Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Synthesis of Oxindole Fused 1,3-Oxazepanes via Hydride Transfer

Initiated Ring Expansion of Pyrrolidine

Peng He,[†] Zongkang Wang,[†] Qiongwen Kang, [†] Nana Fei,[†] Chengyu Wang,^{*}‡ and Yanzhong Li*[†]

[†] School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China

‡ School of Chemistry and Chemical Engineering, Linyi University, Shuangling Road, Linyi, Shandong, 276000, China

E-mail: <u>yzli@chem.ecnu.edu.cn</u>

E-mail: wangchengyu@lyu.edu.cn

Table of Contents

1. General methods.	S3
2. Synthesis of starting materials	S4
3. Synthesis of 2	S16
4. 1.0 mmol scale reaction for the preparation of 2a	S27
5. Mechanistic study by isotopically label	S28
6. Figure S1. Possible pathway to ¹⁸ O- 2a	S31
7. References	. S31
8. Copies of spectra of products	S32
9. X-ray crystallography of compound 2a	S77

1. General methods

Unless noted, all commercial reagents were used without further purification. DCE is dried in calcium hydride and re-evaporated for use. THF and toluene are dried in sodium wire and re-evaporated for use. DMSO and DMF are re-evaporated for use. Reactions were monitored by thin layer chromatography. Purification of reaction products was carried out by flash chromatography on silica gel (200~300 mesh). ¹H NMR spectra were recorded at 500 MHz or 600 MHz, ¹³C NMR spectra were recorded at 125 MHz or 150 MHz, and in CDCl₃ or d⁶-DMSO (containing 0.03% TMS) solutions. ¹H NMR spectra were recorded with tetramethylsilane (δ = 0.00 ppm) as internal reference; ¹³C NMR spectra were recorded with CDCl₃ (δ = 77.00 ppm) or d⁶-DMSO (δ = 39.52 ppm) as internal reference. High-resolution mass spectra were performed on a mass spectrometer with a TOF (for EI or ESI) or FT-ICR (for MALDI) analyzer. Single crystal X-ray diffraction data was collected on a XtaLAB AFC11 (RCD3): quarter-chi single diffractometer with molybdenum cathodes.

The crystal preparation and measurement methods of **2a** as follows: Place 60.0 mg of **2a** in a 50 ml round bottom flask, dissolve **2a** with 4 mL of dichloromethane, then add 20 mL of petroleum ether and shake well, seal the flask with a sealing film, pierce a few holes, and let it stand still at room temperature until crystals precipitate out. The crystal was carefully picked out from the solvent with a spatula, and observed under a microscope to confirm that it was transparent for single crystal X-ray diffraction.

2. Synthesis of starting materials

2.1 General Procedure for the Preparation of Ynones 1.

Potassium carbonate (12.0 mmol, 1.2 equiv, 1.658 g) and amines **B** (12.0 mmol, 1.2 equiv) were added to a solution of the required o-fluorobenzaldehydes A (10.0 mmol, 1.0 equiv) in dimethylformamide (20 mL). The reaction mixture was heated to reflux for 3-6 h and then left to cool down to room temperature before being diluted with water. The aqueous layer was extracted with chloroform, and the organic layer was washed with water, dried over anhydrous MgSO₄, and evaporated in vacuo. The resulting oil was then eluted with 5% EtOAc in petrol through a silica plug to give the desired o-aminobenzaldehydes C.¹ To a solution of C (3.0 mmol, 1.0 equiv) in anhydrous THF (10 mL) was added n-BuLi (2.5 M in hexane, 3.6 mmol, 1.2 equiv) at -78 °C under N₂ atmosphere. The reaction was stirred at -78 °C for 1 h. D (3.9 mmol, 1.3 equiv) was added to the mixture, which was warmed up to room temperature gradually, and was stirred for an additional hour before being quenched with aqueous NH₄Cl. After extracting with ethyl acetate (3×20 mL), combined organic phases was washed with water and brine, dried over anhydrous MgSO₄. After filtration of MgSO₄, the filtrate was concentrated under reduced pressure to give the desired alcohol E. Without purification, **E** was added to a solution of IBX (3.6 mmol, 1.2 equiv, 1.008 g) in DMSO (10 mL) and the solution was heated to 35 °C (oil bath). for 1 h. The cooled reaction mixture was diluted with EtOAc (70 mL) and water (20 mL) and stirred vigorously for 10 min. Then it was filtered over celite. The organic layer was separated and the aqueous phase was extracted with DCM (3x10 mL). The combined extracts were sequentially washed with aq. sat. NaHCO₃ (10 mL) and NaCl solutions (10 mL),

dried (Na₂SO₄) and evaporated in vacuo. The residue was subject to flash chromatography on silica gel (petroleum ether/ethyl acetate, 20:1) to afford pure alkynones **1**.

2.2 General procedure for the synthesis of deuterated 1-(2-(pyrrolidin-1-yl-2,2,5,5-d4)phenyl)-3-(o-tolyl)prop-2-yn-1-one [D]-1d.

To a solution of pyrrolidine-2,5-dione (3.6 mmol, 357.0 mg) in THF (15 mL) was added LiAlD₄ (18 mmol, 756.0 mg) in portions in ice bath (0 °C). After stirring at 40 °C in oil bath for 12 h, Na₂SO₄·10H₂O was added until no bubbles appeared. Then DMF (15 mL), K₂CO₃ (4.5 mmol, 622.0 mg), and 2-fluorobenzaldehyde (3 mmol, 372.0 mg) were added in sequence. The mixture was heated to 120 °C in oil bath and monitored by TLC. After the consumption of 2-fluorobenzaldehyde, the mixture was cooled to room temperature and diluted with water (40 mL), and extracted with EtOAc (3 x 30 mL). The combined extracts were washed with brine (3 x 30 mL), dried by anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure and the residue was purified by flash column chromatography (eluent: EtOAc: petroleum ether, 1:20) to afford the deuterated substrate H as colorless oil in 76% yield (408 mg). To a solution of H (2.5 mmol, 1.0 equiv, 447.8 mg) in anhydrous THF (10 mL) was added n-BuLi (2.5 M in hexane, 3.0 mmol, 1.2 equiv) at -78 °C under N₂ atmosphere. The reaction was stirred at -78 °C for 1 h. I (3.25 mmol, 1.3 equiv, 377.2 mg) was added to the mixture, which was warmed up to room temperature gradually, and was stirred for an additional hour before being quenched with aqueous NH₄Cl. After extracting with ethyl acetate (3×20)

mL), combined organic phases was washed with water and brine, dried over anhydrous MgSO₄. After filtration of MgSO₄, the filtrate was concentrated under reduced pressure to give the desired alcohol **J**. Without purification, **J** was added to a solution of IBX (3.0 mmol, 1.2 equiv, 840.0 g) in DMSO (10 mL) and the solution was heated to 35 °C (oil bath). for 1 h. The cooled reaction mixture was diluted with EtOAc (70 mL) and water (20 mL) and stirred vigorously for 10 min. Then it was filtered over celite. The organic layer was separated and the aqueous phase was extracted with DCM (3x10 mL). The combined extracts were sequentially washed with aq. sat. NaHCO₃ (10 mL) and NaCl solutions (10 mL), dried (Na₂SO₄) and evaporated in vacuo. The residue was subject to flash chromatography on silica gel (petroleum ether/ethyl acetate, 20:1) to afford pure alkynones [D]-**1d**. as yellow oil in 55% yield (403.2 mg).

3-phenyl-1-(2-(pyrrolidin-1-yl)phenyl)prop-2-yn-1-one (1a). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 50%, 412.70 mg, m.p. 71-73 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.20-8.15 (m, 1H), 7.67-7.60 (m, 2H), 7.50-7.35 (m, 4H), 6.89-6.83 (m, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 3.24-3.19 (m, 4H), 2.02-1.95 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 176.6, 148.3, 133.4, 133.2, 132.8, 130.2, 128.5, 123.8, 120.7, 115.2, 114.3, 90.8, 88.7, 52.0, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₈NO: 276.1383, found 276.1385.

1-(2-(pyrrolidin-1-yl)phenyl)-3-(p-tolyl)prop-2-yn-1-one (1b). Yellow solid, purified

by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 75%, 648.0 mg, m.p. 119-121 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.18-8.14 (m, 1H), 7.53 (d, *J*=8.0 Hz, 2H), 7.41-7.36 (m, 1H), 7.20 (d, *J*=8.0 Hz, 2H), 6.85 (d, *J*=8.0 Hz, 1H), 6.81-6.76 (m, 1H), 3.24-3.19 (m, 4H), 2.39 (s, 3H), 2.00-1.95 (m,4H). ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 148.3, 140.8, 133.3, 133.2, 132.9, 129.3, 124.0, 117.6, 115.1, 114.3, 91.4, 88.5, 52.0, 25.9, 21.7. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₀NO 290.1539, found 290.1539.

I-(2-(pyrrolidin-1-yl)phenyl)-3-(m-tolyl)prop-2-yn-1-one (2c). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate =20:1); yield: 48%, 416.0 mg, m.p. 115-117 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.20-8.14 (m, 1H), 7.47-7.43 (m, 2H), 7.42-7.35 (m 1H), 7.32-7.22 (m, 2H), 6.85(d, *J* =8.5 Hz, 1H), 6.81-6.75 (m, 1H), 3.24-3.18 (m, 4H), 2.37(s, 3H), 2.02-1.96 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ176.7, 148.3, 138.3, 133.33, 133.31, 133.2, 131.1, 129.9, 128.4, 123.9, 120.5, 115.1, 114.3, 91.1, 88.4, 52.0, 25.9, 21.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₀NO 290.1539, found 290.1537.

1-(2-(pyrrolidin-1-yl)phenyl)-3-(o-tolyl)prop-2-yn-1-one (1d). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 58%, 503.1 mg. ¹H NMR (500 MHz, CDCl₃) δ 8.18-8.14 (m, 1H), 7.53 (d, *J* = 8 Hz, 2H), 7.42-7.36 (m, 1H), 7.20 (d, *J* = 8.0 Hz, 2H), 6.85 (d, *J* = 7.5 Hz, 1H), 6.81-6.76 (m, 1H), 3.24-3.19

(m, 4H), 2.39 (s,3 H), 2.00-1.90 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 176.8, 148.3, 141.9, 133.4, 133.3, 133.1, 130.3, 129.7, 125.8, 124.1, 120.6, 115.1, 114.3, 92.6, 89.9, 52.0, 25.9, 20.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₀NO 290.1539, found 290.1542.

3-(4-ethylphenyl)-1-(2-(pyrrolidin-1-yl)phenyl)prop-2-yn-1-one (1e). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 55%, 498.7 mg, m.p. 80-82 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.18-8.14 (m, 1H), 7.58-7.54 (m, 2H), 7.41-7.36 (m, 1H), 7.22 (d, *J* = 8.0 Hz, 2H), 6.85 (d, *J* = 7.5 Hz, 1H), 6.80-6.76 (m, 1H) 3.23-3.19 (m, 4H) 2.68 (q, *J* = 7.5Hz, 2H), 2.00-1.96 (m, 4H), 1.25 (t, *J* = 7.5Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 148.3, 147.1, 133.25, 133.16, 133.0, 128.1, 124.0, 117.8, 115.1, 114.3, 91.5, 88.5, 52.0, 29.0, 25.9, 15.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₂NO 304.1696, found 304.1697.

3-(4-(tert-butyl)phenyl)-1-(2-(pyrrolidin-1-yl)phenyl)prop-2-yn-1-one (1f). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 61%, 607.7 mg. ¹H NMR (500 MHz, CDCl₃) δ 8.18-8.14 (m, 1H), 7.60-7.55 (m, 2H), 7.44-7.36 (m, 3H), 6.86 (d, *J* = 7.5 Hz, 1H), 6.82-6.75 (m, 1H), 3.24-3.20 (m, 4H), 2.00-1.95 (m, 4H), 1.33 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 177.0, 153.9, 148.3, 133.3, 133.2, 132.7, 125.6, 124.0, 117.6, 115.1, 114.3, 91.4, 88.5, 52.0, 35.0, 31.1, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₆NO 332.2009, found 332.2006.

3-(3-methoxyphenyl)-1-(2-(pyrrolidin-1-yl)phenyl)prop-2-yn-1-one (2g). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 42%, 384.5 mg. ¹H NMR (500 MHz, CDCl₃) δ 8.18-8.16 (m, 1H), 7.42-7.37 (m, 1H), 7.32-7.27 (m, 1H), 7.26-7.22 (m, 1H), 7.17-7.14 (m, 1H), 7.02-6.97 (m, 1H), 6.86 (d, *J* = 7.5 Hz, 1H), 6.82-6.76 (m, 1H), 3.83 (s, 3H), 3.23-3.20 (m, 4H), 2.02-1.96 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 176.6, 159.4, 148.4, 133.4, 133.2, 129.6, 125.3, 123.8, 121.7, 117.3, 117.1, 115.2, 114.3, 90.7, 88.4, 55.4, 52.0, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₀NO 306.1489, found 306.1486.

3-(4-chlorophenyl)-1-(2-(pyrrolidin-1-yl)phenyl)prop-2-yn-1-one (2h). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 67%, 624.0 mg, m.p. 84-86 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.16-8.12 (m, 1H), 7.59-7.54 (m, 2H), 7.42-7.35 (m, 3H), 6.87 (d, *J* = 8.0 Hz, 1H), 6.81-6.76 (m, 1H), 3.24-3.18 (m, 4H), 2.00-1.96 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 148.4, 136.5, 134.0, 133.5, 133.2, 129.0, 123.5, 119.3, 115.2, 114.4, 89.4, 89.3, 52.1, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₇CINO 310.0993, found 310.0997.

3-(3-chlorophenyl)-1-(2-(pyrrolidin-1-yl)phenyl)prop-2-yn-1-one (1i). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 45%, 417.0 mg, m.p. 89-91 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.16-8.12 (m, 1H), 7.63-7.31 (m, 1H), 7.54-7.50 (m, 1H), 7.43-7.38 (m, 2H), 7.36-7.31 (m, 1H), 6.87 (d, *J* = 8.5 Hz, 1H), 6.81-6.77 (m, 1H), 3.24-3.19 (m, 4H), 2.01-1.97 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 176.0, 148.5, 134.4, 133.6, 133.3, 132.4, 130.9, 130.4, 129.8, 123.5, 122.5, 115.2, 114.4, 89.2, 88.7, 52.1, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₇ClNO 310.0993, found 310.0995.

3-(2-chlorophenyl)-1-(2-(pyrrolidin-1-yl)phenyl)prop-2-yn-1-one (1j). yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 44%, 407.8 mg. ¹H NMR (500 MHz, CDCl₃) δ 8.32-8.28 (m, 1H), 7.67-7.66 (m, 1H) 7.48-7.44 (m, 1H), 7.42-7.34 (m, 2H), 7.31-7.27 (m, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 6.82-6.77 (m, 1H), 3.24-3.20 (m, 4H), 2.05-1.95 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 176.0, 148.5, 137.2, 134.6, 133.7, 133.6, 131.1, 129.5, 126.7, 123.6, 121.0, 115.3, 114.3, 92.8, 86.8, 52.1, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₇ClNO 310.0993, found 310.0996.

3-(4-fluorophenyl)-1-(2-(pyrrolidin-1-yl)phenyl)prop-2-yn-1-one (**1k**). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 64%, 562.9 mg, m.p. 88-90 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.16-8.13 (m, 1H), 7.67-7.60 (m, 2H), 7.42-7.36 (m, 1H), 7.12-7.06 (m, 2H), 6.86 (d, *J* = 7.5 Hz, 1H), 6.81-6.75

(m, 1H), 3.23-3.19 (m, 4H), 2.00-1.96 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 176.4, 163.7 (d, J = 251.4 Hz), 148.4, 134.6 (d, J = 8.8 Hz), 113.4, 133.2, 123.7, 116.9 (d, J = 3.5 Hz), 116.0 (d, J = 22.3 Hz), 115.2, 114.4, 89.7, 88.5, 52.0, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₇FNO 294.1289, found 294.1287.

3-([1,1'-biphenyl]-4-yl)-1-(2-(pyrrolidin-1-yl)phenyl)prop-2-yn-1-one (11). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 45%, 476.0 mg. ¹H NMR (500 MHz, CDCl₃) δ 8.21-8.18 (m, 1H), 7.73-7.69 (m, 2H), 7.65-7.59 (m, 4H), 7.49-7.44 (m, 2H), 7.41-7.37 (m, 2H), 6.87 (d, *J* = 8.0 Hz, 1H), 6.82-6.78 (m, 1H), 3.25-3.21 (m, 4H), 2.01-1.97 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 176.6, 148.4, 143.0, 139.9, 133.4, 133.3, 133.2, 128.9, 128.0, 127.2, 127.1, 123.8, 119.5, 115.2, 114.3, 90.8, 89.4, 52.1, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₂NO 352.1696, found 352.1699.

3-(naphthalen-2-yl)-1-(2-(pyrrolidin-1-yl)phenyl)prop-2-yn-1-one (1m). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 42%, 409.6 mg, m.p. 104-106 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.25-8.19 (m, 2H), 7.90-7.83 (m, 3H), 7.67-7.62 (m, 1H), 7.59-7.51 (m, 2H), 7.43-7.38 (m, 1H), 6.87 (d, *J* = 7.5 Hz, 1H), 6.84-6.79 (m, 1H), 3.26-3.22 (m, 4H), 2.01-1.97 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 176.6, 148.4, 133.8, 133.7, 133.4, 133.3, 132.7, 128.5, 128.3, 128.1, 127.9, 127.7, 126.9, 123.9, 118.0, 115.2, 114.3, 91.3, 89.0, 52.1, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₀NO 326.1539, found 326.1530.

1-(4-methyl-2-(pyrrolidin-1-yl)phenyl)-3-phenylprop-2-yn-1-one (1n). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 49%, 421.1 mg, m.p. 118-120 °C.. ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, *J* = 8.0 Hz, 1H), 7.65-7.62 (m, 2H), 7.44-7.36 (m, 3H), 6.66 (s, 1H), 6.63-6.60 (m, 1H), 3.24-3.21 (m, 4H), 2.37 (s, 3H), 2.00-1.96 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 175.9, 148.7, 144.3, 133.6, 132.8, 130.1, 128.5, 121.8, 120.9, 116.7, 114.5, 90.2, 88.8, 52.0, 25.9, 22.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₀NO 290.1539, found 290.1542.

1-(5-fluoro-2-(pyrrolidin-1-yl)phenyl)-3-phenylprop-2-yn-1-one (10). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 76%, 668.1 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.88-7.83 (m, 1H), 7.67-7.63 (m, 2H), 7.48-7.38 (m, 3H), 7.19-7.14 (m, 1H), 6.84-6.80 (m, 1H), 3.20-3.17 (m, 4H), 2.01-1.97 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 175.6, 153.5 (d, *J* =233.8 Hz),145.4, 132.9, 130.5, 128.6, 123.4 (d, *J* = 5.3 Hz), 121.2 (d, *J* = 23.1 Hz), 120.4, 117.8 (d, *J* = 22.9 Hz), 115.5 (d, *J* = 7.0 Hz), 91.4, 88.2, 52.3, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₇FNO 294.1289, found 294.1279.

1-(4-chloro-2-(pyrrolidin-1-yl)phenyl)-3-phenylprop-2-yn-1-one (1p). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 76%, 704.5 mg, m.p. 72-76 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, *J* = 8.5 Hz, 1H), 7.65-7.62 (m, 2H), 7.46-7.38 (m, 3H), 6.84 (d, *J* = 2.0 Hz, 1H), 6.76-6.72 (m, 1H), 3.22-3.19 (m, 4H), 2.01-1.97 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 175.6, 148.9, 139.6, 134.5, 132.9, 130.4, 128.6, 122.4, 120.5, 115.5, 114.0, 91.2, 88.3, 52.1, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₇ClNO 310.0993, found 310.0989.

1-(2-chloro-6-(pyrrolidin-1-yl)phenyl)-3-phenylprop-2-yn-1-one (1q). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 70%, 648.9 mg, m.p. 75-77 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.61-7.57 (m, 2H), 7.47-7.42 (m, 1H), 7.40-7.36 (m, 2H), 7.19-7.14 (m, 1H), 6.76-6.73 (m, 1H), 6.68-6.65 (m, 1H), 3.30-3.26 (m, 4H), 1.97-1.93 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 180.5, 147.5, 133.1, 132.1, 130.8, 130.7, 128.6, 124.1, 120.4, 117.4, 112.8, 94.5, 90.0, 51.3, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₇ClNO 310.0993 found 310.0986.

1-(5-bromo-2-(pyrrolidin-1-yl)phenyl)-3-phenylprop-2-yn-1-one (1r). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield:

66%, 700.0 mg. ¹H NMR (500 MHz, CDCl₃) δ 8.21 (d, J = 2.0 Hz, 1H), 7.67-7.64 (m, 2H), 7.49-7.39 (m, 4H), 6.75 (d, J = 9.0 Hz, 1H), 3.20-3.16 (m, 4H), 2.01-1.97 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 175.4, 147.2, 135.8, 134.8, 133.0, 130.5, 128.6, 125.0, 120.4, 116.2, 106.4, 91.7, 88.1, 52.2, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₇BrNO 354.0488, found 354.0485.

3-phenyl-1-(2-(pyrrolidin-1-yl)-6-(trifluoromethyl)phenyl)prop-2-yn-1-one (1s). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 53%, 546.6 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.57-7.54(m, 2H), 7.45-7.42 (m, 1H), 7.39-7.34 (m, 3H), 7.08 (d, *J* = 7.5 Hz, 1H), 7.01 (d, *J* = 8.5 Hz, 1H), 3.38-3.34 (m, 4H), 2.00-1.93 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 181.4, 147.6, 133.0, 130.8, 130.0, 128.59 (d, *J* = 30.6 Hz), 128.57, 124.6, 123.9 (q, *J* = 272.8 Hz), 120.2, 118.7, 114.6 (q, *J* = 5.6 Hz), 94.1, 89.7, 51.6, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₇F₃NO 344.1257, found 344.1250.

1-(2-(pyrrolidin-1-yl)phenyl)but-2-yn-1-one (1t). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 47%, 300.2 mg. ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.05 (m, 1H), 7.38-7.25 (m, 1H), 6.83-6.80 (m, 1H), 6.77-6.72 (m, 1H), 3.18-3.15 (m, 4H), 2.11 (s, 3H), 1.98-1.94 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 177.1, 148.2, 133.3, 133.2, 123.7, 115.0, 114.2, 89.9, 80.6, 51.9, 25.9, 4.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₆NO 214.1226, found 214.1219.

1-(2-(pyrrolidin-1-yl)phenyl)-3-(thiophen-3-yl)prop-2-yn-1-one (1u). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 68%, 573.8 mg. ¹H NMR (500 MHz, CDCl₃) δ 8.17-8.11 (m, 1H), 7.80-7.74 (m, 1H), 7.42-7.32 (m, 2H), 7.31-7.27 (m, 1H), 6.85 (d, *J* = 8.5 Hz, 1H), 6.80-6.76 (m, 1H), 3.24-3.17 (m, 4H), 2.00-1.96 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 176.7, 148.3, 133.3, 133.1, 132.9, 130.2, 125.9, 123.7, 120.0, 115.1, 114.3, 88.8, 86.2, 52.0, 25.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₆NOS 282.0947, found 282.0951.

3-phenyl-1-(2-(piperidin-1-yl)phenyl)prop-2-yn-1-one (1v). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 65%, 563.9 mg. ¹H NMR (500 MHz, CDCl₃) δ 8.00-7.90 (m, 1H), 7.66-7.60 (m, 2H), 7.48-7.36 (m, 4H), 7.07 (d, *J* = 8.5 Hz, 1H), 7.00 (t, *J* = 7.5 Hz, 1H) 3.13-3.06 (m, 4H), 1.79-1.74 (m, 4H), 1.58-1.54 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 178.9, 154.0, 133.7, 132.9, 132.8, 130.2, 130.1, 128.6, 120.8, 120.5, 118.6, 90.0, 89.3, 54.4, 25.9, 24.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₀NO 290.1539, found 290.1540.

3-phenyl-1-(2-(piperidin-1-yl)phenyl)prop-2-yn-1-one (1v). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 20%, 149.4

mg. ¹H NMR (500 MHz, CDCl₃) δ 8.18-8.10 (m, 1H), 7.63 (d, J = 7.0 Hz, 2H), 7.47-7.37 (m, 4H), 7.00 (d, J = 8.5 Hz, 1H), 6.89 (t, J = 7.5 Hz, 1H) 2.95 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 177.5, 152.7, 133.9, 133.7, 132.9, 130.3, 128.6, 126.2, 120.8, 117.8, 116.4, 90.4, 88.7, 44.0. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₆NO 250.1226, found 250.1226.

1-(2-(pyrrolidin-1-yl-2,2,5,5-d₄)phenyl)-3-(o-tolyl)prop-2-yn-1-one ([D]-1d). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1); yield: 55%,403.2 mg. ¹H NMR (500 MHz, CDCl₃) δ 8.24-7.16 (m, 1H), 7.64-7.57 (m, 1H), 7.42-7.36 (m, 1H), 7.35-7.30 (m, 1H), 7.26 (d, *J* = 7.0 Hz, 1H), 7.23-7.17 (m, 1H), 6.85 (d, *J* = 9.0 Hz, 1H), 6.78 (t, *J* = 7.5 Hz, 1H), 2.95 (s, 0.14H), 2.57 (s, 3H), 1.97 (s, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 148.4, 141.9, 133.4, 133.3, 133.1, 130.2, 129.7, 125.8, 124.0, 120.6, 115.1, 114.3, 92.6, 89.9, 51.4, 44.1, 25.7, 20.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₆D₄NO 294.1791, found 294.1794.

3. Synthesis of 2

In a 10 mL dry schlenk tube, alkynones **1** (0.1 mmol, 1.0 equiv), $B(C_6F_5)_3$ (0.005 mmol, 2.6 mg, 0.05 equiv), H_2O (0.4 mmol, 7.2 mg, 4.0 equiv) and Toluene (1.0 mL) were stirred under N₂ at 80 °C (oil bath). After 1.5-15 h, the reaction mixture was cooled to room temperature and quenched with NH₄Cl aqueous solution (4 mL). Then the filtrate was extracted with DCM (5 mL × 3). The organic layers were combined, washed with

brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 15:1-10:1 as the eluent to afford **2a-2u**.

11a-benzyl-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one (2a). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 82%, 24.0 mg, m.p. 130-132 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.41 (m, 1H), 7.38-7.33 (m, 1H), 7.16-7.13 (m, 5H), 6.65-6.58 (m, 2H), 3.83-3.77 (m, 1H), 3.73-3.68 (m, 1H), 3.10-2.97 (m, 4H), 1.61-1.56 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 202.2, 160.4, 138.1, 134.4, 130.6, 127.8, 126.7, 124.6, 120.0, 117.5, 109.0, 94.7, 66.5, 41.4, 40.7, 30.1, 24.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₀NO₂ 294.1489, found 294.1486.

11a-(4-methylbenzyl)-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one

(2b). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 70%, 21.5 mg, m.p. 117-119 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.41 (m, 1H), 7.38-7.34 (m, 1H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.65-6.57 (m, 2H), 3.81-3.76 (m, 1H), 3.73-3.67 (m, 1H), 3.07-2.93 (m, 4H), 2.22 (s, 3H), 1.62-1.56 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 202.3, 160.4, 138.0, 136.1, 131.2, 130.3, 128.5, 124.5, 120.0, 117.4, 109.0, 94.6, 66.4, 41.4, 40.2, 30.1, 24.5, 21.0. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₂NO₂ 308.1645, found 308.1644.

11a-(3-methylbenzyl)-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one (2c). yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 71%, 21.7 mg, m.p. 113-115 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.42 (m, 1H), 7.39-7.34 (m, 1H), 7.05-7.01 (m, 1H), 6.96-6.91 (m, 3H), 6.65-6.57 (m, 2H), 3.82-3.78 (m, 1H), 3.70-3.66 (m, 1H), 3.01-2.90 (m, 4H), 2.23 (s, 3H), 1.60-1.58 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 202.3, 160.4, 138.0, 137.2, 134.3, 131.3, 127.60, 127.56, 127.4, 124.6, 120.0, 117.4, 109.0, 94.6, 66.4, 41.4, 40.6, 30.1, 24.6, 21.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₂NO₂ 308.1645, found 308.1647.

11a-(2-methylbenzyl)-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one

(2d). yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 15:1); yield: 56%, 17.1 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.51-7.48 (m, 1H), 7.44-7.39 (m, 1H), 7.22 (d, *J* = 7.5 Hz, 1H), 7.08-7.02 (m, 3H), 6.70-6.64 (m, 2H), 3.84-3.79 (m, 1H), 3.62-3.57 (m, 1H), 3.11 (d, *J* = 14.0 Hz, 1H), 2.98 (d, *J* = 14.0 Hz, 1H), 2.91-2.84 (m, 1H), 2.78-2.71 (m, 1H), 2.31 (s, 3H), 1.58-1.49 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 202.8, 160.2, 138.2, 137.6, 133.2, 131.9, 130.0, 126.8, 125.2, 124.8, 119.9, 117.7, 109.3, 94.9, 66.7, 41.8, 37.2, 30.0, 24.7, 20.0. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₂NO₂ 308.1645, found 308.1640.

11a-(4-ethylbenzyl)-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one

(2e). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 62%, 19.9 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.42 (m, 1H), 7.39-7.34 (m, 1H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.98 (d, *J* = 8.0 Hz, 2H), 6.66-6.58 (m, 2H), 3.82-3.78 (m, 1H), 3.72-3.67 (m, 1H), 3.07-2.91 (m, 4H), 2.53 (q, *J* = 7.5 Hz, 2H), 1.60-1.57 (m, 4H), 1.14 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 202.4, 160.4, 142.5, 138.0, 131.5, 130.5, 127.3, 124.6, 120.0, 117.4, 109.0, 94.7, 66.4, 41.4, 40.3, 30.1, 28.4, 24.6, 15.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₄NO₂ 322.1802, found 322.1794.

11a-(4-(tert-butyl)benzyl)-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)one (2f). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 64%, 22.3 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.42 (m, 1H), 7.39-7.34 (m, 1H), 7.18-7.15 (m, 2H), 7.09-7.06 (m, 2H), 6.66-6.58 (m, 2H), 3.82-3.78 (m, 1H), 3.72- 3.68 (m, 1H), 3.07-2.93 (m, 4H), 1.63-1.57 (m, 4H), 1.23 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 202.4, 160.4, 149.4, 138.0, 131.3, 130.2, 124.64, 124.60, 120.0, 117.4, 109.0, 94.7, 66.5, 41.4, 40.2, 34.3, 31.3, 30.1, 24.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₈NO₂ 350.2115, found 350.2120.

11a-(3-methoxybenzyl)-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one (2g). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 68%, 22.1 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.43 (m, 1H), 7.40-7.35 (m, 1H), 7.08-7.05 (m, 1H), 6.76-6.70 (m, 2H), 6.69-6.60 (m, 3H),3.82-3.76 (m, 1H), 3.71 (s, 3H), 3.70-3.66 (m, 1H), 3.10-2.90 (m, 4H), 1.63-1.57 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 202.2, 160.4, 159.0, 138.1, 136.0, 128.7, 124.6, 123.1, 120.0, 117.5, 116.0, 112.4, 109.0, 94.5, 66.4, 55.1, 41.4, 40.8, 30.1, 24.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₂NO₃ 324.1594, found 324.1593.

11a-(4-chlorobenzyl)-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one

(**2h**). yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 84%, 27.6 mg. ¹H NMR (600 MHz, CDCl₃) δ 7.44 (d, *J* = 6.0 Hz, 1H), 7.41-7.37 (m, 1H), 7.14-7.11 (m, 2H), 7.09-7.06 (m, 2H), 6.68-6.62 (m, 2H), 3.83-3.80 (m, 1H), 3.73-3.70 (m, 1H), 3.07-2.87 (m, 4H), 1.66-1.55 (m, 4H). ¹³C NMR (150 MHz, CDCl₃) δ 201.9, 160.4, 138.3, 132.9, 132.6, 131.8, 127.9, 124.6, 120.0, 117.8, 109.2, 94.4, 66.5, 41.5, 40.0, 30.1, 24.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₉ClNO₂ 328.1099, found 328.1098.

11a-(3-chlorobenzyl)-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one

(2i). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 86%, 28.0 mg. ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, *J* = 7.8 Hz, 1H), 7.41-7.37(m, 1H), 7.16-7.14 (m, 1H), 7.13-7.02 (m, 3H), 6.69-6.62 (m, 2H), 3.84-3.79 (m, 1H), 3.75-3.71 (m, 1H), 3.08-2.91 (m, 4H), 1.66-1.56 (m, 4H). ¹³C NMR (150MHz, CDCl₃) δ 201.8, 160.3, 138.3, 136.5, 133.5, 130.5, 129.0, 128.8, 126.9, 124.6, 119.9, 117.8, 109.2, 94.3, 66.5, 41.5, 40.4, 30.1, 24.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₉ClNO₂ 328.1099, found 328.1094.

11a-(2-chlorobenzyl)-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one

(2j). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 15:1); yield: 72%, 23.6 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.43 (m, 1H), 7.39-7.35 (m, 1H), 7.30-7.26 (m, 1H), 7.25-7.22 (m, 1H), 7.08-7.04 (m, 2H), 6.66-6.59 (m, 2H), 3.84-3.79 (m, 1H), 3.73-3.68 (m, 1H), 3.32 (d, *J* = 13.5 Hz, 1H), 3.21 (d, *J* = 13.5 Hz, 1H), 3.11-3.07 (m, 1H), 2.93-2.88 (m, 1H), 1.59-1.55 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 202.5, 160.4, 138.2, 135.1, 133.0, 132.3, 129.2, 128.1, 126.1, 124.5, 120.0, 117.5, 109.3, 94.4, 66.6, 41.9, 37.3, 30.1, 24.7. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₈CINO₂Na 350.0918, found 350.0922.

11a-(4-fluorobenzyl)-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one

(2k). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 85%, 26.5 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.41 (m, 1H), 7.40-7.35 (m, 1H), 7.13-7.07 (m, 2H), 6.86-6.80 (m, 2H), 6.66-6.60 (m, 2H), 3.83-3.77 (m, 1H), 3.75-3.70 (m, 1H), 3.09-2.96 (m, 4H), 1.62-1.53 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 202.1, 161.8 (d, *J* = 243.4 Hz), 160.4, 138.2, 132.0 (d, *J* = 7.8 Hz), 130.1 (d, *J* = 3.3 Hz), 124.6, 120.0, 117.7, 114.6 (d, *J* = 20.9 Hz), 109.1, 94.5, 66.5, 41.4, 39.8, 30.1, 24.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₉FNO₂ 312.1394, found 312.1391.

11a-([1,1'-biphenyl]-4-ylmethyl)-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-

11(11aH)-one (21). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 65%, 24.0 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.54-7.51 (m, 2H), 7.46-7.43 (m, 1H), 7.42-7.34 (m, 5H), 7.32-7.27 (m, 1H), 7.24-7.21 (m, 2H), 6.66 (d, *J* = 8.5 Hz, 1H), 6.63-6.59 (m, 1H), 3.84-3.80 (m, 1H), 3.76-3.71 (m, 1H), 3.15-3.01 (m, 3H), 2.97-2.90 (m, 1H), 1.62-1.57 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 202.2, 160.4, 140.7, 139.3, 138.1, 133.6, 131.0, 128.7, 127.1, 126.9, 126.4, 124.6, 120.0, 117.6, 109.1, 94.6, 66.5, 41.5, 40.4, 30.1, 24.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₅H₂₄NO₂ 370.1802, found 370.1805.

11a-(naphthalen-2-ylmethyl)-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-

11(11aH)-one (2m). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 15:1); yield: 57%, 20.8 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.75-7.71 (m, 2H), 7.66-7.57 (m, 2H), 7.45-7.36 (m, 3H), 7.35-7.30 (m, 2H), 6.63 (d, *J* = 8.0 Hz, 1H), 6.60-6.55 (m, 1H), 3.86-3.78 (m, 1H), 3.72-3.65 (m, 1H), 3.25 (d, *J* = 13.5 Hz 1H), 3.14 (d, *J* = 13.5 Hz, 1H), 3.05-2.92 (m, 2H), 1.61-1.50 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 202.2, 160.4, 138.1, 133.1, 132.3, 132.2, 129.3, 128.9, 127.7, 127.4, 127.2, 125.7, 125.4, 124.6, 120.0, 117.6, 109.2, 94.6, 66.5, 41.6, 40.9, 30.1, 24.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₂₃H₂₁NO₂Na 366.1465 found 366.1460.

11a-benzyl-8-methyl-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one

(2n). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 15:1); yield: 64%, 19.6 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, *J* = 8.0 Hz, 1H), 7.17-7.10 (m, 5H), 6.43 (d, *J* = 8.0 Hz, 2H), 3.82-3.77 (m, 1H), 3.72-3.65 (m, 1H), 3.10-2.88 (m, 4H), 2.30 (s, 3H), 1.63-1.53 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 201.2, 160.8, 149.9, 134.6, 130.6, 127.7, 126.6, 124.4, 119.3, 117.8, 109.2, 95.0, 66.3, 41.3, 40.7, 30.1, 24.6, 22.7. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₂NO₂ 308.1645, found 308.1639.

11a-benzyl-9-fluoro-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one

(20). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 70%, 21.7 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.17-7.06 (m, 7H), 6.60-6.56 (m, 1H), 3.84-3.79 (m, 1H), 3.71-3.66 (m, 1H), 3.10-2.97 (m, 3H), 2.94-2.88 (m, 1H), 1.61-1.57 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 202.1 (d, *J* = 3.1 Hz), 157.1, 155.4 (d, *J* = 237.4 Hz), 134.1, 130.5, 127.8, 126.8, 125.8 (d, *J* = 25.1 Hz), 120.1 (d, *J* = 6.9 Hz), 109.9 (d, *J* = 7.0 Hz), 109.6 (d, *J* = 22.5 Hz), 95.4, 66.6, 41.5, 40.8, 30.0, 24.5. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₉H₁₈FNO₂Na 334.1214, found 334.1208.

11a-benzyl-8-chloro-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one

(2p). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 83%, 27.2 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, *J* = 8.0 Hz, 1H),7.16-7.09 (m, 5H), 6.63 (d, *J* = 1.5 Hz, 1H), 6.58-6.55 (m, 1H), 3.85-3.79 (m, 1H), 3.68-3.63 (m, 1H), 3.10-2.98 (m, 3H), 2.94-2.88 (m, 1H), 1.63-1.59 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 200.8, 160.5, 144.7, 133.9, 130.5, 127.9, 126.8, 125.5, 118.5, 118.3, 108.9, 95.1, 66.5, 41.5, 40.7, 30.0, 24.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₉ClNO₂ 328.1099, found 328.1091.

11a-benzyl-10-chloro-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one

(2q). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 81%, 26.5 mg, m.p. 156-158 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.22 (t, *J* = 8.0 Hz, 1H),7.18-7.10 (m, 5H), 6.53-6.50 (m, 2H), 3.86-3.80 (m, 1H), 3.71-3.65 (m, 1H), 3.10-2.89 (m, 4H), 1.63-1.54 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 199.4, 161.2, 138.0, 134.1, 132.3, 130.5, 127.8, 126.8, 118.5, 116.6, 107.1, 94.7, 66.5, 41.5, 40.9, 30.0, 24.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₉ClNO₂ 328.1099, found 328.1095.

11a-benzyl-9-bromo-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one

(2r). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 67%, 24.8 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, *J* = 2.0 Hz, 1H),7.43-7.40 (m, 1H), 7.18-7.08 (m, 5H), 6.55 (d, *J* = 8.5 Hz, 1H), 3.84-3.78 (m, 1H), 3.72-3.66 (m, 1H), 3.10-2.97 (m, 3H), 2.92-2.85 (m, 1H), 1.62-1.56 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 201.0, 158.9, 140.4, 133.9, 130.5, 127.9, 126.9, 126.8, 121.5, 110.6, 109.7, 95.0, 66.6, 41.5, 40.7, 30.0, 24.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₉BrNO₂ 372.0594, found 372.0590.

11a-benzyl-10-(trifluoromethyl)-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-

11(11aH)-one (2s). Yellow solid, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1); yield: 68%, 24.8 mg, m.p. 113-115 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (t, *J* = 8.0 Hz, 1H),7.15-7.08 (m, 5H), 6.82 (t, *J* = 7.5 Hz, 2H), 3.87-3.82 (m, 1H), 3.78-3.72 (m, 1H), 3.19-3.12 (m, 1H), 3.06 (s, 2H), 2.96-2.90 (m, 1H), 1.65-1.59 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 198.7, 161.0, 137.0, 133.7, 130.4, 127.8, 127.1(d, *J* = 34.6 Hz), 126.8, 122.3 (q, *J* = 272.1 Hz), 115.5, 114.7 (q, *J* = 5.8 Hz), 94.7, 66.6, 41.4, 41.0, 30.0, 24.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₃H₂₁NO₂Na 366.1465, found 366.1460.

11a-ethyl-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one (2t). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 15:1); yield: 41%, 9.5 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.56-7.52 (m, 1H),7.49-7.44 (m, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 6.72-6.68 (m, 1H), 3.87-3.79 (m, 1H), 3.77-3.70 (m, 1H), 3.33-3.25 (m, 1H), 2.97-2.90 (m, 1H), 1.98-1.89 (m, 1H), 1.79-1.72 (m, 1H), 1.71-1.58 (m, 4H), 0.73 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 202.7, 160.8, 138.2, 124.6, 120.4, 117.4, 109.0, 95.1, 66.1, 40.7, 30.2, 27.7, 24.4, 7.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₈NO₂ 232.1332, found 232.1329.

11a-(thiophen-3-ylmethyl)-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)one (**2u**). Yellow oil, purified by chromatography on silica gel (petroleum ether/ethyl acetate = 15:1); yield: 68%, 20.3 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 8.0 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.111-7.07 (m, 1H), 6.96 (d, *J* = 3.0 Hz, 1H), 6.90 (d, *J* = 5.0 Hz, 1H), 6.68-6.61 (m, 2H), 3.83-3.77 (m, 1H), 3.74-3.68 (m, 1H), 3.13-3.00 (m, 3H), 2.97-2.89 (m, 1H), 1.65-1.57 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 202.1, 160.4, 138.1, 134.5, 129.7, 124.60, 124.55, 123.7, 120.0, 117.6, 109.0, 94.1, 66.5, 41.2, 35.2, 30.2, 24.6. HRMS (ESI) m/z: [M+Na]⁺ calcd for C₁₇H₁₇NO₂SNa 322.0872, found 322.0872.

4. 1.0 mmol scale reaction for the preparation of 2a.

In a 25 mL dry high-pressure sealed reaction tube, alkynone **1a** (1.0 mmol, 275.1 mg, 1.0 equiv), $B(C_6F_5)_3$ (0.05 mmol, 2.6 mg, 0.05 equiv), H_2O (4.0 mmol, 72.0 mg, 4.0 equiv) and toluene (10 mL) were stirred under N₂ at 80 °C (oil bath). After 2 h, the reaction mixture was cooled to room temperature and quenched with NH₄Cl aqueous solution (30 mL). Then the filtrate was extracted with DCM (40 mL × 3). The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 10:1 as the eluent to afford **2a** (168.2 mg, 57%).

5. Mechanistic study by isotopically label

5.1¹⁸O isotopic labeling experiment

In a 25 mL dry high-pressure sealed reaction tube, alkynone **1a** (0.1 mmol, 27.5 mg, 1.0 equiv), $B(C_6F_5)_3$ (0.005 mmol, 2.6 mg, 0.05 equiv), $H_2^{18}O$ (0.8 mmol, 16.0 mg, 8.0 equiv) and toluene (1.0 mL) were stirred under N₂ at 80 °C (oil bath). After 1.5 h, the reaction mixture was cooled to room temperature and quenched with NH₄Cl aqueous solution (4 mL). Then the filtrate was extracted with DCM (5 mL × 3). The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 10:1 as the eluent to afford ¹⁸O-**2a** (23.1 mg, 78%).

¹⁸O-2a: ¹³C NMR (125 MHz, CDCl₃) δ 202.24, 202.20, 160.3, 138.1, 134.4, 130.5, 127.7, 126.6, 124.6, 120.0, 117.5, 109.0, 94.6, 66.5, 66.4, 41.4, 40.7, 30.1, 24.6. HRMS (ESI) m/z: $[M+H]^+$ calcd for C₁₉H₂₀NO₂ 294.1489, found 294.1493; $[M+H]^+$ calcd for C₁₉H₂₀NO¹⁸O 296.1531, found 296.1537; $[M+H]^+$ calcd for C₁₉H₂₀N¹⁸O₂ 298.1574, found 298.1580.

HP-1-2a-2#1 T: FTMS + p m/z= 293.7	77 RT: 0.79 ESI Full ms 9219-298.6486	[100.0000-750.0000]
m/z	Intensity	Relative
294.14932	70021472.0	12.42
295.15320	25504008.0	4.52
296.15369	563844608.0	100.00
296.25629	4599975.0	0.82
297.15710	132497728.0	23.50
297.26202	1147435.0	0.20
298.15796	147349248.0	26.13

¹³C NMR (125 MHz, CDCl₃)

5.2 Deuterium Labelling Experiment

In a 25 mL dry high-pressure sealed reaction tube, alkynone [D]-1d (0.1 mmol, 29.3 mg, 1.0 equiv), $B(C_6F_5)_3$ (0.005 mmol, 2.6 mg, 0.05 equiv), H_2O (0.4 mmol, 7.2 mg, 4.0 equiv) and toluene (1.0 mL) were stirred under N₂ at 80 °C (oil bath). After 2 h, the reaction mixture was cooled to room temperature and quenched with NH₄Cl aqueous solution (4 mL). Then the filtrate was extracted with DCM (5 mL × 3). The organic layers were combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 10:1 as the eluent to afford [D]-2d (17.1 mg, 55%).

6. Figure S1. Possible pathway to ¹⁸O-2a

First, **1a** undergoes 1,5-hydride transfer to furnish intermediate C. $H_2^{18}O$ serves as a nucleophile attacking imine ions to form intermediate **D**-2. Under the action of Lewis acid B(C₆F₅)₃, **D**-2 transforms into **M**, $H_2^{18}O$ serves as a nucleophile again attacking **M** to form intermediate **N**. The target product ¹⁸O-**2a** could be obtained from **N** through path a or path b (see Scheme 3 in the manuscript).

Figure S1. Possible pathway to ¹⁸O-2a

7. References

(1) (a) Han, Y.-Y.; Han, W.-Y.; Hou, X.; Zhang, X.-M.; Yuan, W.-C., FeCl3-Catalyzed Stereoselective Construction of Spirooxindole Tetrahydroquinolines via Tandem 1,5-Hydride Transfer/Ring Closure. *Org. Lett.* **2012**, 14, 4054-4057; (b) Wang, S.; Shen, Y.-B.; Li, L.-F.; Qiu, B.; Yu, L.; Liu, Q.; Xiao, J., N-Alkylation-Initiated Redox-Neutral [5 + 2] Annulation of 3-Alkylindoles with o-Aminobenzaldehydes: Access to Indole-1,2-Fused 1,4-Benzodiazepines. *Org. Lett.* **2019**, 21, 8904-8908

8. Copies of spectra of products

¹H NMR (500 MHz, CDCl₃)

¹H NMR (500 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

176.719	148.309 138.308 133.328 133.310 133.207 133.207 133.207 133.207 133.249 129.949 128.428 128.428 120.530 115.146 114.287	91.133 38.444 77.254 77.000 76.746	52.021	25.897 21.160
Ì		$\overline{\mathbf{N}}$	Ĭ	1 1

S37

¹H NMB (200 MHz, CDCl³) ¹ State 128 ¹ State 128
¹ State 128
¹ State 128
¹ State 128
¹ State 128
¹ State 128
¹ State 128
¹ State 128
¹ State 128
¹ State 128
¹ State 128
¹ State 128
¹ Sta

S42

- 0.000

¹³C NMR (125 MHz, CDCl₃)

176.637	148.357 142.999 133.905 133.378 133.378 133.378 133.372 133.322 133.322 133.322 133.322 133.322 133.322 127.204 1127.204	52.055	25.913

-20 -3 230 220 210 170 160 150 140 110 100 f1 (ppm) -10

¹³C NMR (125 MHz, CDCl₃)

175.946	148.660 144.339 133.592 132.777 132.777 132.777 132.777 132.777 132.777 128.510 128.510 128.510 128.510 128.510 128.510 116.739 114.494	90.204 88.782 77.254 77.000 76.746	51.998	25.893 22.113
1		$\vee \vee$	1	N 7

7.864 7.858 7.858 7.657 7.657 7.657 7.654 7.657 7.451 7.454 7.451 7.463 7.421 8.424 8.424 8.424 8.124 8.124 8.142 8.163 7.1637

S47

----0.000

90 80

 0 -10 -20 -3

8,144 8,128 8,128 8,128 7,768 7,768 7,760 7,760 7,760 7,760 7,760 7,760 7,760 7,760 7,760 7,733 7,333 7,338 7,3377 7,338 7,3377 7,338 7,33333 7,73333 7,73333 7,73333 7,73333 7,73333 7,73333 7,73333 7,73333 7,73333 7,73333 7,733333 7,73333 7,73333 7,732333 7,732333 7,7273333 7,7275333 7,72775333 7,72775333 7,72775333 7,7277577777777777777777777777777777777	3.222 3.209 3.196 3.174 1.995 1.989 1.982 1.982 1.982 1.969	0000-0

¹³C NMR (125 MHz, CDCl₃)

S53

- 177.497 - 152.716 133.889 133.7889 133.7889 133.7889 133.7889 133.788 133.788 133.788 133.788 133.788 133.788 126.202 126.728 116.436 116.436	 ∽ 90.409 ~ 88.706 ~ 77.254 ~ 77.000 ~ 76.747 	- 44.010
---	--	----------

176.867	148.398 141.916 133.408 133.263 133.119 133.249 133.249 133.249 129.707 125.787 125.787 125.787 125.787 126.111 115.107 114.296	92.570 89.874 77.255 77.000 76.746	51.374	44.059	25.677 20.805
1		\vee	- i	i.	11

S58

$^{1}\text{H} \text{ NMB} (500 \text{ MHz}, \text{CDCl}^{3})$

¹H NMB (200 MHz, CDCl³) ¹C 2525 ¹C 2525 ¹C 2525 ¹C 2525 ¹C 2525 ¹C 2525 ¹C 2555 ¹C 25555 ¹C 25555 ¹C 25555 ¹C 25555

 $^{1}\text{H} \text{NMB} (200 \text{ MHz}, \text{CDCl}^{3})$

 $\begin{array}{c} 7.455\\ 7.453\\ 7.451\\ 7.436\\ 7.437\\ 7.436\\ 7.337\\ 7.337\\ 7.373\\ 7.373\\ 7.373\\ 7.373\\ 7.373\\ 7.373\\ 7.373\\ 7.373\\ 7.373\\ 7.373\\ 7.373\\ 7.373\\ 7.373\\ 7.373\\ 7.373\\ 7.357\\ 7.357\\ 7.357\\ 7.357\\ 7.357\\ 7.357\\ 7.356\\ 6.688\\ 6.633\\ 6.633\\ 6.633\\ 6.668\\ 6.633\\ 6.668\\ 6.633\\ 6.668\\ 6.668\\ 6.633\\ 6.668\\ 6.688\\ 6.$

¹³C NMR (150 MHz, CDCl₃)

- 201.808

160.336	138.262 136.515 133.458 133.458 130.525 130.525 130.525 128.972 128.972 128.972 128.972 128.972 128.972 112.633 119.945 119.945 119.945 119.945 119.245	77.212 77.000 76.788 66.546	-41.528 -40.378 -30.057 -24.552
		$\langle \mathcal{L} \rangle$	-

7,461 7,461 7,4458 7,7458 7,7382 7,3385 7,3363 7,354 7,3551 7,3551 7,3551 7,2500 7,2566 7,2245 7,2233 7,2566 7,22666 7,22666 7,22666 7,22666 7,22666 7,22666 7,22666 7,22666 7,22666 7,22666 7,22666 7,22666 7,22666 7,22666 7,22666 7,22666 7,22666 7,22666 7,22666 3,337 3,327 3

0.000 $\begin{array}{c} 7,431\\ 7,431\\ 7,416\\ 7,416\\ 7,416\\ 7,416\\ 7,416\\ 7,339\\ 7,339\\ 7,337\\ 7,337\\ 7,337\\ 7,337\\ 7,337\\ 7,337\\ 7,337\\ 7,337\\ 7,337\\ 7,337\\ 7,337\\ 7,337\\ 7,337\\ 7,372\\ 7,$ 960 611 605 602 599 704 054 027 987 786 740 735 709 595 587 6.659 6.642 6.635 6.635 6.620 7.113 7.102 7.096 7.085 - 6.815 7.414 7.377 7.266 6.850 6.832 7.413 43. 42 41

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 fl (ppm) 3.0 2.5 2.0 0.5 0.0 -0.5 4.5 4.0 3.5 1.5 1.0

¹³C NMR (125 MHz, CDCl₃)

- 202.072

162.804 160.857 160.356	131.994 131.932 130.076 130.050 124.560 120.012	117.695 114.698 114.531 109.063 94.528	77.255 77.000 76.747 66.500	41.405 39.825 30.088 24.572
<u> </u>		1221	\checkmark	-

$^{1}H NMR (500 MHz, CDCl^{3})$

110 100 f1 (ppm) -20 -3 230 220 210 200 170 160 150 140 130 -10

7.7.4 7.7.736 7.736 7.650 7.651 7.651 7.651 7.651 7.634 7.436 7.4339 7.4339 7.4339 7.424 7.3356 7.3349 7.3349 7.3349 7.3349 7.3349 7.3349 7.3349 7.3349 7.3349 7.3349 7.3349 7.3349 7.33267.3

S69

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR (125 MHz, CDCl₃)

202.086 202.062	157.124 156.374 156.374 154.475 134.115 130.521 130.521 120.675 120.057 120.057 109.887 109.887 109.825 109.825 109.677 109.497 109.497 109.497 109.497	77.254 77.000 76.746 36.645	41.534 40.773 30.047 24.545
Ŷ		47	- V 11

 $^{1}\text{H} \text{NMK} (500 \text{ MHz}, \text{CDCl}^{3})$

$\begin{array}{c} 7,264\\ 7,224\\ 7,160\\ 7,164\\ 7,166\\ 7,149\\ 7,143\\ 7,143\\ 7,132\\ 7,143\\ 7,132\\ 7,122\\ 7,$

¹³C NMR (125 MHz, CDCl₃)

- 201.025

158.914	140.386 133.897 133.461 127.878 127.878 126.928 126.928 126.928 126.928 126.928 126.43 110.648	95.012	77.253 77.000 76.747 66.575	41.465 40.667 30.005 24.511
I		1	\checkmark -	$\mathbf{Y} = 1$

¹³C NMR (125 MHz, CDCl₃)

f1 (ppm)

¹³C NMR (125 MHz, CDCl₃)

.130	.388	.105 .507 .653 .654 .664 .685 .685 .685 .994 .003	133	254 000 746 179	214 206 153 317
02	60	338 229 232 232 233 237 237 237 237 237 237 237	4	V V 0 0	(10,04
Ñ	÷	++++++++++++++++++++++++++++++++++++	Ó	2744	4 ∞ ∞ ∿
	1			41	/ / / /

9. X-ray crystallography of compound 2a.

11a-benzyl-2,3,4,5-tetrahydro-[1,3]oxazepino[3,2-a]indol-11(11aH)-one (2a, 2305869)

(Ortep ellipsoids are depicted at the 50% level)

Table S1. Crystal data and structure refinement for 2a.

Identification code	2a			
Empirical formula	C19H19NO2			
Formula weight	293.35			
Temperature	213(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21/n			
Unit cell dimensions	a = 7.9979 (3) Å, α= 90°.			
	$b = 14.3194 (5) \text{ Å}, \beta = 91.7040 (10)^{\circ}.$			
	$c = 13.4938 (4) Å, \gamma = 90^{\circ}.$			
Volume	1544.70(9) Å ³			
Z	4			
Density (calculated)	1.261 Mg/m ³			
Absorption coefficient	0.082 mm ⁻¹			
F(000)	624			
Crystal size	0.160 x 0.130 x 0.100 mm ³			
Theta range for data collection	2.918 to 25.998°.			
Index ranges	-9<=h<=7, -17<=k<=17, -16<=l<=16			
Reflections collected	14655			
Independent reflections	3028 [R(int) = 0.0436]			
Completeness to theta = 26.000°	99.6 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7456 and 0.6535			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	3028 / 0 / 200			
Goodness-of-fit on F ²	1.061			
Final R indices [I>2sigma(I)]	R1 = 0.0423, wR2 = 0.0867			
R indices (all data)	R1 = 0.0594, WR2 = 0.0957			
Extinction coefficient	0.029(4)			
Largest diff. peak and hole	0.151 and -0.139 e.Å ⁻³			

