.5, 9.9 Hz, 1H), 6.09 (d, J = 16.4 Hz, 1H), 5.05 (d, J = 9.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 166.46, 134.49, 131.62, 123.81, 123.64, 104.49. HRMS (EI-TOF) calcd for C₁₀H₇NO₂: 173.0477; Found : 173.0480. NMR spectroscopic data agreed with literature values.²⁶

ethene-1,1-diyldibenzene (3p)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). White solid, 92% yield, 33.1 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (s, 10H), 5.48 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.08, 141.51, 128.30, 128.19, 127.74, 114.34. HRMS (EI-TOF) calcd for C₁₄H₁₂: 180.0939; Found : 180.0939. NMR spectroscopic data agreed with literature values.²⁷

9-methylene-9H-fluorene (3q)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 30 : 1). White solid, 94% yield, 33.5 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (dd, J = 17.4, 7.4 Hz, 4H), 7.45 (t, J = 7.4 Hz, 2H), 7.41 – 7.32 (m, 2H), 6.14 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.43, 140.23, 138.10, 128.80, 127.12, 121.08, 119.82, 107.84.

HRMS (EI-TOF) calcd for $C_{14}H_{10}$: 178.0783; Found : 178.0788.

NMR spectroscopic data agreed with literature values.²⁷

(*E*)-prop-1-en-1-ylbenzene (3r)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether). Colourless oil, 91% yield, 33.5 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.37 (t, J = 6.8 Hz, 3H), 7.32 (d, J = 8.0 Hz, 1H), 7.23 (t, J = 7.1 Hz, 1H), 6.45 (d, J = 16.0 Hz, 1H), 6.34 – 6.23 (m, 1H), 1.93 (d, J = 6.6 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 137.97, 131.06, 128.50, 126.76, 125.84, 125.72, 18.53. **HRMS** (EI-TOF) calcd for C₉H₁₀: 118.0783; Found : 118.0780.

NMR spectroscopic data agreed with literature values.²⁸

1,2-dihydronaphthalene (4a)

Reaction performed according to condition 1 (130 °C instead of 100 °C); purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 30 : 1). Colourless oil, 97% yield, 25.2 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 (dq, J = 14.6, 7.3 Hz, 3H), 7.24 (d, J = 6.8 Hz, 1H), 6.69 (d, J = 9.6 Hz, 1H), 6.24 (dt, J = 9.3, 4.4 Hz, 1H), 3.01 (t, J = 8.3 Hz, 2H), 2.57 – 2.49 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 135.64, 134.36, 128.81, 128.07, 127.76, 127.09, 126.67, 126.13, 27.73, 23.44.

HRMS (EI-TOF) calcd for $C_{10}H_{10}$: 130.0783; Found : 130.0783.

NMR spectroscopic data agreed with literature values.²⁹

1H-indene (4b)

Reaction performed according to condition 1 (130 °C instead of 100 °C); purified by chromatography on silica gel (Petroleum ether). Colourless oil, 92% yield, 21.4 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.74 – 7.67 (m, 1H), 7.66 – 7.59 (m, 1H), 7.55 – 7.47 (m, 1H), 7.47 – 7.37 (m, 1H), 7.11 (s, 1H), 6.77 (s, 1H), 3.59 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 145.07, 143.88, 134.35, 132.31, 126.47, 124.78, 123.94, 121.19, 39.26.

HRMS (EI-TOF) calcd for C₉H₈: 116.0626; Found : 116.0629.

NMR spectroscopic data agreed with literature values.²⁹

cyclopent-1-en-1-ylbenzene (4c)

Reaction performed according to condition 1 (130 °C instead of 100 °C); purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 30 : 1). Colourless solid, 69% yield, 19.9 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 7.6 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 7.23 (q, J = 7.8 Hz, 1H), 6.20 (s, 1H), 2.73 (s, 2H), 2.55 (s, 2H), 2.04 (p, J = 7.5 Hz, 2H). ¹³C NMP (101 MHz, CDCl₃) δ 142 45 136 84 128 28 126 83 126 12 125 57 33 37

¹³C NMR (101 MHz, CDCl₃) δ 142.45, 136.84, 128.28, 126.83, 126.12, 125.57, 33.37, 33.20, 23.39.

HRMS (EI-TOF) calcd for $C_{11}H_{12}$: 144.0939; Found : 144.0944.

NMR spectroscopic data agreed with literature values.³⁰

2,3,4,5-tetrahydro-1,1'-biphenyl (4d)

Reaction performed according to condition 1 (130 °C instead of 100 °C); purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 30 : 1). Colourless oil, 85% yield, 26.9 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 (d, J = 7.8 Hz, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.2 Hz, 1H), 6.20 (s, 1H), 2.49 (s, 2H), 2.28 (s, 2H), 1.85 (q, J = 5.8 Hz, 2H), 1.79 – 1.69 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 142.78, 136.68, 128.26, 126.59, 125.02, 124.83, 27.49, 25.99, 23.18, 22.28.

HRMS (EI-TOF) calcd for $C_{12}H_{14}$: 158.1096; Found : 158.1102.

NMR spectroscopic data agreed with literature values.²⁹

1-isobutyl-4-vinylbenzene (5a)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). Colourless oil, 97% yield, 31.0 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.1 Hz, 2H), 7.12 (d, J = 8.1 Hz, 2H), 6.72 (dd, J = 17.6, 10.9 Hz, 1H), 5.73 (d, J = 17.6 Hz, 1H), 5.21 (d, J = 10.8 Hz, 1H), 2.48 (d, J = 7.3 Hz, 2H), 1.93 - 1.82 (m, 1H), 0.92 (d, J = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 141.55, 136.78, 135.07, 129.31, 126.00, 112.82, 45.20, 30.27, 22.40. **HRMS** (EI-TOF) calcd for $C_{12}H_{16}$: 160.1252; Found : 160.1255. NMR spectroscopic data agreed with literature values.²²

phenyl(3-vinylphenyl)methanone (5b)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White oil, 83% yield, 31.0 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 – 7.78 (m, 3H), 7.74 – 7.57 (m, 3H), 7.49 (dt, J = 20.4, 7.8 Hz, 3H), 6.79 (dd, J = 17.5, 10.9 Hz, 1H), 5.84 (d, J = 17.5 Hz, 1H), 5.36 (d, J = 11.0 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 196.72, 137.95, 137.81, 137.54, 135.99, 132.56, 130.10, 129.96, 129.44, 128.48, 128.36, 127.75, 115.34.

HRMS (EI-TOF) calcd for $C_{15}H_{12}O$: 208.0888; Found : 208.0896.

NMR spectroscopic data agreed with literature values.²²

2-fluoro-4-vinyl-1,1'-biphenyl (5c)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Yellow oil, 88% yield, 34.9 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.58 (d, J = 8.0 Hz, 2H), 7.43 (dt, J = 23.9, 7.1 Hz, 4H), 7.29 – 7.20 (m, 2H), 6.73 (dd, J = 17.6, 10.9 Hz, 1H), 5.81 (d, J = 17.6 Hz, 1H), 5.34 (d, J = 10.9 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.19, 158.73, 138.92 (d, J = 8.0 Hz), 135.60, 135.53 (d, J = 2.9 Hz), 130.75 (d, J = 4.4 Hz), 128.94 (d, J = 2.9 Hz), 128.49, 127.72, 122.43 (d, J = 2.9 Hz), 115.23, 113.43 (d, J = 23.3 Hz).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -118.37.

HRMS (EI-TOF) calcd for $C_{14}H_{11}F$: 198.0845; Found : 198.0841.

NMR spectroscopic data agreed with literature values.²²

1-phenoxy-3-vinylbenzene (5d)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Colourless oil, 95% yield, 37.3 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.33 (dt, J = 22.1, 7.7 Hz, 3H), 7.20 – 7.08 (m, 3H), 7.04 (d, J = 7.8 Hz, 2H), 6.92 (d, J = 8.1 Hz, 1H), 6.69 (dd, J = 17.6, 10.9 Hz, 1H), 5.74 (d, J = 17.5 Hz, 1H), 5.27 (d, J = 10.9 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 157.51, 157.24, 139.53, 136.32, 129.82, 129.79, 123.27, 121.38, 118.88, 118.34, 116.55, 114.66.

HRMS (EI-TOF) calcd for $C_{14}H_{12}O$: 196.0888; Found : 196.0892.

NMR spectroscopic data agreed with literature values.³²

2-methoxy-6-vinylnaphthalene (5e)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solids, 92% yield, 33.9 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.74 – 7.67 (m, 3H), 7.61 (d, J = 8.6 Hz, 1H), 7.13 (d, J = 8.6 Hz, 2H), 6.85 (dd, J = 17.5, 10.9 Hz, 1H), 5.82 (d, J = 17.6 Hz, 1H), 5.28 (d, J = 10.9 Hz, 1H), 3.92 (d, J = 3.8 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 157.78, 136.95, 134.31, 132.97, 129.58, 127.02, 126.20, 123.76, 118.98, 113.13, 105.84, 55.34.

HRMS (EI-TOF) calcd for $C_{13}H_{12}O$: 184.0888; Found : 184.0880.

NMR spectroscopic data agreed with literature values.³¹

2-(4-vinylbenzyl)cyclopentan-1-one (5f)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 5 : 1). White solids, 97% yield, 38.8 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.1 Hz, 2H), 6.69 (dd, J = 17.5, 10.9 Hz, 1H), 5.71 (d, J = 17.6 Hz, 1H), 5.21 (d, J = 11.0 Hz, 1H), 3.13 (dd, J = 13.9, 4.3 Hz, 1H), 2.34 (q, J = 7.4, 6.9 Hz, 2H), 2.16 – 2.04 (m, 2H), 2.00 – 1.91 (m, 1H), 1.79 – 1.68 (m, 1H), 1.62 – 1.48 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 220.27, 139.71, 136.54, 135.61, 129.11, 126.29, 113.29, 50.99, 38.25, 35.31, 29.12, 20.57.

HRMS (EI-TOF) calcd for $C_{14}H_{16}O$: 200.1201; Found : 200.1206.

NMR spectroscopic data agreed with literature values.³¹

4,5-diphenyl-2-vinyloxazole (5g)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 5 : 1). White solids, 81% yield, 40.0 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.65 (dd, J = 12.9, 8.1 Hz, 4H), 7.36 (q, J = 8.1, 7.3 Hz, 6H), 6.68 (dd, J = 17.6, 11.3 Hz, 1H), 6.29 (d, J = 17.6 Hz, 1H), 5.69 (d, J = 11.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.51, 145.30, 136.50, 132.39, 128.83, 128.70, 128.62, 128.25, 128.03, 126.65, 123.37, 121.92.

HRMS (EI-TOF) calcd for $C_{14}H_{16}O$: 247.0997; Found : 247.1003.

NMR spectroscopic data agreed with literature values.³¹

2-vinyldibenzo[b,f]thiepin-10(11H)-one (5h)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solids, 73% yield, 36.8 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.0 Hz, 1H), 7.68 – 7.58 (m, 2H), 7.51 (s, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.29 – 7.23 (m, 1H), 6.71 (dd, J = 17.6, 10.9 Hz, 1H), 5.81 (d, J = 17.5 Hz, 1H), 5.34 (d, J = 10.9 Hz, 1H), 4.39 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 191.47, 140.29, 139.45, 137.82, 136.13, 135.60, 133.63, 132.52, 131.56, 131.42, 130.80, 127.01, 126.83, 124.99, 115.56, 51.03. HRMS (EI-TOF) calcd for C₁₆H₁₂OS: 252.0609; Found : 252.0611. NMR spectroscopic data agreed with literature values.³¹

7-vinyl-5*H*-chromeno[2,3-*b*]pyridine (5i)

Reaction performed according to condition 1; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Yellow solids, 83% yield, 34.7 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 5.1 Hz, 1H), 7.52 (d, J = 7.4 Hz, 1H), 7.27 (d, J = 11.0 Hz, 1H), 7.18 (s, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.06 – 6.96 (m, 1H), 6.64 (dd, J = 17.6, 10.9 Hz, 1H), 5.65 (d, J = 17.5 Hz, 1H), 5.19 (d, J = 10.9 Hz, 1H), 4.08 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.30, 151.25, 146.65, 138.47, 135.85, 133.39, 126.41, 125.87, 119.87, 119.37, 117.30, 115.31, 113.02, 28.03. HRMS (EI-TOF) calcd for C₁₄H₁₁NO: 209.0841; Found : 209.0840.

Biarylation Products of Aryl Carboxylic Acids

4-methyl-1,1'-biphenyl (8a)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether). White solid, 68% yield, 22.9 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 7.9 Hz, 2H), 7.67 (d, J = 8.1 Hz, 2H), 7.58 (t, J = 7.6 Hz, 2H), 7.48 (t, J = 7.4 Hz, 1H), 7.41 (d, J = 8.0 Hz, 2H), 2.56 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 141.32, 138.52, 137.15, 129.66, 128.89, 127.15 (d, *J* = 2.5 Hz), 21.27.

HRMS (EI-TOF) calcd for $C_{13}H_{12}$: 168.0939; Found : 168.0940.

NMR spectroscopic data agreed with literature values.³³

3-methyl-1,1'-biphenyl (8b)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether). White solid, 64% yield, 21.5 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.7 Hz, 2H), 7.68 (t, *J* = 7.6 Hz, 4H), 7.58 (t, *J* = 7.6 Hz, 2H), 7.42 (d, *J* = 7.5 Hz, 1H), 2.67 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 141.64, 141.51, 138.54, 128.97 (d, *J* = 1.7 Hz), 128.29, 128.24, 127.45, 124.57, 21.81.

HRMS (EI-TOF) calcd for $C_{13}H_{12}$: 168.0939; Found : 168.0940.

NMR spectroscopic data agreed with literature values.³³

2-methyl-1,1'-biphenyl (8c)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether). White solid, 58% yield, 19.5 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 8.19 – 8.14 (m, 2H), 7.96 (dd, J = 16.7, 9.5 Hz, 4H), 7.87 (t, J = 7.6 Hz, 2H), 7.70 (d, J = 7.7 Hz, 1H), 2.94 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 142.00, 141.86, 138.79, 129.35, 128.67, 128.56, 127.79, 124.95, 22.10. HRMS (EI-TOF) calcd for C₁₃H₁₂: 168.0939; Found : 168.0940. NMR spectroscopic data agreed with literature values.³³

4-(tert-butyl)-1,1'-biphenyl (8d)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether). White solid, 62% yield, 26.1 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.4 Hz, 2H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.40 (t, *J* = 7.4 Hz, 1H), 1.46 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 150.31, 141.14, 138.40, 128.77, 127.10, 127.06, 126.87, 125.79, 34.60, 31.46.

HRMS (EI-TOF) calcd for $C_{16}H_{18}$: 210.1409; Found : 210.1419.

NMR spectroscopic data agreed with literature values.³³

[1,1'-biphenyl]-4-carbonitrile (8e)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 45% yield, 16.1 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (q, *J* = 8.4 Hz, 4H), 7.62 (d, *J* = 7.3 Hz, 2H), 7.51 (t, *J* = 7.4 Hz, 2H), 7.45 (t, *J* = 7.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 145.71, 139.20, 132.62, 129.14, 128.68, 127.76, 127.25, 118.97, 110.93.

HRMS (EI-TOF) calcd for C₁₃H₉N: 179.0735; Found : 179.0739.

NMR spectroscopic data agreed with literature values.³³

4-fluoro-1,1'-biphenyl (8f)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). White solid, 63% yield, 21.7 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.62 – 7.56 (m, 4H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 1H), 7.17 (t, *J* = 8.7 Hz, 2H).

¹³**C** NMR (101 MHz, CDCl₃) δ 162.54 (d, J = 246.3 Hz), 128.89, 128.75 (d, J = 8.0 Hz), 127.32, 127.09, 115.67 (d, J = 21.1 Hz).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -115.72.

HRMS (EI-TOF) calcd for $C_{12}H_9F$: 172.0688; Found : 172.0690.

NMR spectroscopic data agreed with literature values.³⁴

4-(trifluoromethyl)-1,1'-biphenyl (8g)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). White solid, 70% yield, 31.1 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.74 (s, 4H), 7.66 – 7.62 (m, 2H), 7.52 (t, *J* = 7.3 Hz, 2H), 7.48 – 7.43 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 144.76, 139.79, 129.02, 128.22, 127.45, 127.31, 125.74 (q, *J* = 4.0 Hz), 123.01.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -62.36.

HRMS (EI-TOF) calcd for $C_{13}H_9F_3$: 222.0656; Found : 222.0659.

NMR spectroscopic data agreed with literature values.³³

methyl [1,1'-biphenyl]-4-carboxylate (8h)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 66% yield, 28.0 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.4 Hz, 2H), 7.67 (dd, *J* = 14.9, 7.9 Hz, 4H), 7.50 (t, *J* = 7.5 Hz, 2H), 7.42 (t, *J* = 7.3 Hz, 1H), 3.97 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 167.03, 145.66, 140.02, 130.12, 128.95, 128.16, 127.30, 127.07, 52.16. **HRMS** (EI-TOF) calcd for C₁₄H₁₂O₂: 212.0837; Found : 212.0842. NMR spectroscopic data agreed with literature values.³⁴

1-([1,1'-biphenyl]-4-yl)ethan-1-one (8i)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 75% yield, 29.4 mg. ¹H NMR (400 MHz, CDCl3) δ 8.06 (d, J = 8.5 Hz, 2H), 7.72 (d, J = 8.5 Hz, 2H), 7.66 (d, J = 7.0 Hz, 2H), 7.50 (d, J = 14.8 Hz, 2H), 7.43 (t, J = 7.3 Hz, 1H), 2.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.80, 145.81, 139.90, 135.87, 128.98, 128.94, 128.26, 127.30, 127.25, 26.71.

HRMS (EI-TOF) calcd for $C_{14}H_{12}O$: 196.0888; Found : 196.0892.

NMR spectroscopic data agreed with literature values.35

4-(prop-1-yn-1-yl)-1,1'-biphenyl (8j)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 21% yield, 8.1 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.66 – 7.57 (m, 6H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.41 (t, *J* = 7.3 Hz, 1H), 3.18 (s, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 141.61, 140.28, 132.60, 128.92, 127.78, 127.10, 127.05, 121.01, 83.60.

HRMS (EI-TOF) calcd for $C_{15}H_{12}$: 192.0939; Found : 192.0944.

NMR spectroscopic data agreed with literature values.³⁶

2,3,4,5,6-pentafluoro-1,1'-biphenyl (8k)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 54% yield, 26.4 mg.

¹**H NMR** (400 MHz, CDCl3) δ 7.56 – 7.43 (m, 5H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 145.65 – 144.97 (m), 143.15 – 142.61 (m)., 141.99 – 141.32 (m), 139.50 – 138.78 (m), 137.06 – 136.22 (m), 130.16, 129.31, 128.74, 126.41, 116.11 – 115.75 (m).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -143.26 (dd, J = 23.6, 8.3 Hz), -155.62 (t, J = 21.5 Hz), -162.26 (td, J = 22.2, 7.6 Hz).

HRMS (EI-TOF) calcd for $C_{12}H_5F_5$: 244.0311; Found : 244.0315.

NMR spectroscopic data agreed with literature values.³⁷

2-phenylnaphthalene (8l)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). White solid, 87% yield, 35.5 mg. ¹H NMR (400 MHz, CDCl3) δ 8.13 (s, 1H), 8.02 – 7.91 (m, 3H), 7.88 – 7.77 (m, 3H), 7.64 – 7.52 (m, 4H), 7.50 – 7.38 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.23, 138.66, 133.80, 132.73, 128.98, 128.54, 128.33, 127.77, 127.55, 127.47, 126.41, 126.05, 125.92, 125.71. HRMS (EI-TOF) calcd for C₁₆H₁₂: 204.0939; Found : 204.0945. NMR spectroscopic data agreed with literature values.³³

2-phenylbenzo[b]thiophene (8m)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 70% yield, 29.4 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.7 Hz, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.75 (d, J = 7.6 Hz, 2H), 7.58 (s, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.42 – 7.32 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.27, 140.71, 139.52, 134.32, 128.98, 128.30, 126.52, 124.54, 124.34, 123.59, 122.30, 119.48. HRMS (EI-TOF) calcd for C₁₄H₁₀S: 210.0503; Found : 210.0504. NMR spectroscopic data agreed with literature values.³⁸

2-phenyl-1*H*-indole (8n)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 3 : 1). White solid, 64% yield, 24.7 mg. ¹**H NMR** (400 MHz, DMSO) δ 11.55 (s, 1H), 7.88 (d, *J* = 7.1 Hz, 2H), 7.54 (d, *J* = 7.1 Hz, 1H), 7.52 - 7.37 (m, 3H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.14 - 7.08 (m, 1H), 7.05 - 6.97 (m, 1H), 6.91 (d, *J* = 1.5 Hz, 1H).

¹³C NMR (101 MHz, DMSO) δ 137.61, 137.13, 132.22, 128.90, 128.63, 127.39, 124.98, 121.57, 120.04, 119.37, 111.31, 98.67.

HRMS (EI-TOF) calcd for $C_{14}H_{11}N$: 193.0891; Found : 193.0899.

NMR spectroscopic data agreed with literature values.³⁸

2-phenyl-1*H*-benzo[d]imidazole (80)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 1 : 1). White solid, 49% yield, 19.0 mg. **INMP** (400 MHz DMSO) & 8 18 (d, I = 7.0 Hz 2H) 7.67 7.43 (m, 5H) 7.21 (dd)

¹**H NMR** (400 MHz, DMSO) δ 8.18 (d, *J* = 7.0 Hz, 2H), 7.67 – 7.43 (m, 5H), 7.21 (dd, *J* = 6.1, 3.2 Hz, 2H).

¹³C NMR (101 MHz, DMSO) δ 156.42, 135.37, 135.07, 134.18, 131.65, 127.32. HRMS (EI-TOF) calcd for C₁₃H₁₀N₂: 194.0844; Found : 194.0846.

NMR spectroscopic data agreed with literature values.⁴⁰

2-phenylbenzo[d]thiazole (8p)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 3 : 1). White solid, 62% yield, 26.1 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 8.19 – 8.00 (m, 3H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.55 – 7.47 (m, 4H), 7.39 (td, *J* = 7.7, 7.3, 1.3 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.13, 154.09, 135.05, 133.59, 131.04, 129.06, 127.61, 126.37, 125.24, 123.24, 121.66.

HRMS (EI-TOF) calcd for $C_{13}H_9NS$: 211.0456; Found \therefore 211.0457.

NMR spectroscopic data agreed with literature values.⁴⁰

9-([1,1'-biphenyl]-4-yl)-9H-carbazole (8q)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 67% yield, 42.8 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (d, J = 7.8 Hz, 2H), 7.84 (d, J = 8.5 Hz, 2H), 7.74 – 7.70 (m, 2H), 7.66 (d, J = 8.5 Hz, 2H), 7.56 – 7.49 (m, 4H), 7.49 – 7.41 (m, 3H), 7.36 – 7.30 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 140.91, 140.33, 136.91, 129.01, 128.55, 127.69, 127.37, 127.19, 126.02, 123.48, 120.38, 120.02, 109.89.

HRMS (EI-TOF) calcd for C₂₄H₁₇N: 319.1361; Found : 319.1366.

NMR spectroscopic data agreed with literature values.⁴¹

N,N-dipropyl-[1,1'-biphenyl]-4-sulfonamide (8r)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 5 : 1). White solid, 58% yield, 36.8 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, J = 8.5 Hz, 2H), 7.73 (d, J = 8.5 Hz, 2H), 7.64 (d, J = 8.6 Hz, 2H), 7.50 (t, J = 7.4 Hz, 2H), 7.44 (t, J = 7.3 Hz, 1H), 3.16 – 3.12 (m, 4H), 1.63 – 1.57 (m, 4H), 0.92 (t, J = 7.4 Hz, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 145.09, 139.42, 138.76, 129.04, 128.39, 127.58, 127.30, 50.13, 22.11, 11.23.

HRMS (EI-TOF) calcd for C₁₈H₂₃NO₂S: 317.1449; Found : 317.1455.

[1,1'-biphenyl]-4-sulfonyl fluoride (8s)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 61% yield, 28.8 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.5 Hz, 2H), 7.82 (d, *J* = 8.3 Hz, 2H), 7.64 (dd,

J = 8.2, 1.7 Hz, 2H), 7.57 – 7.46 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.66, 138.51, 129.31, 129.26, 129.02, 128.22, 127.48. ¹⁹F NMR (377 MHz, CDCl₃) δ 66.61.

HRMS (EI-TOF) calcd for $C_{12}H_9FO_2S$: 236.0307; Found : 236.0309.

NMR spectroscopic data agreed with literature values.42

4-methoxy-1,1'-biphenyl (8t)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 77% yield, 28.3 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.57 (t, *J* = 8.3 Hz, 4H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.01 (d, *J* = 8.8 Hz, 2H), 3.88 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 159.15, 140.84, 133.79, 128.74, 128.18, 126.76, 126.67, 114.21, 55.37.

HRMS (EI-TOF) calcd for $C_{13}H_{12}O$: 184.0888; Found : 184.0889.

NMR spectroscopic data agreed with literature values.³³

4-(tert-butoxy)-1,1'-biphenyl (8u)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 42% yield, 19.0 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.1 Hz, 2H), 7.52 (d, *J* = 8.6 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.08 (d, *J* = 8.6 Hz, 2H), 1.41 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 154.94, 140.81, 136.20, 128.71, 127.53, 126.88, 126.85, 124.35, 28.91.

HRMS (EI-TOF) calcd for $C_{16}H_{18}O$: 226.1358; Found : 226.1359.

NMR spectroscopic data agreed with literature values.⁴³

1,1':4',1''-terphenyl (8v)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). White solid, 45% yield, 20.7 mg. ¹**H NMR** (400 MHz, DMSO) δ 7.72 – 7.64 (m, 8H), 7.48 (t, *J* = 7.6 Hz, 4H), 7.37 (d, *J* = 7.3 Hz, 2H).

¹³C NMR (101 MHz, DMSO) δ 140.70, 140.13, 128.83, 127.51, 127.35, 127.06. HRMS (EI-TOF) calcd for C₁₈H₁₄: 230.1096; Found : 230.1098.

TRMS (EI-101) calculor C_{18} (11-2000) (2000)

NMR spectroscopic data agreed with literature values.44

(3r,5r,7r)-1-([1,1'-biphenyl]-4-yl)adamantane (8w)

Reaction performed according to condition 2; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 20 : 1). White solid, 72% yield, 41.5 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.65 – 7.58 (m, 4H), 7.50 – 7.43 (m, 4H), 7.35 (t, *J* = 7.4 Hz, 1H), 2.16 (s, 3H), 2.00 (d, *J* = 3.3 Hz, 6H), 1.87 – 1.78 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 150.53, 141.13, 138.38, 128.70, 127.06, 126.97, 126.85, 43.22, 36.83, 36.09, 28.98.

HRMS (EI-TOF) calcd for $C_{22}H_{24}$: 288.1878; Found : 288.1880.

NMR spectroscopic data agreed with literature values.⁴⁵

Other Products

6-methoxy-2-naphthaldehyde (9a)

React according to the appropriate conditions in the synthetic application; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Yellow solid, 62% yield, 34.6 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 10.11 (s, 1H), 8.26 (s, 1H), 7.92 (dd, J = 14.3, 8.8 Hz, 2H), 7.82 (d, J = 8.5 Hz, 1H), 7.25 (dd, J = 8.4, 3.1 Hz, 1H), 7.19 (d, J = 2.9 Hz, 1H), 3.98 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 144.07, 136.73, 135.08, 128.05, 126.20, 112.87, 28.64, 15.61.

HRMS (EI-TOF) calcd for $C_{12}H_{10}O_2$: 186.0681; Found : 186.0680.

1-(6-methoxynaphthalen-2-yl)ethan-1-amine (9b)

React according to the appropriate conditions in the synthetic application; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 3 : 1). Yellow solid, 80% yield, 96.5 mg.

¹**H NMR** (400 MHz, DMSO-d⁶) δ 8.72 (s, 2H), 7.95 (s, 1H), 7.88 (d, J = 8.6 Hz, 1H), 7.82 (d, J = 9.0 Hz, 1H), 7.67 (d, J = 8.6 Hz, 1H), 7.35 (s, 1H), 7.21 (dd, J = 8.9, 2.6 Hz, 1H), 3.88 (s, 3H), 1.61 (d, J = 6.9 Hz, 3H).

¹³**C NMR** (101 MHz, DMSO-d⁶) δ 158.09, 134.86, 134.50, 129.85, 128.45, 127.71, 126.18, 125.60, 119.63, 106.29, 55.71, 50.54, 21.10.

HRMS (EI-TOF) calcd for $C_{13}H_{15}NO$: 201.1154; Found : 201.1150.

2-ethyl-6-methoxynaphthalene (9c)

React according to the appropriate conditions in the synthetic application; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid, 74% yield, 68.9 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 – 7.68 (m, 2H), 7.59 (s, 1H), 7.35 (d, J = 8.4 Hz, 1H), 7.16 (d, J = 7.9 Hz, 2H), 3.95 (s, 3H), 2.82 (q, J = 7.6 Hz, 2H), 1.35 (t, J = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.09, 139.48, 132.91, 129.19, 128.92, 127.57, 126.71, 125.44, 118.61, 105.68, 55.30, 28.86, 15.65. HRMS (EI-TOF) calcd for C₁₃H₁₄O: 186.1045; Found : 186.1049.

2-(6-methoxynaphthalen-2-yl)acetic acid (9d)

React according to the appropriate conditions in the synthetic application; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 1 : 1). Yellow solid, 47% yield, 20.3 mg.

¹**H NMR** (400 MHz, DMSO-d⁶) δ 7.77 (dd, J = 8.7, 4.7 Hz, 2H), 7.69 (s, 1H), 7.38 (d, J = 8.5 Hz, 1H), 7.30 (d, J = 2.8 Hz, 1H), 7.15 (dd, J = 8.9, 2.6 Hz, 1H), 3.87 (s, 3H), 3.69 (s, 2H).

¹³**C NMR** (101 MHz, DMSO-d⁶) δ 173.41, 157.51, 133.53, 130.87, 129.41, 128.85, 127.96, 127.03, 119.08, 55.60, 41.33.

HRMS (EI-TOF) calcd for $C_{13}H_{12}O_3$: 216.0786; Found : 216.0780.

3-(4-(chlorosulfonyl)phenyl)propanoic acid (9e)

React according to the appropriate conditions in the synthetic application; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 1 : 1). Yellow solid, 33% yield, 12.8 g.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 3.11 (t, J = 7.5 Hz, 2H), 2.78 (t, J = 7.5 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 176.78, 148.58, 142.59, 129.67, 127.39, 34.37, 30.41. HRMS (EI-TOF) calcd for C₉H₉ClO₄S: 247.9910; Found ÷ 247.9918.

3-(4-(fluorosulfonyl)phenyl)propanoic acid (9f)

React according to the appropriate conditions in the synthetic application; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 1 : 1). Black solid, 92% yield, 3.6 g.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 8.3 Hz, 2H), 3.10 (t, J = 7.5 Hz, 2H), 2.76 (t, J = 7.4 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 177.61, 148.95, 131.24, 130.99, 129.68, 128.79, 34.63, 30.48.
¹⁹F NMR (377 MHz, CDCl₃) δ 66.16.
HRMS (EI-TOF) calcd for C₉H₉FO₄S: 232.0206; Found : 232.0209.

4-vinylbenzenesulfonyl fluoride (9g)

React according to the appropriate conditions in the synthetic application; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Yellow oil, 78% yield, 12.8 g.

¹**H** NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 6.78 (dd, J = 17.6, 10.9 Hz, 1H), 5.97 (d, J = 17.5 Hz, 1H), 5.54 (d, J = 10.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 144.77, 134.84, 131.63, 128.85, 127.15, 119.36. ¹⁹F NMR (377 MHz, CDCl₃) δ 66.31.

HRMS (EI-TOF) calcd for $C_8H_7FO_2S$: 186.0151; Found : 186.0150.

3-phenylpropanoyl fluoride (10a)

React according to the appropriate conditions in the possible intermediates; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). Yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (q, J = 8.1 Hz, 2H), 7.23 (q, J = 7.5, 6.7 Hz, 3H), 2.99 (dt, J = 14.4, 7.7 Hz, 2H), 2.80 (dt, J = 33.3, 7.6 Hz, 2H).

¹⁹F NMR (377 MHz, CDCl₃) δ 45.39.

HRMS (EI-TOF) calcd for C₉H₉FO: 152.0637; Found : 152.0644.

2-naphthoyl fluoride (10b)

React according to the appropriate conditions in the possible intermediates; purified by chromatography on silica gel (Petroleum ether : Ethyl acetate = 10 : 1). White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.98 (dt, J = 24.9, 8.5 Hz, 4H), 7.71 (t, J = 7.6 Hz, 1H), 7.63 (t, J = 7.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.38, 155.97, 136.45, 134.04 (d, J = 3.4 Hz), 132.29, 129.69 (d, J = 5.9 Hz), 129.07, 127.98, 127.40, 125.62 (d, J = 4.2 Hz), 122.31, 121.71. ¹⁹F NMR (377 MHz, CDCl₃) δ 18.08. HRMS (EI-TOF) calcd for C₁₁H₇FO: 174.0481; Found : 174.0483.

III. Reference

1 B. Xiong, X. Zeng, S. Geng, S. Chen, Y. He, Z. Feng, Thiyl radical promoted chemo- and regioselective oxidation of C[double bond, length as m-dash]C bonds using molecular oxygen via iron catalysis, *Green. Chem.*, 2018, **20**, 4521-4527.

2 Y. Yang, N. I. Wong, P. Teo, Formal Intermolecular Hydroamination of Unbiased Olefins for Primary Amine Formation, *Eur. J. Org. Chem.*, 2015, **2015**, 1207-1210.

3 D. Gartner, A. Welther, B. R. Rad, R. Wolf, A. Jacobi von Wangelin, Heteroatom-Free Arene-Cobalt and Arene-Iron Catalysts for Hydrogenations, *Angew. Chem., Int. Ed.*, 2014, **53**, 3722-3726.

4 P. F. Yuan, Z. Yang, S. S. Zhang, C. M. Zhu, X. L. Yang, Q. Y. Meng, Deconstructive Carboxylation of Activated Alkenes with Carbon Dioxide, *Angew. Chem., Int. Ed.*, 2024, **63**, e202313030.

F. Yokokawa, K. Hung, Y. Liu, O. Simon, L. Zhang, P. Lu, B. K. S. Yeung, C. Sarko, Synthesis of
a Potent Pan-Serotype Dengue Virus Inhibitor Having a Tetrahydrothienopyridine Core, *Synlett*, 2020,
33, 464-467.

6 J. J. Dong, L. Krasnova, M. G. Finn, K. B. Sharpless, Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry, *Angew. Chem., Int. Ed.*, 2014, **53**, 9430-9448.

7 H. Zhu, D. Chen, N. Li, Q. Xu, H. Li, J. He, H. Wang, P. Wu, J. Lu, Fabrication of Photocontrolled Surfaces for Oil/Water Separation through Sulfur(VI) Fluoride Exchange, *Chemistry*, 2017, 23, 14712-14717.

8 T. Kurita, K. Hattori, S. Seki, T. Mizumoto, F. Aoki, Y. Yamada, K. Ikawa, T. Maegawa, Y. Monguchi, H. Sajiki, Efficient and Convenient Heterogeneous Palladium-Catalyzed Regioselective Deuteration at the Benzylic Position, *Chemistry*, 2008, **14**, 664-673.

Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.

(a) Becke, A. D. J. Chem. Phys., 1993, 98, 5648–5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev.
B: Condens. Development of The Colle-Salvetti Correlation-Energy Formula into a Functional of The Electron Density, *Matter Mater. Phys.*, 1988, 37, 785–789. (c) Vosko, S. H.; Wilk, L.; Nusair, M.

Accurate Spin-dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis, Can. J. Phys. 1980, **58**, 1200–1211.

11 (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, *J. Chem. Phys.*, 1972, **56**, 2257-2261. (b) Hariharan, P. C.; Pople, J. A. *Theor. Chim. Acta*, 1973, **28**, 213-222.

12 (a)Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuss,H. Energy-Adjusted ab Initio Pseudopotentials for the Second and Third Row Transition Elements. *Theor. Chim. Acta*, 1990, 77, 123–141. (b) Roy, L. E.; Hay, P. J.; Martin, R. L. Revised Basis Sets for the LANL Effective Core Potentials. *J. Chem. Theory Comput.*, 2008, *4*, 1029–1031.

13 Grimme, S.;Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.*, 2010, **132**, 154104.

14 Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. niversal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, *J. Phys. Chem. B*, 2009, 113, 6378–6396.

(a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. Self-consistent Molecular Orbital Methods.
XX. A Basis Set for Correlated Wave Functions, *J. Chem. Phys.*, 1980, 72, 650-654. (b) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. J. Efficient Diffuse Function-augmented Basis Sets for Anion Calculations. III.[†] The 3-21+G Basis Set for First-row Elements, Li–F, *Comput. Chem.*, 1983, 4, 294-301.

16 J. Xiao, Q. Li, R. W. Shen, S. Shimada, and L. B. Han, Phosphonium Phenolate Zwitterion vs Phosphonium Ylide: Synthesis, Characterization and Reactivity Study of a Trimethylphosphonium Phenolate Zwitterion, *Adv. Synth. Catal.*, 2019, **361**, 5715–5720.

17 C. Z. Yao, Q. Q. Li, M. M. Wang, X. S. Ning, and Y. B. Kang, (E)-Specific Direct Julia-olefination of Aryl Alcohols Without Extra Reducing Agents Promoted by Bases, *Chem. Commun.*, 2015, **51**, 7729-7732.

18 A. F. Littke, L. Schwarz, and G. C. Fu, Pd/P(*t*-Bu)₃: A Mild and General Catalyst for Stille Reactions of Aryl Chlorides and Aryl Bromides, *J. Am. Chem. Soc.*, 2002, **124**, 6343-6348.

19 B. Schmidt, N. Elizarov, R. Berger, and F Hölter, Scope and Limitations of The Heck–Matsuda-Coupling of Phenol Diazonium Salts and Styrenes: A Protecting-group Economic Synthesis of Phenolic Stilbenes, *Org. Biomol. Chem.*, 2013, **11**, 3674–3691.

20 S. Guo, F. Cong, R. Guo, L. Wang, and P. P. Tang, Asymmetric Silver-catalysed Intermolecular Bromotrifluoromethoxylation of Alkenes with A New Trifluoromethoxylation Reagent, *Nat. Chem.*, 2017, **9**, 546–551.

21 G. A. Molander, and A. R. Brown, Suzuki-Miyaura Cross-Coupling Reactions of Potassium

Vinyltrifluoroborate with Aryl and Heteroaryl Electrophiles, J. Org. Chem., 2006, 71, 9681-9686.

22 C. R. Smith, T. V. RajanBabu, Low Pressure Vinylation of Aryl and Vinyl Halides via Heck–Mizoroki Reactions Using Ethylene, *Tetrahedron*, 2010, **66**, 1102–1110.

23 M. D. Greenhalgh, and S. P. Thomas, Iron-Catalyzed, Highly Regioselective Synthesis of α-Aryl Carboxylic Acids from Styrene Derivatives and CO₂, *J. Am. Chem. Soc.*, 2012, **134**, 11900–11903.

24 B. Boutevin, E. Fleury, Y. Pietrasanta, and L. Sarraf, Synthese de Polysiloxanes Fluores. Partie III Addition de Thiols Silicies Sur des Olefines Fluorees, *J. Fluor Chem.*, 1986, **31**, 437-450.

25 M. Barbasiewicz, M. Bieniek, A. Michrowska, A. Szadkowska, A. Makal, K. Woz'niak, and K. Grelaa, Probing of the Ligand Anatomy: Effects of the Chelating Alkoxy Ligand Modifications on the Structure and Catalytic Activity of Ruthenium Carbene Complexes, *Adv. Synth. Catal.*, 2007, **349**, 193–203.

26 A. Sar, S. Lindeman, and W. A. Donaldson, De Novo Synthesis of Polyhydroxyl Aminocyclohexanes, *Org. Biomol. Chem.*, 2010, **8**, 3908–3917.

27 S. Xu, Y. P. Gao, R. Chen, K. Wang, Y. Zhang, and J. B. Wang, Copper(*i*)-Catalyzed Olefination of *N*-Sulfonylhydrazones with Sulfones, *Chem. Commun.*, 2016, **52**, 4478–4480.

28 (Z) J. L. Fiorio, R. V. Goncalves, Erico Teixeira-Neto, Manuel A. Ortuno, Nuria Lopez, and Liane Marcia Rossi, Accessing Frustrated Lewis Pair Chemistry through Robust Gold@N-Doped Carbon for Selective Hydrogenation of Alkynes, *ACS Catal.*, 2018, **8**, 3516–3524; (*E*) Y. L. Wang, C. Qin, X. Q. Jia, X. B. Leng, and Z. Huang, An Agostic Iridium Pincer Complex as a Highly Efficient and Selective Catalyst for Monoisomerization of 1-Alkenes to trans-2-Alkenes, *Angew. Chem., Int. Ed.*, 2017, **56**, 1614–1618.

29 X. X. Xi, T. Q. Chen, J. S. Zhang, and L. B. Han, Efficient and Selective Hydrogenation of C–O Bonds with A Simple Sodium Formate Catalyzed by Nickel, *Chem. Commun.*, 2018, **54**, 1521–1524.

30 C. H. Lei, Y. J. Yip, and J. R. Zhou, Nickel-Catalyzed Direct Synthesis of Aryl Olefins from Ketones and Organoboron Reagents under Neutral Conditions, *J. Am. Chem. Soc.*, 2017, **139**, 6086–6089.

31 K. Q. Chen, J. Shen, Z. X. Wang, and X. Y. A Donor–acceptor Complex Enables the Synthesis of Eolefins from Alcohols, Amines and Carboxylic Acids, Chen, *Chem. Sci.*, 2021, **12**, 6684–6690.

32 S. Haubenreisser, T. H. Wçste, C. Martínez, K. Ishihara, and K. MuÇiz, Structurally Defined Molecular Hypervalent Iodine Catalysts for Intermolecular Enantioselective Reactions, *Angew. Chem., Int. Ed.*, 2016, **55**, 413–417.

33 G. Zhang, C. Guan, Y. Zhao, H. Miao and C. Ding, 'Awaken' Aryl Sulfonyl Fluoride: A New Partner in the Suzuki–Miyaura Coupling Reaction, *New J. Chem.*, 2022, **46**, 3560-3564.

34 D. Guo, W. Shi and G. Zou, Suzuki Coupling of Activated Aryltriazenes for Practical Synthesis of Biaryls from Anilines, *Adv. Syn. Catal.*, 2022, **364**, 2438-2442.

35 S. Sun, J. Song, X. Yuan, Y. Zhang, Z. Shu, C.-X. Xie and X. Jia, A PPh₃ Modified-chitosan Supported Pd Nanocatalyst for Heterogeneous Suzuki–Miyaura Cross Coupling Reactions, *New J. Chem.* 2023, *47*,

7410-7415.

36 A. M. Haydl, L. J. Hilpert and B. Breit, Regioconvergent and Enantioselective Rhodium-Catalyzed Hydroamination of Internal and Terminal Alkynes: A Highly Flexible Access to Chiral Pyrazoles, *Chem.*, 2016, **22**, 6547-6551.

37 H. Tanaka, H. Kuriki, T. Kubo, I. Osaka and H. Yoshida, Copper-Catalyzed Arylstannylation of Arynes in A Sequence, *Chem. Commun.*, 2019, **55**, 6503-6506.

38 Y. Ji, P. Li, X. Zhang and L. Wang, Trace Amount Cu (ppm)-Catalyzed Intramolecular Cyclization of 2-(Gem-Dibromovinyl)Phenols(Thiophenols) to 2-Bromobenzofurans(thiophenes), *Org. Biomol. Chem.*, 2013, **11**, 4095-4101.

39 Y. Taskesenligil, M. Aslan, T. Cogurcu and N. Saracoglu, Directed C–H Functionalization of C3-Aldehyde, Ketone, and Acid/Ester-Substituted Free (NH) Indoles with Iodoarenes via a Palladium Catalyst System, *J. Org. Chem.*, 2023, **88**, 1299-1318.

40 J. K. Laha and M. K. Hunjan, Diversity in Heterocycle Synthesis Using α-Iminocarboxylic Acids: Decarboxylation Dichotomy, *J. Org. Chem.* 2022, *87*, 2315-2323.

41 S. Xu, B. Huang, G. Qiao, Z. Huang, Z. Zhang, Z. Li, P. Wang and Z. Zhang, Rh(III)-Catalyzed C–H Activation of Boronic Acid with Aryl Azide, *Org. Lett.*, 2018, 20, 5578-5582.

42 J. K. Park, J. Oh and S. Lee, Electrochemical Synthesis of Sulfonyl Fluorides from Sulfonyl Hydrazides, *Org. Chem. Fron.*, 2022, **9**, 3407-3413.

43 J. Zhou, B. Jiang, Z. Zhao and N. Shibata, Etherification of Fluoroarenes with Alkoxyboronic Acid Pinacol Esters via C–F Bond Cleavage, *Org. Lett.*, 2022, **24**, 5084-5089.

44 M. Gholinejad, S. Mirmohammadi and J. M. Sansano, Novel Water Dispersible and Magnetically Recoverable Palladium Nano Catalyst for Room-Temperature Suzuki-Miyaura Coupling Reaction, *Chemistryselect*, 2021, **6**, 13906-13917.

45 G. Zhang, X. Luo, C. Guan, Y. Cui and C. Ding, Pd/Ni Co-catalyzed Selective Cross-Coupling of Aryl Bromides and Aryl Fluorosulfonates at Room Temperature, *Eur. J. Org. Chem.*, 2023, **26**.

IV. Spectroscopic Data

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 2a

¹H NMR (400 MHz, CDCl₃) spectrum of 2b

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 2b

¹H NMR (400 MHz, CDCl₃) spectrum of 2c

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 2c

f1 (ppm) ò

¹H NMR (400 MHz, CDCl₃) spectrum of 2d

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 2d

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)
¹H NMR (400 MHz, CDCl₃) spectrum of 2e

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 2e

¹H NMR (400 MHz, CDCl₃) spectrum of 2f

¹³F NMR (377 MHz, CDCl₃) spectrum of 2f

-1 70 20 10 -10 f1 (ppm) -20 -30 -50 -60 -70 -80 -90 0 60 50 40 30 -40 ò

¹H NMR (400 MHz, CDCl₃) spectrum of 2g

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 2g

lo 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹⁹F NMR (377 MHz, CDCl₃) spectrum of 2g

-60 -70 f1 (ppm) -110 -120 -130 -140 -1 10 -10 -20 -30 -40 -50 -90 -100 0 Ó -80

114.25

¹H NMR (400 MHz, CDCl₃) spectrum of 2h

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 2h

lo 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) ¹H NMR (400 MHz, CDCl₃) spectrum of 2i

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 2i

f1 (ppm) Ó

¹⁹F NMR (377 MHz, CDCl₃) spectrum of 2i

-110 -120 -140 -1 -10 -30 -50 -60 -70 f1 (ppm) -90 -100 -130 0 10 0 -20 -40 -80

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 2j

^{10 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 2k

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 2k

lo 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 2l

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 2l

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) ¹H NMR (400 MHz, CDCl₃) spectrum of 3a

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3a

f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3b

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3b

¹H NMR (400 MHz, CDCl₃) spectrum of 3c

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3c

¹H NMR (400 MHz, CDCl₃) spectrum of 3d

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3d

30 170 f1 (ppm) ó

¹H NMR (400 MHz, CDCl₃) spectrum of 3e

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3e

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) ¹H NMR (400 MHz, CDCl₃) spectrum of 3f

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3f

¹H NMR (400 MHz, CDCl₃) spectrum of 3g

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3g

lo 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3h

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3h

140 130 120 110 f1 (ppm))0 190 180

¹⁹F NMR (377 MHz, CDCl₃) spectrum of 3h

00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2(f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3i

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3i

¹⁹F NMR (377 MHz, CDCl₃) spectrum of 3i

¹H NMR (400 MHz, CDCl₃) spectrum of 3j

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3j

¹H NMR (400 MHz, CDCl₃) spectrum of 3k

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3k

f1 (ppm) Ó ¹H NMR (400 MHz, CDCl₃) spectrum of 31

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3l

f1 (ppm) Ó ¹H NMR (400 MHz, CDCl₃) spectrum of 3m

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3m

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) ¹H NMR (400 MHz, CDCl₃) spectrum of 3n

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3n

¹H NMR (400 MHz, CDCl₃) spectrum of 30

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 30

140 130 120 110 100 90 f1 (ppm))0 190 180

¹H NMR (400 MHz, CDCl₃) spectrum of 3p

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3p

30 170 f1 (ppm) ó

¹H NMR (400 MHz, CDCl₃) spectrum of 3q

30 170 ó f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 3r

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 3r

f1 (ppm) Ó

¹H NMR (400 MHz, CDCl₃) spectrum of 4a

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 4a

f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 4b

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 4b

f1 (ppm) Ó ¹H NMR (400 MHz, CDCl₃) spectrum of 4c

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 4c

140 130) 90 f1 (ppm) ò ¹H NMR (400 MHz, CDCl₃) spectrum of 4d

f1 (ppm) Ó ¹H NMR (400 MHz, CDCl₃) spectrum of 5a

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 5a

f1 (ppm) ò ¹H NMR (400 MHz, CDCl₃) spectrum of 5b

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 5b

^{30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 5c

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 5c

ò 190 180 140 130 120 100 90 f1 (ppm))0

¹⁹F NMR (377 MHz, CDCl₃) spectrum of 5c

-60 -70 f1 (ppm) -110 -120 -130 -140 -1 -10 -20 -30 -50 -90 -100 0 10 0 -40 -80

-118.37

¹H NMR (400 MHz, CDCl₃) spectrum of 5d

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 5d

120 110 ó 140 130 100 90 f1 (ppm))0 190 180

¹H NMR (400 MHz, CDCl₃) spectrum of 5e

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 5e

¹H NMR (400 MHz, CDCl₃) spectrum of 5f

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 5f

¹H NMR (400 MHz, CDCl₃) spectrum of 5g

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 5g

190 180 140 130 120 110 100 90 f1 (ppm))0

¹H NMR (400 MHz, CDCl₃) spectrum of 5h

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 5h

¹H NMR (400 MHz, CDCl₃) spectrum of 5i

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 5i

lo 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (400 MHz, CDCl3) spectrum of 8a

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8a

¹H NMR (400 MHz, CDCl₃) spectrum of 8b

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8b

¹H NMR (400 MHz, CDCl₃) spectrum of 8c

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8c

¹H NMR (400 MHz, CDCl₃) spectrum of 8d

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8d

140 130 120)0 190 180 100 90 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 8e

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8e

)0 190 180 140 130 120 100 90 f1 (ppm) Ó

¹H NMR (400 MHz, CDCl₃) spectrum of 8f

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8f

lo 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) ¹⁹F NMR (377 MHz, CDCl₃) spectrum of 8f

¹H NMR (400 MHz, CDCl₃) spectrum of 8g

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8g

lo 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹⁹F NMR (377 MHz, CDCl₃) spectrum of 8g

¹H NMR (400 MHz, CDCl₃) spectrum of 8h

)0 190 180 140 130 120 100 90 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 8l

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8l

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) ¹H NMR (400 MHz, CDCl₃) spectrum of 8j

)0 190 180 140 130 120 100 90 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 8k

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8k

0 200 190 180 170 160 150 140 fl (ppm)

¹⁹F NMR (377 MHz, CDCl₃) spectrum of 8k

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)
¹H NMR (400 MHz, CDCl₃) spectrum of 8l

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8l

30 170 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 8m

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8m

¹H NMR (400 MHz, CDCl₃) spectrum of 8n

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8n

lo 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) ¹H NMR (400 MHz, CDCl₃) spectrum of 80

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 80

lo 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) ¹H NMR (400 MHz, CDCl₃) spectrum of 8p

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 80

0 200 190 180 110 100 f1 (ppm) 170 160 150

¹H NMR (400 MHz, CDCl₃) spectrum of 8q

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8q

30 170 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 8r

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8r

lo 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 8s

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8s

¹⁹F NMR (377 MHz, CDCl₃) spectrum of 8s

20 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -12 f1 (ppm) ¹H NMR (400 MHz, CDCl₃) spectrum of 8t

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8t

¹H NMR (400 MHz, CDCl₃) spectrum of 8u

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8u

)0 190 150 140 130 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 8v

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8v

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) ¹H NMR (400 MHz, CDCl₃) spectrum of 8w

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 8v

lo 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 9a

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 9a

110 100 f1 (ppm) 20 210 200 130 120 Ó ¹H NMR (400 MHz, DMSO-*d*⁶) spectrum of 9b

¹³C{1H} NMR (101 MHz, DMSO-*d*⁶) spectrum of 9b

¹H NMR (400 MHz, CDCl₃) spectrum of 9c

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 9c

¹H NMR (400 MHz, DMSO-*d*⁶) spectrum of 9d

¹³C{1H} NMR (101 MHz, DMSO-*d*⁶) spectrum of 9d

ò 140 130 120 110 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 9e

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 9e

¹H NMR (400 MHz, CDCl₃) spectrum of 9f

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 9f

140 130 100 90 f1 (ppm) ó

¹⁹F NMR (377 MHz, CDCl₃) spectrum of 9f

¹H NMR (400 MHz, CDCl₃) spectrum of 9g

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 9g

30 170 f1 (ppm) Ó

¹⁹F NMR (377 MHz, CDCl₃) spectrum of 9g

00 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2(f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 10a

¹⁹F NMR (377 MHz, CDCl₃) spectrum of 10a

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of 10b

¹³C{1H} NMR (101 MHz, CDCl₃) spectrum of 10b

f1 (ppm) ò ¹⁹F NMR (377 MHz, CDCl₃) spectrum of 10b

Structures	ZPE	tcH	tcG	E	Н	G	Imaginary Frequency
PhCOOH	0.116039	0.124087	0.083949	-420.741641	-420.733592	-420.773730	
Et ₃ N	0.207095	0.217458	0.174120	-292.235201	-292.234257	-292.277595	
HEt ₃ N ⁺	0.224924	0.234574	0.192408	-292.652123	-292.651179	-292.693344	
PhCOO-	0.102429	0.110304	0.070704	-420.216792	-420.215847	-420.255448	
SO_2F_2	0.014857	0.020209	-0.013072	-748.225989	-748.225045	-748.258325	
PhCOOSO ₂ F ₂ -	0.119330	0.131787	0.080302	-1168.468409	-1168.467465	-1168.518950	
F-	0.000000	0.002360	-0.014159	-99.825875	-99.824931	-99.841450	
PhCOOSO ₂ F	0.117591	0.129730	0.078473	-1068.533238	-1068.532294	-1068.583552	
SO ₃	0.011763	0.016308	-0.014716	-623.752036	-623.751092	-623.782116	
PhCOF	0.103219	0.111101	0.071229	-444.756363	-444.755418	-444.795291	
PdP ₂	0.599422	0.637685	0.527695	-2390.938055	-2390.937111	-2391.047100	
Ts4	0.702176	0.748501	0.621311	-2835.701219	-2835.700274	-2835.827464	153.30i
Int1	0.703235	0.750125	0.621744	-2835.717753	-2835.716808	-2835.845189	
Int1A	0.730651	0.784749	0.639831	-3697.295865	-3697.294921	-3697.439839	
Ts5	0.699921	0.747088	0.619061	-2835.674739	-2835.673795	-2835.801822	292.63i
Ts5A	0.728360	0.782444	0.639513	-3697.270839	-3697.269895	-3697.412826	331.53i
Ts5B	0.758791	0.825412	0.653486	-4955.862166	-4955.861222	-4956.033148	124.09i

 Table S13. Energies for all calculated species.

Int2	0.700945	0.748619	0.619272	-2835.697821	-2835.696876	-2835.826223	
Int2A	0.729338	0.783911	0.640061	-3697.280438	-3697.279494	-3697.423344	
Ts6	0.699715	0.747443	0.618186	-2835.675479	-2835.674535	-2835.803792	27.48i
Ts6A	0.727036	0.782008	0.635268	-3697.256566	-3697.255622	-3697.402361	74.52i
со	0.005039	0.008344	-0.014098	-113.296017	-113.295073	-113.317515	
Int3	0.693500	0.738259	0.616026	-2722.374240	-2722.373296	-2722.495529	
Int3A	0.720674	0.772889	0.631802	-3583.950022	-3583.949078	-3584.090165	
MeOPhB(OH) ₂	0.156900	0.166903	0.122376	-522.645778	-522.644834	-522.689361	
Ts7	0.850595	0.907259	0.758134	-3245.027083	-3245.026139	-3245.175263	200.00i
FB(OH) ₂	0.036157	0.041256	0.009767	-276.463773	-276.462829	-276.494318	
Int4	0.813988	0.865490	0.727590	-2968.578982	-2968.578037	-2968.715938	
Ts8	0.812628	0.863696	0.727042	-2968.566063	-2968.565119	-2968.701773	386.84i
product	0.215131	0.227500	0.177185	-577.666960	-577.666016	-577.716331	

V. Cartesian Coordinates of the Structures

PhCOOH

С	-1.49358	1.62495	0.60027
С	-0.18724	1.58964	0.09415
С	0.36613	2.73315	-0.49752
С	-0.38685	3.91198	-0.58309
С	-1.69318	3.94729	-0.07697
С	-2.24655	2.80378	0.51471
Н	-1.91609	0.75185	1.05203
Н	1.36354	2.70619	-0.88395
Н	0.03566	4.78507	-1.03485
Н	-2.26809	4.84736	-0.1423
Н	-3.24397	2.83075	0.90114
С	0.6402	0.29422	0.18818
0	0.07553	-0.87263	0.79193
Н	0.71706	-1.58648	0.77022
0	1.81323	0.26251	-0.2663

Et₃N

N	0.45509 -0.188 0.00375
С	0.99673 0.21773 -1.30121
Н	0.63947 1.19587 -1.54716
Н	2.0657 0.22946 -1.25565
С	0.89121 0.76621 1.03341
Н	0.49695 0.47089 1.98328
Η	1.96017 0.77794 1.07897
С	0.94591 -1.53181 0.34164
Н	0.62847 -2.22636 -0.40784
Η	2.01488 -1.52007 0.3872
С	0.37848 -1.95685 1.70874
Η	0.73575 -2.93499 1.95469
Н	0.69593 -1.26229 2.45822
Η	-0.69048 -1.96858 1.66318
С	0.37701 2.17401 0.67942
Η	0.69446 2.86857 1.4289
Η	0.77127 2.46933 -0.27044
Н	-0.69195 2.16228 0.63386
С	0.53985 -0.78192 -2.3799
Η	0.9341 -0.4866 -3.32976
Η	0.89711 -1.76006 -2.13395
Н	-0.52912 -0.79365 -2.42546

HEt₃N⁺

Ν	0.05142	0.06992 ·	-0.31857
С	-1.24089	-0.55331	0.0015
Η	-1.95334	-0.30729	-0.75796
Η	-1.12253	-1.61569	0.04884
С	1.14248	-0.78864	0.1645
Η	1.65561	-1.21727	-0.67089
Η	1.82754	-0.20378	0.74203
С	0.13656	1.38432	0.3341

-0.11164	2.14959	-0.37136
-0.54888	1.42002	1.15495
1.56951	1.60855	0.85177
1.63149	2.56529	1.32685
1.81772	0.84328	1.55723
2.25495	1.57286	0.03092
0.56102	-1.91292	1.04171
1.3552 -	2.53785	1.39333
0.0479 -	1.48429	1.8771
-0.12403	-2.49778	0.46418
-1.73967	-0.03125	1.36175
-2.68032	-0.48489	1.59473
-1.02721	-0.27726	2.12121
-1.85802	1.03113	1.31441
0.13039	0.18377	-1.30893
	-0.11164 -0.54888 1.56951 1.63149 1.81772 2.25495 0.56102 1.3552 -0.0479 -0.12403 -1.73967 -2.68032 -1.02721 -1.85802 0.13039	-0.11164 2.14959 -0.54888 1.42002 1.56951 1.60855 1.63149 2.56529 1.81772 0.84328 2.25495 1.57286 0.56102 -1.91292 1.3552 -2.53785 0.0479 -1.48429 -0.12403 -2.49778 -1.73967 -0.03125 -2.68032 -0.48489 -1.02721 -0.27726 -1.85802 1.03113 0.13039 0.18377

PhCOO-

С	-1.49358	1.62495	0.60027
С	-0.18724	1.58964	0.09415
С	0.36613	2.73315	-0.49752
С	-0.38685	3.91198	-0.58309
С	-1.69318	3.94729	-0.07697
С	-2.24655	2.80378	0.51471
Η	-1.91609	0.75185	1.05203
Η	1.36354	2.70619	-0.88395
Η	0.03566	4.78507	-1.03485
Η	-2.26809	4.84736	-0.1423
Н	-3.24397	2.83075	0.90114
С	0.6402	0.29422	0.18818
0	0.07553	-0.87263	0.79193
0	1.81323	0.26251	-0.2663

SO_2F_2

S	-0.24769	2.59011	0.
0	0.30898	3.37735	1.36355
0	0.30895	1.01561	0.
F	-1.83769	2.59013	0.
F	0.28231	3.33964	-1.29823

PhCOOSO₂F₂-

С	2.16179 -1.15796 -0.00145
С	1.79467 0.18193 -0.00024
С	2.77908 1.16294 0.00131
С	4.116 0.80917 0.0017
С	4.47799 -0.52858 0.00046
С	3.49983 -1.51027 -0.00114
Η	1.38181 -1.90364 -0.00259
Н	2.46744 2.19678 0.00215
Н	4.88089 1.57427 0.00297
Η	5.52389 -0.80645 0.00073
Н	3.78539 -2.55371 -0.00213
С	0.33799 0.5976 -0.00072
0	0.04546 1.77569 -0.00279
0	-0.47577 -0.40474 0.00127
S	-2.28312 0.01148 0.00001

0	-2.26172 0.61219 -1.29091
0	-2.26243 0.61644 1.28898
F	-3.99905 -0.23027 0.00004
F	-2.32073 -1.63822 0.00293
F-	

F -1.45564 3.32257 1.78112

PhCOOSO₂F

C	-1 48798	1 59713	0 56725
C C	0.19427	1 57244	0.05272
C	-0.1842/	1.3/344	0.03372
С	0.37164	2.73424	-0.50073
С	-0.37616	3.91874	-0.54166
С	-1.67987	3.94244	-0.02813
С	-2.23578	2.78163	0.52633
Η	-1.91242	0.71083	0.99059
Н	1.36705	2.71615	-0.89282
Н	0.04828	4.80504	-0.96499
Н	-2.25083	4.84683	-0.05938
Н	-3.23118	2.79972	0.91842
С	0.63749	0.27179	0.0987
0	0.07024	-0.91271	0.66447
0	1.80816	0.25051	-0.36243
S	1.28386	-1.85008	1.3258
0	2.31778	-0.88031	2.20867
0	2.13547	-2.60257	0.10211
F	0.64416	-2.9494	2.27993

SO₃

S	0.04053	1.74221	-0.25759
0	0.77281	3.01637	-0.25759
0	0.87266	0.29429	-0.25759
0	-1.62947	1.74221	-0.25759

PhCOF

С	-1.48798	1.59713	0.56725
С	-0.18427	1.57344	0.05372
С	0.37164	2.73424	-0.50073
С	-0.37616	3.91874	-0.54166
С	-1.67987	3.94244	-0.02813
С	-2.23578	2.78163	0.52633
Η	-1.91242	0.71083	0.99059
Η	1.36705	2.71615	-0.89282
Η	0.04828	4.80504	-0.96499
Н	-2.25083	4.84683	-0.05938
Н	-3.23118	2.79972	0.91842
С	0.63749	0.27179	0.0987
0	1.80816	0.25051	-0.36243
F	0.10197	-0.84644	0.63282

PdP₂

С	-3.50793	1.73308	0.85969
С	-2.31205	1.12305	0.45834
С	-1.27505	1.96321	0.0235

С	-1.38745 3.35531 -0.02999
С	-2.59007 3.92621 0.39752
С	-3.64117 3.12141 0.83852
С	-0.20866 4.13181 -0.62191
С	1.07428 3.44581 -0.14433
С	1.07011 2.04801 -0.07016
С	2.19661 1.29324 0.29833
Č	3.37315 2.00102 0.58549
Č	3 4042 3 39285 0 52658
Č	2 2623 4 11056 0 16985
Ĥ	-4 33298 1 11679 1 19898
Н	-2 71475 5 00315 0 37964
Н	-4 57204 3 57843 1 16151
Н	4 26512 1 45786 0 87451
Н	4 32341 3 92156 0 7614
H	2 30391 5 19328 0 13152
II C	0.24577 5.61748 0.24508
Ч	-0.2+577 $5.017+8$ $-0.2+5080.10173$ 5.76355 0.83885
	-0.19173 5.70555 0.85885
	1.58034 0.15509 -0.70938
П	-1.10431 0.06404 $-0.011/4$
C II	-0.2/93/ 4.00081 -2.108
H	0.5/602 4.5134 -2.62923
H	-0.20849 2.95883 -2.48215
Н	-1.20138 4.40552 -2.5428
0	-0.092/2 1.36/28 -0.3/2/5
P	-2.01861 -0.69836 0.52469
P	2.06213 -0.53937 0.50955
C	3.74096 -0.97913 1.1296
C	4.86155 -1.10257 0.29434
С	3.88899 -1.19615 2.50626
C	6.10623 -1.4328 0.82999
Н	4.75755 -0.94016 -0.77404
C	5.13632 -1.51769 3.04331
Н	3.01709 -1.11621 3.15117
С	6.24605 -1.63863 2.20508
Н	6.96772 -1.52888 0.17461
Н	5.23902 -1.68342 4.1122
Н	7.21614 -1.89801 2.62001
С	2.12379 -1.1801 -1.21652
С	2.25163 -2.56801 -1.39281
С	2.00014 -0.36273 -2.34512
С	2.277 -3.12081 -2.67047
Н	2.33476 -3.21328 -0.52205
С	2.00301 -0.92103 -3.62551
Н	1.90621 0.71138 -2.23041
С	2.14759 -2.29738 -3.79311
Н	2.38786 -4.19518 -2.7911
Η	1.89689 -0.27437 -4.49222
Η	2.15445 -2.72873 -4.79026
С	-3.65359 -1.32257 1.10342
С	-4.73469 -1.58635 0.25068
С	-3.80344 -1.54054 2.48116
С	-5.9436 -2.05235 0.76929
Н	-4.6309 -1.43003 -0.81823
С	-5.01612 -1.99337 3.00041
Н	-2.95978 -1.35492 3.14195
С	-6.0883 -2.25248 2.14382

Н	-6.77361 -2.25851 0.09879
Н	-5.1203 -2.1548 4.06985
Н	-7.03048 -2.61579 2.54482
С	-2.00776 -1.12801 -1.26728
С	-2.61669 -0.32408 -2.24104
С	-1.33973 -2.29394 -1.66659
С	-2.56338 -0.6847 -3.5884
Н	-3.12716 0.58786 -1.94719
С	-1.29545 -2.65816 -3.01129
Н	-0.83269 -2.89651 -0.91871
С	-1.90492 -1.85304 -3.97544
Н	-3.03451 -0.05077 -4.33497
Н	-0.76356 -3.55669 -3.30748
Н	-1.85813 -2.12989 -5.02514
Pd	0.04871 -1.11819 1.39311

Ts4

С	1.54956	3.42953 -1.16185
С	0.72153	2.42579 -0.6393
С	-0.65883	2.58901 -0.80464
С	-1.23936	3.66988 -1.47578
С	-0.37706	4.6301 -2.01141
С	1.00422	4.51326 -1.84925
С	-2.76928	3.75041 -1.50116
С	-3.29544	2.32121 -1.65209
С	-2.60726	1.31129 -0.97597
С	-2.98915	-0.03352 -0.99029
С	-4.14414	-0.36999 -1.70915
С	-4.85699	0.61428 -2.39307
С	-4.43428	1.94579 -2.37045
Н	2.62291	3.3587 -1.03757
Н	-0.77998	5.48256 -2.54696
Н	1.66146	5.27575 -2.25664
Н	-4.47137	-1.403 -1.74686
Н	-5.74724	0.34271 -2.95264
Н	-5.00152	2.69251 -2.9151
С	-3.28385	4.67459 -2.61074
Н	-2.96836	4.33346 -3.60233
Н	-4.37661	4.72496 -2.59347
Н	-2.92043	5.69591 -2.46342
С	-3.24271	4.29884 -0.12796
Н	-4.33736	4.3327 -0.09032
Н	-2.88976	3.66827 0.69378
Н	-2.85555	5.3119 0.02872
0	-1.47176	1.62022 -0.25469
Р	1.33966	0.94295 0.27286
Р	-1.86945	-1.24089 -0.17961
С	-2.58028	-2.85329 -0.68576
С	-3.71836	-3.40719 -0.08058
С	-1.94993	-3.5475 -1.72782
С	-4.22127	-4.63125 -0.5199
Н	-4.20474	-2.88112 0.73522
С	-2.45706	-4.77036 -2.16867
Н	-1.05253	-3.13461 -2.17986
С	-3.59272	-5.31285 -1.5656
Н	-5.10205	-5.05479 -0.04509
Н	-1.95708	-5.30367 -2.97206

Н	-3.98337 -6.26902 -1.90255
С	-2.30865 -1.14142 1.6002
С	-1.74103 -2.10192 2.45446
С	-3.11531 -0.13581 2.14227
С	-1.99687 -2.06554 3.82257
Н	-1.09598 -2.87511 2.04516
С	-3.3535 -0.09086 3.51777
Н	-3.5638 0.61111 1.49563
С	-2.80107 -1.05592 4.35916
Н	-1.55704 -2.818 4.4713
Н	-3.97658 0.69882 3.92857
Н	-2.99121 -1.02067 5.42826
С	3.1539 1.20444 0.21534
С	3.91548 1.44066 1.36529
С	3.80081 1.11133 -1.02798
С	5.29998 1.60036 1.27066
Н	3.42945 1.5023 2.33291
С	5.177 1.29572 -1.12225
Н	3.22306 0.89298 -1.92098
С	5.93133 1.53966 0.02872
Н	5.88153 1.78051 2.17065
Н	5.66353 1.22361 -2.08985
Н	7.00752 1.66999 -0.04332
С	0.87668 1.347 2.00407
С	0.63016 2.66172 2.4231
С	0.76432 0.29624 2.92579
С	0.26859 2.92065 3.745
Н	0.71614 3.48174 1.71741
С	0.41206 0.56175 4.2488
Н	0.95468 -0.72249 2.60496
С	0.15822 1.87113 4.65944
Н	0.07268 3.9422 4.0596
Н	0.31949 -0.25984 4.9519
Н	-0.1276 2.07374 5.68803
Pd	0.57197 -1.15329 -0.24925
С	3.25848 -2.12198 -2.07035
С	3.4364 -2.14999 -0.68111
С	4.72534 -2.07343 -0.14356
С	5.83029 -1.98074 -0.9884
С	5.65375 -1.96021 -2.3722
С	4.36459 -2.02816 -2.91065
Н	2.2564 -2.17497 -2.48151
Н	4.84513 -2.08271 0.93394
Н	6.82818 -1.9171 -0.5639
Н	6.51497 -1.88857 -3.03104
Н	4.22297 -2.01367 -3.9879
С	2.29433 -2.22142 0.27806
0	2.38433 -2.37644 1.48077
F	1.23555 -3.28168 -0.43791

Int1

С	-1.15097 -3.40618 -1.60722
С	-0.43892 -2.42681 -0.90144
С	0.95508 -2.47479 -0.96904
С	1.66918 -3.43091 -1.69564
С	0.92495 -4.37413 -2.40931
С	-0.47089 -4.36124 -2.3636

С	3.19727 -3.40034 -1.58248
С	3.61152 -1.92634 -1.55917
С	2.7804 -1.03819 -0.8718
С	3.00316 0.33695 -0.79333
С	4.17408 0.8332 -1.38508
С	5.04464 -0.02867 -2.05038
С	4.75861 -1.39301 -2.15199
Н	-2.23329 -3.42067 -1.56853
Н	1.43111 -5.13291 -2.99603
Н	-1.0342 -5.10833 -2.9146
Н	4.38621 1.89549 -1.34539
Н	5.94541 0.36683 -2.51026
Н	5.43583 -2.03907 -2.69985
C	3.87848 -4.17273 -2.71743
H	3.63312 -3.75311 -3.69866
Н	4 96565 -4 15631 -2 59593
Н	3 57613 -5 22414 -2 70454
C	3 59009 -4 04376 -0 22529
н	4 67616 -4 00056 -0 08644
Н	3 11592 -3 52463 0 61306
Н	3 276 _5 0932 _0 19932
0	1.63761 - 1.51254 - 0.25832
P	-1 20594 -1 15074 0 18542
D	1 68121 1 39042 -0.06484
r C	2 15545 3 03879 -0 6994
C	3 06922 3 87147 -0 04281
C C	1 60013 3 44954 -1 91862
C C	3 42922 5 09755 -0 60506
н	3 49635 3 56399 0 90649
n C	1 96586 4 6702 -2 48161
н	0.86673 2.81747 -2.41110
n C	2 88108 5 49667 -1 82507
н	4 1365 5 74047 -0 08829
H	1 52497 4 98448 -3 42343
H	3 15932 6 45291 -2 25942
n C	2 07353 1 44985 1 72455
C C	1 30863 2 3215 2 52075
C C	3 01663 0 60907 2 32576
C C	1 50287 2 35252 3 89999
н	0.56357 2.95633 2.07793
n C	3 19693 0 63783 3 71031
н	3 60909 -0 06653 1 71818
n C	2 44417 1 50893 4 49834
н	0.91052 3.02986 4.50887
и П	3 92798 _0 02112 / 17067
H	2 58833 1 5307 5 57518
II C	-2 98474 -1 56681 0 04188
C C	-3 72932 -2 05328 1 12162
C C	-3 63061 -1 30629 -1 17744
Č	-5 10056 -2 27634 0 9822
с Н	-3 24474 -2 24523 2 07252
C	-4.99543 - 1.54439 - 1.31874
ч	-3.06646 -0.90025 -2.01148
C	-5 73458 -2 02501 -0 23515
ч	-5 6722 -2 645 1 82022
H	-5.0722 -2.075 1.02725
H	-6 8024 -2 1968 -0 33846
**	0.0021 2.1700 0.00010

-0.70022 -1.72977 1.84992
-0.49345 -3.09038 2.12141
-0.49329 -0.7832 2.86169
-0.0797 -3.49505 3.38958
-0.64939 -3.83039 1.34246
-0.07945 -1.19267 4.1293
-0.65027 0.26836 2.65336
0.13117 -2.54624 4.39366
0.08227 -4.55011 3.59258
0.09196 -0.44794 4.89959
0.46156 -2.86356 5.37898
-0.78587 1.10352 0.02478
-3.29224 2.03585 -1.78528
-3.68822 1.79401 -0.46493
-5.04709 1.84182 -0.12542
-6.00053 2.11569 -1.10155
-5.60155 2.35361 -2.42069
-4.24658 2.32008 -2.76017
-2.23537 1.999 -2.03409
-5.33439 1.64086 0.90116
-7.05473 2.13991 -0.83927
-6.34652 2.56721 -3.18258
-3.93599 2.51535 -3.78282
-2.69639 1.40892 0.58693
-2.99016 1.35546 1.76311

Int1

С	3.13887 -2.28189 -1.83454
С	2.53939 -1.49939 -0.84027
С	3.07317 -0.22872 -0.60117
С	4.17821 0.28959 -1.27637
С	4.7516 -0.51751 -2.2649
С	4.23522 -1.78612 -2.5419
С	4.67509 1.67149 -0.84269
С	3.43547 2.52285 -0.5432
С	2.33938 1.8911 0.0551
С	1.14507 2.53987 0.38134
С	1.09108 3.92316 0.14997
С	2.17062 4.5901 -0.42519
С	3.32673 3.89418 -0.78619
Н	2.7374 -3.26158 -2.06748
Н	5.60517 -0.15801 -2.82831
Н	4.69098 -2.39324 -3.31789
Н	0.18934 4.47079 0.39584
Н	2.10762 5.65914 -0.60469
Н	4.14706 4.42882 -1.25195
С	5.57697 2.31653 -1.90137
Н	5.05173 2.45676 -2.85214
Н	5.93885 3.29033 -1.55908
Н	6.46153 1.69865 -2.08239
С	5.48089 1.50429 0.47335
Н	5.82369 2.48082 0.83262
Н	4.87008 1.04732 1.25786
Н	6.3562 0.86709 0.30433
0	2.41047 0.54029 0.33076
Р	0.98483 -1.90482 0.03075

Р	-0.32741	1.56879 0.94571
С	-1.65222	2.79044 0.5995
С	-2.31069	3.53126 1.58618
С	-1.98959	2.98783 -0.74923
С	-3.30225	4.44739 1.2293
Н	-2.05793	3.39444 2.63145
С	-2.97112	3.90915 -1.1017
Ĥ	-1 49172	2 41477 -1 52325
C	-3 63555	4 63682 -0 11173
н	-3 8152	5 01028 2 00412
II Ц	3 22070	1 0403 2 1483
II H	-3.22979	5 24265 0 20470
П	-4.41390	J.34303 -0.30470
C	-0.105	1.51/30 2./0095
C	-1.26//9	1.08548 3.52401
C	1.03177	1.84218 3.41644
С	-1.1/583	1.01997 4.91302
Н	-2.18737	0.80686 3.02022
С	1.12395	1.74887 4.8058
Н	1.89155	2.17099 2.84244
С	0.01917	1.3487 5.55769
Н	-2.03884	0.70131 5.49128
Н	2.05918	1.99815 5.29937
Н	0.08982	1.28799 6.64022
С	0.73823	-3.69879 -0.21758
С	1.79191	-4.5971 0.02137
С	-0.53315	-4.1908 -0.53185
Ċ	1.57874	-5.96871 -0.0846
H	2 77229	-4 22376 0 30119
C	-0 7431	-5 56794 -0 62919
н	-1 35109	-3 50485 -0 70069
C II	0 30077	-6 45571 -0 41351
с u	2 30802	6 6 5 8 0 7 0 0 8 7 7
II H	1 72264	-0.03807 0.09872 5 04119 0.97601
II U	-1./5204	7 5 2 6 4 2 0 4 0 2 6 0
П	0.14393	-/.32042 -0.49209
C	1.38400	-1.83390 1.81433
C	2.70031	-1.86058 2.29136
C	0.31565	-1.82351 2.72002
C	2.94348	-1.8/43/ 3.66413
Н	3.53358	-1.86675 1.59576
С	0.56435	-1.85221 4.09104
Η	-0.70573	-1.78158 2.35194
С	1.87655	-1.8717 4.56479
Н	3.96669	-1.88689 4.02933
Н	-0.26772	-1.8323 4.78629
Н	2.06729	-1.87788 5.63405
Pd	-0.69633	-0.4771 -0.52401
С	0.53224	0.77998 -3.04981
С	-0.63151	0.00848 -3.195
С	-1.68367	0.46568 -4.00177
С	-1.56576	1.69027 -4.65567
С	-0.40474	2.45696 -4.51413
Č	0 64784	1 9968 -3 72
н Н	1 34058	0 4225 -2 42357
Н	_2 50120	-0.1223 -2.72337
Ч	-2.37129	2.122 + 0 = -1.07914 2.051/1/1 = 5.070/7
и П	-2.3049/	2.03144 -3.2/04/
п	-0.52521	5.41425 -5.02099 2.5900 - 2.60460
п	1.34992	2.3899 -3.60469

С	-0.84319 -1.23972 -2.38019
0	-1.20802 -2.30124 -2.80517
S	-3.90249 0.01221 -0.02491
0	-5.15028 0.70299 -0.36244
0	-3.41475 0.10517 1.36448
С	-4.29265 -1.79618 -0.22607
F	-4.48343 -2.10281 -1.51604
F	-5.39459 -2.12153 0.46053
F	-3.27592 -2.55645 0.23632
0	-2.8241 0.2073 -1.0671
-	
Ts5	
С	3 28633 1 97633 0 57827
C	2 14362 1 17387 0 70567
C	1 01676 1 7598 1 29569
C	0.97225 3.08096 1.74884
C	2 12825 3 85013 1 58989
C	3 27566 3 30087 1 01421
C C	-0.31718 3.5639 2.42047
C C	-1 49056 2 9111 1 68496
C C	
C C	2 3 2 0 8 5 7 5 0 6 0 8 1 0
C C	-357134 + 47892 + 0.00819
C C	3 77035 2 7024 0 85251
C	2 72057 2 50222 1 47061
	4 17946 1 57062 0 11571
П	4.1/840 1.3/003 0.113/1
П	2.1404/ 4.8833/ 1.91/43
Н	4.16/6 3.91064 0.90368
H	-4.3/292 0.94029 -0.0668
H	-4./3535 3.26/28 0./0124
H	-2.91661 4.52412 1.79053
C	-0.42366 5.09321 2.43094
H	-0.41836 5.50558 1.41662
H	-1.34318 5.41216 2.93019
H	0.4059 5.53586 2.98991
C	-0.32189 3.04869 3.88454
H	-1.24391 3.35452 4.39163
H	-0.26029 1.9566 3.91979
Н	0.53288 3.4585 4.43424
0	-0.10812 0.9656 1.39739
Р	1.95485 -0.49259 -0.05872
P	-1.85103 -0.7727 -0.08035
С	-3.40534 -1.38347 -0.84297
С	-4.52778 -1.72329 -0.07243
С	-3.46453 -1.51623 -2.23637
С	-5.69698 -2.16402 -0.68997
Н	-4.48179 -1.64829 1.01001
С	-4.63612 -1.95916 -2.85341
Н	-2.58091 -1.29627 -2.82923
С	-5.75373 -2.27869 -2.08209
Н	-6.56178 -2.42477 -0.08601
Н	-4.6685 -2.06614 -3.93399
Н	-6.66427 -2.6277 -2.56127
С	-1.66619 -1.85122 1.3826
С	-1.05724 -3.09714 1.16974
С	-2.12994 -1.50686 2.65812
С	-0.94389 -3.99793 2.22698

Н	-0.66923 -3.33448 0.18185
С	-1.99926 -2.40948 3.71426
Н	-2.5936 -0.53936 2.82564
С	-1.41287 -3.65744 3.49772
Н	-0.46865 -4.95976 2.06205
Н	-2.35833 -2.13869 4.70374
Н	-1.31184 -4.36021 4.32035
С	3.58021 -0.73887 -0.88361
С	4.76545 -0.92722 -0.15324
С	3.63575 -0.74159 -2.28296
С	5.98143 -1.09284 -0.81296
Н	4.73065 -0.94778 0.93179
С	4.85508 -0.9071 -2.94381
Н	2.71786 -0.63974 -2.85306
С	6.02851 -1.07932 -2.21044
Н	6.89239 -1.23703 -0.2385
Н	4.88178 -0.91453 -4.02977
Н	6.97685 -1.21384 -2.72327
С	2.08967 -1.67188 1.34019
С	1.86985 -1.31423 2.6752
С	2.39033 -3.00829 1.02827
С	1.96798 -2.27288 3.68468
Н	1.62972 -0.28903 2.93339
С	2.50518 -3.95708 2.04093
Н	2.53406 -3.30115 -0.00734
С	2.29575 -3.59202 3.37298
Н	1.79156 -1.9837 4.717
Н	2.74876 -4.98534 1.78788
Н	2.37809 -4.33455 4.16188
Pd	-0.02103 -0.61394 -1.73569
С	0.91912 2.27759 -2.12727
С	-0.17134 1.43376 -2.39801
С	-1.47313 1.96311 -2.42493
С	-1.68222 3.30668 -2.12589
С	-0.59642 4.13327 -1.82503
С	0.70415 3.62149 -1.83432
Н	1.92613 1.87593 -2.13549
Н	-2.31162 1.31629 -2.6596
Н	-2.69185 3.70484 -2.11328
Н	-0.7644 5.18025 -1.58871
Н	1.54804 4.26139 -1.59714
С	0.18782 0.04545 -3.46942
0	0.33758 0.06981 -4.63436
F	0.07249 -2.66849 -1.86035

Ts5A

С	1.62759 -3.5567 -1.81506
С	1.48675 -2.51481 -0.88904
С	2.60257 -1.70051 -0.6637
С	3.82235 -1.848 -1.32682
С	3.92081 -2.89339 -2.25058
С	2.83774 -3.74285 -2.48379
С	4.94945 -0.87369 -0.96524
С	4.30272 0.49558 -0.72826
С	3.067 0.51837 -0.08026
С	2.37133 1.68857 0.24283
С	2.96596 2.90689 -0.10511

С	4.20167 2.92329 -0.75436
С	4.86212 1.73262 -1.0668
Н	0.78474 -4.20114 -2.03411
Н	4.84484 -3.04939 -2.79595
Н	2.93282 -4.54977 -3.20396
Н	2.449 3.83649 0.10087
Н	4.65159 3.87337 -1.02654
Н	5.8178 1.77374 -1.57758
C	6.03277 -0.81852 -2.04823
H	5.6277 -0.49284 -3.01207
Н	6.83287 -0.13128 -1.75801
Н	6.4959 -1.80049 -2.18148
C	5.59143 -1.34212 0.36775
Н	6 38468 -0 6496 0 67053
Н	4 85057 -1 3846 1 17185
H	6 02596 -2 34071 0 24837
0	2 4423 -0 67099 0 24428
P	-0 12458 -2 01241 -0 15236
P	0.66645 1.46535 0.88653
r C	0.04226 3.15747 1.19034
C C	0.75226 4.05149 2.00884
C C	-1 10174 - 354464 - 0.65536
C C	0.25386 5.3208 2.24781
Ч	1 68721 3 7/172 2 /663
n C	1.60/21 5.74172 2.4005
U U	1 77505 2 82500 0 08465
II C	-1.77505 2.85599 0.08405
U U	-0.90073 5.72030 1.08840
п	0.61022 $0.01/24$ 2.67664
	-2.0351 5.11205 0.46919
II C	-1.33738 0.71302 1.88107
C	0.24511 0.52501 2.2217
C	-0.24511 0.55501 $5.55172.16577$ 0.76054 2.10562
C	2.103// 0.70034 3.19303
U U	-0.12743 0.1539 4.00089
П	-1.21909 0.38929 2.83048
C II	2.27343 0.37239 4.33143
П	3.00004 1.00409 2.03107
C II	1.12909 0.07006 5.20985
П	-1.02109 -0.08810 3.23283
П	3.2505 0.30826 4.99438
П	1.21350 - 0.22542 - 0.310/3
C C	-1.31334 -3.23032 -0.80438
C C	-1.20203 -4.38032 -0.4290
C C	-2.33138 -2.841/1 -1.632/4
C	-2.10033 -5.52/16 -0.92/25
Н	-0.41822 -4.89008 0.2541
C II	-3.252/0 -3.78024 -2.14010
Н	-2.4815 -1./9/19 -1.89923
	-5.12332 $-5.12/05$ $-1./9008$
H	-2.00098 -0.00921 -0.03498
H	-4.06307 -3.46524 -2.79379
Н	-3.8308 -5.86112 -2.1/05/
U C	-0.06106 -2.45811 1.61727
U C	1.13102 -2./5066 2.288//
C	-1.28/64 -2.5435/ 2.29642
C	1.0958/ -3.13903 3.62829
Н	2.08224 -2.69116 1.7/34

С	-1.31268 -2.94224 3.6304
Н	-2.21363 -2.30545 1.78134
С	-0.12336 -3.24223 4.29821
Н	2.02428 -3.36218 4.14609
Н	-2.26514 -3.01199 4.14791
Н	-0.1456 -3.54888 5.34025
Pd	-0.4492 0.20702 -0.8849
С	0.89111 2.28421 -2.69945
С	-0.3927 1.81909 -2.38677
С	-1.51191 2.63639 -2.58098
С	-1.3366 3.94206 -3.03978
С	-0.05414 4.42187 -3.31678
С	1.05825 3.59263 -3.15213
Н	1.75244 1.63671 -2.5741
Н	-2.50494 2.26571 -2.36238
Н	-2.20177 4.58451 -3.17672
Н	0.07755 5.44058 -3.6703
Н	2.0556 3.96204 -3.37241
С	-0.67263 -0.05318 -2.73098
0	-0.73567 -0.49588 -3.8071
S	-3.77723 0.08619 0.82072
0	-4.6304 0.71858 1.83773
0	-3.88966 -1.37859 0.66599
С	-4.44905 0.73562 -0.78502
F	-4.34028 2.07894 -0.84148
F	-5.73542 0.41272 -0.94856
F	-3.76197 0.23604 -1.84434
0	-2.37279 0.59996 0.79131

Ts5B

С	2.59332	2.34007 -2.89222
С	2.5344	1.55071 -1.73982
С	2.89339	2.14089 -0.52307
С	3.25784	3.47618 -0.379
С	3.3036	4.23974 -1.55157
С	2.99016	3.67489 -2.79056
С	3.61663	3.96529 1.02943
С	2.72499	3.21175 2.02827
С	2.40687	1.88143 1.75139
С	1.62644	1.06783 2.57953
С	1.17103	1.62522 3.78264
С	1.4814	2.9469 4.10135
С	2.23862	3.73525 3.23094
Η	2.30849	1.92484 -3.85171
Η	3.58386	5.28614 -1.5041
Η	3.03327	4.28896 -3.68472
Η	0.55361	1.0339 4.44887
Η	1.11828	3.37237 5.03162
Η	2.44912	4.7647 3.49812
С	3.45949	5.48573 1.15587
Н	2.42921	5.80217 0.96248
Н	3.74364	5.82373 2.15638
Η	4.11936	6.00147 0.45216
С	5.09274	3.57991 1.3127
Η	5.37607	3.88316 2.32642
Н	5.24438	2.4993 1.22504
Н	5.75898	4.07799 0.59956

0	2.84982 1.30937 0.57433
Р	1.90409 -0.15405 -1.6016
Р	1.05203 -0.56832 1.95955
С	-0.19003 -1.08188 3.18848
С	0.17368 -1.74028 4.37541
С	-1.53525 -0.78033 2.94766
С	-0.80848 -2.09532 5.2968
Н	1.21341 -1.97882 4.57289
С	-2.51658 -1.14559 3.86752
Н	-1.84017 -0.26863 2.04476
С	-2.15231 -1.80428 5.04084
Н	-0.52572 -2.6089 6.21153
Н	-3.55426 -0.93902 3.63545
Н	-2.9154 -2.10048 5.75496
С	2.41853 -1.75234 2.17627
Ċ	2.10344 -3.12182 2.15251
Ċ	3.74256 -1.34559 2.37584
Č	3.10455 -4.06667 2.36133
Ĥ	1 08008 -3 44488 1 99098
C	4 74103 -2 29967 2 57057
H	3 99473 -0 29116 2 39285
C	4 4235 -3 65836 2 57317
Ĥ	2.8517 -5.12287 2.35531
Н	5.767 -1.97841 2.72448
Н	5.20289 -4.39791 2.73353
C	1.42656 -0.76232 -3.2502
Č	2.33747 -0.71807 -4.31746
Ċ	0.17552 -1.36728 -3.4275
С	1.97513 -1.2353 -5.55998
Н	3.32678 -0.29365 -4.175
С	-0.17484 -1.89831 -4.66806
Н	-0.51564 -1.43377 -2.59733
С	0.71942 -1.82333 -5.73667
Η	2.67801 -1.19138 -6.38675
Η	-1.14302 -2.37393 -4.78994
Η	0.44511 -2.23346 -6.70415
С	3.364 -1.16379 -1.19228
С	4.65163 -0.60768 -1.15543
С	3.19149 -2.54435 -1.01032
С	5.75822 -1.43161 -0.95922
Н	4.79618 0.45687 -1.29982
С	4.3045 -3.35764 -0.81435
Η	2.19667 -2.97352 -1.01624
С	5.5869 -2.80639 -0.79123
Н	6.75394 -0.99778 -0.9416
Η	4.16514 -4.42373 -0.66818
Н	6.45062 -3.44658 -0.63656
Pd	0.02254 -0.02597 -0.19299
C	-0.78998 1.73964 -2.75185
C	-0.91443 1.39283 -1.40001
C	-0.98235 2.39649 -0.40898
C	-0.72406 3.72816 -0.76079
C	-0.52398 4.06244 -2.0966
C	-0.5/949 3.07128 -3.09002
H	-0.81231 0.98293 -3.52612
H	-1.28863 2.16511 0.60801
Н	-0./5183 4.49543 0.00687

Н	-0.35618 5.09776 -2.3776
Н	-0.43705 3.34109 -4.1329
С	-3.02634 -0.01774 -1.72423
0	-3.28724 0.01267 -2.83957
S	-1.1508 -3.18523 -0.10658
0	0.12931 -3.35825 -0.81359
0	-1.60108 -1.70919 -0.18458
С	-2.40512 -3.97464 -1.23992
F	-2.01078 -5.21619 -1.5302
F	-2.47605 -3.26375 -2.38329
F	-3.6131 -4.01099 -0.68659
0	-1.29565 -3.80223 1.20964
Cu	-3.58431 -0.81109 -0.05678
0	-5.14076 0.6516 -0.05295
S	-4.65288 1.72694 0.8922
0	-3.26346 1.45782 1.34079
0	-5.61859 2.16417 1.90026
С	-4.47603 3.17953 -0.25848
F	-3.83244 2.81723 -1.38443
F	-3.76826 4.15573 0.33135
F	-5.67386 3.66281 -0.59907
F	-4.18024 -1.81951 1.32094

Int2

С	3 35303	1 92141	0 64048
C	2 16217	1 18877	0 72778
Č	1 03074	1 85401	1 21693
Č	1.01862	3 20326	1 57648
C	2.2225	3.90346	1.45365
Č	3.38036	3.26686	1.00373
Č	-0.28172	3 80068	2 1249
Č	-1.45548	3.10404	1.43025
Č	-1.31681	1.75853	1.09286
Ċ	-2.33126	0.99239	0.50895
Ċ	-3.56172	1.61563	0.275
С	-3.73658	2.96137	0.59763
С	-2.69316	3.69858	1.16063
Н	4.24958	1.44815	0.25764
Н	2.26475	4.95512	1.71315
Н	4.30713	3.8274	0.92516
Н	-4.36933	1.05666	-0.18413
Н	-4.69097	3.44224	0.40455
Н	-2.85232	4.74516	1.39471
С	-0.33197	5.32238	1.93205
Н	-0.27537	5.59165	0.87234
Н	-1.25543	5.7358	2.34753
Н	0.49172	5.81024	2.46107
С	-0.36092	3.47553	3.63989
Н	-1.2936	3.86467	4.0638
Н	-0.33268	2.39493	3.81353
Н	0.48262	3.92993	4.17176
0	-0.12216	1.1049	1.30551
Р	1.93442	-0.48425	-0.00019
Р	-1.86577	-0.6812	-0.07212
С	-3.41376	-1.30667	-0.83975
С	-4.54165	-1.63135	-0.07016
С	-3.46881	-1.45827	-2.23077

С	-5.70832 -2.07966 -0.68717
Н	-4.50198 -1.53983 1.011
С	-4.638 -1.90642 -2.84786
Ĥ	-2 5849 -1 24301 -2 82339
C C	-5 75941 -2 21442 -2 07747
U U	6 57617 2 2208 0 08217
11	-0.37017 -2.3298 -0.08317
H	-4.66632 -2.02503 -3.92735
Н	-6.66824 -2.56872 -2.55587
С	-1.76227 -1.66492 1.46719
С	-1.22294 -2.95632 1.37218
С	-2.25125 -1.20037 2.69532
С	-1.20504 -3.78009 2.49617
Н	-0.79599 -3.27918 0.4266
С	-2.21606 -2.02768 3.81858
Н	-2.66289 -0.19905 2.77414
C	-1 7016 -3 32099 3 71784
ч	-0.78204 -4.77696 -2.42068
П Ц	250544 + 166245 + 76024
11 11	-2.39344 - 1.00243 4.70934
П	-1.0///3 -3.90012 4.39200
C	3.5/154 -0.8280/ -0./61/1
C	4.70376 -1.108 0.0206
С	3.69722 -0.79826 -2.15587
С	5.93779 -1.3396 -0.58411
Н	4.61479 -1.15002 1.10164
С	4.93417 -1.02856 -2.76081
Н	2.81869 -0.61075 -2.76509
С	6.05554 -1.29771 -1.97634
Н	6.80719 -1.55671 0.03024
Н	5.0161 -1.00796 -3.84382
Н	7.01738 -1.48305 -2.44624
С	1.94082 -1.64083 1.4175
С	1.72856 -1.22598 2.73698
С	2.17238 -2.99977 1.14832
С	1.76778 -2.1546 3.77775
Н	1.53979 -0.18125 2.95708
С	2.22884 -3.91828 2.19334
Н	2.29864 -3.33069 0.12367
C	2 02953 -3 49812 3 5106
Ĥ	1 59733 -1 82371 4 7983
Н	2 41769 -4 96612 1 97678
Н	2.06727 -4.21755 4.32393
Pd	0.07668 -0.74109 -1.64455
C	1.08661 2.06428 -2.10764
C C	0.05355 1.25405 2.0455
C C	-0.03333 1.23403 -2.0433
C	-1.3004/ 1.84418 -2.28901
C	-1.4144/ 3.2219/ -2.4916
C	-0.2//26 4.030/ -2.48/01
C	0.9/54 3.4434 -2.30921
Н	2.0/3/9 1.63547 -1.98512
Н	-2.198/ 1.2374 -2.30555
H	-2.39//1 3.65808 -2.64752
H	-0.36541 5.10353 -2.63629
Н	1.87531 4.05297 -2.32094
С	0.14008 -0.94343 -3.56562
0	0.17762 -1.05254 -4.70911
F	0.20056 -2.77789 -1.33724

Int2A

С	1.66938 -3.5044 -1.82398
С	1.51163 -2.47354 -0.88748
С	2.62087 -1.65462 -0.64696
С	3.85357 -1.79772 -1.28755
С	3.9682 -2.83411 -2.21896
С	2.88841 -3.68002 -2.47904
С	4.97742 -0.83308 -0.8906
С	4.33324 0.53748 -0.65714
С	3.08027 0.56071 -0.04479
С	2.37646 1.73151 0.25542
С	2.98098 2.95054 -0.07155
С	4.23881 2.96591 -0.67595
С	4.9059 1.77482 -0.97132
Н	0.83397 -4.15211 -2.05993
Н	4.90156 -2.98609 -2.74938
Н	2.9947 -4.47928 -3.20616
Н	2.45388 3.87976 0.10623
Н	4.69679 3.91573 -0.93431
Н	5.87652 1.81573 -1.45302
С	6.0865 -0.77497 -1.94682
Н	5.70698 -0.43688 -2.9167
Н	6.88391 -0.09623 -1.63051
Н	6.54602 -1.75889 -2.07825
С	5.58445 -1.31827 0.45288
Н	6.37473 -0.63385 0.78067
Н	4.82461 -1.36312 1.23906
Н	6.01537 -2.31853 0.33463
0	2.44288 -0.62739 0.26002
Р	-0.1065 -1.98955 -0.14507
Р	0.64934 1.50346 0.82363
С	0.01505 3.16579 1.24237
С	0.7862 4.02897 2.03873
С	-1.2837 3.53836 0.87861
С	0.28324 5.27222 2.41389
Н	1.77133 3.72436 2.37789
С	-1.7861 4.78134 1.26625
Н	-1.90883 2.84577 0.3346
С	-1.00233 5.65376 2.02009
Н	0.88902 5.93712 3.02304
Н	-2.79718 5.05889 0.98312
Н	-1.39614 6.62169 2.31735
С	0.8156 0.78077 2.49888
С	-0.35828 0.45803 3.19437
С	2.05723 0.6617 3.13604
С	-0.2824 0.02919 4.51746
Н	-1.31882 0.54532 2.69793
С	2.12414 0.22901 4.4602
Н	2.9704 0.91961 2.61098
С	0.95511 -0.08535 5.15316
Н	-1.19474 -0.22509 5.0477
Н	3.09077 0.14148 4.94883
Н	1.00732 -0.42311 6.18439
С	-1.2778 -3.22086 -0.82447
С	-1.11559 -4.5821 -0.51179
С	-2.35666 -2.82671 -1.62118
С	-1.9946 -5.53065 -1.02663

Н	-0.30348 -4.89488 0.1375
С	-3.23998 -3.77936 -2.1323
Н	-2.54663 -1.77864 -1.80387
С	-3.05647 -5.12996 -1.84365
Н	-1.85813 -6.58049 -0.78338
Н	-4.0817 -3.45688 -2.73771
Н	-3.74704 -5.86997 -2.23805
С	-0.05129 -2.49736 1.61018
С	1.14052 -2.78512 2.28363
С	-1.28325 -2.65323 2.26726
С	1.10016 -3.24464 3.60034
Н	2.09608 -2.66772 1.7866
С	-1.31263 -3.12047 3.5787
Н	-2.20968 -2.41487 1.75272
С	-0.12349 -3.42058 4.24658
Н	2.02863 -3.46643 4.1187
Н	-2.26889 -3.24506 4.07862
Н	-0.14965 -3.78361 5.27026
Pd	-0.38544 0.28758 -0.97559
С	0.91846 2.52412 -2.5485
С	-0.29862 2.08968 -2.01582
С	-1.45823 2.83106 -2.26021
С	-1.38537 4.03449 -2.96712
С	-0.16057 4.49267 -3.45637
С	0.98956 3.72992 -3.25414
Н	1.81989 1.93765 -2.40872
Н	-2.41842 2.48701 -1.89706
Н	-2.29149 4.61128 -3.13451
Н	-0.10672 5.42987 -4.00356
Н	1.94687 4.06489 -3.6459
С	-0.64918 -0.34074 -2.76816
0	-0.68549 -0.6474 -3.87024
S	-3.77099 0.066 0.75205
0	-4.61795 0.68059 1.78488
0	-3.83828 -1.404 0.61741
С	-4.49793 0.67554 -0.84447
F	-4.49658 2.02243 -0.88508
F	-5.75565 0.25241 -1.00582
F	-3.77674 0.24096 -1.90849
0	-2.38476 0.62336 0.6807

Ts6

С	3.59303	1.64356	-0.63948
С	2.44078	1.07237	-0.09052
С	1.48988	1.93599	0.47521
С	1.67727	3.31501	0.57449
С	2.83948	3.85122	0.01015
С	3.78209	3.02517	-0.60255
С	0.63927	4.10768	1.37139
С	-0.7353	3.51452	1.0521
С	-0.82326	2.12843	0.87309
С	-2.0341	1.47415	0.58604
С	-3.19726	2.2573	0.5403
С	-3.13861	3.63526	0.73085
С	-1.91401	4.25927	0.96827
Η	4.33593	1.00666	-1.10629
Н	3.01752	4.91988	0.05063

Н	4.67523 3.45897 -1.04209
Н	-4.14834 1.78594 0.32179
Н	-4.04796 4.2266 0.68225
Н	-1.88215 5.3355 1.09415
С	0.70622 5.60995 1.07263
Н	0.50693 5.8228 0.01717
Н	-0.01734 6.16029 1.68101
Н	1.69342 6.00663 1.32657
С	0.9241 3.88267 2.8812
Н	0.17615 4.40361 3.48957
Н	0.89439 2.8192 3.13731
Н	1.91641 4.26854 3.14046
0	0.32299 1.36714 0.95454
Р	2.04702 -0.71239 -0.11081
Р	-2.07552 -0.30581 0.11017
С	-3.72927 -0.50046 -0.65285
С	-4.87735 -0.81331 0.08683
С	-3.82568 -0.34347 -2.04407
С	-6.10628 -0.96278 -0.55754
Н	-4.80852 -0.94692 1.16154
С	-5.05658 -0.48411 -2.68263
Н	-2.93396 -0.11925 -2.62239
С	-6.19816 -0.7965 -1.94076
Н	-6.99122 -1.21118 0.02174
Н	-5.12104 -0.36301 -3.76024
Н	-7.15531 -0.91717 -2.44028
С	-2.18517 -1.19099 1.7046
С	-2.44583 -2.57099 1.68712
С	-1.96819 -0.54391 2.9274
С	-2.5046 -3.28229 2.88323
Н	-2.59086 -3.07913 0.74186
С	-2.01746 -1.26446 4.12093
Н	-1.76303 0.52063 2.95196
С	-2.28943 -2.63246 4.10183
Η	-2.7098 -4.34886 2.86216
Н	-1.8427 -0.7541 5.06381
Η	-2.32996 -3.19257 5.03212
С	3.53425 -1.56412 -0.75315
С	4.80329 -1.42216 -0.17065
C	3.36624 -2.44427 -1.83016
C	5.89077 -2.12863 -0.68032
H	4.93729 -0.76966 0.68653
C	4.45658 -3.15386 -2.33671
H	2.37527 -2.58546 -2.25281
C	5./1924 -2.99196 -1./6656
H	6.8/0/8 -2.01281 -0.22585
H	4.31546 -3.83715 -3.16915
H	6.56824 -3.54489 -2.15869
C	2.043/3 -1.112/6 1.684/6
C	2.78524 -0.55108 2.60091
C	1.2007 -2.20191 2.13/34
	2.7/403 -0.0/990 3.9339/
11 C	3.33733 0.30301 2.20241 1.28671 2.52604 2.40475
с u	1.200/1 - 2.32094 - 3.494/3 - 0.68210 - 2.7572 - 1.42464
C II	0.00217 -2.7373 1.42404 2.02583 _1 77066 / 40400
с н	2.02303 -1.77000 4.40499
**	5.51700 0.00207 T.0570T

Н	0.68674 -3.36334 3.83929
Н	2.01434 -2.02339 5.462
Pd	-0.12069 -1.02912 -0.97331
С	-0.75424 1.63573 -2.40635
С	0.08691 0.52548 -2.2367
С	1.12521 0.35961 -3.17489
С	1.30718 1.25234 -4.23377
С	0.46271 2.35345 -4.37912
С	-0.56884 2.53723 -3.4597
Н	-1.57315 1.82129 -1.72526
Н	1.81339 -0.47535 -3.08379
Н	2.12109 1.08849 -4.93636
Н	0.60853 3.0569 -5.19449
Н	-1.24329 3.38526 -3.55635
С	-2.32083 -3.23741 -2.00819
0	-1.78577 -3.29646 -3.01298
F	-0.246 -2.95458 -0.25186

Ts6A

С	-3.65357 2.25212 -0.65486
С	-2.69531 1.39466 -0.10127
С	-3.04808 0.04777 0.06997
С	-4.29733 -0.46682 -0.28056
С	-5.21796 0.41603 -0.85461
С	-4.90134 1.76237 -1.03797
С	-4.59524 -1.92673 0.06725
С	-3.30175 -2.72822 -0.10114
С	-2.09338 -2.10853 0.22965
С	-0.85582 -2.77098 0.18823
С	-0.85442 -4.11996 -0.1897
С	-2.0423 -4.76038 -0.53363
С	-3.25198 -4.06743 -0.49828
Н	-3.41156 3.29807 -0.80649
Н	-6.19581 0.05697 -1.1546
Η	-5.63301 2.43383 -1.47715
Η	0.08332 -4.65961 -0.24673
Η	-2.02493 -5.80273 -0.83693
Η	-4.16471 -4.58202 -0.776
С	-5.73949 -2.4968 -0.78037
Н	-5.4977 -2.4784 -1.84811
Η	-5.9612 -3.52788 -0.49098
Н	-6.65858 -1.92587 -0.62117
С	-5.00135 -1.98255 1.56478
Н	-5.18931 -3.01793 1.87023
Н	-4.21183 -1.5749 2.20423
Н	-5.91181 -1.39629 1.73245
0	-2.08579 -0.782 0.60935
Р	-0.96684 1.89567 0.24865
Р	0.70282 -1.82505 0.41659
С	2.04398 -3.00448 0.04421
С	2.32155 -4.09652 0.8818
С	2.83094 -2.78734 -1.09291
С	3.35868 -4.97164 0.56575
Н	1.73387 -4.25342 1.7812
С	3.86682 -3.66678 -1.40763
Н	2.64756 -1.91546 -1.7122
С	4.12898 -4.75957 -0.58138

Н	3.57149 -5.81403 1.2177
Н	4.47864 -3.48527 -2.28627
Н	4.94152 -5.43947 -0.82134
С	0.84068 -1.55357 2.22302
С	2.10576 -1.27255 2.76227
С	-0.27414 -1.61125 3.07025
С	2.24785 -1.06229 4.1322
Ĥ	2.9725 -1.21749 2.11407
C	-0 12311 -1 39879 4 43954
н	-1 2571 -1 82707 2 67239
C	1 13622 -1 12551 4 97399
н	3 23193 -0 84575 4 538
Н	-0.9943 -1.44151 5.0864
H	1 24933 -0 95642 6 04125
C II	-0.91233 3.67438 -0.18313
C C	-1 54008 4 6604 0 59316
C C	0 10747 4 0476 1 3288
C C	-0.19/47 + 0.0470 - 1.32000
U U	-1.40/35 5.99951 0.21355 2.07625 4.2782 1.40400
П	-2.0/033 4.3/82 1.49409
	-0.12/3/ 3.38944 -1./0089
П	0.31399 3.28730 -1.9090
C II	-0.70392 0.30430 -0.93820
П	-1.95334 6.75949 0.81868
П	0.43419 5.6/194 -2.592/
Н	-0.7037 7.4099 -1.22782
C	-0.91553 1.9048 2.086
C	-2.08568 1.82432 2.85536
C	0.32285 2.05121 2.72921
C	-2.0183 1.89825 4.24718
H	-3.0504/ 1.71292 2.37201
C	0.38129 2.13003 4.11945
H	1.23443 2.08616 2.14475
C	-0.78574 2.05568 4.88142
H	-2.93163 1.8372 4.83306
Н	1.34645 2.23516 4.60536
H	-0.73395 2.1123 5.96529
Pd	0.62457 0.2348 -0.68973
С	-0.3804 -1.74266 -2.69932
С	-0.56906 -0.47013 -2.13846
С	-1.4667 0.40083 -2.7753
С	-2.17811 0.00187 -3.90931
С	-2.00184 -1.27558 -4.43966
С	-1.0908 -2.14067 -3.83501
Н	0.32465 -2.4433 -2.27131
Н	-1.61476 1.40732 -2.4089
Η	-2.8699 0.70079 -4.3724
Н	-2.56038 -1.58953 -5.31704
Η	-0.92516 -3.13549 -4.24056
С	1.39455 1.41111 -3.39503
0	1.63411 1.00749 -4.43153
S	3.75768 1.05029 0.4382
0	4.18706 -0.35507 0.53707
0	4.45991 2.04699 1.2526
С	4.16729 1.49322 -1.31992
F	3.72885 0.52891 -2.15912
F	5.48871 1.61013 -1.47931
F	3.58763 2.64923 -1.67837

O 2.25808 1.24626 0.48111

СО

С	0.	0.	-0.65
0	0.	0.	0.4875

Int3

С	1.73943 3.19987 -1.55866
С	0.93934 2.30286 -0.83837
С	-0.4083 2.62984 -0.68199
С	-0.99843 3.78726 -1.194
С	-0.17571 4.64635 -1.92791
С	1.17847 4.35379 -2.10742
С	-2.47048 4.03659 -0.84451
С	-3.17497 2.67706 -0.89564
С	-2.4575 1.56642 -0.4434
С	-2.93548 0.25738 -0.479
C	-4.25402 0.0696 -0.92066
C	-5 01743 1 15922 -1 33656
C	-4 4782 2 44891 -1 34348
н	2 79458 2 99502 -1 69337
и П	-0.58498 5.55462 -2.35672
и П	1 80516 5 03618 2 67362
II Ц	1.80510 5.05018 -2.07502 4.6601 0.03045 0.0652
П Ц	-4.0091 -0.93043 -0.9052
II U	-0.03332 1.00122 -1.08031 5.08112 2.27542 1.70221
П	-3.08113 3.2/342 -1./0331
C II	-3.12154 5.05959 -1.78192
П	-3.09901 4.72708 -2.82496
П	-4.1031 5.25595 -1.49729
Н	-2.60949 6.0241/ -1./1414
C	-2.53501 4.5/162 0.61126
H	-3.57/58 4.72278 0.91257
H	-2.07339 3.87126 1.31376
Н	-2.00/61 5.52921 0.68584
0	-1.17365 1.73506 0.03187
Р	1.5516 0.76161 -0.03269
Р	-1.76295 -1.11518 -0.10077
С	-2.63308 -2.51272 -0.90024
С	-3.6053 -3.27459 -0.24369
С	-2.3418 -2.77444 -2.24572
С	-4.28506 -4.28382 -0.9293
Н	-3.83034 -3.08269 0.80055
С	-3.02602 -3.77625 -2.92964
Н	-1.563 -2.20431 -2.74409
С	-3.99933 -4.53323 -2.27201
Η	-5.03647 -4.87436 -0.41225
Н	-2.78907 -3.97819 -3.97042
Н	-4.52684 -5.32064 -2.80327
С	-1.96102 -1.40526 1.69676
С	-1.33529 -2.54032 2.24298
С	-2.62685 -0.50907 2.53924
С	-1.39493 -2.77297 3.61538
Н	-0.8073 -3.22334 1.583
С	-2.67173 -0.74245 3.9153
Н	-3.10979 0.37064 2.12612
С	-2.0607 -1.87431 4.45505

Н	-0.91598 -3.65568 4.03022
Н	-3.18772 -0.03912 4.56307
Н	-2.101 -2.05664 5.52554
С	3.36126 0.9535 -0.26179
С	4.20233 1.38198 0.76981
С	3.91195 0.63965 -1.51385
С	5.57904 1.48292 0.55613
Н	3.79055 1.62454 1.74315
С	5.28332 0.74489 -1.72505
Н	3.26865 0.28208 -2.3108
С	6.12149 1.16272 -0.68736
Н	6.22539 1.80677 1.36713
Н	5.7 0.48208 -2.69281
Н	7.1936 1.23108 -0.84874
С	1.27264 1.1146 1.74693
С	1.2361 2.4245 2.24638
С	1.08598 0.03885 2.6255
С	1.01222 2.65162 3.60382
Н	1.37622 3.26573 1.57477
С	0.86591 0.26914 3.98343
Н	1.0845 -0.97603 2.24152
С	0.82559 1.57461 4.4738
Н	0.98052 3.67002 3.98108
Н	0.70349 -0.57296 4.64792
Н	0.6433 1.75431 5.52967
Pd	0.67409 -1.31552 -0.4636
С	2.55038 -2.02611 -0.66392
С	2.90067 -2.54862 -1.91447
С	3.47265 -2.10296 0.38448
С	4.16809 -3.10026 -2.12353
Н	2.18426 -2.5259 -2.73192
С	4.73672 -2.6632 0.17883
Н	3.22648 -1.70107 1.36362
С	5.0927 -3.15334 -1.07846
Н	4.42938 -3.49392 -3.10348
Н	5.44618 -2.70557 1.00215
Н	6.07947 -3.5792 -1.24093
F	0.10883 -3.25237 -0.52962

Int3A

С	-3.68401	1.95311	-0.76086
С	-2.67177	1.19138	-0.16685
С	-2.94123	-0.16025	0.09989
С	-4.17568	-0.75634	-0.16351
С	-5.15543	0.03218	-0.77535
С	-4.91096	1.37204	-1.07665
С	-4.38924	-2.18959	0.32601
С	-3.07351	-2.94931	0.13917
С	-1.87589	-2.25497	0.34548
С	-0.61287	-2.86383	0.24121
С	-0.58132	-4.23641	-0.04611
С	-1.75826	-4.95217	-0.24734
С	-2.99275	-4.30961	-0.16858
Н	-3.50252	2.99641	-0.99292
Н	-6.12235	-0.39653	-1.01223
Н	-5.68446	1.96849	-1.55081
Н	0.37259	-4.73909	-0.14776

Η	-1.71237 -6.01222 -0.47765
Н	-3.89893 -4.87807 -0.34296
С	-5.55923 -2.8753 -0.39079
Η	-5.38821 -2.94435 -1.47005
Η	-5.71749 -3.88367 0.00185
Η	-6.49006 -2.32658 -0.22072
С	-4.69864 -2.13017 1.84655
Н	-4.82913 -3.14148 2.24762
Н	-3.88612 -1.64672 2.39779
Н	-5.61813 -1.56132 2.02444
0	-1.92254 -0.90977 0.65817
Р	-0.99068 1.82818 0.17199
Р	0.93677 -1.8635 0.25057
С	2.23086 -3.00898 -0.33163
С	2.73425 -4.04054 0.47588
С	2.73471 -2.83365 -1.62634
С	3.71713 -4.89662 -0.01768
Н	2.36279 -4.1653 1.48833
С	3.71412 -3.69583 -2.11855
Н	2.37534 -2.00972 -2.23402
С	4.20424 -4.72722 -1.31657
Н	4.10678 -5.69133 0.61214
Н	4.10588 -3.54932 -3.12078
Н	4.97433 -5.39218 -1.69733
С	1.32137 -1.57554 2.01425
С	2.64927 -1.31764 2.38917
С	0.30522 -1.50639 2.97661
С	2.95206 -1.01208 3.71407
Η	3.43793 -1.34501 1.64573
С	0.61576 -1.19986 4.30034
Н	-0.72662 -1.67951 2.69696
С	1.93775 -0.95281 4.67212
Н	3.98219 -0.81063 3.99309
Н	-0.17978 -1.14272 5.0368
Н	2.17645 -0.70806 5.70341
С	-1.02521 3.5948 -0.29991
С	-1.82089 4.53097 0.3792
С	-0.19226 4.02268 -1.34166
С	-1.79961 5.87134 -0.00025
Η	-2.44538 4.21013 1.20774
С	-0.17123 5.36682 -1.71761
Н	0.45318 3.30745 -1.84112
C	-0.9774 6.28957 -1.05114
Н	-2.41711 6.59208 0.5283
Н	0.48317 5.69105 -2.52142
Н	-0.95799 7.33656 -1.34
C	-0.92311 1.88282 2.00694
C	-2.0518 1.62706 2.79875
C	0.2903 2.22151 2.62486
C	-1.96/11 1./10/9 4.1891
Н	-2.99804 1.37012 2.33538
C	0.36659 2.30558 4.01358
H	1.1/619 2.38542 2.02378
U H	-0./593/ 2.05242 4./9905
H	-2.84852 1.51251 4.79307
H	1.31489 2.55501 4.4/999
Н	-0.09449 2.11486 5.88188
Pd	0.60213 0.26784 -0.67123
----	----------------------------
С	-0.64655 -1.61143 -2.70236
С	-0.5605 -0.30239 -2.20591
С	-1.16739 0.72163 -2.95511
С	-1.83714 0.44517 -4.14933
С	-1.92608 -0.8635 -4.62232
С	-1.32324 -1.88782 -3.89445
Н	-0.19132 -2.44019 -2.1793
Н	-1.12812 1.75159 -2.62077
Н	-2.29675 1.26183 -4.70047
Н	-2.45636 -1.08094 -5.54533
Н	-1.37062 -2.91481 -4.24815
S	3.67015 1.1731 0.02436
0	4.05169 -0.16092 -0.47029
0	4.62469 1.898 0.86884
С	3.53113 2.20537 -1.51884
F	2.66075 1.64777 -2.39481
F	4.71531 2.31505 -2.12738
F	3.07907 3.43496 -1.22862
0	2.25627 1.24071 0.56226

MeOPhB(OH)₂

С	-1.60697 -	0.2077	0.27566
С	-0.21181	-0.2077	0.27566
С	0.48572	1.00005	0.27566
С	-0.21193	2.20856	0.27446
С	-1.60676	2.20848	0.27398
С	-2.30436	1.00027	0.27498
Η	-2.15673	-1.16002	0.27611
Н	1.5854	1.00013	0.2763
Н	0.33827	3.1607	0.2744
Η	-3.40396	1.00046	0.2748
0	-2.32207	3.44671	0.27274
С	-2.55899	3.85977	-1.07565
Н	-3.09545	4.78557	-1.07604
Н	-1.62349	3.98941	-1.57856
Н	-3.13532	3.11338	-1.58127
В	0.61271 -	-1.63692	0.27763
0	0.9967 -	2.3025	1.61223
Н	1.46865	-3.12021	1.43842
0	0.99827	-2.30528	-1.05512
Η	1.47027	-3.12247	-0.87905

Ts7

a			1.0055
C	-3.44051	-2.30219	1.3975
С	-2.63014	-1.28649	0.88882
С	-2.44501	-0.12542	1.65959
С	-3.05846	0.06318	2.8965
С	-3.86528	-0.97941	3.37232
С	-4.05408	-2.14911	2.64175
С	-2.87097	1.35207	3.6951
С	-1.88983	2.28777	2.98403
С	-1.30013	1.9577	1.75975
С	-0.33018	2.76211	1.13462
С	-0.0137	3.98501	1.73838
С	-0.61915	4.36866	2.93405

С	-1.5329	3.5169 3.55144
Н	-3.58876	-3.21081 0.82509
Н	-4.35665	-0.86982 4.33415
Н	-4.68218	-2.94118 3.03773
Н	0.72671	4.62779 1.27419
Н	-0.36911	5.3213 3.39149
Н	-1.98003	3.81202 4.4958
С	-2.31239	1.0018 5.09427
Н	-1.35868	0.47449 5.00197
Н	-2.15542	1.90521 5.69219
Н	-3.00765	0.35789 5.64245
С	-4.23926	2.05917 3.84085
Н	-4.14302	2.98165 4.42309
Н	-4.64981	2.31688 2.85896
Н	-4.95921	1.41223 4.35343
0	-1.63432	0.81283 1.08491
P	-1.73455	-1.4022 -0.70004
P	0 54725	2.0989 -0.35671
C	2 21513	2 86427 -0 09054
C	2.93045	3 51383 -1 10589
C	2 86348	2 6436 1 13874
C	4 25209	3 91889 -0 90457
н	2 45631	3 7114 -2 06036
C	4 17914	3 05561 1 343
H	2 33401	2 15042 1 94795
C	4 88475	3 68933 0 31727
н	4 7842	4 42233 -1 7076
H	4 65348	2 87721 2 30453
H	5 91279	4 00488 0 47149
C	-0 15235	3 11041 -1 72957
C	0.3319	2.86873 -3.02835
C	-1.16995	4.05736 -1.55408
Ċ	-0.1489	3.60618 -4.10982
H	1.0844	2.10078 -3.18103
C	-1.6724	4.76864 -2.6454
H	-1.57026	4.24465 -0.56347
C	-1.15354	4.55809 -3.92333
H	0.25038	3.42163 -5.1039
Н	-2.46405	5.49745 -2.49167
Н	-1.53586	5.12371 -4.76885
C	-2.34745	-2.96654 -1.43542
Ċ	-1.47843	-4.06331 -1.51082
Ċ	-3.65677	-3.09051 -1.92302
С	-1.91594	-5.27326 -2.05169
Н	-0.45753	-3.95322 -1.15498
C	-4.0913 .	-4.29932 -2.46421
Н	-4.33049	-2.23992 -1.88337
С	-3.22248	-5.39249 -2.52693
H	-1.23434	-6.11727 -2.10853
Н	-5.10625	-4.3878 -2.84139
Н	-3.56282	-6.33222 -2.95272
С	-2.50544	-0.11575 -1.75006
С	-3.67899	0.5577 -1.38581
С	-1.89021	0.17998 -2.97455
С	-4.22779	1.51686 -2.23654
Ĥ	-4.16167	0.33732 -0.43939
С	-2.45315	1.12672 -3.82811

Н	-0.96337 -0.31343 -3.24939
С	-3.61661 1.80226 -3.45845
Н	-5.13191 2.0428 -1.94213
Н	-1.96502 1.35717 -4.76876
Н	-4.03905 2.55579 -4.1164
Pd	0.59308 -1.38279 -0.65831
С	0.55108 -1.71038 1.30565
С	0.89019 -0.67234 2.18031
С	0.16492 -2.9445 1.84374
С	0.82679 -0.85436 3.56361
Н	1.19769 0.28495 1.77948
С	0.10256 -3.12724 3.22928
Н	-0.10962 -3.76634 1.18864
С	0.42832 -2.08313 4.09541
Н	1.09151 -0.03139 4.22406
Н	-0.20945 -4.08994 3.62764
Н	0.37449 -2.22496 5.17149
F	1.18034 -1.24025 -2.90953
С	3.14952 -2.97324 -0.59417
С	2.74448 -1.61341 -0.66023
С	3.54199 -0.70725 0.0653
С	4.67235 -1.09017 0.78514
С	5.03655 -2.44282 0.81447
С	4.26636 -3.38819 0.11432
Н	2.56624 -3.72921 -1.11973
Н	3.27904 0.34511 0.05474
Н	5.25319 -0.34122 1.31176
Н	4.56577 -4.43157 0.15553
0	6.11357 -2.93691 1.4803
С	6.90687 -2.03084 2.23394
Н	7.69456 -2.6323 2.69231
Н	7.36333 -1.26547 1.59321
Н	6.31954 -1.54169 3.02153
В	2.51808 -0.82587 -2.60362
0	3.53504 -1.4757 -3.29543
Н	3.48011 -2.43362 -3.17651
0	2.58444 0.56174 -2.5066
Н	3.49777 0.85333 -2.3782

FB(OH)₂

В	0.61271	-1.63692	0.27763
0	0.9967	-2.3025	1.61223
Η	1.46865	-3.12021	1.43842
0	0.99827	-2.30528	-1.05512
Η	1.47027	-3.12247	-0.87905
F	-0.11687	-0.37228	0.27589

Int4

С	-3.94437 1.05378 -1.9187
С	-2.95834 0.42181 -1.146
С	-3.00294 -0.97188 -1.07621
С	-3.93439 -1.75926 -1.76059
С	-4.88143 -1.09315 -2.54194
С	-4.89154 0.30136 -2.61185
С	-3.87994 -3.27454 -1.544
С	-2.4037 -3.66177 -1.4241

С	-1.55755 -2.77334 -0.7556
С	-0.20168 -3.01198 -0.52368
С	0.32217 -4.23351 -0.9692
С	-0.49165 -5.14255 -1.64439
С	-1.83949 -4.85792 -1.87607
H	-3.95838 2.1343 -1.9922
Н	-5 62398 -1 65936 -3 0931
Н	-5 64261 0 80529 -3 21295
и П	1 36767 / 46201 0 80126
П Ц	1.30707 - 7.70271 - 0.80120
П П	-0.07294 -0.08182 -1.99334
П	-2.43130 -3.37974 -2.40381
C II	-4.38893 -4.04370 -2.00304
H	-4.13289 -3.854/1 -3.64069
H	-4.55635 -5.12207 -2.47038
H	-5.64604 -3.76876 -2.71442
С	-4.5756 -3.59441 -0.19357
Н	-4.52146 -4.66869 0.01578
Н	-4.10085 -3.05843 0.6338
Н	-5.62965 -3.29759 -0.2312
0	-2.05408 -1.57814 -0.28068
Р	-1.64414 1.31263 -0.19192
Р	0.78768 -1.68748 0.29248
С	2.46546 -2.43105 0.21963
С	3.07472 -3.06522 1.30786
С	3.16201 -2.33679 -0.99461
Ċ	4 37007 -3 57477 1 19059
н	2 54639 -3 15674 2 25035
C II	4 45201 -2 84604 -1 10996
н	2 70152 -1 83934 -1 84081
II C	5.06202 2.46045 0.01281
	4 92622 4 05762 2 04509
П	4.83033 -4.03702 2.04308
П	4.98/03 -2./4698 -2.049/5
H	6.0/604 -3.84346 -0.0991/
C	0.32595 -1.85897 2.06613
С	0.99818 -1.05039 2.99826
С	-0.68177 -2.71776 2.51779
С	0.67413 -1.10797 4.35205
Н	1.77788 -0.37729 2.6587
С	-1.01858 -2.76092 3.87256
Η	-1.20455 -3.3597 1.81754
С	-0.34261 -1.95999 4.79253
Н	1.20954 -0.48165 5.06029
Н	-1.80894 -3.42706 4.20706
Н	-0.60354 -1.99928 5.84636
С	-1.80993 2.99771 -0.90062
Ċ	-2.02988 4.12569 -0.10462
C	-1 57821 3 1657 -2 27504
C	-2 02522 5 40006 -0 67473
н	-2 18449 4 0156 0 96251
n C	$150466 \ 442505 \ 284517$
с u	-1.37400 $+.43373$ $-2.0431/1 20220 2 20000 2 00075$
п	-1.30237 2.27807 -2.87973
	-1.81343 3.33883 -2.0438
H	-2.1/962 6.26914 -0.041/5
Н	-1.42065 4.550/4 -3.91156
Н	-1.81335 6.55197 -2.48414
С	-2.44478 1.4275 1.45752
С	-3.78994 1.79933 1.60438

С	-1.69394 1.11271 2.5944
С	-4.36605 1.8624 2.8713
Н	-4.3854 2.03752 0.72838
С	-2.27249 1.17086 3.86311
Н	-0.66145 0.80785 2.48059
С	-3.60773 1.54774 4.00321
Н	-5.40773 2.15294 2.97667
Н	-1.67898 0.91025 4.73389
Н	-4.0611 1.5927 4.98966
Pd	0.72581 0.72475 -0.10615
С	1.0917 2.72109 0.1616
С	1.3633 3.60857 -0.88842
С	1.02621 3.24917 1.46015
С	1.52521 4.97598 -0.65968
Η	1.44126 3.23342 -1.90478
С	1.1899 4.61868 1.69705
Н	0.8349 2.59473 2.30673
С	1.43534 5.49017 0.63623
Н	1.71813 5.64246 -1.4974
Н	1.12528 5.00037 2.71419
Η	1.55986 6.55517 0.81541
С	2.76208 0.73874 -0.31437
С	3.26719 0.8406 -1.61566
С	3.7012 0.59117 0.71783
С	4.63636 0.74229 -1.89903
Н	2.58549 0.99 -2.45105
С	5.06581 0.48767 0.46182
Н	3.37343 0.545 1.75285
С	5.54227 0.54888 -0.85289
Н	4.97438 0.81609 -2.92716
Н	5.78097 0.35273 1.26842
0	6.89866 0.41664 -1.00789
С	7.41309 0.45744 -2.3245
Н	7.2143 1.42168 -2.81269
Н	8.49345 0.32042 -2.234
Н	7.00059 -0.34815 -2.94876

Ts8

С	-3.85618 0.96224 -2.12589
С	-2.92172 0.37079 -1.26456
С	-2.94989 -1.02297 -1.15482
С	-3.82483 -1.84559 -1.86866
С	-4.72099 -1.21952 -2.73992
С	-4.73983 0.17144 -2.86126
С	-3.77759 -3.34935 -1.58014
С	-2.31187 -3.72279 -1.33784
С	-1.5118 -2.79766 -0.66071
С	-0.16745 -3.01341 -0.3421
С	0.38262 -4.25432 -0.69503
С	-0.3876 -5.20312 -1.36597
С	-1.71919 -4.93715 -1.69413
Н	-3.8843 2.04042 -2.22965
Н	-5.41735 -1.81447 -3.32051
Н	-5.45217 0.64346 -3.53166
Н	1.41897 -4.46743 -0.46002
Н	0.05333 -6.15709 -1.64007
Н	-2.29508 -5.68672 -2.22566

С	-4.40388 -4.17413 -2.71076
Η	-3.87857 -4.02597 -3.66007
Η	-4.38529 -5.24045 -2.46706
Η	-5.45447 -3.90277 -2.85023
С	-4.56729 -3.61129 -0.26958
Н	-4.52058 -4.67355 -0.00432
Η	-4.15722 -3.03087 0.56244
Η	-5.61814 -3.32794 -0.39715
0	-2.04681 -1.58568 -0.27764
Р	-1.65389 1.27183 -0.2675
Р	0.80131 -1.62038 0.38672
С	2.49483 -2.33109 0.33543
С	3.09156 -3.01528 1.40218
С	3.2091 -2.17647 -0.86126
С	4.38576 -3.52394 1.2764
Н	2.54813 -3.1506 2.33134
С	4.49513 -2.69567 -0.98965
Н	2.7639 -1.62375 -1.68157
С	5.0898 -3.36495 0.08175
Н	4.84187 -4.04698 2.1127
Н	5.0424 -2.55664 -1.91718
Н	6.09978 -3.75419 -0.01189
С	0.3674 -1.68535 2.17338
С	1.13897 -0.91777 3.06303
С	-0.7335 -2.39099 2.67052
С	0.82461 -0.87238 4.41893
Η	1.99512 -0.36565 2.68818
С	-1.05919 -2.32924 4.02708
Н	-1.34 -2.99345 2.00355
H C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052
H C H	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485
H C H H	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593
H C H H H	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092
H C H H H C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969
H C H H C C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013
H C H H C C C C	-1.34-2.993452.00355-0.28148-1.575594.90521.43899-0.283525.09485-1.92215-2.876644.39593-0.53434-1.533575.96092-1.921333.00268-0.81969-2.290784.025430.06013-1.641333.32567-2.15806
H C H H C C C C C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248
H C H H C C C C C C H	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128
H C H H C C C C C H C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128 -1.77307 4.63476 -2.61503
H C H H C C C C C H C H	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128 -1.77307 4.63476 -2.61503 -1.32277 2.54476 -2.84414
H C H H C C C C C H C H C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128 -1.77307 4.63476 -2.61503 -1.32277 2.54476 -2.84414 -2.1476 5.64927 -1.73012
H C H H C C C C C H C H C H C H	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128 -1.77307 4.63476 -2.61503 -1.32277 2.54476 -2.84414 -2.1476 5.64927 -1.73012 -2.67128 6.128 0.30479
H C H H C C C C C C C C H C H C H H H H	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128 -1.77307 4.63476 -2.61503 -1.32277 2.54476 -2.84414 -2.1476 5.64927 -1.73012 -2.67128 6.128 0.30479 -1.56642 4.86625 -3.65647
H C H H H C C C C C C H C H C H H H H C C C H H H H H H H H H H H C C H H H H H H H H H H C C C C H H H H H H H C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128 -1.77307 4.63476 -2.61503 -1.32277 2.54476 -2.84414 -2.1476 5.64927 -1.73012 -2.67128 6.128 0.30479 -1.56642 4.86625 -3.65647 -2.23641 6.67371 -2.08102
H C H H H C C C C C C C H C H H C H H H H C C C C C C H H H H H C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128 -1.77307 4.63476 -2.61503 -1.32277 2.54476 -2.84414 -2.1476 5.64927 -1.73012 -2.67128 6.128 0.30479 -1.56642 4.86625 -3.65647 -2.23641 6.67371 -2.08102 -2.42788 1.22918 1.40076
H C H H H C C C C C C H C H C H H H C C C C C H H H H H H H C	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
H C H H H C C C C C C H C H C H H H C C C C C H H H H H H C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128 -1.77307 4.63476 -2.61503 -1.32277 2.54476 -2.84414 -2.1476 5.64927 -1.73012 -2.67128 6.128 0.30479 -1.56642 4.86625 -3.65647 -2.23641 6.67371 -2.08102 -2.42788 1.22918 1.40076 -3.81791 1.18688 1.58075 -1.59357 1.25218 2.52526
H C H H H C C C C C C C H C H C H H H C C C C C C C H H H H C	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
H C H H H C C C C C C C C H C H H H H C C C C C C C C C C H H H H C	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
H C H H H C C C C C C H C H C H H H H C C C C C C C H H H H C	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
H C H H H C C C C C C C H C H C H H H C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128 -1.77307 4.63476 -2.61503 -1.32277 2.54476 -2.84414 -2.1476 5.64927 -1.73012 -2.67128 6.128 0.30479 -1.56642 4.86625 -3.65647 -2.23641 6.67371 -2.08102 -2.42788 1.22918 1.40076 -3.81791 1.18688 1.58075 -1.59357 1.25218 2.52526 -4.36115 1.16679 2.86486 -4.47462 1.16747 0.71654 -2.13827 1.24147 3.80943 -0.51899 1.26881 2.38745
H C H H H C C C C C C C C C C C C C C C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128 -1.77307 4.63476 -2.61503 -1.32277 2.54476 -2.84414 -2.1476 5.64927 -1.73012 -2.67128 6.128 0.30479 -1.56642 4.86625 -3.65647 -2.23641 6.67371 -2.08102 -2.42788 1.22918 1.40076 -3.81791 1.18688 1.58075 -1.59357 1.25218 2.52526 -4.36115 1.16679 2.86486 -4.47462 1.16747 0.71654 -2.13827 1.24147 3.80943 -0.51899 1.26881 2.38745 -3.52209 1.19564 3.98159
H C H H H C C C C C C C C C C C C C C C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128 -1.77307 4.63476 -2.61503 -1.32277 2.54476 -2.84414 -2.1476 5.64927 -1.73012 -2.67128 6.128 0.30479 -1.56642 4.86625 -3.65647 -2.23641 6.67371 -2.08102 -2.42788 1.22918 1.40076 -3.81791 1.18688 1.58075 -1.59357 1.25218 2.52526 -4.36115 1.16679 2.86486 -4.47462 1.16747 0.71654 -2.13827 1.24147 3.80943 -0.51899 1.26881 2.38745 -3.52209 1.19564 3.98159 -5.43959 1.1298 2.99368
H C H H H C C C C C C C C C C C C C C C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128 -1.77307 4.63476 -2.61503 -1.32277 2.54476 -2.84414 -2.1476 5.64927 -1.73012 -2.67128 6.128 0.30479 -1.56642 4.86625 -3.65647 -2.23641 6.67371 -2.08102 -2.42788 1.22918 1.40076 -3.81791 1.18688 1.58075 -1.59357 1.25218 2.52526 -4.36115 1.16679 2.86486 -4.47462 1.16747 0.71654 -2.13827 1.24147 3.80943 -0.51899 1.26881 2.38745 -3.52209 1.19564 3.98159 -5.43959 1.1298 2.99368 -1.47894 1.25057 4.6714 2.94662 1.1722 4.08172
H C H H H C C C C C C C C C C C C C C C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128 -1.77307 4.63476 -2.61503 -1.32277 2.54476 -2.84414 -2.1476 5.64927 -1.73012 -2.67128 6.128 0.30479 -1.56642 4.86625 -3.65647 -2.23641 6.67371 -2.08102 -2.42788 1.22918 1.40076 -3.81791 1.18688 1.58075 -1.59357 1.25218 2.52526 -4.36115 1.16679 2.86486 -4.47462 1.16747 0.71654 -2.13827 1.24147 3.80943 -0.51899 1.26881 2.38745 -3.52209 1.19564 3.98159 -5.43959 1.1298 2.99368 -1.47894 1.25057 4.6714 -3.94662 1.1783 4.98173 0.68454 0.71222 0.204
H C H H H C C C C C C C C C C C C C C C	-1.34 -2.99345 2.00355 -0.28148 -1.57559 4.9052 1.43899 -0.28352 5.09485 -1.92215 -2.87664 4.39593 -0.53434 -1.53357 5.96092 -1.92133 3.00268 -0.81969 -2.29078 4.02543 0.06013 -1.64133 3.32567 -2.15806 -2.39382 5.3423 -0.39248 -2.49116 3.79763 1.10128 -1.77307 4.63476 -2.61503 -1.32277 2.54476 -2.84414 -2.1476 5.64927 -1.73012 -2.67128 6.128 0.30479 -1.56642 4.86625 -3.65647 -2.23641 6.67371 -2.08102 -2.42788 1.22918 1.40076 -3.81791 1.18688 1.58075 -1.59357 1.25218 2.52526 -4.36115 1.16679 2.86486 -4.47462 1.16747 0.71654 -2.13827 1.24147 3.80943 -0.51899 1.26881 2.38745 -3.52209 1.19564 3.98159 -5.43959 1.1298 2.99368 -1.47894 1.25057 4.6714 -3.94662 1.1783 4.98173 0.68454 0.71322 -0.204

С	1.35949	3.65508 -0.95584
С	1.4763	3.07332 1.37831
С	1.2346	4.99914 -0.6127
Н	1.37169	3.3753 -2.00484
С	1.3373	4.41821 1.72187
Н	1.59615	2.33685 2.16863
С	1.2162	5.39248 0.72855
Н	1.13675	5.7432 -1.39875
Н	1.33215	4.70507 2.77132
Н	1.1151	6.44125 0.99347
С	2.73162	1.19464 -0.40489
С	3.18022	1.16897 -1.73594
С	3.68757	0.92096 0.59517
С	4.49868	0.83979 -2.06894
Н	2.49195	1.41512 -2.5406
С	4.9991	0.59733 0.28294
Н	3.40092	0.97234 1.64156
С	5.41483	0.54231 -1.05566
Н	4.79297	0.82217 -3.1126
Н	5.72116	0.36794 1.06093
0	6.72182	0.19388 -1.26282
С	7.17956	0.12802 -2.60062
Н	7.10443	1.10087 -3.10542
Н	8.23009	-0.16708 -2.54803
Н	6.62548	-0.61985 -3.18507

Product

С	-0.56134 0.39711 1.48409
С	-0.21155 -0.20755 0.2764
С	-0.5579 0.3964 -0.93212
С	-1.25542 1.60498 -0.9333
С	-1.60551 2.2092 0.27413
С	-1.25812 1.60543 1.48293
Н	-0.28779 -0.07899 2.43679
Н	-0.28167 -0.07982 -1.88407
Н	-1.52845 2.08095 -1.8863
Н	-1.53405 2.08205 2.43469
0	-2.32032 3.44772 0.27335
С	-2.55767 3.86102 -1.07489
Н	-3.09376 4.78705 -1.07493
Н	-1.62234 3.99035 -1.5782
Н	-3.13453 3.11493 -1.58035
С	0.55869 -1.54109 0.27815
С	0.90636 -2.14421 1.48722
С	0.90865 -2.14603 -0.92896
С	1.60442 -3.35165 1.48908
Н	0.63098 -1.66664 2.43871
С	1.60607 -3.35435 -0.92727
Н	0.63456 -1.67091 -1.88199
С	1.9541 -3.95714 0.28147
Н	1.87904 -3.82678 2.44204
Н	1.8815 -3.83129 -1.87918
Н	2.50445 -4.90919 0.28319