Metal-Free Cascade O-H Double Insertion Between

I^(III)/S^(VI)-Ylides, Carboxylic Acids, and Alcohols: Modular

Access to Unsymmetrical α,α-O,O-Substituted Ketones

Jiaohang Wei,^a Wen-Xuan Zou,^a Qiong Hu,^a Mei-Zhu Bao,^a Dan-Ting Shen,^a Lin Xiao,^a Jia-Lin Song,^a Xiang Liu,^{*b} and Shang-Shi Zhang^{*a}

^aCenter for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China

^bSchool of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China.

E-mail: zhangshangshi@gdpu.edu.cn

E-mail: liux96@gdpu.edu.cn

1.General information	S2
2 Synthesis of substrates	S3
3 General procedure and characterization of products	S10
4. Synthetic application of the product	
5. NMR Spectra for New Compounds	
6. Reference	S130

1. General information

Unless otherwise noted, all reactions were carried out at room temperature under an atmosphere of nitrogen with flame-dried glassware. If reaction was not conducted at room temperature, reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated. The dry solvents used were purified by distillation over the drying agents indicated in parentheses and were transferred under nitrogen: THF (Na-benzophenone), 1,2-dichloroethane (CaH₂), dichloromethane (CaH₂). Anhydrous CF₃CH₂OH, CH₃CN, DMF and MeOH were purchased from Acros Organics and stored under nitrogen atmosphere. Commercially available chemicals were obtained from commercial suppliers and used without further purification unless otherwise stated.

Proton NMR (¹H) were recorded at 400 MHz, and Carbon NMR (¹³C) at 101 MHz NMR spectrometer unless otherwise stated. The following abbreviations are used for the multiplicities: s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br s: broad singlet for proton spectra. Coupling constants (*J*) are reported in Hertz (Hz).

High-resolution mass spectra HRMS-ESI (TOF) was recorded on a BRUKER VPEXII spectrometer with EI and ESI mode unless otherwise stated.

Analytical thin layer chromatography was performed on Polygram SIL G/UV₂₅₄ plates. Visualization was accomplished with short wave UV light, or KMnO₄ staining solutions followed by heating. Flash column chromatography was performed using silica gel (200-300 mesh) with solvents distilled prior to use.

No attempts were made to optimize yields for substrate synthesis.

2. Synthesis of substrates

2.1 General Procedure for the synthesis of sulfoxonium-iodonium hybrid ylides **1**.^[1-2]

$$\begin{array}{c} O \\ R \\ \hline OH \\ A \end{array} \xrightarrow{\begin{array}{c} \text{SOCl}_2 (1.5 \text{ equiv}) \\ \text{DMF (2 drops), DCM (10.0 mL) } \end{array}} \xrightarrow{\begin{array}{c} O \\ R \\ \text{OH } \end{array} \xrightarrow{\begin{array}{c} \text{O} \\ \text{Cl} \end{array}} \xrightarrow{\begin{array}{c} \text{Me}_3 S(O) \text{I} (3.0 \text{ equiv}) \\ \text{BuOK (3.3 equiv), THF (40 mL) } \end{array} \xrightarrow{\begin{array}{c} O \\ R \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} \text{O} \\ \text{S} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{S} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{S} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{S} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{S} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{S} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{S} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{S} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}$$
} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \\ \text{TH} } \xrightarrow{\begin{array}{c} O \end{array}} \xrightarrow{\begin{array}{c} O \end{array} \xrightarrow{} \end{array}} \xrightarrow{\begin{array}{c} O \end{array} \xrightarrow{\begin{array}{c} O \\ \text{TH} \end{array}} \xrightarrow{\begin{array}{c} O \end{array}} \xrightarrow{\begin{array}{c} O \end{array}} \xrightarrow{\begin{array}{c} O \end{array}} \xrightarrow{\begin{array}{c} O \end{array} \xrightarrow{} \end{array}} \xrightarrow{\begin{array}{c} O \end{array} \xrightarrow{} \end{array}} \xrightarrow{\begin{array}{c} O \end{array} \xrightarrow{} \end{array}} \xrightarrow{\begin{array}{c} O \end{array}} \xrightarrow{\begin{array}{c} O \end{array}} \xrightarrow

According to the literature, the slightly modified method is as follows. Under N₂, acid (5.0 mmol) in CH₂Cl₂ (10.0 mL) at 0 °C before adding SOCl₂ (7.5 mmol, 1.5 equiv) and two drop of DMF. After 60 minutes stirring at 50 °C, and the volatiles were carefully evaporated under high-vacuum. During that time, trimethylsulfoxonium iodide (3.3 g, 16.5 mmol, 3.0 equiv) was suspended under N₂ in dry THF (40.0 mL) in a flame-dried 100 mL round bottom flask that was protected from light with aluminium foil. Potassium tertbutoxide (1.8 g, 16.5 mmol, 3.3 equiv) was added, and the mixture was stirred at reflux for 3.0 hours. After cooling to 0 °C, a solution of acid chloride obtained above in THF (10.0 mL) was added dropwise to the mixture. The mixture was stirred at room temperature for another hour and then solvents were removed under vacuum. Then 80.0 ml water were added, extraction with CH₂Cl₂ (50.0 × 3 mL). Purification by flash chromatography (dichloromethane/MeOH = 30/1) provided the sulfoxonium ylides **1'** with high yields.

A solution of aryliodoso diacetate (5.0 mmol, 1.0 equiv.) in MeOH (5.0 mL, 1.0 M) was treated with corresponding acid HOTf (5.0 mmol, 1.0 equiv.) at room temperature. This clear solution was added dropwise to the ice bath-cooled solution of sulfoxonium ylides (5.0 mmol, 1.0 equiv.) in MeOH (5.0 mL, 1.0 M) over 10 min with stirring. The resulting reaction mixture was stirred at 0 °C for an additional 1.0 hour. During this period, a lot of white precipitate was formed. The product **1** was collected by filtration, washed successively with MeOH (5 mL \times 3) and Et₂O (5 mL \times 3), dried under high vacuum and stored at -30 °C. If the hypervalent iodine reagent failed to precipitate, it was subjected to flash column chromatography, eluting with DCM/Acetone mixtures.

2.2 Characterization of substrates of 1

 $(1-(dimethyl(oxo)-\lambda^6-sulfanylidene)-2-oxo-2-(p-tolyl)ethyl)(phenyl)-\lambda^3-iodanyl trifluorometh anesulfonate (1b)$

Following the general procedure 2.1. After filtration, **1b** was collected as a white solid (5.0 g, 8.89 mmol, 89% yield). ¹H NMR (400 MHz, DMSO-d₆) δ 7.78 (d, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 7.3 Hz, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.23 (d,

J = 7.8 Hz, 2H), 3.78 (s, 6H), 2.34 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ . ¹³C NMR (101 MHz, DMSO-d₆) δ 187.88, 141.18, 136.10, 132.23, 131.70, 131.51, 128.75, 127.46, 120.66 (q, J = 322.3 Hz), 119.91, 64.27, 42.02, 20.99. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -77.73. EI-MS: calculated C₁₈H₁₈F₃IO₅S [M]⁺ 561.9592; Found 561.9594.

$(1-(dimethyl(oxo)-\lambda^6-sulfanylidene)-2-(4-fluorophenyl)-2-oxoethyl)(phenyl)-\lambda^3-iodanyl trifluoromethanesulfonate (1c)$

Following the general procedure 2.1. After filtration, **1c** was collected as a white solid (4.7 g, 8.29 mmol, 83% yield). ¹H NMR (400 MHz, DMSO-d₆) δ 7.81 (d, J = 7.4 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.56 (t, J = 7.6 Hz, 2H), 7.49 (dd, J = 8.7, 5.5 Hz, 2H), 7.31 (t, J = 8.9 Hz, 2H),

3.81 (s, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 186.70, 163.45 (d, J = 248.7 Hz), 135.50 (d, J = 3.1 Hz), 132.40, 131.76, 131.59, 129.96 (d, J = 8.9 Hz), 120.68 (q, J = 322.3 Hz), 119.86, 115.39 (d, J = 21.9 Hz), 64.69, 41.97. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -77.72, -108.69. EI-MS: calculated C₁₇H₁₅F₄IO₅S [M]⁺ 565.9342; Found 565.9341.

$(2-(4-bromophenyl)-1-(dimethyl(oxo)-\lambda^6 -sulfanylidene)-2-oxoethyl)(phenyl)-\lambda^3-iodanyl trifluoromethanesulfonate (1d)$

 $J = 8.4 \text{ Hz}, 2\text{H}, 3.80 \text{ (s, 6H)}. {}^{13}\text{C NMR} (101 \text{ MHz}, \text{DMSO-d}_6) \delta 186.70, 138.18, 132.43, 131.77, 131.60, 131.38, 129.34, 120.67 \text{ (q, J} = 322.3 \text{ Hz}), 124.53, 119.89, 64.95, 41.19. {}^{19}\text{F NMR} (376 \text{ MHz}, \text{DMSO-d}_6) \delta -77.72. \text{ EI-MS: calculated } C_{17}\text{H}_{15}\text{BrF}_3\text{IO}_5\text{S} \text{ [M]}^+ 625.8541; \text{ Found } 625.8545.$

$(2-(4-cyanophenyl)-1-(dimethyl(oxo)-\lambda^6-sulfanylidene)-2-oxoethyl)(phenyl)-\lambda^3-iodanyl trifluoromethanesulfonate (1e)$

OOTfFollowing the general procedure 2.1. After filtration, 1e was
collected as a white solid (3.9 g, 6.80 mmol, 68% yield). ¹H NMR
(400 MHz, DMSO-d₆) δ 7.97 (d, J = 8.2 Hz, 2H), 7.79 (d, J = 7.6Hz, 2H), 7.66 (t, J = 7.3 Hz, 1H), 7.55 (d, J = 8.2 Hz, 4H), 3.83 (s, 6H). ¹³C NMR (101 MHz,

DMSO-d₆) δ 186.16, 143.42, 132.58, 131.80, 131.67, 127.94, 120.69 (q, J = 322.1 Hz), 119.90, 118.21, 113.29, 65.62, 41.87. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -77.70. EI-MS: calculated C₁₈H₁₅F₃INO₅S [M]⁺ 572.9388; Found 572.9384.

$(1-(dimethyl(oxo)-\lambda^6-sulfanylidene)-2-oxo-2-(o-tolyl)ethyl)(phenyl)-\lambda^3-iodanyl trifluoromethanesulfonate (1f)$

Following the general procedure 2.1. After filtration, **1f** was collected as a white solid (5.1 g, 9.07 mmol, 91% yield). ¹H NMR (400 MHz, DMSO-d₆) δ 7.65 (t, *J* = 7.2 Hz, 1H), 7.58 (d, *J* = 7.2 Hz, 2H), 7.50 (t, *J* = 7.7 Hz, 2H),

7.35 (t, J = 7.1 Hz, 1H), 7.25 (d, J = 7.5 Hz, 1H), 7.20 (t, J = 7.4 Hz, 1H), 7.00 (d, J = 7.3 Hz, 1H), 3.85 (s, 6H), 2.00 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 189.30, 140.07, 134.93, 133.39, 132.03, 131.93, 131.04, 130.03, 126.66, 125.73, 121.15 (q J = 322.2 Hz), 120.25, 66.29, 42.43, 18.72. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -77.72. EI-MS: calculated C₁₈H₁₈F₃IO₅S [M]⁺ 561.9592; Found 561.9594.

$(1-(dimethyl(oxo)-\lambda^6-sulfanylidene)-2-(2-iodophenyl)-2-oxoethyl)(phenyl)-\lambda^3-iodanyl trifluoromethanesulfonate (1g)$

Following the general procedure 2.1. Purification by flash chromatography (dichloromethane/methanol = 20/1) provided **1g** as a yellow solid (2.1 g, 3.11mmol, 31% yield). ¹H NMR (400 MHz, DMSO-d₆) δ 7.87 (d, J = 7.8 Hz, 1H), 7.64 (t, J = 7.3 Hz, 1H), 7.57 (d, J = 7.7 Hz, 2H), 7.48 (t, J = 7.6 Hz, 3H), 7.21 (t, J = 7.0 Hz, 2H), 3.85 (s, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 188.23, 144.83, 139.69, 137.59, 133.94, 132.13, 131.91, 131.64, 128.39, 127.97, 121.16 (q, J = 322.2 Hz), 94.24, 65.01, 42.23. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -77.67. EI-MS: calculated C₁₇H₁₅F₃I₂O₅S [M]⁺ 673.8402; Found 673.8404.

$(1-(dimethyl(oxo)-\lambda^6-sulfanylidene)-2-(3-methoxyphenyl)-2-oxoethyl)(phenyl)-\lambda^3-iodanyl trifluoromethanesulfonate (1h)$

Following the general procedure 2.1. After filtration, **1h** was collected as a white solid (4.9 g, 8.47 mmol, 85% yield). ¹H NMR (400 MHz, DMSO-d₆) δ 7.79 (d, *J* = 7.5 Hz, 2H), 7.64 (d, *J* = 7.3 Hz, 1H), 7.55 (t,

J = 7.6 Hz, 2H), 7.38 (t, J = 7.9 Hz, 1H), 7.08 (dd, J = 8.2, 2.0 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 6.91 (s, 1H), 3.83 (s, 6H), 3.66 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆) δ 187.76, 158.84, 140.45, 132.09, 131.72, 131.48, 129.63, 120.70 (q, J = 322.3 Hz), 119.65, 119.42, 116.94, 112.34, 64.46, 55.17, 41.99. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -77.70. EI-MS: calculated C₁₈H₁₈F₃IO₆S [M]⁺ 577.9542; Found 577.9538.

$(2-(3-chlorophenyl)-1-(dimethyl(oxo)-\lambda^6-sulfanylidene)-2-oxoethyl)(phenyl)-\lambda^3-iodanyl trifluoromethanesulfonate (1i)$

Hz, 2H), 7.56 (s, 1H), 7.52 (t, *J* = 7.8 Hz, 1H), 7.38 – 7.34 (m, 2H), 3.82 (s, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 186.73, 141.62, 133.38, 132.94, 132.23, 132.09, 131.31, 131.04, 127.56, 126.24,

121.16 (q, J = 322.3 Hz), 120.42, 65.69, 42.36. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -77.70. EI-MS: calculated C₁₇H₁₅ClF₃IO₆S [M]⁺ 581.9046; Found 581.9044.

$(1-(dimethyl(oxo)-\lambda^6-sulfanylidene)-2-(3,5-dimethylphenyl)-2-oxoethyl)(phenyl)-\lambda^3-iodanyl trifluoromethanesulfonate (1j)$

MHz, DMSO-d₆) δ 189.10, 139.65, 137.97, 132.91, 132.86, 132.10, 131.96, 121.18 (q, *J* = 644.6, 322.2 Hz), 125.37, 120.90, 65.19, 42.42, 21.17. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -77.70. EI-MS: calculated C₁₉H₂₀F₃IO₅S₂ [M]⁺ 575.9749; Found 575.9752.

$(1-(dimethyl(oxo)-\lambda^6-sulfanylidene)-2-(3-fluoro-4-methylphenyl)-2-oxoethyl)(phenyl)-\lambda^3-$ iodanyl trifluoromethanesulfonate (1k)

Following the general procedure 2.1. After filtration, **1k** was collected as a white solid (4.9 g, 8.44 mmol, 84% yield). ¹H NMR (400 MHz, DMSOd₆) δ 7.80 (d, J = 7.3 Hz, 2H), 7.69 – 7.65 (m, 1H), 7.56 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.7 Hz, 1H), 7.17 – 7.12 (m, 2H), 3.80 (s, 6H), 2.30 (s, 3H). δ -77.73, -116.48. ¹³C NMR (101 MHz, DMSO-d₆) δ 186.76, 160.38 (d, J = 245.0 Hz), 139.07 (d, J = 6.7 Hz), 132.82, 132.23, 132.15, 132.08, 128.25 (d, J = 17.0 Hz), 123.74 (d, J = 3.3 Hz), 121.12 (q J = 322.3 Hz), 120.39, 114.45 (d, J = 23.6 Hz), 65.17, 42.42, 14.68 (d, J = 3.0 Hz). ¹⁹F NMR (376 MHz, DMSO-d₆) EI-MS: calculated C₁₈H₁₇F₄IO₅S [M]⁺ 579.9498; Found 579.9508.

$(2-(benzo[d][1,3]dioxol-5-yl)-1-(dimethyl(oxo)-\lambda^6-sulfanylidene)-2-oxoethyl)(phenyl)-\lambda^3-iodanyl trifluoromethanesulfonate (11)$

Following the general procedure 2.1. Purification by flash chromatography (dichloromethane/methanol = 20/1) provided **11** as a white solid (2.5 g, 4.22mmol, 42% yield). ¹H NMR (400 MHz, DMSO-

d₆) δ 7.82 (d, J = 7.7 Hz, 2H), 7.66 (t, J = 7.3 Hz, 1H), 7.56 (t, J = 7.7 Hz, 2H), 6.97 (d, J = 12.9 Hz,

3H), 6.11 (s, 2H), 3.78 (s, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 186.82, 149.70, 147.12, 137.10, 132.63, 132.34, 131.71, 130.66, 122.28, 120.95 (q *J* = 322.3 Hz), 119.07, 107.84, 101.83, 63.96, 42.06. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -77.73. EI-MS: calculated C₁₈H₁₆F₃IO₇S [M]⁺ 591.9334; Found 591.9340.

$(2-(benzofuran-2-yl)-1-(dimethyl(oxo)-\lambda^6-sulfanylidene)-2-oxoethyl)(phenyl)-\lambda^3-iodanyl trifluoromethanesulfonate (1m)$

7.39 – 7.35 (m, 1H), 3.86 (s, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 173.94, 154.67, 152.33, 133.33, 132.03, 131.91, 128.16, 127.19, 121.14 (q, J = 322.3 Hz), 124.62, 123.57, 120.95, 112.36, 112.17, 63.64, 42.62. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -77.70. EI-MS: calculated C₁₉H₁₆F₃IO₆S [M]⁺ 587.9385; Found 587.9394.

$(2-cyclohexyl-1-(dimethyl(oxo)-\lambda^6-sulfanylidene)-2-oxoethyl)(phenyl)-\lambda^3-iodanyl trifluoromethanesulfonate (1n)$

Following the general procedure 2.1. After filtration, **1n** was collected as a white solid (4.4 g, 7.93 mmol, 79% yield). ¹H NMR (400 MHz, DMSO-d₆) δ Ph OTf 7.51 (d, J = 7.6 Hz, 2H), 7.16 (t, J = 7.3 Hz, 1H), 7.07 (t, J = 7.6 Hz, 2H), 3.20 (s, 6H), 2.89 (s, 1H), 1.13 (d, J = 13.4 Hz, 4H), 0.84 – 0.60 (m, 6H). ¹³C NMR (101 MHz, DMSO) δ . ¹³C NMR (101 MHz, DMSO-d₆) δ 194.17, 132.53, 131.62, 131.46, 120.71 (q, J = 322.3 Hz), 119.96, 62.10, 45.77, 42.20, 29.27, 25.37, 24.89. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -77.74. EI-MS: calculated C₁₇H₂₂F₃IO₅S [M]⁺ 553.9905; Found 553.9902.

(R)-(1-(dimethyl(oxo)- λ^6 -sulfanylidene)-3-(4-isobutylphenyl)-2-oxobutyl)(phenyl)- λ^3 -iodanyl trifluoromethanesulfonate (10)

Following the general procedure 2.1. After filtration, **10** was collected as a white solid (4.4 g, 6.96 mmol, 70% yield). ¹H NMR (400 MHz, DMSO-d₆) δ 7.37 (d, *J* = 81.8 Hz, 5H), 7.04 (d, *J* = 46.1 Hz, 4H), 4.41 (s, 1H), 3.72 (s, 3H), 3.62 (s,

3H), 2.35 (s, 2H), 1.76 (s, 1H), 1.25 (s, 3H), 0.83 (d, J = 6.2 Hz, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 192.01, 140.13, 139.26, 137.01, 136.22, 132.41, 131.46, 129.74, 127.73, 121.17 (q, J = 322.3 Hz), 63.03, 47.18, 42.13, 29.99, 22.73, 22.66, 20.61. ¹⁹F NMR (376 MHz, DMSO-d₆) δ -77.72. [α]²⁰_D=·+1.33·(c·=0.15, MeOH). EI-MS: calculated C₂₃H₂₈F₃IO₅S [M]⁺ 632.0375; Found 632.0381.

3 General procedure and characterization of products

General procedure A

In an oven-dried Schlenk tube, a mixture of the I,S-ylide **1a** (0.2 mmol, 1.0 equiv), carb oxylic acid **2** (0.24 mmol, 1.2 equiv), Et_3N (2.0 equiv) and methanol (2.0 mL, 0.1 M) was st irred at 35 °C in the oil bath for 0.5 h. The pure product was purified by flash column chro matography on silica with an appropriate solvent to afford the pure product **3** and **4**.

General procedure B

In an oven-dried Schlenk tube, a mixture of the I,S-ylide **1a** (0.2 mmol, 1.0 equiv), carboxylic acid **2** (0.5 mmol, 2.5 equiv), CuI (0.02 mmol, 10.0 mol%), Et₃N (2.0 equiv) and DCM (2.0 mL, 0.1 M) was stirred at 35 °C in the oil bath for 0.5 h. The pure product was purified by flash column chromatography on silica with an appropriate solvent to afford the pure product **5**.

Characterization of products

1-methoxy-2-oxo-2-phenylethyl 4-methoxybenzoate (3a)

Following the above procedure A, the product **3a** was obtained in 97% yield (58.4 mg, 0.194 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.21. ¹H NMR (600 MHz, CDCl₃)

δ 8.09 (d, J = 8.6 Hz, 2H), 7.58 (d, J = 7.4 Hz, 2H), 7.46 – 7.34 (m, 3H), 6.93 (d, J = 8.6 Hz, 2H), 6.15 (s, 1H), 3.86 (s, 3H), 3.75 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.59, 165.68, 163.92, 134.27, 132.19, 129.33, 128.94, 127.75, 127.73, 121.68, 113.84, 74.74, 55.56, 52.74. ESI-MS: calculated C₁₇H₁₆O₅Na [M+Na]⁺ 323.0895; Found 323.0898.

1-methoxy-2-oxo-2-phenylethyl benzoate (3b)

Following the above procedure A, the product **3b** was obtained in 94% yield (51.0 mg, 0.188 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). R_f (Petroleum ether/EtOAc 32:1): 0.19. ¹H NMR (600 MHz, CDCl₃) δ 8.14

(d, J = 8.0 Hz, 2H), 7.59 (t, J = 7.8 Hz, 3H), 7.48 – 7.42 (m, 5H), 6.19 (s, 1H), 3.76 (s, 3H). 13 C NMR (151 MHz, CDCl₃) δ 169.40, 165.97, 134.06, 133.60, 130.08, 129.41, 129.32, 128.97, 128.56, 127.75, 74.97, 52.78. ESI-MS: calculated C₁₆H₁₄O₄Na [M+Na]⁺ 293.0790; Found 293.0793.

1-methoxy-2-oxo-2-phenylethyl 4-methylbenzoate(3c)

Following the above procedure A, the product **3c** was obtained in 61% yield (34.9 mg, 0.134 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). R_f (Petroleum ether/EtOAc 8:1): 0.22. ¹H NMR (400 MHz, CDCl₃) δ

8.02 (d, J = 8.2 Hz, 2H), 7.58 (dd, J = 7.6, 1.9 Hz, 2H), 7.41 (d, J = 0.6 Hz, 3H), 7.25 (d, J = 8.0 Hz, 2H), 6.15 (s, 1H), 3.74 (s, 3H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.45, 165.98, 144.34, 134.08, 130.05, 129.29, 129.20, 128.88, 127.67, 126.46, 74.76, 52.70, 21.77. ESI-MS: calculated C₁₇H₁₆O₄Na [M+Na]⁺ 307.0946; Found 307.0953.

1-methoxy-2-oxo-2-phenylethyl [1,1'-biphenyl]-4-carboxylate (3d)

Following the above procedure A, the product **3d** was obtained in 82% yield (57.1mg, 0.164 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1):

0.22. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.6 Hz, 2H), 7.65 – 7.61 (m, 4H), 7.49 – 7.41 (m, 6H), 6.21 (s, 1H), 3.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.45, 165.88, 146.34, 140.00, 134.08, 130.63, 129.44, 129.06, 129.00, 128.36, 127.78, 127.41, 127.33, 127.25, 74.99, 52.82. ESI-MS: calculated C₂₂H₁₈O₄Na [M+Na]⁺ 369.1103; Found 369.1100.

1-methoxy-2-oxo-2-phenylethyl 4-bromobenzoate (3e)

Following the above procedure A, the product **3e** was obtained in 52% yield (36.2 mg, 0.104 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). R_f (Petroleum ether/EtOAc 32:1): 0.25. ¹H NMR (400 MHz, CDCl₃) δ

7.98 (d, J = 7.0 Hz, 2H), 7.61 – 7.55 (m, 4H), 7.43 (d, J = 5.5 Hz, 3H), 6.15 (s, 1H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.24, 165.28, 133.80, 131.95, 131.58, 129.55, 129.04, 128.85, 128.21, 127.79, 75.14, 52.87. ESI-MS: calculated C₁₆H₁₃BrO₄Na [M+Na]⁺ 370.9895; Found 370.9891, 372.9871.

1-methoxy-2-oxo-2-phenylethyl 2-methylbenzoate (3f)

Following the above procedure A, the product **3f** was obtained in 60% yield (34.0 mg, 0.120 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). R_f (Petroleum ether/EtOAc 32:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.04 (m, 1H), 7.57 (dd,

J = 7.6, 1.9 Hz, 2H), 7.42 (dd, J = 9.1, 3.4 Hz, 5H), 7.24 (d, J = 2.8 Hz, 1H), 6.15 (s, 1H), 3.75 (s, 3H), 2.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.58, 166.88, 140.86, 134.04, 132.62, 131.83, 131.14, 129.37, 128.96, 128.65, 127.82, 125.92, 74.94, 52.80, 21.86. ESI-MS: calculated C₁₇H₁₆O₄Na [M+Na]⁺ 307.0946; Found 307.0952.;372.9871

1-methoxy-2-oxo-2-phenylethyl 3-chlorobenzoate (3g)

Following the above procedure A, the product 3g was obtained in 79% yield (48.3 mg, 0.158 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). R_f

(Petroleum ether/EtOAc 32:1): 0.19. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (t, J = 1.8 Hz, 1H), 8.03 – 7.99 (m, 1H), 7.58 – 7.55 (m, 3H), 7.46 – 7.39 (m, 4H), 6.16 (s, 1H), 3.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.18, 164.83, 134.75, 133.72, 133.68, 131.04, 130.08, 129.93, 129.59, 129.07, 128.25, 127.83, 75.27, 52.91. ESI-MS: calculated C₁₆H₁₃ClO₄Na. [M+Na]⁺ 327.0400; Found 327.0403; 329.0376.

1-methoxy-2-oxo-2-phenylethyl 3,5-dimethylbenzoate (3h)

Following the above procedure A, the product **3h** was obtained in 73% yield (43.3 mg, 0.146 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). R_f (Petroleum ether/EtOAc 32:1): 0.20. ¹H NMR (400 MHz, CDCl₃)

δ 7.74 (s, 2H), 7.59 (dd, J = 7.6, 1.7 Hz, 2H), 7.45 – 7.42 (m, 3H), 7.22 (s, 1H), 6.16 (s, 1H), 3.76 (s, 3H), 2.37 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.52, 166.38, 138.24, 135.32, 134.14, 129.38, 129.12, 128.98, 127.81, 127.77, 74.90, 52.78, 21.27. ESI-MS: calculated ESI-MS: calculated C₁₈H₁₈O₄Na [M+Na]⁺ 321.1103; Found 321.1099.

1-methoxy-2-oxo-2-phenylethyl 2-chloro-4-methylbenzoate (3i)

Following the above procedure A, the product **3i** was obtained in 86% yield (55.1 mg, 0.172 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). R_f (Petroleum ether/EtOAc 32:1): 0.22. ¹H NMR (400 MHz, CDCl₃) δ

7.94 (d, J = 8.0 Hz, 1H), 7.57 (s, 2H), 7.43 – 7.40 (m, 3H), 7.29 (s, 1H), 7.13 (d, J = 8.0 Hz, 1H), 6.17 (s, 1H), 3.75 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.25, 164.63, 144.51, 134.50, 133.72, 132.25, 131.91, 129.39, 128.92, 127.80, 127.56, 125.62, 75.19, 52.80, 21.31. ESI-MS: calculated C₁₇H₁₅ClO₄Na [M+Na]⁺ 341.0557; Found 341.0557; 343.0522.

1-methoxy-2-oxo-2-phenylethyl 2-chloro-4-methoxybenzoate (3j)

Following the above procedure A, the product **3j** was obtained in 75% yield (50.3 mg, 0.150 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). R_f (Petroleum ether/EtOAc 16:1): 0.21. ¹H NMR (400 MHz, CDCl₃)

δ 8.05 (d, J = 8.8 Hz, 1H), 7.58 (d, J = 2.2 Hz, 1H), 7.56 (d, J = 1.7 Hz, 1H), 7.45 – 7.36 (m, 3H), 6.98 (d, J = 2.5 Hz, 1H), 6.83 (dd, J = 8.8, 2.5 Hz, 1H), 6.15 (s, 1H), 3.83 (s, 3H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.33, 164.09, 163.06, 136.63, 134.05, 133.80, 129.32, 128.87, 127.75, 120.27, 116.60, 112.71, 75.02, 55.77, 52.74. ESI-MS: calculated C₁₇H₁₅ClO₄Na [M+Na]⁺ 357.0506; Found 357.0510; 359.0482.

1-methoxy-2-oxo-2-phenylethyl 3,4-dimethoxybenzoate (3k)

Following the above procedure A, the product **3k** was obtained in 45% yield (29.5 mg, 0.090 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). R_f (Petroleum ether/EtOAc 8:1): 0.20. ¹H NMR (400 MHz, CDCl₃)

δ 7.79 (dd, J = 8.4, 1.9 Hz, 1H), 7.59 – 7.56 (m, 3H), 7.42 (d, J = 6.6 Hz, 3H), 6.89 (d, J = 8.5 Hz, 1H), 6.14 (s, 1H), 3.93 (s, 3H), 3.92 (s, 3H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.58, 165.80, 153.59, 148.79, 134.17, 129.37, 128.97, 127.75, 124.32, 121.69, 112.32, 110.37, 74.89, 56.16, 56.12, 52.78. ESI-MS: calculated C₁₈H₁₈O₆Na [M+Na]⁺ 353.1001; Found 353.0999.

1-methoxy-2-oxo-2-phenylethyl 5-methoxy-2-methylbenzoate (31)

Following the above procedure A, the product **31** was obtained in 77% yield (48.3 mg, 0.154 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc

32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.19. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 7.2, 2.2 Hz, 3H), 7.43 – 7.40 (m, 3H), 7.17 (d, J = 8.4 Hz, 1H), 6.99 (dd, J = 8.4, 2.8 Hz, 1H), 6.15 (s, 1H), 3.81 (s, 3H), 3.76 (s, 3H), 2.56 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.51, 166.80, 157.49, 133.96, 132.81, 132.73, 129.38, 129.31, 128.96, 127.81, 118.65, 115.92, 75.05, 55.56, 52.79, 20.97. ESI-MS: calculated C₁₈H₁₈O₅Na [M+Na]⁺ 337.1052; Found 337.1057.

1-methoxy-2-oxo-2-phenylethyl 2-chloro-4,5-difluorobenzoate (3m)

Following the above procedure A, the product **3m** was obtained in 87% yield (59.4 mg, 0.174 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.20: ¹H NMR (400 MHz, CDCl₃) δ

7.90 (dd, J = 10.3, 8.3 Hz, 1H), 7.54 (dd, J = 6.5, 3.1 Hz, 2H), 7.44 (d, J = 1.6 Hz, 1H), 7.43 (d, J = 2.1 Hz, 2H), 7.33 (dd, J = 9.7, 6.9 Hz, 1H), 6.16 (s, 1H), 3.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.93, 162.81, 152.53 (dd, J = 259.8, 13.5 Hz), 148.70 (dd, J = 251.2, 12.6 Hz), 133.29, 130.86 (dd, J = 8.5, 3.7 Hz), 129.72, 129.11, 127.91, 125.29 – 125.15 (m), 121.22 (dd, J = 20.2, 1.9 Hz), 120.68 (d, J = 20.4 Hz), 75.70, 53.01. ¹⁹F NMR (376 MHz, CDCl₃) δ -127.74, -137.47. ESI-MS: calculated C₁₆H₁₁ClF₂O₄Na. [M+Na]⁺ 363.0212; Found 363.0208; 365.0173.

1-methoxy-2-oxo-2-phenylethyl 2-naphthoate (3n)

Following the above procedure A, the product **3n** was obtained in 40% yield (25.5 mg, 0.080 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 16:1

v/v). Rf (Petroleum ether/EtOAc 16:1): 0.21. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1H), 8.14 (d, *J* = 8.6 Hz, 1H), 7.97 (d, *J* = 8.1 Hz, 1H), 7.91 – 7.87 (m, 2H), 7.65 (d, *J* = 7.3 Hz, 2H), 7.58 (dd, *J* = 15.1, 8.0 Hz, 2H), 7.47 (d, *J* = 7.5 Hz, 3H), 6.25 (s, 1H), 3.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.50, 166.19, 135.89, 134.09, 132.53, 131.82, 129.58, 129.48, 129.04, 128.64, 128.40, 127.91, 127.86, 126.86, 126.50, 125.42, 75.12, 52.85. ESI-MS: calculated C₂₀H₁₆O₄Na. [M+Na]⁺ 343.0946; Found 343.0950.

1-methoxy-2-oxo-2-phenylethyl furan-2-carboxylate (30)

Following the above procedure A, the product **30** was obtained in 93% yield (48.6 mg, 0.186 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.19: ¹H NMR (400 MHz, CDCl₃) δ 7.61

(dd, J = 1.7, 0.8 Hz, 1H), 7.57 - 7.53 (m, 2H), 7.43 - 7.39 (m, 3H), 7.31 (dd, J = 3.5, 0.8 Hz, 1H), 6.53

(dd, J = 3.5, 1.7 Hz, 1H), 6.15 (s, 1H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.14, 157.86, 147.13, 143.82, 133.65, 129.49, 128.98, 127.79, 119.39, 112.13, 74.65, 52.87. ESI-MS: calculated C₁₄H₁₂O₅Na [M+Na]⁺ 283.0582; Found 283.0584.

1-methoxy-2-oxo-2-phenylethyl 5,6,7,8-tetrahydronaphthalene-1-carboxylate (3p)

Following the above procedure A, the product **3p** was obtained in 33% yield (21.2 mg, 0.066 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.21: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.2 Hz, 1H), 7.56 (dd, *J* = 7.5, 2.0 Hz, 2H), 7.41 (dd, *J* = 4.8, 2.5

Hz, 3H), 7.24 (s, 1H), 7.16 (t, J = 7.6 Hz, 1H), 6.13 (s, 1H), 3.76 (s, 3H), 3.11 (s, 2H), 2.82 (s, 2H), 1.81 – 1.77 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 169.55, 167.26, 139.26, 138.46, 133.97, 133.71, 129.24, 129.07, 128.85, 128.45, 127.71, 125.07, 74.80, 52.70, 30.21, 27.77, 23.09, 22.41. ESI-MS: calculated C₂₀H₂₀O₄Na [M+Na]⁺ 347.1259; Found 347.1259.

1-methoxy-2-oxo-2-phenylethyl 2,3-dihydrobenzo[b][1,4]dioxine-5-carboxylate (3q)

Following the above procedure A, the product **3q** was obtained in 60% yield (39.3 mg, 0.120 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.21: ¹H NMR (400 MHz, CDCl₃) δ

7.60 – 7.56 (m, 3H), 7.40 (d, J = 6.9 Hz, 3H), 7.05 (dd, J = 8.0, 1.5 Hz, 1H), 6.86 (t, J = 8.0 Hz, 1H), 6.14 (s, 1H), 4.37 (d, J = 3.3 Hz, 2H), 4.29 (d, J = 4.1 Hz, 2H), 3.74 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.49, 164.38, 145.00, 144.19, 134.05, 129.26, 128.87, 127.70, 124.37, 122.12, 120.44, 118.56, 74.74, 64.72, 63.89, 52.76. ESI-MS: calculated C₁₈H₁₆O₆Na [M+Na]⁺ 351.0845; Found 351.0844.

1-methoxy-2-oxo-2-phenylethyl benzofuran-2-carboxylate (3r)

Following the above procedure A, the product **3r** was obtained in 49% yield (30.6 mg, 0.098 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.23: ¹H NMR (400 MHz, CDCl₃)

δ 7.69 (d, *J* = 9.2 Hz, 2H), 7.62 – 7.58 (m, 3H), 7.49 – 7.43 (m, 4H), 7.31 (t, *J* = 7.5 Hz, 1H), 6.23 (s, 1H), 3.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.99, 158.83, 156.11, 144.61, 133.52, 129.61, 129.04, 128.11, 127.86, 126.93, 124.02, 123.08, 115.35, 112.58, 75.06, 52.95. ESI-MS: calculated C₁₈H₁₄O₅Na [M+Na]⁺ 333.0739; Found 333.0744.

1-methoxy-2-oxo-2-phenylethyl 9,10-dioxo-9,10-dihydroanthracene-2-carboxylate (3s)

Following the above procedure A, the product **3s** was obtained in 22% yield (17.8 mg, 0.044 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1):

0.20: ¹H NMR (400 MHz, CDCl₃) δ 9.01 (d, *J* = 1.2 Hz, 1H), 8.50 (dd, *J* = 8.1, 1.6 Hz, 1H), 8.40 (d, *J* = 8.1 Hz, 1H), 8.35 – 8.31 (m, 2H), 7.83 (dd, *J* = 5.3, 3.8 Hz, 2H), 7.61 (dd, *J* = 7.5, 1.9 Hz, 2H), 7.48 – 7.45 (m, 3H), 6.23 (s, 1H), 3.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 182.63, 182.28, 169.04, 164.54, 136.55, 134.99, 134.70, 134.60, 134.34, 133.71, 133.52, 133.46, 129.74, 129.18, 127.93, 127.78, 127.61, 127.57, 75.67, 53.02. ESI-MS: calculated C₂₄H₁₆O₆Na [M+Na]⁺ 423.0845; Found 423.0850.

1-methoxy-2-oxo-2-phenylethyl 2,2-difluorobenzo[d][1,3]dioxole-5-carboxylate (3t)

Following the above procedure A, the product **3t** was obtained in 50% yield (35.0 mg, 0.100 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.18: ¹H NMR (400 MHz,

CDCl₃) δ 7.97 (d, J = 8.4 Hz, 1H), 7.82 (s, 1H), 7.56 (dd, J = 6.4, 2.0 Hz, 2H), 7.46 – 7.42 (m, 3H), 7.13 (d, J = 8.4 Hz, 1H), 6.16 (s, 1H), 3.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.18, 164.49, 145.70 (d, J = 370.8 Hz), 134.36, 133.71, 131.80, 129.62, 129.08, 127.80, 127.22, 125.52, 111.23,

109.42, 75.30, 52.90. ESI-MS: calculated $C_{17}H_{12}F_2O_6Na$. ¹⁹F NMR (377 MHz, CDCl₃) δ -49.73, -49.74. [M+Na]⁺ 373.0500; Found 373.0502; 374.0533.

1-methoxy-2-oxo-2-phenylethyl 1-phenylcyclopropanecarboxylate (3x)

Following the above procedure A, the product 3x was obtained in 77% yield (43.2 mg, 0.154 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.18: ¹H NMR (600 MHz, CDCl₃) δ

7.45 (d, J = 7.6 Hz, 2H), 7.36 – 7.28 (m, 8H), 5.91 (s, 1H), 3.70 (s, 3H), 1.77 (dtd, J = 9.7, 6.7, 3.1 Hz, 2H), 1.36 (td, J = 6.3, 3.3 Hz, 1H), 1.29 (dd, J = 7.7, 4.7 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 173.98, 169.37, 138.93, 133.83, 130.64, 129.03, 128.71, 128.24, 127.40, 127.17, 74.59, 52.67, 29.18, 17.21, 16.71. ESI-MS: calculated C₁₉H₁₈O₄Na [M+Na]⁺ 333.1103; Found 333.1104.

1-methoxy-2-oxo-2-phenylethyl methacrylate (3y)

Following the above procedure A, the product **3y** was obtained in 64% yield (29.5 mg, 0.128 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1):0.21: ¹H NMR (600 MHz, CDCl₃) δ 7.50

 $(dd, J = 7.3, 1.3 Hz, 2H), 7.39 (d, J = 7.1 Hz, 3H), 6.28 (s, 1H), 5.99 (d, 1H), 5.67 (d, 1H), 3.72 (s, 3H), 2.01 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) <math>\delta$ 169.41, 166.69, 135.52, 134.04, 129.30, 128.90, 127.62, 127.09, 74.69, 52.69, 18.27. ESI-MS: calculated C₁₃H₁₄O₄Na [M+Na]⁺ 257.0790; Found 257.0790.

1-methoxy-2-oxo-2-phenylethyl adamantane-1-carboxylate (3z)

Following the above procedure A, the product 3z was obtained in 71% yield (46.8 mg, 0.142 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf

(Petroleum ether/EtOAc 32:1): 0.21: ¹H NMR (600 MHz, CDCl₃) δ 7.48 (d, *J* = 7.4 Hz, 2H), 7.41 – 7.37 (m, 3H), 5.89 (s, 1H), 3.71 (s, 3H), 2.04 (s, 3H), 2.00 – 1.98 (m, 6H), 1.75 – 1.72 (m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 177.06, 169.62, 134.28, 129.17, 128.86, 127.55, 74.07, 52.66, 40.87,
38.80, 36.59, 28.02. ESI-MS: calculated C₂₀H₂₄O₄Na [M+Na]⁺ 351.1572; Found 351.1573.

1-methoxy-2-oxo-2-phenylethyl 4-phenylbutanoate (3aa)

Following the above procedure A, the product **3aa** was obtained in 59% yield (36.8 mg, 0.118 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.21: ¹H NMR (600 MHz, CDCl₃)

δ 7.52 – 7.49 (m, 2H), 7.42 (d, *J* = 7.1 Hz, 3H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.23 – 7.20 (m, 3H), 5.98 (s, 1H), 3.74 (s, 3H), 2.73 (t, *J* = 7.6 Hz, 2H), 2.51 (dd, *J* = 23.4, 16.0, 8.3 Hz, 2H), 2.05 (dt, *J* = 7.6, 5.8 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 172.89, 169.43, 141.37, 133.91, 129.33, 128.89, 128.62, 128.48, 127.72, 126.08, 74.43, 52.67, 35.03, 33.33, 26.52. ESI-MS: calculated C₁₉H₂₀O₄Na [M+Na]⁺ 335.1259; Found 335.1265.

1-methoxy-2-oxo-2-phenylethyl 2-phenoxyacetate (3ab)

Following the above procedure A, the product **3ab** was obtained in 60% yield (36.2mg, 0.120 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf

(Petroleum ether/EtOAc 32:1): 0.19: ¹H NMR (600 MHz, CDCl₃) δ 7.46 – 7.43 (m, 2H), 7.41 – 7.38 (m, 3H), 7.30 (t, *J* = 7.7 Hz, 2H), 7.00 (t, *J* = 7.3 Hz, 1H), 6.95 (d, *J* = 8.5 Hz, 2H), 6.06 (s, 1H), 4.80 (s, *J* = 43.0, 16.5 Hz, 2H), 3.73 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.99, 168.67, 157.92, 133.41, 129.81, 129.74, 129.13, 127.93, 122.10, 114.97, 75.09, 65.26, 53.04. ESI-MS: calculated C₁₇H₁₆O₅Na [M+Na]⁺ 323.0895; Found 323.0899.

1-methoxy-2-oxo-2-phenylethyl 2-(4-fluorophenyl)acetate (3ac)

Following the above procedure A, the product **3ac** was obtained in 71% yield (43.2 mg, 0.142 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.21: ¹H NMR (600 MHz, CDCl₃)

 δ 7.43 (d, J = 1.7 Hz, 2H), 7.41 – 7.37 (m, 3H), 7.30 – 7.26 (m, 2H), 7.02 (t, J = 8.6 Hz, 2H), 5.95

(s, 1H), 3.79 (d, J = 15.8 Hz, 1H), 3.73 (d, J = 15.8 Hz, 1H), 3.70 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.93, 169.22, 162.23(d, J = 245.5 Hz), 133.68, 131.11(d, J = 8.1 Hz), 129.46, 129.17(d, J = 3.2 Hz), 128.96, 127.71, 115.58(d, J = 21.5 Hz), 74.92, 52.80, 40.10. ¹⁹F NMR (377 MHz, CDCl₃) δ -115.51. ESI-MS: calculated C₁₇H₁₅FO₄Na [M+Na]⁺ 325.0852; Found 325.0857; 326.0888.

1-methoxy-2-oxo-2-phenylethyl 2-(3-bromophenyl)acetate (3ad)

Following the above procedure A, the product **3ad** was obtained in 68% yield (49.6 mg, 0.136 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.22: ¹H NMR (600 MHz, CDCl₃)

δ 7.52 (s, 1H), 7.48 – 7.41 (m, 6H), 7.28 (d, *J* = 6.5 Hz, 1H), 7.23 (t, *J* = 7.8 Hz, 1H), 5.99 (s, 1H), 3.83 – 3.76 (m, 2H), 3.73 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.40, 169.14, 135.55, 133.59, 132.60, 130.54, 130.20, 129.48, 128.97, 128.22, 127.71, 122.62, 75.00, 52.81, 40.41. ESI-MS: calculated C₁₇H₁₅BrO₄Na [M+Na]⁺ 385.0051; Found 385.0057; 387.0038.

1-methoxy-2-oxo-2-phenylethyl 2-(naphthalen-2-yloxy)acetate (3ae)

Following the above procedure A, the product **3ae** was obtained in 87% yield (68.9 mg, 0.174 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1):

0.22: ¹H NMR (600 MHz, CDCl₃) δ 7.81 (dd, J = 8.5, 3.8 Hz, 2H), 7.77 (d, J = 8.2 Hz, 1H), 7.53 – 7.37 (m, 8H), 7.29 (dd, J = 9.1, 2.2 Hz, 1H), 7.19 (d, J = 2.3 Hz, 1H), 6.14 (s, 1H), 4.99 (d, J = 16.4 Hz, 1H), 4.91 (d, J = 16.3 Hz, 1H), 3.76 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.78, 168.33, 155.63, 134.31, 133.22, 129.76, 129.57, 129.51, 128.95, 127.76, 127.68, 127.04, 126.54, 124.17, 118.59, 107.44, 74.95, 65.16, 52.86. ESI-MS: calculated C₂₁H₁₈O₅Na [M+Na]⁺ 373.1052; Found 373.1049.

1-ethoxy-2-oxo-2-phenylethyl 4-methoxybenzoate (3ah)

Following the above procedure A, the product **3ah** was obtained in 58% yield (36.3 mg, 0.116 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.20: ¹H NMR (600 MHz, CDCl₃)

δ 8.09 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 7.1 Hz, 2H), 7.44 – 7.40 (m, 3H), 6.93 (d, J = 8.8 Hz, 2H), 6.12 (s, 1H), 4.27 – 4.16 (m, 2H), 3.86 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.10, 165.72, 163.90, 134.42, 132.20, 129.25, 128.91, 127.73, 127.72, 121.80, 113.84, 74.89, 61.81, 55.59, 14.15. ESI-MS: calculated C₁₈H₁₈O₅Na [M+Na]⁺ 337.1052; Found 337.1058.

1-isopropoxy-2-oxo-2-phenylethyl 4-methoxybenzoate (3ai)

OMe

Following the above procedure A, the product **3ai** was obtained in 45% yield (29.8 mg, 0.009 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.20: ¹H NMR (600 MHz, CDCl₃)

δ 8.09 (d, J = 8.6 Hz, 2H), 7.58 (d, J = 7.5 Hz, 2H), 7.43 – 7.39 (m, 3H), 6.93 (d, J = 8.6 Hz, 2H), 6.08 (s, 1H), 3.86 (s, 3H), 1.28 (d, J = 6.3 Hz, 3H), 1.12 (d, J = 6.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.59, 165.72, 163.85, 134.51, 132.16, 129.14, 128.84, 127.66, 121.88, 113.81, 75.04, 69.51, 55.57, 21.81, 21.54. ESI-MS: calculated C₁₉H₂₀O₅Na [M+Na]⁺ 351.1208; Found 351.1214.

1-butoxy-2-oxo-2-phenylethyl 4-methoxybenzoate (3aj)

Following the above procedure A, the product **3aj** was obtained in 26% yield (17.5 mg, 0.052 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1):

0.22: ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 7.4 Hz, 2H), 7.44 – 7.39 (m, 3H), 6.93 (d, J = 8.5 Hz, 2H), 6.13 (s, 1H), 4.18 – 4.13 (m, 2H), 3.85 (s, 3H), 1.60 – 1.55 (m, 2H), 1.27 (d, J = 8.0 Hz, 2H), 0.85 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.15, 165.68, 163.87, 134.46, 132.15, 129.20, 128.86, 127.66, 121.79, 113.80, 74.87, 65.55, 55.55, 30.53, 18.99, 13.67. ESI-MS: calculated C₂₀H₂₂O₅Na [M+Na]⁺ 365.1365; Found 365.1372.

1-methoxy-2-oxo-2-phenylethyl 2-(1,3-dioxoisoindolin-2-yl) acetate (3an)

Following the above procedure A, the product **3an** was obtained in 18% yield (12.7 mg, 0.036 mmol) as a white solid after column chromatography (eluent = Petroleum

ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.22: ¹H NMR (600 MHz, CDCl₃) δ 7.90 – 7.87 (m, 2H), 7.76 – 7.73 (m, 2H), 7.44 (d, J = 2.1 Hz, 2H), 7.40 – 7.38 (m, 3H), 6.01 (s, 1H), 4.68 (d, J = 17.6 Hz, 1H), 4.54 (d, J = 17.6 Hz, 1H), 3.72 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.60, 167.42, 166.95, 134.42, 133.26, 132.11, 129.65, 129.02, 127.78, 123.81, 75.54, 52.93, 38.90. ESI-MS: calculated C₁₉H₁₅NO₆Na [M+Na]⁺ 376.0797; Found 376.0802.

1-methoxy-2-oxo-2-phenylethyl 3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl) benzoate (3ao)

Following the above procedure A, the product **3ao** was obtained in 65% yield (56.1 mg, 0.130 mmol) as a yellow oil after column chromatography

(eluent = Petroleum ether/EtOAc 4:1 v/v). Rf (Petroleum ether/EtOAc 4:1): 0.19: ¹H NMR (600 MHz, CDCl₃) δ 8.94 (s, 1H), 8.43 (d, *J* = 7.7 Hz, 1H), 8.31 (d, *J* = 7.8 Hz, 1H), 8.24 (t, *J* = 7.4 Hz, 1H), 7.66 – 7.61 (m, 4H), 7.49 – 7.45 (m, 3H), 7.36 (t, J = 7.6 Hz, 1H), 7.30 (t, 1H), 6.25 (s, 1H), 3.80 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 173.13, 169.25, 168.01, 165.28, 160.87 (d, *J* = 260.8 Hz) 134.84 (d, *J* = 8.6 Hz), 133.82, 132.52 (d, *J* = 29.3 Hz), 130.27 (d, *J* = 232.0 Hz), 130.20, 129.21 (d, *J* = 13.1 Hz), 129.03, 127.82, 127.48, 124.83 (d, *J* = 3.7 Hz), 117.26 (d, *J* = 20.8 Hz), 112.73 (d, *J* = 11.3 Hz), 75.27, 52.85. ¹⁹F NMR (376 MHz, CDCl₃) δ -108.11. ESI-MS: calculated C₂₄H₁₇FN₂O₅Na [M+Na]⁺ 455.1019; Found 455.1017; 456.1046.

1-methoxy-2-oxo-2-phenylethyl 3-(4,5-diphenyloxazol-2-yl)propanoate (3ap)

Following the above procedure A, the product **3ap** was obtained in 35% yield (30.8 mg, 0.070 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum

ether/EtOAc 8:1): 0.22: ¹H NMR (600 MHz, CDCl₃) δ 7.62 (d, J = 7.9 Hz, 2H), 7.56 (d, J = 7.8 Hz,

2H), 7.46 (dd, *J* = 6.4, 2.9 Hz, 2H), 7.37 – 7.31 (m, 9H), 6.00 (s, 1H), 3.71 (s, 3H), 3.26 – 3.23 (m, 2H), 3.13 – 3.06 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 171.47, 169.25, 161.53, 145.58, 135.24, 133.71, 132.53, 129.40, 129.06, 128.91, 128.74, 128.64, 128.56, 128.16, 128.00, 127.71, 126.61, 74.81, 52.78, 31.04, 23.52. ESI-MS: calculated C₂₇H₂₃NO₅Na [M+Na]⁺ 464.1474; Found 464.1481.

1-methoxy-2-oxo-2-phenylethyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)ac etate (3aq)

Following the above procedure A, the product **3aq** was obtained in 59% yield (59.4 mg, 0.118 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum

ether/EtOAc 8:1): 0.22: ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.5 Hz, 2H), 7.44 (dd, J = 9.0, 6.0 Hz, 4H), 7.39 – 7.37 (m, 3H), 6.99 (s, 1H), 6.91 (d, J = 9.0 Hz, 1H), 6.68 (dd, J = 9.0, 1.8 Hz, 1H), 5.95 (s, 1H), 3.84 (s, 2H), 3.79 (s, 3H), 3.69 (s, 3H), 2.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.27, 169.16, 168.39, 156.15, 139.32, 136.12, 133.95, 133.63, 131.30, 130.85, 130.58, 129.43, 129.19, 128.91, 127.67, 115.04, 112.13, 112.10, 101.14, 74.96, 55.71, 52.76, 30.06, 13.53. ESI-MS: calculated C₂₈H₂₄ClNO₆Na [M+Na]⁺ 528.1190; Found 528.1193; 530.1168.

1-methoxy-2-oxo-2-phenylethyl 2-(4-(2-(4-chlorobenzamido)ethyl)phenoxy)-2-methylpropan oate (3ar)

Following the above procedure A, the product **3ar** was obtained in 52% yield (53.3 mg, 0.104 mmol) as a yellow oil after column chromatography (eluent

Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20: ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, J = 8.4 Hz, 2H), 7.43 – 7.39 (m, 2H), 7.36 – 7.31 (m, 5H), 7.05 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H), 6.39 (d, J = 4.9 Hz, 1H), 5.97 (s, 1H), 3.69 (s, 3H), 3.60 (q, J = 6.7 Hz, 2H), 2.82 (t, J = 7.0 Hz, 2H), 1.66 (d, J = 8.4 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 173.60, 168.95, 166.50, 153.95, 137.57, 133.34, 133.05, 132.73, 129.49, 129.40, 128.87, 128.78, 128.40,

127.51, 120.10, 79.21, 75.04, 52.75, 41.34, 34.77, 25.86, 25.24. ESI-MS: calculated C₂₈H₂₈CINO₆Na [M+Na]⁺ 532.1503; Found 532.1505; 534.1485.

1-methoxy-2-oxo-2-phenylethyl 6-(3-(adamantan-1-yl)-4-methoxyphenyl)-2-naphthoate (3a s)

Following the above procedure A, the product **3as** was obtained in 27% yield (30.8 mg, 0.054 mmol) as a yellow oil after column chromatography (eluent = Petroleum

ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.21: ¹H NMR (600 MHz, CDCl₃) δ 8.74 (s, 1H), 8.17 (s, 1H), 8.05 (d, 2H), 7.96 (s, 1H), 7.84 (s, 1H), 7.67 (d, *J* = 22.5 Hz, 3H), 7.58 (s, 1H), 7.53 – 7.46 (m, 3H), 7.03 (s, 1H), 6.29 (s, 1H), 3.94 (s, 3H), 3.83 (s, 3H), 2.25 – 2.22 (m, 6H), 2.17 – 2.13 (m, 3H), 1.87 – 1.83 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 169.55, 166.24, 159.10, 141.78, 139.14, 136.38, 134.21, 132.59, 131.61, 131.31, 129.95, 129.47, 129.05, 128.47, 127.89, 126.69, 126.10, 126.03, 125.88, 125.80, 124.86, 112.24, 75.11, 55.28, 52.84, 40.74, 37.26, 29.24. ESI-MS: calculated C₃₇H₃₆O₅Na [M+Na]⁺ 583.2460; Found 583.2456.

1-methoxy-2-oxo-2-(p-tolyl)ethyl 4-methoxybenzoate (4a)

Following the above procedure A, the product 4a was obtained in 61% yield (38.5 mg, 0.122mmol) as a yellow oil after column chromatography (eluent = Petroleum

ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.19: ¹H NMR (600 MHz, CDCl₃) δ 8.10 (d, *J* = 7.9 Hz, 2H), 7.48 (d, *J* = 7.5 Hz, 2H), 7.26 (d, *J* = 7.7 Hz, 2H), 6.95 (d, *J* = 8.1 Hz, 2H), 6.13 (s, 1H), 3.89 (s, 3H), 3.77 (s, 3H), 2.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.73, 165.73, 163.88, 139.33, 132.18, 131.31, 129.63, 127.73, 121.74, 113.80, 74.64, 55.55, 52.68, 21.37. ESI-MS: calculated C₁₈H₁₈O₅Na [M+Na]⁺ 337.1052; Found 337.1051.

2-([1,1'-biphenyl]-4-yl)-1-methoxy-2-oxoethyl 4-methoxybenzoate (4b)

Following the above procedure A, the product **4b** was obtained in 58% yield (44.0 mg, 0.116 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum

ether/EtOAc 16:1): 0.23: ¹H NMR (600 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 2H), 7.66 (s, 4H), 7.61 (d, *J* = 7.7 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.38 (t, *J* = 7.3 Hz, 1H), 6.95 (d, *J* = 8.3 Hz, 2H), 6.21 (s, 1H), 3.87 (s, 3H), 3.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.52, 165.69, 163.95, 159.97, 135.64, 132.24, 130.02, 121.68, 120.08, 114.85, 113.97, 113.86, 113.47, 113.35, 74.67, 55.61, 55.49, 52.80. ESI-MS: calculated C₂₃H₂₀O₅Na [M+Na]⁺ 399.1208; Found 399.1215.

2-(4-fluorophenyl)-1-methoxy-2-oxoethyl 4-methoxybenzoate (4c)

Following the above procedure A, the product 4c was obtained in 58% yield (36.9 mg, 0.116 mmol) as a yellow oil after column chromatography (eluent = Petroleum

ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.23: ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, *J* = 8.6 Hz, 2H), 7.56 (d, *J* = 8.1, 5.5 Hz, 2H), 7.11 (d, 2H), 6.93 (d, *J* = 8.6 Hz, 2H), 6.12 (s, 1H), 3.86 (s, 3H), 3.75 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.47, 165.59, 164.01, 163.32 (d, *J* = 248.4 Hz), 132.20, 130.21 (d, *J* = 3.1 Hz), 129.65 (d, *J* = 8.4 Hz), 121.54, 115.99 (d, *J* = 21.8 Hz), 113.89, 74.03, 55.60, 52.83. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.04. ESI-MS: calculated C₁₇H₁₅FO₅Na [M+Na]⁺ 341.0801; Found 341.0807; 342.0836.

2-(4-bromophenyl)-1-methoxy-2-oxoethyl 4-methoxybenzoate (4d)

Following the above procedure A, the product **4d** was obtained in 69% yield (52.0 mg, 0.138 mmol) as a yellow oil after column chromatography (eluent = Petroleum

ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.22: ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 8.1 Hz, 2H), 7.45 (d, *J* = 8.1 Hz, 2H), 6.93 (d, *J* = 8.5 Hz, 2H), 6.10 (s, 1H), 3.86 (s, 3H), 3.75 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.17, 165.50, 164.03, 132.20,

132.15, 129.36, 123.57, 121.44, 114.00, 113.90, 74.04, 55.61, 52.90. ESI-MS: calculated C₁₇H₁₅BrO₅Na [M+Na]⁺ 401.0001; Found 401.0003; 402.9984.

2-(4-cyanophenyl)-1-methoxy-2-oxoethyl 4-methoxybenzoate (4e)

Following the above procedure A, the product **4e** was obtained in 55% yield (38.5 mg, 0.110 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.20: ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 2H), 7.74 (s, 4H), 6.97 (d, J = 8.4 Hz, 2H), 6.22 (s, 1H), 3.89 (s, 3H), 3.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.55, 165.24, 164.18, 139.27, 132.71, 132.22, 128.25, 121.10, 118.37, 113.98, 73.80, 55.62, 53.11. ESI-MS: calculated C₁₈H₁₅NO₅Na [M+Na]⁺ 348.0848; Found 348.0853.

1-methoxy-2-oxo-2-(o-tolyl)ethyl 4-methoxybenzoate (4f)

MeO O Me

Following the above procedure A, the product 4f was obtained in 59% yield (37.0 mg, 0.118 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc

32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.21: ¹H NMR (600 MHz, CDCl₃) δ 8.10 (d, J = 8.7 Hz, 2H), 7.56 (d, J = 7.5 Hz, 1H), 7.34 – 7.26 (m, 3H), 6.95 (d, J = 8.6 Hz, 2H), 6.46 (s, 1H), 3.88 (s, 3H), 3.78 (s, 3H), 2.54 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.84, 165.73, 163.89, 137.05, 132.90, 132.17, 130.99, 129.27, 128.18, 126.51, 121.73, 113.82, 71.91, 55.56, 52.68, 19.55. ESI-MS: calculated C₁₈H₁₈O₅Na [M+Na]⁺ 337.1052; Found 337.1047.

2-(2-iodophenyl)-1-methoxy-2-oxoethyl 4-methoxybenzoate (4g)

Following the above procedure A, the product 4g was obtained in 41% yield (35.0 mg, 0.082 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc

32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.21: ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, J = 8.8 Hz, 2H), 7.92 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.41 (t, 1H), 7.09 (t, 1H), 6.92 (d, J = 8.8 Hz, 2H), 6.53 (s, 1H), 3.86 (s, 3H), 3.78 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.27, 165.39,

163.97, 140.22, 137.64, 132.31, 130.95, 129.28, 128.83, 121.50, 113.86, 99.76, 78.02, 55.61, 52.89. ESI-MS: calculated C₁₇H₁₅IO₅Na [M+Na]⁺ 448.9862; Found 448.9865; 449.9893.

1-methoxy-2-(3-methoxyphenyl)-2-oxoethyl 4-methoxybenzoate (4h)

Following the above procedure A, the product **4h** was obtained in 35% yield (23.1 mg, 0.070 mmol) as a yellow oil after column chromatography (eluent =

Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1):0.21: ¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, J = 8.5 Hz, 2H), 7.34 (t, J = 7.9 Hz, 1H), 7.16 (d, J = 7.6 Hz, 1H), 7.12 (s, 1H), 6.93 (d, J = 8.3 Hz, 3H), 6.11 (s, 1H), 3.86 (s, 3H), 3.84 (s, 3H), 3.75 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.09, 165.49, 164.07, 136.17, 134.88, 132.26, 130.24, 129.55, 127.79, 125.91, 121.41, 113.94, 73.99, 55.63, 52.96. ESI-MS: calculated C₁₈H₁₈O₆Na [M+Na]⁺ 353.1001; Found 353.1000.

2-(3-chlorophenyl)-1-methoxy-2-oxoethyl 4-methoxybenzoate (4i)

Following the above procedure A, the product **4i** was obtained in 49% yield (32.9 mg, 0.098mmol) as a yellow oil after column chromatography (eluent = Petroleum

ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1): 0.21: ¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, *J* = 8.8 Hz, 2H), 7.58 (s, 1H), 7.46 (d, *J* = 7.2 Hz, 1H), 7.36 (dd, *J* = 13.2, 5.9 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.11 (s, 1H), 3.87 (s, 3H), 3.76 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.09, 165.49, 164.07, 136.17, 134.88, 132.26, 130.24, 129.55, 127.79, 125.91, 121.41, 113.94, 73.99, 55.63, 52.96. ESI-MS: calculated C₁₇H₁₅ClO₅Na [M+Na]⁺ 357.0506; Found 357.0505; 359.0471.

2-(3,5-dimethylphenyl)-1-methoxy-2-oxoethyl 4-methoxybenzoate (4j)

Following the above procedure A, the product 4j was obtained in 57% yield (37.2 mg, 0.114 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1):

0.19: ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 8.9 Hz, 2H), 7.18 (s, 2H), 7.04 (s, 1H), 6.93 (d, J = 8.9 Hz, 2H), 6.07 (s, 1H), 3.86 (s, 3H), 3.75 (s, 3H), 2.36 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ

169.77, 165.76, 163.88, 138.62, 134.01, 132.20, 131.08, 125.59, 121.77, 113.79, 74.88, 55.55, 52.71, 21.41. ESI-MS: calculated C₁₉H₂₀O₅Na [M+Na]⁺ 351.1208; Found 351.1214.

2-(3-fluoro-4-methylphenyl)-1-methoxy-2-oxoethyl 4-methoxybenzoate (4k)

2-(benzo[d][1,3]dioxol-5-yl)-1-methoxy-2-oxoethyl 4-methoxybenzoate (41)

Following the above procedure A, the product **41** was obtained in 46% yield (31.8 mg, 0.092 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1):

0.19: ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, *J* = 8.6 Hz, 2H), 7.05 (s, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 6.93 (d, *J* = 8.6 Hz, 2H), 6.83 (d, *J* = 7.9 Hz, 1H), 6.03 (s, 1H), 5.99 (d, *J* = 1.8 Hz, 2H), 3.86 (s, 3H), 3.75 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 169.65, 165.68, 163.95, 148.57, 148.17, 132.21, 127.92, 121.97, 121.68, 113.85, 108.61, 108.11, 101.54, 74.56, 55.60, 52.78. ESI-MS: calculated C₁₈H₁₆O₇Na [M+Na]⁺ 367.0794; Found 367.0800.

2-(benzofuran-2-yl)-1-methoxy-2-oxoethyl 4-methoxybenzoate (4m)

Following the above procedure A, the product **4m** was obtained in 37% yield (25.0 mg, 0.050 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 16:1 v/v). Rf (Petroleum ether/EtOAc 16:1):

0.21: ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 8.8 Hz, 2H), 7.61 (d, J = 7.8 Hz, 1H), 7.54 (d, J = 8.3 Hz, 1H), 7.36 (s, 1H), 7.28 (d, J = 7.6 Hz, 1H), 6.93 (d, J = 8.8 Hz, 3H), 6.47 (s, 1H), 3.87 (s, 3H), 3.85 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 167.25, 165.35, 164.10, 155.43, 149.59, 132.40, 127.69, 125.46, 123.36, 121.71, 121.24, 113.89, 111.84, 107.84, 68.36, 55.61, 53.23. ESI-MS: calculated C₁₉H₁₆O₆Na [M+Na]⁺ 363.0845; Found 363.0850.

2-(benzo[b]thiophen-2-yl)-1-methoxy-2-oxoethyl 4-methoxybenzoate (4n)

Following the above procedure A, the product **4n** was obtained in 66% yield (47.1 mg, 0.132 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1):

0.21: ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, *J* = 8.5 Hz, 2H), 7.84 (d, *J* = 7.5 Hz, 1H), 7.79 (d, *J* = 7.4 Hz, 1H), 7.50 (s, 1H), 7.38 – 7.36 (m, 2H), 6.95 (d, *J* = 8.4 Hz, 2H), 6.51 (s, 1H), 3.87 (s, 3H), 3.82 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.42, 165.31, 164.10, 140.20, 139.09, 136.62, 132.38, 132.35, 125.19, 124.75, 124.40, 122.49, 121.24, 113.93, 71.07, 55.59, 53.13. ESI-MS: calculated C₁₉H₁₆O₅SNa [M+Na]⁺ 379.0616; Found 379.0620.

2-cyclohexyl-1-methoxy-2-oxoethyl 4-methoxybenzoate (40)

Following the above procedure A, the product **40** was obtained in 70% yield (42.7 mg, 0.140 mmol) as a yellow oil after column chromatography (eluent = Petroleumether/EtOAc 32:1

v/v). Rf (Petroleum ether/EtOAc 32:1): 0.19: ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, *J* = 8.3 Hz, 2H), 6.92 (d, *J* = 8.3 Hz, 2H), 5.02 (d, *J* = 4.6 Hz, 1H), 3.85 (s, 3H), 3.74 (s, 3H), 2.01 (d, *J* = 10.2 Hz, 1H), 1.79 – 1.70 (m, 4H), 1.28 (m, *J* = 52.9, 32.8, 21.4 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃)

δ 170.52, 165.99, 163.75, 131.99, 122.08, 113.78, 76.78, 55.55, 52.14, 39.88, 29.30, 28.03, 26.12, 26.03. ESI-MS: calculated C₁₇H₂₂O₅Na [M+Na]⁺ 329.1365; Found 329.1368.

(3S)-3-(4-isobutylphenyl)-1-methoxy-2-oxobutyl 4-methoxybenzoate (4p)

Following the above procedure A, the product **4p** was obtained in 86% yield (66.2 mg, 0.172 mmol) as a yellow oil after column chromatography

(eluent = Petroleum ether/EtOAc 32:1 v/v). Rf (Petroleum ether/EtOAc 32:1): 0.20: ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, *J* = 8.6 Hz, 1H), 7.94 (d, *J* = 8.6 Hz, 1H), 7.24 – 7.21 (m, 2H), 7.11 – 7.06 (m, 2H), 6.94 (d, *J* = 8.7 Hz, 1H), 6.90 (d, *J* = 8.6 Hz, 1H), 5.28 (dd, *J* = 24.6, 5.7 Hz, 1H), 3.85 (d, *J* = 10.1 Hz, 3H), 3.65 (d, *J* = 19.7 Hz, 3H), 3.51 – 3.44 (m, 1H), 2.44 (dd, *J* = 10.2, 7.3 Hz, 2H), 1.84 (dd, *J* = 14.0, 7.0 Hz, 1H), 1.46 (dd, *J* = 32.6, 7.2 Hz, 3H), 0.89 – 0.87 (m, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 170.36, 165.87, 163.89, 140.70, 138.85, 132.10, 129.38, 127.80, 122.07, 113.92, 77.05, 55.65, 52.25, 45.24, 41.28, 30.38, 22.54, 17.83, 16.16. [α]²⁰_D=·+1.04·(c·=0.28, MeOH). ESI-MS: calculated C₂₃H₂₈O₅Na [M+Na]⁺ 407.1834; Found 407.1842.

2-oxo-2-phenylethane-1,1-diyl bis(4-methoxybenzoate) (5a)

Following the above procedure B, the product **5a** was obtained in 86% yield (72.4 mg, 0.172 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.19: ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 2H), 8.06 – 8.04 (m, 5H), 7.61 (s, 1H), 7.49 (t, *J* = 7.7

Hz, 2H), 6.92 (d, J = 8.9 Hz, 4H), 3.86 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 189.44, 164.35, 164.22, 134.31, 133.55, 132.63, 129.19, 129.05, 120.77, 114.00, 87.16, 55.67. ESI-MS: calculated C₂₄H₂₀O₇Na [M+Na]⁺ 443.1107; Found 443.1113.

2-oxo-2-phenylethane-1,1-diyl bis(3,5-dimethylbenzoate) (5b)

Following the above procedure B, the product **5b** was obtained in 19% yield (15.7 mg, 0.038 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20: ¹H NMR (600 MHz, CDCl₃) δ 8.12 (s, 1H), 8.09 – 8.07 (m, 2H), 7.72 (s, 4H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.51 – 7.49 (m, 2H), 7.23 (s, 2H), 2.34 (s, 12H). ¹³C NMR (151 MHz, CDCl₃) δ 189.19, 164.85, 138.44, 135.83, 134.35, 133.55,

129.16, 129.06, 128.28, 128.10, 87.14, 21.24. ESI-MS: calculated C₂₆H₂₄O₅Na [M+Na]⁺ 439.1521; Found 439.1529.

2-oxo-2-phenylethane-1,1-diyl bis(2-chloro-4-methylbenzoate) (5c)

Following the above procedure B, the product **5c** was obtained in 11% yield (10.5 mg, 0.022 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20: ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, *J* = 5.7 Hz, 3H), 7.88 (s, 1H), 7.87 (s, 1H), 7.63 – 7.61 (m,

1H), 7.50 (d, J = 7.6 Hz, 2H), 7.29 (s, 2H), 7.11 (d, J = 8.0 Hz, 2H), 2.37 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 188.75, 162.93, 145.23, 135.11, 134.44, 133.41, 132.52, 132.15, 129.21, 129.06, 127.69, 124.66, 87.52, 21.45. ESI-MS: calculated C₂₄H₁₈Cl₂O₅Na [M+Na]⁺ 479.0429; Found 479.0435; 481.0409.

2-oxo-2-phenylethane-1,1-diyl bis(5,6,7,8-tetrahydronaphthalene-1-carboxylate) (5d)

Following the above procedure B, the product **5d** was obtained in 42% yield (39.6 mg, 0.084 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20: ¹H NMR (600 MHz, CDCl₃) δ 8.10 – 8.08 (m, 2H), 8.06 (s, 1H), 7.79 (d, *J* = 7.7 Hz, 2H), 7.64 (M, 1H), 7.53 (t, *J* = 7.7 Hz, 2H), 7.29 – 7.27 (m, 2H), 7.15 (t, *J* = 7.7 Hz, 2H)

2H), 3.12 (s, 4H), 2.83 (d, J = 4.8 Hz, 4H), 1.82 – 1.79 (m, 8H). ¹³C NMR (151 MHz, CDCl₃) δ

189.45, 165.44, 140.10, 138.78, 134.40, 134.26, 133.63, 129.13, 129.01, 128.91, 128.06, 125.22, 87.30, 30.34, 27.94, 23.14, 22.44. ESI-MS: calculated C₃₀H₂₈O₅Na [M+Na]⁺ 491.1834; Found 491.1837.

2-oxo-2-(p-tolyl)ethane-1,1-diyl bis(4-methoxybenzoate) (5i)

Following the above procedure B, the product **5i** w as obtained in 70% yield (61.0 mg, 0.140 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum et her/EtOAc 8:1): 0.21: ¹H NMR (400 MHz, CDCl₃)

δ 8.07 – 8.04 (m, 4H), 8.04 (s, 1H), 7.97 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 6.9 1 (d, J = 9.0 Hz, H), 3.85 (s, 6H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 188.95, 164. 30, 164.22, 145.42, 132.59, 131.01, 129.75, 129.30, 120.82, 113.97, 87.14, 55.64, 21.95. ESI-MS: calculated C₂₅H₂₂O₇Na [M+Na]⁺ 457.1263; Found 457.1268.

2-(3,5-dimethylphenyl)-2-oxoethane-1,1-diyl bis(4-methoxybenzoate) (5j)

Following the above procedure B, the product **5j** was obtained in 58% yield (52.4 mg, 0.116 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1):0.20: ¹H NMR (600 MHz, CDCl₃) δ 8.05 (d, *J* = 7.3 Hz, 5H), 7.67 (s, 2H), 7.23 (s, 1H), 6.91 (d, *J* = 8.7 Hz,

4H), 3.85 (s, 6H), 2.35 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 164.28, 164.24, 138.69, 136.04, 133.69, 132.94, 132.56, 126.86, 120.85, 114.25, 113.95, 87.01, 55.62, 21.36.ESI-MS: calculated C₂₆H₂₄O₇Na [M+Na]⁺ 471.1420; Found 471.1420.

2-(4-fluorophenyl)-2-oxoethane-1,1-diyl bis(4-methoxybenzoate) (5k)

Following the above procedure B, the product **5k** was obtained in 65% yield (57.1 mg, 0.130 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.20: ¹H NMR (600 MHz, CDCl₃) δ

8.14 – 8.10 (m, 2H), 8.06 – 8.02 (m, 5H), 7.18 – 7.14 (m, 2H), 6.92 (d, J = 8.9 Hz, 4H), 3.85 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 187.95, 166.38 (d, J = 256.9 Hz), 164.39, 164.13, 132.57, 131.96 (d, J = 9.5 Hz), 129.96 (d, J = 2.8 Hz), 120.61, 116.31 (d, J = 22.0 Hz), 114.01, 87.17, 55.63. ¹⁹F NMR (377 MHz, CDCl₃) δ -102.65. ESI-MS: calculated C₂₄H₁₉FO₇Na [M+Na]⁺ 461.1013; Found 461.1017; 476.1204.

2-(4-bromophenyl)-2-oxoethane-1,1-diyl bis(4-methoxybenzoate) (51)

Following the above procedure B, the product **51** was obtained in 56% yield (56.3 mg, 0.112 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.21: ¹H NMR (600 MHz, CDCl₃) δ

8.04 (d, J = 8.9 Hz, 4H), 8.00 (s, 1H), 7.94 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H), 6.92 (d, J = 8.9 Hz, 4H), 3.85 (s, 6H). ¹³C NMR (151 MHz, CDCl3) δ 188.66, 164.41, 164.10, 132.59, 132.40, 132.29, 130.59, 129.67, 120.57, 114.04, 87.20, 55.65. ESI-MS: calculated C₂₄H₁₉Br O₇Na [M+Na]⁺ 521.0212; Found 521.0219; 523.0204.

2-(3,5-difluoro-4-methoxyphenyl)-2-oxoethane-1,1-diyl bis(4-methoxybenzoate) (5m)

Following the above procedure B, the product **5m** was obtained in 41% yield (40.1 mg, 0.082 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.19: ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 9.0 Hz, 1H), 8.05 – 8.01 (m, 3H), 7.90 (s, S33 1H), 7.66 (d, J = 9.3 Hz, 1H), 6.96 (d, J = 9.0 Hz, 1H), 6.93 – 6.87 (m, 4H), 4.10 (t, J = 1.7 Hz, 3H), 3.83 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 186.59, 164.39, 163.48 (d, J = 230.9 Hz), 162.33, 154.73 (dd, J = 250.3, 5.9 Hz), 141.69 (t, J = 13.1 Hz), 132.83, 132.49, 126.85 (t, J = 7.3 Hz), 121.22, 120.31, 114.17, 113.54 (d, J = 24.3 Hz), 113.54 (d, J = 9.6 Hz), 87.10, 61.64, 55.59 (d, J = 6.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -126.51, -126.51, -126.53 ESI-MS: calculated C₂₅H₂₀F₂O₈Na [M+Na]⁺ 509.1024; Found 509.1019; 528.2074.

2-(3-fluoro-4-methoxyphenyl)-2-oxoethane-1,1-diyl bis(4-methoxybenzoate) (5n)

Following the above procedure B, the product **5n** was obtained in 48% yield (43.8 mg, 0.096 mmol) as a white solid after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.22: ¹H NMR (600 MHz, CDCl₃) δ 8.05, 8.04, 7.99, 7.76, 7.74, 7.74, 7.72, 7.31, 7.29, 7.28,

6.92, 6.91, 3.87, 3.85, 2.33. ¹³C NMR (151 MHz, CDCl₃) δ 188.20, 164.38, 164.14, 161.41 (d, J = 247.2 Hz), 133.14 (d, J = 6.7 Hz), 132.88 (d, J = 27.7 Hz), 132.61, 132.06 (d, J = 4.8 Hz), 124.79 (d, J = 3.2 Hz), 120.68, 115.52 (d, J = 23.8 Hz), 114.02, 87.21, 55.65, 15.14 (d, J = 3.3 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -115.32.ESI-MS: calculated C₂₅H₂₁FO₇Na [M+Na]⁺ 475.1169; Found 475.1173; 476.1204.

2-(adamantan-1-yl)-2-oxoethane-1,1-diyl bis(4-methoxybenzoate) (50)

Following the above procedure B, the product **50** was obtained in 64% yield (61.6 mg, 0.128 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.22: ¹H NMR (400 MHz, CDCl₃) δ

8.04 (d, J = 9.0 Hz, 4H), 7.61 (s, 1H), 6.93 (d, J = 9.0 Hz, 4H), 3.86 (s, 6H), 2.05 (s, 3H), 2.01 – 1.96 (m, 6H), 1.77 – 1.69 (m, 5H), 1.61 (s, 1H). ¹³C NMR (101 MHz, CDCl3) δ 203.71, 164.30, 164.27, 132.51, 120.84, 114.01, 85.19, 55.66, 45.88, 37.90, 36.45, 27.80. ESI-MS: calculated C₂₈H₃₀O₇Na [M+Na]⁺ 501.1889; Found 501.1895.

(R)-3-(4-isobutylphenyl)-2-oxobutane-1,1-diyl bis(4-methoxybenzoate) (5p)

Following the above procedure B, the product **5p** was obtained in 66% yield (66.9 mg, 0.132 mmol) as a yellow oil after column chromatography (eluent = Petroleum ether/EtOAc 8:1 v/v). Rf (Petroleum ether/EtOAc 8:1): 0.21: ¹H NMR (600 MHz, CDCl₃)

δ 7.98 (d, J = 8.8 Hz, 2H), 7.91 (d, J = 8.9 Hz, 2H), 7.14 (s, 1H), 7.08 (d, J = 8.0 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.9 Hz, 2H), 4.23 (d, J = 6.9 Hz, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 2.39 (d, J = 7.2 Hz, 2H), 1.78 (s, J = 13.5, 6.7 Hz, 1H), 1.49 (d, J = 6.9 Hz, 3H), 0.85 (dd, J = 6.6, 3.3 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 201.38, 164.18, 163.94, 141.01, 136.03, 132.50, 129.85, 127.92, 120.80, 113.95, 87.91, 55.64, 55.60, 48.61, 45.10, 30.25, 22.48, 18.11. ESI-MS: calculated C₃₀H₃₂O₇Na [M+Na]⁺ 527.2046; Found 527.2053.

4. Synthetic application of the product

(a) Gram-scale-experiment:

In an oven-dried Schlenk tube, a mixture of the I,S-ylide **1a** (5.0 mmol, 1.0 equiv), 4methoxybenzoic acid **2a** (6.0 mmol, 1.2 equiv), Et_3N (2.0 equiv) and methanol (50.0 mL, 0.1 M) was stirred at 35 °C in the oil bath for 0.5 h. The product was purified by flash column chromatography (petroleum ether : ethyl acetate = 32:1) to give **3a** (1.01 g, 67 %) as a yellow oil.

(b) control experiment:

In an oven-dried Schlenk tube, a mixture of the I,S-ylide **1a** (0.2 mmol, 1.0 equiv), 4-m ethoxybenzoic acid **2a** (0.5 mmol, 2.5 equiv), AcOH (0.5 mmol, 2.5 equiv), Et₃N (2.0 equiv), CuI (0.02 mmol, 10.0 mol%) and DCM (2.0 mL, 0.1 M) was stirred at 35 °C in the oil bat h for 0.5 h. The product **5a**' was not detected.

In an oven-dried Schlenk tube, a mixture of the I,S-ylide **1a** (0.20 mmol, 1.0 equiv), *i*-P rOH **6** (0.24 mmol, 1.2 equiv), Et₃N (2.0 equiv) and methanol (2.0 mL, 0.1 M) was stirred a t 35 °C in the oil bath for 0.5 h. The product 7 and 7' were not detected.

In an oven-dried Schlenk tube, a mixture of the I,S-ylide **1a** (0.2 mmol, 1.0 equiv), 4methoxybenzoic acid **2a** (0.5 mmol, 2.5 equiv), Et_3N (2.0 equiv) and DCM (2.0 mL, 0.1 M) was stirred at 35 °C in the oil bath for 0.5 h. The product was purified by flash column chromatography (petroleum ether: ethyl acetate = 8:1) to give **5a** (8.3 mg, 10%) as a white solid.

In an oven-dried Schlenk tube, a mixture of the I,S-ylide 1a (0.2 mmol, 1.0 equiv), Et₃N (2.0 equiv) and MeOH (2.0 mL, 0.1 M) was stirred at 35 °C in the oil bath for 0.5 h. The product 7' were not detected.

In an oven-dried Schlenk tube, a mixture of the I,S-ylide **1a** (0.2 mmol, 1.0 equiv), MeOH (1.0 mmol, 5.0 equiv), CuI (0.02 mmol, 10.0 mol%), Et₃N (2.0 equiv) and DCM (2.0 mL, 0.1 M) was stirred at 35 °C in the oil bath for 0.5 h. The product **7**' were not detected.

In an oven-dried Schlenk tube, a mixture of the I,S-ylide **1a** (0.2 mmol, 1.0 equiv), 4methoxybenzoic acid **2a** (0.25 mmol, 1.25 equiv), 4-chlorophenyl carboxylic acid **2q** (0.25 mmol, 1.25 equiv), CuI (0.02 mmol, 10.0 mol%), Et₃N (2.0 equiv) and DCM (2.0 mL, 0.1 M) was stirred at 35 °C in the oil bath for 0.5 h. The product **5a** was purified by flash column chromatography (petroleum ether: ethyl acetate = 8:1) (11.0 mg, 13 %) as a white solid. The product 5q and 8 were not detected.

In an oven-dried Schlenk tube, a mixture of the I,S-ylide **1a** (0.2 mmol, 1.0 equiv), PhCOONa (0.24 mmol, 1.2 equiv), Et_3N (2.0 equiv) and MeOH (2.0 mL, 0.1 M) was stirred at 35 °C in the oil bath for 0.5 h. The product **3b** were not detected.

In an oven-dried Schlenk tube, a mixture of the I,S-ylide **1a** (0.2 mmol, 1.0 equiv), PhCOONa (0.5 mmol, 2.5 equiv), CuI (0.02 mmol, 10.0 mol%), Et₃N (2.0 equiv) and DCM (2.0 mL, 0.1 M) was stirred at 35 °C in the oil bath for 0.5 h. The product **5r** were not detected.

5. NMR Spectra for New Compounds

¹H NMR (400 MHz, DMSO-d₆) Spectra of **1b**

¹H NMR (400 MHz, DMSO-d₆) Spectra of **1j**

¹H NMR (400 MHz, DMSO-d₆) Spectra of **4**l

¹³C NMR (101 MHz, DMSO-d₆) Spectra of **1m**

¹H NMR (400 MHz, DMSO-d₆) Spectra of 1n

¹H NMR (600 MHz, CDCl₃) Spectra of **3a**

¹H NMR (600 MHz, CDCl₃) Spectra of **3b**

¹³C NMR (151 MHz, CDCl₃) Spectra of **3b**

¹H NMR (400 MHz, CDCl₃) Spectra of **3c**

S63

¹H NMR (400 MHz, CDCl₃) Spectra of **3f**

¹H NMR (400 MHz, CDCl₃) Spectra of **3h**

¹H NMR (400 MHz, CDCl₃) Spectra of **3**j

¹H NMR (400 MHz, CDCl₃) Spectra of **3k**

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) Spectra of **3**l

¹³C NMR (101 MHz, CDCl₃) Spectra of **3**q

¹³C NMR (101 MHz, CDCl₃) Spectra of **3r**

¹H NMR (400 MHz, CDCl₃) Spectra of **3s**

-3.78

-00 2.18 18-3.05-4 5.0 f1 (ppm) 11.0 8.0 10.0 9.0 7.0 6.0 4.0 3.0 2.0 1.0 0.0 -1.0

¹³C NMR (101 MHz, CDCl3) Spectra of **3t**

¹H NMR (600 MHz, CDCl₃) Spectra of 3x

¹H NMR (600 MHz, CDCl₃) Spectra of 3y

¹H NMR (600 MHz, CDCl₃) Spectra of 3z

¹H NMR (600 MHz, CDCl₃) Spectra of **3aa**

¹H NMR (600 MHz, CDCl₃) Spectra of **3ab**

¹H NMR (600 MHz, CDCl₃) Spectra of **3ac**

¹³C NMR (151 MHz, CDCl₃) Spectra of **3ad**

¹³C NMR (151 MHz, CDCl₃) Spectra of 3ae

¹³C NMR (151 MHz, CDCl₃) Spectra of **3ai**

¹³C NMR (151 MHz, CDCl₃) Spectra of **3aj**

¹³C NMR (151 MHz, CDCl₃) Spectra of **3an**

10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 f1 (ppm)

¹H NMR (600 MHz, CDCl₃) Spectra of **3ap**

3.271 3.255 3.255 3.255 3.312 3.310 3.310 3.309 3.309 3.309 3.309 3.309

¹H NMR (400 MHz, CDCl₃) Spectra of **3aq**

¹H NMR (600 MHz, CDCl₃) Spectra of **3ar**

3.69 3.61 3.61 3.61 3.61 2.82 2.83 2.82 2.82

¹H NMR (600 MHz, CDCl₃) Spectra of **4a**

×3.87

¹H NMR (600 MHz, CDCl₃) Spectra of 4c

¹³C NMR (151 MHz, CDCl₃) Spectra of 4d

¹³C NMR (151 MHz, CDCl₃) Spectra of 4e

S104

¹³C NMR (151 MHz, CDCl₃) Spectra of **4f**

¹³C NMR (151 MHz, CDCl₃) Spectra of 4g

¹³C NMR (151 MHz, CDCl₃) Spectra of **4h**

¹³C NMR (151 MHz, CDCl₃) Spectra of 4i

¹³C NMR (151 MHz, CDCl₃) Spectra of 4j

¹H NMR (600 MHz, CDCl₃) Spectra of **4**l

¹H NMR (600 MHz, CDCl₃) Spectra of 4o

¹³C NMR (151 MHz, CDCl₃) Spectra of 40

¹H NMR (600 MHz, CDCl₃) Spectra of **4p**

¹H NMR (400 MHz, CDCl₃) Spectra of 5a

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (600 MHz, CDCl₃) Spectra of **5d**

3.12 2.83 2.82

1.81

¹³C NMR (151 MHz, CDCl₃) Spectra of **5d**

¹H NMR (600 MHz, CDCl₃) Spectra of **5**k

10 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 f1 (ppm)

¹³C NMR (151 MHz, CDCl₃) Spectra of 50

^{13}C NMR (151 MHz, CDCl₃) Spectra of 5p

6. Reference

[1] Y-C, Zheng. B, Shu. et al. A cascade indazolone-directed Ir(III)- and Rh(III)-catalyzed C(sp²)–H functionalization/[4+2] annulation of 1-arylindazolones with sulfoxonium ylides to access chemically divergent 8*H*-indazolo [1,2-*a*] cinnolines. *Org. Chem. Front.* **2022**, *9*, 5185-5190.

[2] L, Li. C-G, Mi. G-W, Huang. et al. A Carbene Relay Strategy for Cascade Insertion Reactions. Angew. Chem. Int. Ed. 2023, e202312793.