Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Support Information

Metal-Free Phosphine-Catalyzed Visible-Light-Induced Radical Cyclization of Alkenes: Access to Cyclic *gem*-Difluoroacyl Scaffolds

Ruowen Li^a, Yicong Li^a, Yiwei Liu^a, Yanzhao Wang^{*a}, Jingjing Wu^{*ab}, Fanhong Wu^{*a}

^a School of Chemical and Environmental Engineering and Shanghai Engineering

Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China;

^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic

Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

E-mail: wyz@sit.edu.cn, wujj@sit.edu.cn, wfh@sit.edu.cn

1 General Information	. 1
2 Experimental procedures	. 2
2.1 Typical synthesis methods of 3aa	. 2
2.2 Typical synthesis methods of 4aa	. 2
2.3 Experimental setup	. 2
3 Optimization details of the reaction conditions	. 3
4 Synthesis of raw materials	. 4
4.1 Preparation of 2-bromo-2,2-difluoroketones	. 4
4.2 Synthesis of complex olefins	. 4
5 Mechanistic Studies	. 5
5.1 Trapping experiment with TEMPO	. 5
5.2 Switch on and off the light experiment	. 6
5.3 UV-Vis absorption experiment	. 7
5.4 DFT calculations	. 8
5.4.1 Computational Details	. 8
5.4.2 Cartesian Coordinate	. 9
5.5 Another possible reaction mechanism	17
6 Characterization data of all products	18
7 References	34
8 NMR spectra (¹ H, ¹³ C and ¹⁹ F)	35
9 X-Ray structures	92

Contents

1 General Information

All reagents were commercially available and used without further purification unless indicated otherwise. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Reactions were monitored by thin layer chromatorgraphy (TLC) carried out on GF254 plates (0.25mm layer thickness) using UV light or 5% molybdophosphoric acid solution as visualizing agent. Flash chromatography was performed with 200-300 mesh silica gels. All NMR spectra were recorded on a Quantun-IPlusNMR 400 (model: Qone AS400, resonance frequencies 400MHz for 1H and 100 MHz for ¹³C and 376 MHz for ¹⁹F) or Bruker AVANCE III 500 MHz. The samples were dissolved in 0.6 mL CDCl₃ (99.8 % D.TMS). Chemical shifts were given in values of δ H and δ C referenced to residual solvent signals (δ H 7.26 for ¹H, δ C 77.0 for ¹³C in CDCl₃). Data are presented in the following space: chemical shift, multiplicity, coupling constantin hertz (Hz), and signal area integration in natural numbers. ¹H, ¹³C and ¹⁹F multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of doublets of doublets (ddd), and multiplet (m). High resolution mass spectra (HRMS) were recorded on a Bruker solan X 70 FT-MS (samples was dissolved in CH₃OH and the ion source was ESI). Blue LEDs (40 W) were used as the irradiation light.

2 Experimental procedures

2.1 Typical synthesis methods of 3aa

Take a 25 ml dry reaction tube and add a suitable size magneton, then add dppm (38.4 mg, 10 mol%) and Na₂CO₃ (265.0 mg, 2.5 eq) in turn. After N₂ is replaced for three times, add allyl acetate (100.1 mg, 1 mmol) and BrCF₂COC₆H₅ (470.1 mg, 2.0 eq) under the N₂ stream. Finally, the reaction was stirred for 24 hours under blue LEDs (the light source is 5 cm away from the reaction device). After the completion of the reaction, add 60 mL of water and ethyl acetate to extract three times, dry with anhydrous Na₂SO₄ for 30 minutes, filter and concentrate. The residue was purified by silica gel column chromatography using a petroleum ether/AcOEt (30:1) as the eluent to give the corresponding products.

2.2 Typical synthesis methods of 4aa

Take a 25 ml dry reaction tube and add a suitable size magneton, then add dppm (38.4 mg, 10 mol%) and Na₂CO₃ (265.0 mg, 2.5 eq) in turn. After N₂ is replaced for three times, add allyl acetate (100.1 mg, 1 mmol) and ICF₂COC₆H₅ (564.1 mg, 2.0 eq) under the N₂ stream. Finally, the reaction was stirred for 24 hours under blue LEDs (the light source is 5 cm away from the reaction device). After the completion of the reaction, add 60 mL of water and ethyl acetate to extract three times, dry with anhydrous Na₂SO₄ for 30 minutes, filter and concentrate. The residue was purified by silica gel column chromatography using a petroleum ether/AcOEt (30:1) as the eluent to give the corresponding products.

2.3 Experimental setup

Spot Lamp 460-470 nm. (For more details: [taobao] https://item.taobao.com/item.htm?spm=2013.1.w400415722417492.24.21f6209ekm032z&id=597 700668537). The seal tube was positioned on a stir plate approximately 5 cm away from the LED.

3 Optimization details of the reaction conditions

Ľ5

Entry	Phosphine	Base	Solvent	Temperature	Yield ^c (%)
1	L1	Na ₂ CO ₃	DCE	90 °C	81
2	L2	Na ₂ CO ₃	DCE	90 °C	8
3	L3	Na ₂ CO ₃	DCE	90 °C	32
4	L4	Na ₂ CO ₃	DCE	90 °C	31
5	L5	Na ₂ CO ₃	DCE	90 °C	36
6	L6	Na ₂ CO ₃	DCE	90 °C	33
7	L7	Na ₂ CO ₃	DCE	90 °C	57
8	L8	Na ₂ CO ₃	DCE	90 °C	51
9	L9	Na ₂ CO ₃	DCE	90 °C	55
10		Na ₂ CO ₃	DCE	90 °C	7
11	L1	K ₂ CO ₃	DCE	90 °C	57

12	L1	Cs_2CO_3	DCE	90 °C	23
13	L1	КОН	DCE	90 °C	Trace
14	L1	NaOH	DCE	90 °C	Trace
15	L1	^t BuOK	DCE	90 °C	Trace
16	L1	KOAc	DCE	90 °C	32
17	L1	Et ₃ N	DCE	90 °C	44
18	L1	TMEDA	DCE	90 °C	22
19	L1		DCE	90 °C	Trace
20	L1	Na ₂ CO ₃	CH ₃ CN	90 °C	69
21	L1	Na ₂ CO ₃	DMF	90 °C	23
22	L1	Na ₂ CO ₃	DMSO	90 °C	N.D.
23	L1	Na ₂ CO ₃	THF	90 °C	40
24	L1	Na ₂ CO ₃	DME	90 °C	15
25	L1	Na ₂ CO ₃	DCM	R.T.	48
26	L1	Na ₂ CO ₃	DCE	100 °C	69
27	L1	Na ₂ CO ₃	DCE	60 °C	48
28	L1	Na ₂ CO ₃	DCE	30 °C	45
29 ^b	L1	Na ₂ CO ₃	DCE	90 °C	60

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.4mmol), phosphine (10 mol%), Base (0.5mmol), solvent (2.0 mL), blue LED 40 W, 90 °C, N₂, 24 h. ^b Blue LED 18W instead of blue LED 40W. ^cYields determined by ¹⁹F NMR analysis using Benzotrifluoride as the internal standard.

4 Synthesis of raw materials

4.1 Preparation of 2-bromo-2,2-difluoroketones

$$R \xrightarrow{O} F \xrightarrow{F} F \xrightarrow{O} O \xrightarrow{NaH} R \xrightarrow{O} O \xrightarrow{O$$

The 2-bromo-2,2-difluoroacetophenones 1a-1q were prepared according to the reported procedure.^[1] As shown above, the intermediates enols were obtained from the reaction of ethyl 2,2,2-trifluoroacetate and ketones. The enols reacted with Selectfluor® to form fluorinated gem-diols, which then reacted with N-Bromosuccinimide to afford 2-bromo-2,2 difluoroacetophenones 1a-1q using the trifluoroacetate release conditions.

4.2 Synthesis of complex olefins

The Estra-1,3,5(10)-trien-17-one, 3-(2-propen-1-yl) $2\mathbf{q}$ were prepared according to the reported procedure.^[2] To an oven-dried round-bottom flask with a stir bar was added Estrone starting material (1.0 equiv), CH₂Cl₂ (0.2 M), Et₃N (2.0 equiv). The reaction was cooled to 0°C. Trifluoromethanesulfonic anhydride Tf₂O (1.2 equiv) was added dropwise and the reaction was stirred at 0°C for 30 min. After warming up to room temperature, the reaction was quenched with addition of cold water. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (20 mL x 3). The organic layers were combined and concen trated under reduced pressure. The crude mixture was purified by flash column chromatography to the $2\mathbf{q}$ '.

To an oven-dried round bottom flask equipped with condenser was added a stir bar, LiCl (4.0 equiv), DMF (0.25 M), allyltributylstannane (1.1 equiv), 2q' (1.0 equiv) and Pd(PPh₃)₄ (0.03 equiv). The reaction was heated to 100° C. and stirred for 12 hours. Upon completion, the reaction was cooled to room temperature, transferred into a separatory funnel with iced 10% NH₄OH solution (1:1 to DMF) and shake vigorously. Layers were separated, aqueous layer was extracted with ethyl acetate (30 mL x 3). The organic layers were combined and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography to give allylated olefin product 2q.

5 Mechanistic Studies

5.1 Trapping experiment with TEMPO

(a)

5.2 Switch on and off the light experiment

The results of the on-off lamp experiment of the phosphine-catalyzed radical cyclization of 2-bromo-2,2-difluoroacetophenone (1a) and allyl acetate (2a) show that there is no product formation in the dark, which suggested that an extended radical chain process is unlikely.

In addition, we also performed an on-off lamp experiment of the addition reaction of iododifluoroacyl to allyl acetate, the reaction was found to proceed continuously when the light was turned off, but with a slower rate, which indicated that a radical-chain process might be involved in this reaction.

5.3 UV-Vis absorption experiment

UV-Vis absorption were recorded using Shimadzu UV-1800 spectrophotometer for all experiments. Four solutions were prepared:

a) DPPM (0.5 mmol) in DCE (5.0 mL).

b) 2-bromo-2,2-difluoroacetophenone 1a (0.5 mmol) in DCE (5.0 mL).

c) 2-bromo-2,2-difluoroacetophenone **1a** (0.5 mmol) and DPPM (0.5 mmol) in DCE (5.0 mL).

As shown in Figure above, DPPM has no absorption in the visible-light region (curve **a**). A medium visible-light absorption of 2-bromo-2,2-difluoroacetophenone (**1a**) was detected at 280-430 nm (curve **b**). The mixture of DPPM with **1a** shows a red shift and a new absorption band (curve **c**) in the visible region (416-520 nm). This redshift may support the formation of an electron donor-acceptor complex (EDA complex) between 2-bromo-2,2-difluoroacetophenone and DPPM in the reaction mixture.

5.4 DFT calculations

5.4.1 Computational Details

Structures of the reactants, intermediates, transition states, and products were optimized in dichloroethane at the M06-2X/def2-tzvp level using Gaussian16. The solvation effect was introduced via SMD model. At the same computational level, vibrational frequencies were calculated to confirm the local minima with all positive frequencies and transition states with only one imaginary frequency. Intrinsic reaction coordinate (IRC) calculations were performed at the M06-2X/def2-tzvp level to verify that the optimized geometry is truly a transition state, which connects the designated intermediates. The electronic energies (Gibbs free energies and Enthalpies) of all the complexes are listed in Table S1.

Table S1. The electronic energies, Gibbs free energies and Enthalpies of all the complexes

(Hartree)	Electronic	Free Energy	Enthalpy

	Energy		
IV + II	-5151.3038	-5150.7786	-5150.6227
TS1 + II	-5151.2870	-5150.7559	-5150.6065
V + II	-5151.3239	-5150.7905	-5150.6413
VII + dppm + (Br-)	-5151.2905	-5150.7667	-5150.6074
3aa + HBr + dppm	-5151.3794	-5150.8628	-5150.7001
VI + dppm	-5151.3722	-5150.8375	-5150.6882
2FBrPh	-3156.9762	-3156.9014	-3156.8514
dppm	-1648.5676	-1648.2256	-1648.1462
2FBrPh-dppm	-4805.5466	-4805.1131	-4804.9985

5.4.2 Cartesian Coordinate

IV			
С	4.40139500	2.33610000	0.16159800
С	4.95138400	1.17212200	-0.36534500
С	4.17258500	0.03560100	-0.48685800
С	2.83700300	0.04605100	-0.07600400
С	2.29166200	1.21620600	0.45570400
С	3.07448500	2.35634100	0.56805600
Н	5.00909400	3.22730400	0.25569000
Н	5.98640900	1.15403300	-0.68097200
Н	4.58746100	-0.87512800	-0.89817300
Н	1.26395400	1.25524300	0.78659200
Н	2.64529800	3.26113400	0.97824100
С	2.06968700	-1.21631800	-0.26027700
0	2.51861100	-2.16611400	-0.84953900
С	0.62175300	-1.33703600	0.26923000
F	0.35059400	-2.65675000	0.43288200
F	0.53755800	-0.79230900	1.51757200
С	-0.40567300	-0.72490900	-0.66276800
С	-1.78537300	-0.85257800	-0.12565200
Н	-0.29008400	-1.24236700	-1.62535800
Н	-0.14656600	0.32199400	-0.83703300
С	-2.82709200	0.09729400	-0.57314300
Н	-2.10142400	-1.78279300	0.32812400
Н	-2.44987300	1.12433600	-0.54418900
Н	-3.13709200	-0.11539700	-1.60536600
0	-3.95414600	-0.04279700	0.29900900
С	-5.07176100	0.67600400	0.10371700
0	-5.99069600	0.51107200	0.86253300
С	-5.10128100	1.63961100	-1.04493800
Н	-4.29448600	2.36803300	-0.95487200
Н	-4.96991300	1.11029100	-1.98964800
Н	-6.05894100	2.15063400	-1.04307700

II			
С	4.13800200	-0.48716300	0.61657700
С	5.23258600	-1.23253300	1.04141900
С	5.23354700	-2.61373300	0.91215800
С	4.13640500	-3.24961300	0.34179700
С	3.04829500	-2.50666100	-0.09006100
С	3.02729600	-1.11626400	0.05622200
Н	4.15793500	0.58982600	0.72549900
Н	6.08565100	-0.72714400	1.47711200
Н	6.08533800	-3.19241600	1.24644100
Н	4.13112500	-4.32622700	0.22512400
Н	2.21091000	-3.01613400	-0.55524600
Р	1.59808800	-0.19751400	-0.64707800
С	1.76871800	1.45517200	0.12921600
С	1.90691100	2.54881700	-0.72195200
С	1.76805200	1.66964200	1.50934500
С	2.03570600	3.83565700	-0.20860400
Н	1.90542000	2.39445200	-1.79515700
С	1.89233900	2.95123700	2.02309600
Н	1.68086200	0.83178300	2.19169800
С	2.02493000	4.03782300	1.16321200
Н	2.13677700	4.67675800	-0.88320000
Н	1.88966400	3.10514300	3.09505600
Н	2.12029600	5.03857100	1.56582300
С	0.25171500	-0.95052000	0.39542700
Н	0.32931700	-0.64039300	1.43937600
Н	0.37101000	-2.03465100	0.34545700
Р	-1.41611900	-0.58725300	-0.23946600
С	-2.56045700	-0.83599900	1.12462800
С	-2.26246300	-1.72959100	2.15644200
С	-3.81927800	-0.22608200	1.08609300
С	-3.19925400	-1.98441600	3.14820400
Н	-1.30054300	-2.22569900	2.19232000
С	-4.74714800	-0.48279900	2.08190200
Н	-4.06834100	0.45372200	0.27966200
С	-4.43957400	-1.36089300	3.11593200
Н	-2.95683100	-2.67168900	3.94878400
Н	-5.71472700	0.00172300	2.05011800
Н	-5.16731600	-1.56035200	3.89208800
С	-1.48152300	1.16816600	-0.67328800
С	-1.36446500	1.53862200	-2.01079900
С	-1.59748200	2.15025100	0.31463800
С	-1.36087200	2.88437400	-2.35990600
Н	-1.27629200	0.77560600	-2.77489800
С	-1.59391800	3.48955900	-0.03987300
Н	-1.68389400	1.86598200	1.35696800
С	-1.47651600	3.85679600	-1.37761900
Н	-1.27056000	3.16862100	-3.40052500

Н	-1.67754800	4.24891400	0.72749700
Н	-1.47381000	4.90476300	-1.65035500
Br	-1.38895100	-2.19282100	-2.42304800
IV TS			
С	-1.49856500	3.17266700	0.20246400
С	-2.77334900	2.65489300	-0.06914200
С	-2.99086300	1.29098100	0.00666400
С	-1.94750400	0.42622700	0.33131200
С	-0.63924900	0.93476900	0.55006300
С	-0.45778400	2.33671100	0.53775500
Н	-1.33946500	4.24350000	0.16995800
Н	-3.58517300	3.32127100	-0.32874300
Н	-3.96684400	0.87267100	-0.20616300
Н	0.51265100	2.74540600	0.79009900
С	-2.16754800	-1.01883500	0.21343700
0	-3.24885300	-1.55837100	0.18529400
С	-0.89298000	-1.84885700	-0.03789600
F	-0.14175300	-1.85848700	1.10531200
F	-1.24049100	-3.13856900	-0.25539300
С	-0.06295200	-1.35966300	-1.22132700
С	0.28627300	0.10635700	-1.23878600
Н	-0.64154400	-1.61831100	-2.11079000
Н	0.84178100	-1.97330400	-1.21396500
С	1.71876700	0.49543200	-1.12284500
Н	2.27109700	0.14453300	-2.00343700
Н	1.81599500	1.58107600	-1.06468100
0	2.25812100	-0.11906500	0.05258500
С	3.55063200	0.04074000	0.39192000
0	3.94477800	-0.50725300	1.38660400
С	4.40998200	0.89532500	-0.49043400
Н	4.45053600	0.48256200	-1.49929700
Н	4.00305100	1.90503500	-0.55886800
Н	5.41006600	0.93088800	-0.06978100
Н	0.09565400	0.33722600	1.07145900
Н	-0.26912500	0.71796600	-1.94003200
V			
С	-1.17009500	2.84964000	0.37536400
С	-0.22981400	3.17181900	-0.65115700
С	0.86062300	2.35576800	-0.88646200
С	1.09545200	1.22530200	-0.11458500
С	0.25381500	0.93911600	1.09842700
С	-0.97176600	1.78682100	1.18026400
Н	-2.05098100	3.46716400	0.49594800
Н	-0.40023900	4.03714200	-1.27762200
Н	1.52639000	2.56247000	-1.71525000
Н	-1.67994300	1.54722400	1.96401100

O 3.02501900 0.58736600 -1.33003600 C 1.36784100 -1.26824700 1.37718800 C 0.09037200 -0.57090800 1.30848100 C -0.90177800 -1.17941400 0.25248700 H -0.48147800 -0.70499100 2.27453700 H -0.62105200 -0.85664700 0.29914400 O -2.23364600 -0.54882800 C C -3.24204600 -0.56709800 -0.0463500 C -3.24204600 -0.56709800 -0.0463500 C -2.93242200 -1.64071100 -1.60986700 H -2.29810000 -1.0065700 -2.22600000 H -2.39801900 -2.57564600 -1.44000100 H -3.86484600 -1.83333500 -2.13137900 H 1.94281500 -0.83760400 2.19939800 H 1.94638200 -2.34049800 1.55478200 C 2.17625700 -1.08024400 0.12134300 F 3.46233900 -1.4				
C 1.36784100 -1.26824700 1.37718800 C 0.00937200 -0.57090800 1.30848100 C -0.90177800 -1.17941400 0.25248700 H -0.62105200 -0.85664400 -0.75151800 H -0.85684700 -2.26968700 0.29914400 O -2.23364600 -0.74646000 0.54882800 C -3.24204600 -0.95079800 -0.00463500 C -3.24204600 -1.64071100 -1.60986700 H -2.29810000 -1.00065700 -2.22600000 H -2.39801900 -2.57564600 -1.4400100 H -3.86484600 -1.8333500 -2.13137900 H 1.94281500 -0.83760400 2.19939800 H 1.26638200 -2.34049800 1.55478200 C 2.17017000 0.33381500 -0.49852800 C 2.170735000 -1.91983200 -0.86314400 C 1.37574200 2.66340100 0.37294000 C -0.54506800	0	3.02501900	0.58736600	-1.33003600
C 0.00937200 -0.57090800 1.30848100 C -0.90177800 -1.17941400 0.25248700 H -0.62105200 -0.85664400 -0.75151800 H -0.85684700 -2.26968700 0.29914400 O -2.23364600 -0.74646000 0.54882800 C -3.24204600 -0.95207800 -0.31467300 O -4.33903200 -1.64071100 -1.60986700 H -2.29810000 -1.00065700 -2.22600000 H -2.39801900 -2.57564600 -1.44000100 H -3.86484600 -1.8333500 -2.13137900 H 0.85633900 1.23578700 1.97845300 H 1.94281500 -0.83760400 2.1933800 C 2.17017000 0.33381500 -0.49852800 C 2.17017000 0.33342700 1 F 3.46233900 -1.46297500 0.33342700 F 1.70735000 -1.91983200 -0.86314400 C -1.37574200 2.66	С	1.36784100	-1.26824700	1.37718800
C -0.90177800 -1.17941400 0.25248700 H -0.48147800 -0.70499100 2.27453700 H -0.85684700 -2.26968700 0.29914400 O -2.23364600 -0.74646000 0.54882800 C -3.24204600 -0.95207800 -0.31467300 O -4.33903200 -0.56709800 -0.00463500 C -2.93242200 -1.64071100 -1.60986700 H -2.29810000 -1.25564600 -1.44000100 H -2.39801900 -2.57564600 -1.44000100 H -2.39801900 -2.57564600 1.97845300 H 1.94281500 -0.83760400 2.1939800 H 1.26638200 -2.34049800 1.55478200 C 2.17017000 0.33381500 -0.49852800 C 2.17017000 0.33381500 -0.48614400 F 1.70735000 -1.91983200 -0.8614400 C 0.254506800 2.25930300 -0.9258400 C 0.0558500	С	0.00937200	-0.57090800	1.30848100
H -0.48147800 -0.70499100 2.27453700 H -0.62105200 -0.85664400 -0.75151800 H -0.85684700 -2.2968700 0.29914400 O -2.23364600 -0.74646000 0.54882800 C -3.24204600 -0.95207800 -0.31467300 O -4.33903200 -0.56709800 -0.00463500 C -2.93242200 -1.64071100 -1.60986700 H -2.29810000 -1.00065700 -2.22600000 H -2.39801900 -2.57564600 -1.44000100 H -3.86484600 -1.8333500 -2.13137900 H 1.94281500 -0.83760400 2.19939800 H 1.26638200 -2.34049800 1.55478200 C 2.17025700 -1.382400 0.12134300 F 3.46233900 -1.46297500 0.33342700 F 1.70735000 -1.91983200 -0.86314400 C -0.54506800 2.96255700 -0.13143400 C 0.20555100	С	-0.90177800	-1.17941400	0.25248700
H -0.62105200 -0.85664400 -0.75151800 H -0.85684700 -2.26968700 0.29914400 O -2.23364600 -0.74646000 0.54882800 C -3.24204600 -0.95207800 -0.31467300 O -4.33903200 -0.56709800 -0.0463500 C -2.93242200 -1.64071100 -1.60986700 H -2.29810000 -1.00065700 -2.22600000 H -2.39801900 -2.57564600 -1.44000100 H -3.86484600 -1.83333500 -2.13137900 H 0.85633900 1.23578700 1.97845300 H 1.94281500 -0.83760400 2.1939800 H 1.26638200 -2.34049800 1.55478200 C 2.17017000 0.33381500 -0.49852800 C 2.17073500 -1.8024400 0.12134300 F 3.46233900 -1.46297500 0.33342700 C -0.545668500 2.9255700 -0.69928400 C 0.055669500	Н	-0.48147800	-0.70499100	2.27453700
H -0.85684700 -2.26968700 0.29914400 O -2.23364600 -0.74646000 0.54882800 C -3.24204600 -0.95207800 -0.31467300 O -4.33903200 -0.56709800 -0.00463500 C -2.93242200 -1.64071100 -1.60986700 H -2.29810000 -1.20065700 -2.22600000 H -2.39801900 -2.57564600 -1.4400100 H -3.86484600 -1.83333500 -2.13137900 H 0.85633900 1.23578700 1.97845300 H 1.94281500 -0.83760400 2.19939800 H 1.26638200 -2.34049800 1.55478200 C 2.17017000 0.33381500 -0.49852800 C 2.17625700 -1.08024400 0.12134300 F 3.46233900 -1.46297500 0.33342700 C -1.37574200 2.66340100 0.37294000 C -0.54506800 2.96255700 -0.69928400 C 1.01588500	Н	-0.62105200	-0.85664400	-0.75151800
O -2.23364600 -0.74646000 0.54882800 C -3.24204600 -0.95207800 -0.31467300 O -4.33903200 -0.56709800 -0.00463500 C -2.93242200 -1.64071100 -1.60986700 H -2.29810000 -2.57564600 -1.4400100 H -2.29810000 -2.57564600 -1.4400100 H -3.86484600 -1.8333500 -2.13137900 H 0.85633900 1.23578700 1.97845300 H 1.94281500 -0.83760400 2.1939800 GC 2.17625700 -1.08024400 0.12134300 F 3.46233900 -1.46297500 0.33342700 F 1.70735000 -1.91983200 -0.86314400 C -0.54506800 2.96255700 -0.69928400 C 0.54566500 2.25930300 -0.95590600 C 1.01588500 1.24569500 -0.13143400 C 0.20581100 0.88302600 1.04119600 C -1.02566400 <	Н	-0.85684700	-2.26968700	0.29914400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	-2.23364600	-0.74646000	0.54882800
O -4.33903200 -0.56709800 -0.00463500 C -2.93242200 -1.64071100 -1.60986700 H -2.29810000 -1.00065700 -2.22600000 H -2.39801900 -2.57564600 -1.44000100 H -3.86484600 -1.83333500 -2.13137900 H 0.85633900 1.23578700 1.97845300 H 1.94281500 -0.83760400 2.19939800 H 1.26638200 -2.34049800 1.55478200 C 2.17017000 0.33381500 -0.49852800 C 2.17625700 -1.08024400 0.12134300 F 3.46233900 -1.46297500 0.33342700 F 1.70735000 -1.91983200 -0.86314400 C -0.54506800 2.96255700 -0.69928400 C 1.37574200 2.66340100 0.37294000 C 1.01588500 1.24569500 -0.13143400 C 0.20581100 0.88302600 1.04119600 C 1.02566400 <td< td=""><td>С</td><td>-3.24204600</td><td>-0.95207800</td><td>-0.31467300</td></td<>	С	-3.24204600	-0.95207800	-0.31467300
C -2.93242200 -1.64071100 -1.60986700 H -2.29810000 -1.00065700 -2.22600000 H -2.39801900 -2.57564600 -1.44000100 H -3.86484600 -1.83333500 -2.13137900 H 0.85633900 1.23578700 1.97845300 H 1.94281500 -0.83760400 2.19939800 H 1.26638200 -2.34049800 1.55478200 C 2.17017000 0.33381500 -0.49852800 C 2.17625700 -1.08024400 0.12134300 F 3.46233900 -1.46297500 0.33342700 F 1.70735000 -1.91983200 -0.86314400 C -1.37574200 2.66340100 0.37294000 C -0.54506800 2.95255700 -0.69928400 C 1.01588500 1.24569500 -0.13143400 C 0.20581100 0.88302600 1.04119600 C -1.02566400 1.64016600 1.2209100 H -2.28276500	0	-4.33903200	-0.56709800	-0.00463500
H -2.29810000 -1.00065700 -2.22600000 H -2.39801900 -2.57564600 -1.44000100 H -3.86484600 -1.83333500 -2.13137900 H 0.85633900 1.23578700 1.97845300 H 1.94281500 -0.83760400 2.19939800 H 1.26638200 -2.34049800 1.55478200 C 2.17017000 0.33381500 -0.49852800 C 2.17625700 -1.08024400 0.12134300 F 3.46233900 -1.46297500 0.33342700 F 1.70735000 -1.91983200 -0.86314400 C -0.54506800 2.96255700 -0.69928400 C 0.20581100 0.88302600 1.04119600 C 1.01588500 1.24569500 -0.13143400 C 0.20581100 0.88302600 1.04119600 C -1.02566400 1.64016600 1.2209100 H -0.2682200 2.5251800 -1.80761500 H -0.81987600 3.76	С	-2.93242200	-1.64071100	-1.60986700
H -2.39801900 -2.57564600 -1.44000100 H -3.86484600 -1.83333500 -2.13137900 H 0.85633900 1.23578700 1.97845300 H 1.94281500 -0.83760400 2.19939800 H 1.26638200 -2.34049800 1.55478200 C 2.17017000 0.33381500 -0.49852800 C 2.17625700 -1.08024400 0.12134300 F 3.46233900 -1.46297500 0.33342700 F 1.70735000 -1.91983200 -0.86314400 C -0.54506800 2.96255700 -0.69928400 C -0.54506800 2.9590300 -0.95590600 C -1.37574200 2.66340100 0.37294000 C -0.54506800 2.25930300 -0.95590600 C 1.01588500 1.24569500 -0.13143400 C 0.20581100 0.8302600 1.04119600 C -1.02566400 1.64016600 1.2209100 H -2.28276503 3.22	Н	-2.29810000	-1.00065700	-2.22600000
H -3.86484600 -1.83333500 -2.13137900 H 0.85633900 1.23578700 1.97845300 H 1.94281500 -0.83760400 2.19939800 H 1.26638200 -2.34049800 1.55478200 C 2.17017000 0.33381500 -0.49852800 C 2.17625700 -1.08024400 0.12134300 F 3.46233900 -1.46297500 0.33342700 F 1.70735000 -1.91983200 -0.86314400 C -1.37574200 2.66340100 0.37294000 C -0.54506800 2.96255700 -0.69928400 C 0.65669500 2.25930300 -0.95590600 C 1.01588500 1.24569500 -0.13143400 C -1.02566400 1.64016600 1.22009100 H -2.28276500 3.22821600 0.53439600 G -1.02566400 1.64016600 1.22009100 H -1.63005800 1.40556500 2.08759800 O 3.21996300 0.953	Н	-2.39801900	-2.57564600	-1.44000100
H 0.85633900 1.23578700 1.97845300 H 1.94281500 -0.83760400 2.19939800 H 1.26638200 -2.34049800 1.55478200 C 2.17017000 0.33381500 -0.49852800 C 2.17625700 -1.08024400 0.12134300 F 3.46233900 -1.46297500 0.33342700 F 1.70735000 -1.91983200 -0.86314400 C -1.37574200 2.66340100 0.37294000 C -0.54506800 2.96255700 -0.69928400 C 0.65669500 2.25930300 -0.95590600 C 1.01588500 1.24569500 -0.13143400 C 0.20581100 0.88302600 1.04119600 C -1.02566400 1.64016600 1.22009100 H -2.28276500 3.22821600 0.53439600 H -0.81987600 3.76961100 -1.36825300 H 1.26852200 2.52551800 -1.80761500 H -1.63005800 1.4055	Н	-3.86484600	-1.83333500	-2.13137900
H 1.94281500 -0.83760400 2.19939800 H 1.26638200 -2.34049800 1.55478200 C 2.17017000 0.33381500 -0.49852800 C 2.17625700 -1.08024400 0.12134300 F 3.46233900 -1.46297500 0.33342700 F 1.70735000 -1.91983200 -0.86314400 C -1.37574200 2.66340100 0.37294000 C -0.54506800 2.96255700 -0.69928400 C -0.54506800 2.96255700 -0.69928400 C 0.65669500 2.25930300 -0.95590600 C 1.01588500 1.24569500 -0.13143400 C 0.20581100 0.88302600 1.04119600 C -1.02566400 1.64016600 1.22009100 H -2.8276500 3.22821600 0.53439600 H -0.81987600 3.76961100 -1.36825300 H -1.63005800 1.40556500 2.08759800 O 3.21996300 0.9532	Н	0.85633900	1.23578700	1.97845300
H 1.26638200 -2.34049800 1.55478200 C 2.17017000 0.33381500 -0.49852800 C 2.17625700 -1.08024400 0.12134300 F 3.46233900 -1.46297500 0.33342700 F 1.70735000 -1.91983200 -0.86314400 C -1.37574200 2.66340100 0.37294000 C -0.54506800 2.96255700 -0.69928400 C -0.54506800 2.96255700 -0.69928400 C 0.65669500 2.25930300 -0.95590600 C 1.01588500 1.24569500 -0.13143400 C 0.20581100 0.88302600 1.04119600 C -1.02566400 1.64016600 1.22009100 H -2.28276500 3.22821600 0.53439600 H -0.81987600 3.76961100 -1.36825300 H 1.26852200 2.52551800 -1.80761500 H -1.63005800 1.40556500 2.08759800 O 3.21996300 0.953	Н	1.94281500	-0.83760400	2.19939800
C 2.17017000 0.33381500 -0.49852800 C 2.17625700 -1.08024400 0.12134300 F 3.46233900 -1.46297500 0.333812700 F 1.70735000 -1.91983200 -0.86314400 C	Н	1.26638200	-2.34049800	1.55478200
C 2.17625700 -1.08024400 0.12134300 F 3.46233900 -1.46297500 0.33342700 F 1.70735000 -1.91983200 -0.86314400 VII	C	2.17017000	0.33381500	-0.49852800
F 3.46233900 -1.46297500 0.33342700 F 1.70735000 -1.91983200 -0.86314400 VII	C	2.17625700	-1.08024400	0.12134300
F 1.70735000 -1.91983200 -0.86314400 VII	F	3.46233900	-1.46297500	0.33342700
VII Importance Importance C -1.37574200 2.66340100 0.37294000 C -0.54506800 2.96255700 -0.69928400 C 0.65669500 2.25930300 -0.95590600 C 1.01588500 1.24569500 -0.13143400 C 0.20581100 0.88302600 1.04119600 C -1.02566400 1.64016600 1.22009100 H -2.28276500 3.22821600 0.53439600 H -0.81987600 3.76961100 -1.36825300 H 1.26852200 2.52551800 -1.80761500 H 1.26852200 2.52551800 -0.95061300 C 0.08188200 -0.65146200 1.28693900 C 0.08188200 -0.65146200 1.28693900 C -0.87470200 -1.28263300 0.28459400 H -0.34614100 -0.77827200 2.28179300 H -0.55655800 -1.10727600 -0.74349300 H -0.93027100 -2.35703500	F	1,70735000	-1.91983200	-0.86314400
VII	-	1.10100000	101900200	
C-1.375742002.663401000.37294000C-0.545068002.96255700-0.69928400C0.656695002.25930300-0.95590600C1.015885001.24569500-0.13143400C0.205811000.883026001.04119600C-1.025664001.640166001.22009100H-2.282765003.228216000.53439600H-0.819876003.76961100-1.36825300H1.268522002.52551800-1.80761500H-1.630058001.405565002.08759800O3.219963000.95329600-0.95061300C0.08188200-0.651462001.28693900C0.08188200-0.651462001.28693900C-0.87470200-1.282633000.28459400H-0.34614100-0.778272002.28179300H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.20115900-0.92167400-0.29729000O-4.21663000-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-2.65050000-2.87306400-0.98222400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	VII			
C-0.545068002.96255700-0.69928400C0.656695002.25930300-0.95590600C1.015885001.24569500-0.13143400C0.205811000.883026001.04119600C-1.025664001.640166001.22009100H-2.282765003.228216000.53439600H-0.819876003.76961100-1.36825300H1.268522002.52551800-1.80761500H-1.630058001.405565002.08759800O3.219963000.95329600-0.95061300C1.46874800-1.289791001.28654700C0.08188200-0.651462001.28693900C-0.87470200-1.282633000.28459400H-0.34614100-0.778272002.28179300H-0.55655800-1.10727600-0.74349300H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.20115900-0.92167400-0.29729000O-4.21663000-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-2.65050000-2.87306400-0.98222400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	С	-1.37574200	2.66340100	0.37294000
C 0.65669500 2.25930300 -0.95590600 C 1.01588500 1.24569500 -0.13143400 C 0.20581100 0.88302600 1.04119600 C -1.02566400 1.64016600 1.22009100 H -2.28276500 3.22821600 0.53439600 H -0.81987600 3.76961100 -1.36825300 H 1.26852200 2.52551800 -1.80761500 H 1.26852200 2.52551800 -1.80761500 H -1.63005800 1.40556500 2.08759800 O 3.21996300 0.95329600 -0.95061300 C 0.08188200 -0.65146200 1.28654700 C 0.87470200 -1.28263300 0.28459400 H -0.34614100 -0.77827200 2.28179300 H -0.55655800 -1.10727600 -0.74349300 H -0.55655800 -1.1072700 0.50839600 C -3.20115900 -0.92167400 -0.29729000 O -4.21663000 -0	С	-0.54506800	2.96255700	-0.69928400
C1.015885001.24569500-0.13143400C0.205811000.883026001.04119600C-1.025664001.640166001.22009100H-2.282765003.228216000.53439600H-0.819876003.76961100-1.36825300H1.268522002.52551800-1.80761500H-1.630058001.405565002.08759800O3.219963000.95329600-0.95061300C1.46874800-1.289791001.28654700C0.08188200-0.651462001.28693900C-0.87470200-1.282633000.28459400H-0.34614100-0.778272002.28179300H-0.55655800-1.10727600-0.74349300H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.20115900-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	С	0.65669500	2.25930300	-0.95590600
C0.205811000.883026001.04119600C-1.025664001.640166001.22009100H-2.282765003.228216000.53439600H-0.819876003.76961100-1.36825300H1.268522002.52551800-1.80761500H-1.630058001.405565002.08759800O3.219963000.95329600-0.95061300C1.46874800-1.289791001.28654700C0.08188200-0.651462001.28693900C-0.87470200-1.282633000.28459400H-0.34614100-0.778272002.28179300H-0.55655800-1.10727600-0.74349300H-0.55655800-1.10727600-0.74349300C-3.20115900-0.671257000.50839600C-3.20115900-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-0.808843001.228217001.91843600	С	1.01588500	1.24569500	-0.13143400
C-1.025664001.640166001.22009100H-2.282765003.228216000.53439600H-0.819876003.76961100-1.36825300H1.268522002.52551800-1.80761500H-1.630058001.405565002.08759800O3.219963000.95329600-0.95061300C1.46874800-1.289791001.28654700C0.08188200-0.651462001.28693900C-0.87470200-1.282633000.28459400H-0.34614100-0.778272002.28179300H-0.55655800-1.10727600-0.74349300H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-2.65050000-2.87306400-0.98222400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	С	0.20581100	0.88302600	1.04119600
H-2.282765003.228216000.53439600H-0.819876003.76961100-1.36825300H1.268522002.52551800-1.80761500H-1.630058001.405565002.08759800O3.219963000.95329600-0.95061300C1.46874800-1.289791001.28654700C0.08188200-0.651462001.28693900C-0.87470200-1.282633000.28459400H-0.34614100-0.778272002.28179300H-0.55655800-1.10727600-0.74349300H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.20115900-0.92167400-0.29729000O-4.21663000-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-0.808843001.228217001.91843600	С	-1.02566400	1.64016600	1.22009100
H-0.819876003.76961100-1.36825300H1.268522002.52551800-1.80761500H-1.630058001.405565002.08759800O3.219963000.95329600-0.95061300C1.46874800-1.289791001.28654700C0.08188200-0.651462001.28693900C-0.87470200-1.282633000.28459400H-0.34614100-0.778272002.28179300H-0.55655800-1.10727600-0.74349300H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.20115900-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-3.97167000-2.87306400-0.98222400H0.808843001.228217001.91843600	Н	-2.28276500	3.22821600	0.53439600
H1.268522002.52551800-1.80761500H-1.630058001.405565002.08759800O3.219963000.95329600-0.95061300C1.46874800-1.289791001.28654700C0.08188200-0.651462001.28693900C-0.87470200-1.282633000.28459400H-0.34614100-0.778272002.28179300H-0.55655800-1.10727600-0.74349300H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.20115900-0.92167400-0.29729000O-4.21663000-1.38774400H-2.28548400-1.56725400-2.11133400H-2.65050000-2.87306400-0.98222400H0.808843001.228217001.91843600	Н	-0.81987600	3.76961100	-1.36825300
H-1.630058001.405565002.08759800O3.219963000.95329600-0.95061300C1.46874800-1.289791001.28654700C0.08188200-0.651462001.28693900C-0.87470200-1.282633000.28459400H-0.34614100-0.778272002.28179300H-0.55655800-1.10727600-0.74349300H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.20115900-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.65050000-2.87306400-0.98222400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	Н	1.26852200	2.52551800	-1.80761500
O3.219963000.95329600-0.95061300C1.46874800-1.289791001.28654700C0.08188200-0.651462001.28693900C-0.87470200-1.282633000.28459400H-0.34614100-0.778272002.28179300H-0.55655800-1.10727600-0.74349300H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.20115900-0.92167400-0.29729000O-4.21663000-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.65050000-2.87306400-0.98222400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	Н	-1.63005800	1.40556500	2.08759800
C1.46874800-1.289791001.28654700C0.08188200-0.651462001.28693900C-0.87470200-1.282633000.28459400H-0.34614100-0.778272002.28179300H-0.55655800-1.10727600-0.74349300H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.20115900-0.92167400-0.29729000O-4.21663000-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.65050000-2.87306400-0.98222400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	0	3.21996300	0.95329600	-0.95061300
C0.08188200-0.651462001.28693900C-0.87470200-1.282633000.28459400H-0.34614100-0.778272002.28179300H-0.55655800-1.10727600-0.74349300H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.20115900-0.92167400-0.29729000O-4.21663000-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-2.65050000-2.87306400-0.98222400H0.808843001.228217001.91843600	С	1.46874800	-1.28979100	1.28654700
C-0.87470200-1.282633000.28459400H-0.34614100-0.778272002.28179300H-0.55655800-1.10727600-0.74349300H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.20115900-0.92167400-0.29729000O-4.21663000-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	С	0.08188200	-0.65146200	1.28693900
H-0.34614100-0.778272002.28179300H-0.55655800-1.10727600-0.74349300H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.20115900-0.92167400-0.29729000O-4.21663000-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-2.65050000-2.87306400-0.98222400H0.808843001.228217001.91843600	С	-0.87470200	-1.28263300	0.28459400
H-0.55655800-1.10727600-0.74349300H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.20115900-0.92167400-0.29729000O-4.21663000-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-2.65050000-2.87306400-0.98222400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	Н	-0.34614100	-0.77827200	2.28179300
H-0.93027100-2.357035000.46990100O-2.14337500-0.671257000.50839600C-3.20115900-0.92167400-0.29729000O-4.21663000-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-2.65050000-2.87306400-0.98222400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	Н	-0.55655800	-1.10727600	-0.74349300
O-2.14337500-0.671257000.50839600C-3.20115900-0.92167400-0.29729000O-4.21663000-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-2.65050000-2.87306400-0.98222400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	Н	-0.93027100	-2.35703500	0.46990100
C-3.20115900-0.92167400-0.29729000O-4.21663000-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-2.65050000-2.87306400-0.98222400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	0	-2.14337500	-0.67125700	0.50839600
O-4.21663000-0.31969400-0.08342300C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-2.65050000-2.87306400-0.98222400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	С	-3.20115900	-0.92167400	-0.29729000
C-3.01794000-1.92990600-1.38774400H-2.28548400-1.56725400-2.11133400H-2.65050000-2.87306400-0.98222400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	0	-4.21663000	-0.31969400	-0.08342300
H-2.28548400-1.56725400-2.11133400H-2.65050000-2.87306400-0.98222400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	С	-3.01794000	-1.92990600	-1.38774400
H-2.65050000-2.87306400-0.98222400H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	Н	-2.28548400	-1.56725400	-2.11133400
H-3.97167000-2.08381300-1.88255600H0.808843001.228217001.91843600	Н	-2.65050000	-2.87306400	-0.98222400
Н 0.80884300 1.22821700 1.91843600	Н	-3.97167000	-2.08381300	-1.88255600
	Н	0.80884300	1.22821700	1.91843600

Н	2.04453100	-0.90176900	2.12871000
Н	1.39601700	-2.37366500	1.39306400
С	2.27201600	0.47462000	-0.40015900
С	2.26315600	-1.00641800	0.03685800
F	3.53538200	-1.42528600	0.17599900
F	1.74597800	-1.69638700	-1.02682000
dppm			
Р	1.00213800	0.71973600	0.37380100
С	2.78178200	1.02931300	0.02911200
С	3.31291100	1.36708400	-1.21378900
С	3.64743700	0.94740600	1.12466500
С	4.67570300	1.61103800	-1.35871200
Н	2.67592100	1.43940600	-2.08568700
C	5.00589400	1.17907200	0.97911600
Н	3.24975200	0.69572200	2.10263600
C	5.52522500	1.51510500	-0.26704800
H	5.07067800	1.87282900	-2.33265900
Н	5.66001800	1.10540000	1.83907100
Н	6.58514000	1.70375100	-0.38252900
C	1.05151600	-1.09920100	0.64616700
C	0.23327200	-1.64095800	1.63537500
C	1.87005600	-1.95270000	-0.09443200
C	0.21902300	-3.01095800	1.87260400
Н	-0.39803800	-0.98730700	2.22706200
C	1.86130500	-3.31942300	0.14297200
Н	2.52135600	-1.54647700	-0.86102800
C	1.03395000	-3.85122100	1.12703800
Н	-0.42610400	-3.41861500	2.64105000
Н	2.50170600	-3.97188700	-0.43793500
Н	1.02798500	-4.91832800	1.31180300
С	0.27722400	0.84449100	-1.32101100
Н	0.52135800	1.84831500	-1.68269300
Н	0.74491700	0.13854000	-2.01332900
Р	-1.55696500	0.73853900	-1.58546100
С	-1.99947600	-0.93837200	-0.99737100
С	-3.13886400	-1.19377500	-0.23499500
С	-1.26529500	-2.02519400	-1.48191500
С	-3.51199300	-2.49903100	0.06755700
Н	-3.74667900	-0.37444200	0.12783800
С	-1.63678300	-3.32583600	-1.18044800
Н	-0.39086000	-1.85574400	-2.09972600
C	-2.76043200	-3.56840900	-0.39721000
Н	-4.39615400	-2.67608200	0.66759400
Н	-1.04624600	-4.15263300	-1.55588600
Н	-3.04933300	-4.58414000	-0.15798300
С	-2.21595600	1.87155700	-0.30430300
С	-2.69421300	3.10342400	-0.75061000

С	-2.23974100	1.60104200	1.06638300
С	-3.17368500	4.05058800	0.14750000
Н	-2.69305900	3.32335900	-1.81233500
С	-2.72695500	2.53965200	1.96324900
Н	-1.88008800	0.64825500	1.43499600
С	-3.19197000	3.76826000	1.50526100
Н	-3.53843400	5.00281900	-0.21662600
Н	-2.74043200	2.31516500	3.02254600
Н	-3.57060200	4.50024000	2.20777200
Br-			
Br	0.00000000	0.00000000	0.00000000
3 aa			
С	0.04825400	3.28826300	-0.30094300
С	-1.09243700	3.35864800	0.49529400
С	-1.82785100	2.21426400	0.72922900
С	-1.42605900	0.99409900	0.17901000
С	-0.27340400	0.91395400	-0.61520600
С	0.45062300	2.08094600	-0.84969200
Н	0.62541400	4.18318300	-0.49753700
Н	-1.40322600	4.30363500	0.92102900
Н	-2.72473300	2.24215300	1.33460100
Н	1.33713400	2.03650600	-1.46903900
0	-3.28133100	-0.17889300	1.08992600
С	-0.94735400	-1.37906300	-1.40036200
С	0.20793700	-0.40144200	-1.18466000
С	1.30873400	-1.00688300	-0.31084900
Н	0.66142000	-0.20847300	-2.15853600
Н	1.01626200	-1.02148500	0.73835900
Н	1.52526300	-2.02569500	-0.64061200
0	2.46995900	-0.19088800	-0.48532700
С	3.56169600	-0.36280600	0.27961900
0	4.51596400	0.33839800	0.06865000
С	3.51197900	-1.40988300	1.35105500
Н	2.78871400	-1.12011900	2.11558900
Н	3.20092300	-2.37244100	0.94486700
Н	4.49711600	-1.49522300	1.79893000
Н	-1.59878000	-0.99691800	-2.18856800
Н	-0.58902500	-2.36631900	-1.69679500
С	-2.26943100	-0.19286400	0.43675300
С	-1.79307400	-1.52832600	-0.16991000
F	-2.87322900	-2.30431900	-0.42368300
F	-1.09687000	-2.17581300	0.82098400
Н			
Br	0.00000000	0.00000000	0.03954600
Н	0.00000000	0.00000000	-1.38412300

VI			
С	-4.68065400	-1.13380400	-0.65613900
С	-5.97606800	-0.78715300	-0.31788600
С	-6.20247800	0.23285300	0.60065500
С	-5.13195100	0.90317600	1.17653800
С	-3.83049900	0.56124400	0.83896200
С	-3.59854900	-0.46290600	-0.08105100
Н	-4.48954000	-1.92545700	-1.36863800
Н	-6.81062200	-1.30880400	-0.76804900
Н	-7.21621700	0.50484400	0.86686000
Н	-5.30825300	1.69649700	1.89109500
Н	-3.01156800	1.09603400	1.29760900
С	-2.23808800	-0.89539400	-0.49331400
0	-2.04429200	-1.80376100	-1.26127900
С	-1.00481400	-0.15123800	0.07881200
С	0.30865800	-0.69081000	-0.42850400
С	1.52899200	-0.01784100	0.18241400
Н	0.32667300	-1.75020400	-0.16240100
Н	0.32274600	-0.63149000	-1.51628600
С	2.73499000	-0.92342000	0.06486800
Н	1.36635800	0.23991100	1.22699200
Н	2.49544800	-1.87426300	0.54930300
Н	2.97069700	-1.10490900	-0.98516800
F	-1.14218500	1.17303900	-0.20238600
F	-1.04459300	-0.25186000	1.44227400
Br	1.92889100	1.69155800	-0.70472500
0	3.82242500	-0.30740800	0.74242800
С	5.07260500	-0.79483600	0.63732700
0	5.94043300	-0.26146200	1.27482000
С	5.30090100	-1.96085000	-0.27722800
Н	4.62311500	-2.78267800	-0.04508600
Н	5.12377300	-1.66021500	-1.31169900
Н	6.33041600	-2.28746000	-0.16863100
2FBrPh			
С	2.44035200	-1.33514900	-0.00690800
С	3.79426200	-1.05554800	-0.01549600
С	4.22897300	0.26591500	-0.00955000
С	3.30758200	1.30389400	0.00441500
С	1.94794800	1.03049300	0.01180300
С	1.50782300	-0.29424300	0.00656600
Н	2.08783600	-2.35800500	-0.01128000
Н	4.51244200	-1.86500300	-0.02693400
Н	5.28914200	0.48577000	-0.01599000
Н	3.64594400	2.33156700	0.00941500
Н	1.25168100	1.85660000	0.02268700
С	0.07538000	-0.68519400	0.01582100

â	0.00550500	1.00100100	0.00100000
0	-0.30552500	-1.82132100	0.03188000
С	-0.97704100	0.46786500	0.00239100
F	-0.80832300	1.24792200	1.08039600
F	-0.79229400	1.23850600	-1.07952900
Br	-2.79682800	-0.18418300	-0.00842800
2FBrPh-			
dppm			
Р	3.73192800	0.67653900	0.76671300
С	4.34168700	2.39759100	0.54987300
С	3.53939000	3.50612800	0.28822500
С	5.71895600	2.59040800	0.69922900
С	4.10061300	4.77469700	0.17263100
Н	2.46949900	3.39698300	0.16658300
С	6.27983300	3.85128900	0.57326400
Н	6.35787900	1.73973500	0.91418400
С	5.46900900	4.95111500	0.31106300
Н	3.46135500	5.62503600	-0.03087500
Н	7.34927000	3.97886400	0.68685700
Н	5.90359300	5.93848700	0.21881300
C	4.36266100	-0.07491200	-0.78923300
C	4.84315700	-1.38206900	-0.74412300
C	4.37418200	0.60698000	-2.00642100
C	5.31208900	-2.00497000	-1.89541200
H	4.85017000	-1.91953200	0.19767200
C	4.84712800	-0.00989500	-3.15535100
Н	4.01305700	1.62875500	-2.05681900
C	5.31573600	-1.31867900	-3.10169200
Н	5.67628300	-3.02375800	-1.84722900
Н	4.85254900	0.53007500	-4.09429400
Н	5.68397800	-1.79991300	-3.99930400
С	1.93292800	0.87820200	0.39824800
Н	1.55154000	1.60435900	1.12331800
Н	1.76976000	1.30880300	-0.59406800
Р	0.75967200	-0.54725000	0.57447200
С	1.36473700	-1.79006800	-0.62476800
С	1.44817500	-3.14961000	-0.32654900
С	1.58025500	-1.38261000	-1.94514100
С	1.77742600	-4.07271100	-1.31365000
Н	1.25489800	-3.50001500	0.67948300
С	1.91039500	-2.30205600	-2.92770200
Н	1.49547100	-0.33470400	-2.20989000
C	2.01585100	-3.65321400	-2.61402900
H	1.84412200	-5.12370300	-1.06043800
Н	2.08607300	-1.96347700	-3.94145800
Н	2.27585000	-4.37205100	-3.38087800
C	1.18209700	-1.23309200	2.21928000
C	0.26566100	-0.99851100	3.24419600
-	0.2000100	0.77001100	

С	2.35209900	-1.93789400	2.51494100
С	0.51361600	-1.44287200	4.53827100
Н	-0.65331400	-0.46510000	3.02743100
С	2.59759000	-2.38977800	3.80260800
Н	3.07282200	-2.14031500	1.73228900
С	1.67972600	-2.13968700	4.81772500
Н	-0.20800600	-1.25021100	5.32210400
Н	3.50807700	-2.93544900	4.01700500
Н	1.87422900	-2.49261700	5.82287500
С	-7.31607200	0.94927400	-1.23445400
С	-8.67099300	1.15104700	-1.45213600
С	-9.59005600	0.86325800	-0.45259900
С	-9.15741200	0.37028600	0.77418100
С	-7.80810700	0.16690600	0.99737500
С	-6.87776100	0.45474300	-0.00478000
Н	-6.62076800	1.18102000	-2.02820100
Н	-9.00773900	1.53425200	-2.40637500
Н	-10.64641700	1.02303500	-0.62859400
Н	-9.87347900	0.14594200	1.55388700
Н	-7.45742000	-0.21583700	1.94666100
С	-5.44869100	0.20682200	0.32117700
0	-5.07505800	-0.21572700	1.37936600
С	-4.39665500	0.52170200	-0.78493300
F	-4.67429200	-0.20210000	-1.88435100
F	-4.49198500	1.81809900	-1.13307300
Br	-2.58045300	0.15419700	-0.23492900

5.5 Another possible reaction mechanism

First, an EDA complex I, is assembled from 2-bromo-2,2-difluoro-1-phenyl-ethanone

(1a) and phosphine, which then undergoes visible light irradiation to generate a difluoroalkyl radical (•CF₂R) III and the intermediate II. Subsequently, the difluoroalkyl radical is captured by alkenes to afford radical addition and migration intermediate IV, which is well suited for a 6-endo cyclization to give a stabilized radical adduct V. Aryl cation VII is then formed through a radical exchange with RCF₂Br (1a) to generate a difluoromethyl radical, which then enters the radical chain process. The final product **3aa** is obtained by deprotonation with a base.

First, an EDA complex I', is assembled from 2,2-difluoro-2-iodo-1-phenylethan-1-one (1a') and phosphine, which then undergoes visible light irradiation to generate a difluoroalkyl radical (•CF₂R) III and the intermediate II'. Subsequently, the difluoroalkyl radical is captured by alkenes to afford radical addition and migration intermediate IV. The final product 4aa is then formed through a radical exchange with RCF₂I (1a') to generate a difluoromethyl radical, which then enters the radical chain process. Or the IV is a SET oxidation by intermediate II to recover the phosphine catalyst to give a stabilized radical adduct V', which is well captures I' to get 4aa.

6 Characterization data of all products

(8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl trifluoromethanesulfonate(2q')

¹**H** NMR (400 MHz, CDCl₃) δ = 7.31(d, *J* = 8.0 Hz, 1H), 7.01 - 6.95 (m, 2H), 2.93 - 2.89 (m, 2H), 2.50 - 2.27 (m, 3H), 2.15 - 1.93 (m, 4H), 1.64 - 1.42 (m, 6H), 0.89 (d, *J* = 8.0 Hz, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ = 220.3, 174.6, 140.4, 139.4, 127.3, 121.2, 118.8 (q, ¹*J* _{C-F} = 636.0, 318.0 Hz), 118.3, 50.4, 47.9, 44.1, 37.8, 35.8, 31.5, 29.4, 26.4 (d, ²*J* _{C-F} = 39.0 Hz), 21.6, 13.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -73.07 (s, 3F).

(8R,9S,13S,14S)-3-allyl-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one(2q)

¹**H NMR** (400 MHz, CDCl₃) δ = 7.30 (d, *J* = 8.0 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 7.02 (s, 1H), 6.09 - 5.99 (m, 1H), 5.16 (t, *J* = 16.0 Hz, 2H), 3.42 (d, *J* = 4.0 Hz, 2H), 2.97 (t, *J* = 4.0 Hz, 2H), 2.61 - 2.48 (m, 2H), 2.39 - 2.32 (m, 1H), 2.26 - 2.03 (m, 4H), 1.75 - 1.49 (m, 6H), 0.98 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 220.9, 137.7, 137.6, 137.6, 137.6, 136.6, 129.3, 126.1, 125.6, 115.8, 50.6, 48.1, 44.4, 39.9, 38.3, 36.0, 31.7, 29.5, 26.7, 25.9, 21.7.

(3,3-difluoro-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl acetate (3aa)

A light yellow oily (81% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H NMR** (400 MHz, CDCl₃) $\delta = 8.14$ (d, J = 8.0 Hz, 1H), 7.67 (t, J = 16.0 Hz, 1H), 7.49 - 7.46 (m, 2H), 4.50 - 4.37 (m, 2H), 3.64 - 3.58 (m, 1H), 2.74 - 2.60 (m, 2H), 2.09 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 184.8 (t, ²*J*_{C-F} = 26.0 Hz), 170.8, 142.0, 135.5, 130.1, 129.1, 128.4, 128.2, 113.3 (t, ¹*J*_{C-F} = 246.0 Hz), 68.08 (d, ⁴*J*_{C-F} = 2.0 Hz), 35.5 (t, ³*J*_{C-F} = 4.0 Hz), 34.5 (d, ²*J*_{C-F} = 22.0 Hz), 20.82.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.87 (ddd, *J* = 274.5, 18.8, 11.3, Hz, 1F), δ = -107.65 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{13}H_{12}O_3F_2Na$: 277.0647; found: 278.0608. (3,3-difluoro-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl hexanoate(3ab)

A light yellow oily (65% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) δ = 8.10 (d, *J* = 8.0 Hz, 1H), 7.63 (t, *J* = 8.0 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 4.41 (t, *J* = 4.0 Hz, 2H), 3.57 (p, *J* = 8.0 Hz, 1H), 2.74 - 2.53 (m, 2H), 2.30 (t, *J* = 8.0 Hz, 2H), 1.58 (p, *J* = 8.0 Hz, 2H), 1.27 - 1.24 (m, 4H), 0.85 (t, *J* = 8.0 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 184.8 (t, ²*J*_{C-F} = 26.0 Hz), 173.5, 142.1, 135.4, 130.2, 129.1, 128.3, 128.1, 113.2 (t, ¹*J*_{C-F} = 246.0 Hz), 65.83 (d, ²*J*_{C-F} = 3.0 Hz), 35.6 (t, ²*J*_{C-F} = 5.0 Hz), 34.6 (t, ²*J*_{C-F} = 22.0 Hz), 34.1, 31.2, 24.6, 22.3, 13.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -105.11 (ddd, *J* = 274.5, 22.6, 11.3 Hz, 1F), -107.68 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{17}H_{20}O_3F_2Na$: 333.1273; found: 333.1278. (3,3-difluoro-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl heptanoate(3ac)

A light yellow oily (72% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.13$ (d, J = 8.0 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.46 (t, J = 8.0 Hz, 2H), 4.45 (s, 2H), 3.61 (s, 1H), 2.77 - 2.59 (m, 2H), 2.33 (t, J = 8.0 Hz, 2H), 1.60 (s, 2H), 1.27 (s, 6H), 0.88 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 184.8 (t, ²*J*_{C-F} = 26.0 Hz), 173.5, 142.1, 135.3, 130.2, 129.0, 128.3, 128.1, 113.2 (t, ¹*J*_{C-F} = 246.0 Hz), 65.81 (d, ²*J*_{C-F} = 3.0 Hz), 35.5 (t, ²*J*_{C-F} = 5.0 Hz), 34.6 (t, ²*J*_{C-F} = 22.0 Hz), 34.1, 31.4, 28.7, 24.8, 22.5, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -105.10 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F), -107.67 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{18}H_{22}O_3F_2Na$: 347.1429; found: 347.1434. (3,3-difluoro-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl 3-oxobutanoate (3ad)

A light yellow oily (35% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) δ = 8.15 (d, J = 8.0 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.47

(t, J = 8.0 Hz, 2H), 4.57-4.44 (m, 2H), 3.67-3.61 (m, 1H), 3.52 (s, 2H), 2.75-2.63 (m, 2H), 2.25 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) $\delta = 185.5$ (t, ²*J*_{C-F} = 26.0 Hz), 166.1, 147.0, 135.1, 129.7, 128.6, 128.4, 128.0, 127.4, 113.6 (t, ¹*J*_{C-F} = 246.0 Hz), 37.4 (d, ²*J*_{C-F} = 2.0 Hz), 36.1 (t, ²*J*_{C-F} = 20.0 Hz), 35.4 (t, ²*J*_{C-F} = 1.0 Hz), 19.77, 13.92.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.82 (d, *J* = 274.5Hz, 1F), -106.37 (d, *J* = 274.5Hz, 1F).

HRMS (ESI-TOF): m/z [M+Na]⁺ calcd for C₁₅H₁₄O₄F₂Na: 319.0954; found: 319.1012. **3,3-difluoro-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl acetate(3ae)**

A light yellow oily (60% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.14$ (d, J = 8.0 Hz, 1H), 7.72 (t, J = 8.0 Hz, 1H), 7.55 (t, J = 8.0 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 6.30 (q, J = 4.0 Hz, 1H), 3.07 - 2.95 (m, 1H), 2.75 - 2.62 (m, 1H), 2.20 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 184.2 (t, ²*J*_{C-F} = 26.0 Hz), 170.2, 140.6, 135.7, 129.6, 129.2, 128.6, 127.9, 132.2 (t, ¹*J*_{C-F} = 246.0 Hz), 66.2 (t, ²*J*_{C-F} = 5.0 Hz), 38.0 (t, ²*J*_{C-F} = 22.0 Hz), 21.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -105.36 (ddd, *J* = 282.0, 18.8, 11.3 Hz, 1F), -107.48 (ddd, *J* = 274.5, 22.6, 11.3 Hz, 1F).

HRMS (ESI-TOF): m/z [M+Na]⁺ calcd for C₁₂H₁₀O₃F₂Na: 263.0490; found: 263.0495. **4,4-difluoro-9b-methyl-3a,9b-dihydronaphtho**[**1,2-b**]**furan-2,5(3H,4H)-dione** (**3af**)

A light yellow oily (50% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) δ = 8.11 (d, *J* = 8.0 Hz, 1H), 7.82 (t, *J* = 8.0 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.59 (t, *J* = 8.0 Hz, 1H), 3.57 - 3.46 (m, 1H), 2.89 (q, *J* = 8.0 Hz, 1H), 2.49 (q, *J* = 12.0 Hz, 1H), 1.97 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ = 183.1 (t, ²*J*_{C-F} = 26.0 Hz), 171.8, 142.0, 136.8, 130.2, 128.8, 127.9, 127.3, 112.3 (t, ¹*J*_{C-F} = 246.0 Hz), 49.1 (t, ²*J*_{C-F} = 24.0 Hz), 30.8 (d, ²*J*_{C-F} = 6.0 Hz), 29.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -99.31 (dd, *J* = 282.0, 11.3 Hz, 1F), -113.07 (dd, *J* = 282.0, 7.5 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{13}H_{10}O_3F_2Na$: 275.0490; found: 275.0496.

4,4-difluoro-1,3a,4,9b-tetrahydronaphtho[1,2-c]furan-5(3H)-one (3ag)

A light yellow oily (65% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.02$ (d, J = 8.0 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 4.28 - 4.24 (m, 1H), 4.16 (t, J = 8.0 Hz, 1H), 4.06 (q, J = 4.0 Hz, 1H), 3.94 - 3.88 (m, 2H), 3.45 - 3.33 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ = 185.2 (t, ²*J*_{C-F} = 26.0 Hz), 141.5, 135.7, 130.2, 129.0, 128.3, 128.1, 113.7 (t, ¹*J*_{C-F} = 246.0 Hz), 75.1, 66.5 (t, ²*J*_{C-F} = 4.0 Hz), 44.9 (t, ²*J*_{C-F} = 22.0 Hz), 42.2 (t, ²*J*_{C-F} = 4.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.20 (dd, *J* = 282.0, 11.3 Hz, 1F), -113.4 (dd, *J* = 282.0, 11.3 Hz, 1F).

HRMS (ESI-TOF): m/z [M+Na]⁺ calcd for C₁₂H₁₀O₂F₂Na: 247.0541; found: 247.0546. **4,4-difluoro-1,2,3,3a,4,9b-hexahydro-5H-cyclopenta[a]naphthalen-5-one (3ah)**

A light yellow oily (40% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.0$ (d, J = 8.0 Hz, 1H), 7.62 (t, J = 8.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 2H), 3.62 (q, J = 8.0 Hz, 1H), 3.07 - 2.94 (m, 1H), 2.28 - 2.19 (m, 1H), 2.08 - 1.91 (m, 2H), 1.88 - 1.81 (m, 1H), 1.78 - 1.70 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 186.3 (t, ²*J*_{C-F} = 45.0 Hz), 144.8, 138.4, 133.6, 130.4(t, ²*J*_{C-F} = 49.0 Hz) 128.9, 125.9, 113.7 (t, ¹*J*_{C-F} = 246.0 Hz), 44.91 (t, ²*J*_{C-F} = 21.0 Hz), 42.4, 35.0, 24.4, 24.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -106.19 (dd, *J* = 267.0, 11.3 Hz, 1F), -113.81 (dd, *J* = 267.0, 11.3 Hz, 1F).

HRMS (ESI-TOF): m/z [M+Na]⁺ calcd for C₁₃H₁₂OF₂Na: 245.0754; found: 245.0752. **10,10-difluoro-2,3,4,4a,10,10a-hexahydrophenanthren-9(1H)-one (3ai)**

A light yellow oily (63% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H NMR** (400 MHz, CDCl₃) $\delta = 8.12 - 8.10$ (m, 1H), 7.66 - 7.62 (m, 1H), 7.42 - 7.36 (m, 2H), 3.50 - 3.46 (m, 1H), 2.75 - 2.59 (m, 1H), 2.40 - 2.36 (m, 1H), 1.71 - 1.68 (m,

2H), 1.58 - 1.51 (m, 1H), 1.47 - 1.41 (m, 2H), 1.37 - 1.27 (m, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ = 185.7 (t, ²*J*_{C-F} = 26.0 Hz), 135.5, 133.3, 129.8, 128.5, 127.6, 127.2, 115.5 (t, ¹*J*_{C-F} = 248.0 Hz), 64.5, 47.7, 29.0, 24.2, 21.7, 21.6 (t, ²*J*_{C-F} = 4.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -120.76 (d, *J* = 270.7Hz, 1F), -122.59 (d, *J* = 2667.0 Hz, 1F).

HRMS (ESI-TOF): m/z [M+Na]⁺ calcd for C₁₄H₁₄OF₂Na: 259.0905; found: 259.0911. 6,6-difluoro-6a,7,8,9,10,11,12,12a-octahydrocycloocta[a]naphthalen-5(6H)-one (3aj)

A light yellow oily (70% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 8.11- 8.08 (m, 1H), 7.63 - 7.58 (m, 1H), 7.40 - 7.36 (m, 2H), 3.25 - 3.19 (m, 1H), 2.68 - 2.55 (m, 1H), 2.47 - 2.34 (m, 1H), 1.90 - 1.81 (m, 1H), 1.77 - 1.63 (m, 2H), 1.50 - 1.39 (m, 1H), 1.35 - 1.22 (m, 5H), 0.89 - 0.85 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ = 185.5 (t, ²*J*_{C-F} = 26.0 Hz), 147.1, 135.1, 128.7, 128.0, 127.4, 127.2, 113.6 (t, ¹*J*_{C-F} = 246.0 Hz), 36.1 (t, ²*J*_{C-F} = 21.0 Hz), 35.6 (t, ²*J*_{C-F} = 5.0 Hz), 31.7, 29.2, 26.5, 22.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.78 (ddd, *J* = 278.2, 22.6, 15.0 Hz, 1F), -106.25 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F).

HRMS (ESI-TOF): m/z [M+Na]⁺ calcd for C₁₆H₁₈OF₂Na: 287.1218; found: 287.1215.

2,2-difluoro-4-(phenoxymethyl)-3,4-dihydronaphthalen-1(2H)-one(3ak)

A light yellow oily (58% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) δ = 8.13 (d, *J* = 8.0 Hz, 1H), 7.62 (t, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.42 (t, *J* = 8.0 Hz, 1H), 7.27 (t, *J* = 8.0 Hz, 2H), 6.95 (t, *J* = 4.0 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 2H), 4.31 - 4.21 (m, 2H), 3.69 (s, 1H), 2.81 - 2.66 (m, 2H).

¹³**C** NMR (100 MHz, CDCl₃) $\delta = 185.1$ (t, ²*J*_{C-F} = 26.0 Hz), 158.4, 142.8, 135.4, 130.4, 130.2, 129.7, 129.1, 129.0, 128.5, 128.3, 121.5, 114.7, 113.6 (t, ¹*J*_{C-F} = 246.0 Hz), 70.15 (d, ²*J*_{C-F} = 3.0 Hz), 36.3 (t, ²*J*_{C-F} = 5.0 Hz), 34.6 (t, ²*J*_{C-F} = 22.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.54 (ddd, *J* = 274.5, 22.6, 11.3 Hz, 1F), -107.38 (ddd, *J* = 274.5, 22.6, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{17}H_{14}O_2F_2Na$: 311.0854; found: 311.0859. 4-(butoxymethyl)-2,2-difluoro-3,4-dihydronaphthalen-1(2H)-one(3al)

A light yellow oily (77% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.12$ (d, J = 8.0 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.42 (t, J = 8.0 Hz, 1H), 3.73 (s, 2H), 3.49 (s, 3H), 2.66 (t, J = 8.0 Hz, 2H), 1.57 (s, 2H), 1.37 (d, J = 8.0 Hz, 2H), 0.92 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ = 185.4 (t, ²*J*_{C-F} = 26.0 Hz), 143.7, 135.1, 130.2, 128.8, 128.4, 127.9, 113.2 (t, ¹*J*_{C-F} = 246.0 Hz), 73.4, 71.2, 36.6 (t, ²*J*_{C-F} = 5.0 Hz), 34.6 (t, ²*J*_{C-F} = 22.0 Hz), 31.7, 19.4, 13.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.95 (dt, *J* = 274.5, 15.0 Hz, 1F), -107.40 (dt, *J* = 274.5, 15.0 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{15}H_{18}O_2F_2Na$: 291.1167; found: 291.1172. **4-benzyl-2,2-difluoro-3,4-dihydronaphthalen-1(2H)-one(3am)**

A light yellow oily (53% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.10$ (d, J = 8.0 Hz, 1H), 7.59 (t, J = 8.0 Hz, 1H), 7.38 (d, J = 4.0 Hz, 2H), 7.31 (t, J = 8.0 Hz, 2H), 7.25 (d, J = 4.0 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 3.47 (s, 1H), 3.27 (d, J = 12.0 Hz, 1H), 2.85 (t, J = 12.0 Hz, 1H), 2.46 - 2.27 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ = 185.4 (t, ²*J*_{C-F} = 26.0 Hz), 146.2, 138.7, 135.4, 129.6, 129.4, 129.0, 128.9, 128.5, 127.9, 126.9, 113.8 (t, ¹*J*_{C-F} = 246.0 Hz), 42.23 (d, ²*J*_{C-F} = 3.0 Hz), 38.02 (q, ²*J*_{C-F} = 3.0 Hz), 35.4 (t, ²*J*_{C-F} = 22.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -102.80 (ddd, *J* = 278.2, 22.6, 11.3 Hz, 1F), -106.38 (ddd, *J* = 278.2, 18.8, 11.3 Hz, 1F).

 $\label{eq:HRMS} \begin{array}{l} \textbf{(ESI-TOF): } m/z \; [M+Na]^+ \; \textbf{calcd for } C_{17}H_{14}OF_2Na; \; 295.0905; \; \textbf{found: } 295.0909. \\ \textbf{2,2-difluoro-4-((trimethylsilyl)methyl)-3,4-dihydronaphthalen-1(2H)-one(3an)} \end{array}$

A light yellow oily (94% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) δ = 8.31 (t, *J* = 8.0 Hz, 1H), 7.88 - 7.83 (m, 1H), 7.67 (q, *J* = 4.0 Hz, 1H), 7.63 - 7.58 (m, 1H), 3.62 (s, 1H), 2.98 - 2.85 (m, 1H), 2.65 - 2.50 (m, 1H), 1.52 (d, *J* = 16.0 Hz, 1H), 1.30 (t, *J* = 12.0 Hz, 1H), 0.37 (d, *J* = 4.0 Hz, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 185.5 (t, ²*J*_{C-F} = 26.0 Hz), 149.4, 135.4, 129.3, 128.6, 128.0, 127.3, 113.5 (t, ¹*J*_{C-F} = 246.0 Hz), 64.5, 44.8, 39.1 (t, ²*J*_{C-F} = 22.0 Hz), 32.4 (t, ²*J*_{C-F} = 5.0 Hz), 24.1, 0.55.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -105.41 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F), -106.34 (ddd, *J* = 278.2, 26.3, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{14}H_{18}OF_2SiNa$: 291.0987; found: 291.0992.

4-butyl-2,2-difluoro-3,4-dihydronaphthalen-1(2H)-one(3ao)

A light yellow oily (83% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) δ = 8.10 (t, *J* = 8.0 Hz, 1H), 7.62 (t, *J* = 8.0 Hz, 1H), 7.44 -7.36 (m, 2H), 3.23 (m, 1H), 2.71 - 2.56 (m, 1H), 2.49 - 2.36 (m, 1H), 1.88 (s, 1H), 1.79 (s, 1H), 1.38 (t, *J* = 8.0 Hz, 4H), 0.94 (d, *J* = 8.0 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 185.6 (t, ²*J*_{C-F} = 26.0 Hz), 148.7, 135.2, 129.8, 128.8, 128.0, 127.4, 113.7 (t, ¹*J*_{C-F} = 246.0 Hz), 36.2 (t, ²*J*_{C-F} = 22.0 Hz), 35.6, 35.0, 28.8, 22.7, 14.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.97 (ddd, *J* = 274.5, 22.6, 11.3 Hz, 1F), -106.43 (ddd, *J* = 278.2, 18.8, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{14}H_{16}OF_2Na$: 261.1061; found: 261.1067. 2,2-difluoro-4-hexyl-3,4-dihydronaphthalen-1(2H)-one(3ap)

A light yellow oily (80% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) δ = 8.09 (d, *J* = 8.0 Hz, 1H), 7.62 (t, *J* = 8.0 Hz, 1H), 7.42

(q, *J* = 8.0 Hz, 2H), 3.24 (m, 1H), 2.69 - 2.56 (m, 1H), 2.49 - 2.36 (m, 1H), 1.91 - 1.72 (m, 2H), 1.36 - 1.32 (d, *J* = 16.0 Hz, 8H), 0.89 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) $\delta = 185.6$ (t, ²*J*_{C-F} = 26.0 Hz), 147.1, 135.2, 129.7, 128.8, 128.0, 127.4, 113.7 (t, ¹*J*_{C-F} = 246.0 Hz), 36.2 (t, ²*J*_{C-F} = 21.0 Hz), 35.7 (t, ²*J*_{C-F} = 4.0 Hz), 35.3, 31.2, 29.3, 26.6, 22.7, 14.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.95 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F), -106.42 (ddd, *J* = 274.5, 15.0, 11.3 Hz, 1F).

 $\label{eq:HRMS} \begin{array}{l} \text{(ESI-TOF): } m/z \; [M+Na]^+ \; \text{calcd for } C_{16}H_{20}OF_2Na; \; 289.1380; \; \text{found: } 289.1379. \\ \textbf{(8R,9S,13S,14S)-3-((3,3-difluoro-4-oxo-1,2,3,4-tetrahydronaphthalen-1-)} \end{array}$

yl)methyl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-

cyclopenta[a]phenanthren-17-one(3aq)

A white solid (55% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1). m. p. (174.2 °C-176.3°C)

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.03$ (d, J = 8.0 Hz, 1H), 7.80 - 7.71 (m, 2H), 7.54 (t, J = 8.0 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 7.09 - 7.05 (m, 2H), 2.87 (s, 2H), 2.71 (t, J = 6.0 Hz, 1H), 2.52 (s, 3H), 2.45 - 2.39 (m, 2H), 2.27 (t, J = 8.0 Hz, 1H), 2.11 - 1.96 (m, 2H), 1.80 (d, J = 6.0 Hz, 1H), 1.62 - 1.37 (m, 6H), 1.22 (d, J = 10.0 Hz, 2H), 0.86 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 220.3, 185.3, 147.0, 138.3, 136.8, 135.4, 136.2, 130.1, 129.5, 129.3, 128.4, 127.2, 125.9, 114.7, 50.2, 47.9, 44.3, 41.2, 38.2, 37.3, 35.9, 31.2, 29.4, 26.6, 25.8, 21.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -102.63 (dd, *J* = 270.7, 26.3 Hz, 1F), -105.56 (d, *J* = 270.7Hz, 1F).

HRMS (ESI-TOF): $m/z [M+H]^+$ calcd for $C_{29}H_{30}O_2F_2$: 449.2292; found: 449.2289. (3,3-difluoro-7-methoxy-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl acetate (3ba)

A light yellow oily (67% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.05 - 8.02$ (m, 1H), 6.90 - 6.87 (m, 1H), 6.80 (t, J = 4.0 Hz, 1H), 4.39 - 4.27 (m, 2H), 3.82 (s, 3H), 3.48 - 3.42 (m, 1H), 2.63 - 2.49 (m, 2H), 2.02 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ = 183.4 (t, ²*J*_{C-F} = 24.0 Hz), 170.8, 165.3, 144.6, 131.8, 123.4, 114.6, 113.2 (t, ¹*J*_{C-F} = 253.0 Hz), 112.7, 66.1 (d, ⁴*J*_{C-F} = 3.0 Hz), 55.8, 35.7 (t,

 ${}^{3}J_{\text{C-F}} = 5.0 \text{ Hz}$), 34.6 (t, ${}^{2}J_{\text{C-F}} = 23.0 \text{ Hz}$), 20.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.43 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F), -107.25 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{14}H_{14}O_4F_2Na$: 307.0752; found: 307.0757. (3,3-difluoro-7-methyl-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl acetate(3ca)

A light yellow oily (77% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) δ = 8.04 (d, J = 8.0 Hz, 1H), 7.26 (t, J = 8.0 Hz, 2H), 4.52 - 4.48 (m, 1H), 4.36 - 4.30 (m, 1H), 3.54 (q, J = 8.0 Hz, 1H), 2.74 - 2.57 (m, 2H), 2.44 (s, 3H), 2.10 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) $\delta = 184.4$ (t, ²*J*_{C-F} = 26.0 Hz), 170.7, 146.9, 142.0, 129.4, 129.1, 128.7, 127.7, 113.3 (t, ¹*J*_{C-F} = 246.0 Hz), 66.1, 35.4, 34.3 (t, ²*J*_{C-F} = 23.0 Hz), 22.0, 20.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.43 (ddd, *J* = 267.0, 22.6, 11.3 Hz, 1F), -107.38 (ddd, *J* = 228.2, 22.6, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{14}H_{14}O_3F_2Na$: 291.0803; found: 291.0809. (3,3-difluoro-4-oxo-7-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalen-1-yl)methyl acetate(3da)

A light yellow oily (70% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.17$ (d, J = 8.0 Hz, 1H), 7.67 - 7.63 (m, 2H), 4.43 - 4.32 (m, 2H), 3.62 - 3.56 (m, 1H), 2.74 - 2.52 (m, 2H), 2.01 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) $\delta = 184.0$ (t, ²*J*_{C-F} = 26.0 Hz), 170.6, 142.8, 136.1 (q, ²*J*_{C-F} = 33.0 Hz), 132.6, 129.8, 125.5 (d, ²*J*_{C-F} = 4.0 Hz), 125.1 (d, ²*J*_{C-F} = 4.0 Hz), 122.5 (q, ¹*J*_{C-F} = 273.0 Hz), 112.9 (t, ¹*J*_{C-F} = 246.0 Hz), 65.8 (d, ⁴*J*_{C-F} = 3.0 Hz), 35.6 (t, ³*J*_{C-F} = 5.0 Hz), 34.4 (t, ²*J*_{C-F} = 23.0 Hz), 20.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -63.52(s, 3F), -105.09 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F), -108.04 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{14}H_{11}O_3F_5Na$: 345.0526; found: 345.0527. (3,3,7-trifluoro-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl acetate(3ea)

A light yellow solid (73% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1). m. p. (72.2 °C-73.7 °C)

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.17 - 8.04$ (m, 1H), 7.18 - 7.13 (m, 2H), 4.45 - 4.40 (m, 2H), 3.62 - 3.56 (m, 1H), 2.76 - 2.53 (m, 2H), 2.08 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) $\delta = 183.4$ (t, ²*J*_{C-F} = 26.0 Hz), 170.7, 166.9 (d, ¹*J*_{C-F} = 257.0 Hz), 145.5 (d, ²*J*_{C-F} = 9.0 Hz), 132.3 (d, ²*J*_{C-F} = 10.0 Hz), 126.8, 116.2 (d, ²*J*_{C-F} = 22.0 Hz), 115.0 (d, ²*J*_{C-F} = 23.0 Hz), 113.1 (t, ¹*J*_{C-F} = 246.0 Hz), 65.7, 35.4, 34.6 (t, ²*J*_{C-F} = 22.0 Hz), 20.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -100.07(t, *J* = 6.0 Hz, 1F), -105.64 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F), -107.82 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F).

 $\label{eq:HRMS} \begin{array}{l} \textbf{(ESI-TOF): } m/z \left[M+Na \right]^+ \textbf{calcd for } C_{13}H_{11}O_3F_3Na; 295.0558; \ \textbf{found: } 295.0551. \\ \textbf{(7-chloro-3,3-difluoro-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl} \end{array}$

A light yellow solid (70% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1). m. p. ($88.1^{\circ}C-88.8^{\circ}C$)

¹**H** NMR (400 MHz, CDCl₃) δ = 8.02 (d, *J* = 8.0 Hz, 1H), 7.45 - 7.38 (m, 2H), 4.46 - 4.32 (m, 2H), 3.58 - 3.52 (m, 1H), 2.75 - 2.53 (m, 2H), 2.06 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 183.8 (t, ²*J*_{C-F} = 26.0 Hz), 170.6, 143.7, 142.1, 130.6, 128.9, 128.5, 128.3, 113.0 (t, ¹*J*_{C-F} = 246.0 Hz), 65.7 (d, ⁴*J*_{C-F} = 3.0 Hz), 35.3 (t, ³*J*_{C-F} = 4.0 Hz), 34.4 (d, ²*J*_{C-F} = 22.0 Hz), 20.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -105.21 (ddd, *J* = 278.2, 22.6, 11.3 Hz, 1F), -107.72 (ddd, *J* = 278.2, 22.6, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{13}H_{11}O_3F_2CINa$: 311.0262; found: 311.0261.

(7-bromo-3,3-difluoro-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl acetate(3ga)

A light yellow solid (60% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1). m. p. (108.2 °C-108.8 °C)

¹**H** NMR (400 MHz, CDCl₃) δ = 7.94 (d, *J* = 8.0 Hz, 1H), 7.63 - 7.56 (m, 2H), 4.47 -

4.32 (m, 2H), 3.59 -3.53 (m, 1H), 2.75 - 2.53 (m, 2H), 2.07 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 184.0 (t, ²*J*_{C-F} = 26.0 Hz), 170.6, 143.7, 131.9, 131.3, 131.1, 131.0, 129.0, 113.0 (t, ¹*J*_{C-F} = 246.0 Hz), 65.7 (d, ⁴*J*_{C-F} = 3.0 Hz), 35.3 (t, ³*J*_{C-F} = 4.0 Hz), 34.3 (d, ²*J*_{C-F} = 22.0 Hz), 20.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -105.05 (ddd, *J* = 274.5, 22.6, 11.3 Hz, 1F), -107.67 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{13}H_{11}BrO_3F_2Na$: 354.9757; found: 354.9760.

(3,3-difluoro-5-methoxy-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl acetate(3ha)

A light yellow oily (66% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.56 - 7.51 (m, 1H), 6.94 (d, *J* = 8.0 Hz, 2H), 4.40 - 4.35 (m, 1H), 4.27 - 4.22 (m, 1H), 3.89 (s, 3H), 3.49(s, 1H), 2.63 - 2.52 (m, 2H), 2.02 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 183.4 (t, ²*J*_{C-F} = 26.0 Hz), 170.8, 161.8, 144.1, 136.3, 120.2, 119.4, 113.1 (t, ¹*J*_{C-F} = 246.0 Hz), 111.3, 68.7, 56.2, 35.8, 33.7 (t, ²*J*_{C-F} = 23.0 Hz), 20.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ=-103.27 (ddd, J = 259.4, 33.8, 18.8 Hz, 1F), -104.62 (ddd, J = 259.4, 33.8, 18.8 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{14}H_{14}O_4F_2Na$: 307.0752; found: 307.0757. (3,3-difluoro-5-methyl-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl acetate(3ia)

A light yellow oily (80% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.49 (t, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.25 (d, *J* = 8.0Hz, 1H), 4.47 - 4.42 (m, 1H), 3.33 - 3.28 (m, 1H), 3.58 - 3.55 (m, 1H), 2.70 - 2.59 (m, 5H), 2.07 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 186.3 (t, ²*J*_{C-F} = 26.0 Hz), 170.7, 143.7, 143.0, 134.2, 131.9, 128.6, 128.5, 113.2 (t, ¹*J*_{C-F} = 246.0 Hz), 66.8 (d, ²*J*_{C-F} = 3.0 Hz), 36.0 (q, ²*J*_{C-F} = 3.0 Hz), 33.8 (t, ²*J*_{C-F} = 23.0 Hz), 23.0, 20.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -103.27 (ddd, *J* = 274.5, 18.8, 11.3 Hz,F), -105.14 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{14}H_{14}O_3F_2Na$: 291.0803; found: 291.0809. (3,3,5-trifluoro-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl acetate(3ja)

A light yellow oily (84% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.69 - 7.63 (m, 1H), 7.31 - 7.27 (m, 1H), 7.19 - 7.12 (m, 1H), 4.49 - 4.43 (m, 2H), 3.66 - 3.61 (m, 1H), 2.75 - 2.61 (m, 2H), 2.08 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ = 186.4 (t, ²*J*_{C-F} = 26.0 Hz), 170.7, 163.0 (d, ¹*J*_{C-F} = 267.0 Hz), 144.0, 136.7 (d, ²*J*_{C-F} = 10.0 Hz), 124.1, 119.2, 116.5 (d, ²*J*_{C-F} = 20.0 Hz), 112.7 (t, ¹*J*_{C-F} = 246.0 Hz), 66.2, 35.7, 34.0 (t, ²*J*_{C-F} = 23.0 Hz), 20.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.97 (ddd, *J* = 270.1, 18.8, 11.3 Hz, 1F), -106.79 (ddd, *J* = 270.1, 18.8, 11.3 Hz, 1F), -108.55 (s, 1F).

 $\label{eq:HRMS} \begin{array}{l} \mbox{(ESI-TOF): } m/z \ [M+Na]^+ \ calcd \ for \ C_{13}H_{11}O_3F_3Na; \ 295.0553; \ found: \ 295.0557. \\ \mbox{(5-chloro-3,3-difluoro-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl} \end{array}$

A light yellow oily (60% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) δ = 7.49 (t, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 4.39 - 4.25 (m, 2H), 3.59 - 3.53 (m, 1H), 2.73 - 2.53 (m, 2H), 2.00 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 183.4 (t, ²*J*_{C-F} = 26.0 Hz), 170.6, 144.6, 135.9, 134.8, 131.6, 127.6, 127.4, 113.0 (d, ¹*J*_{C-F} = 246.0 Hz), 66.5, 35.8 (t, ²*J*_{C-F} = 5.0 Hz), 33.6 (t, ²*J*_{C-F} = 23.0 Hz), 20.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.07 (ddd, *J* = 267.0, 22.6, 15.0 Hz, 1F), -105.13 (ddd, *J* = 267.0, 22.6, 15.0 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{13}H_{11}O_3F_2ClNa$: 311.0257; found: 311.0262.

(3,3-difluoro-4-oxo-7-phenyl-1,2,3,4-tetrahydronaphthalen-1-yl)methyl acetate(3la)

A light yellow solid (74% yield), purified by flash column chromatography on silica

gel (petroleum ether/ethyl acetate = 80:1). m.p. (101.0 °C-103.1°C)

¹**H NMR** (400 MHz, CDCl₃) δ = 8.20 (d, *J* = 8.0 Hz, 1H), 7.68 - 7.63 (m, 4H), 7.52 - 7.43 (m, 3H), 4.57 - 4.45 (m, 2H), 3.70 - 3.64 (m, 1H), 2.79 - 2.66 (m, 2H), 2.11 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ = 184.5 (t, ²*J*_{C-F} = 26.0 Hz), 170.8, 148.1, 142.6, 139.1, 129.8, 129.2, 129.0, 128.9, 127.4, 127.1, 126.7, 113.4 (t, ¹*J*_{C-F} = 246.0 Hz), 65.1 (d, ⁴*J*_{C-F} = 2.0 Hz), 35.7 (q, ³*J*_{C-F} = 3.0 Hz), 34.5 (d, ²*J*_{C-F} = 23.0 Hz), 20.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.41 (ddd, *J* = 278.2, 18.8, 11.3 Hz, 1F), -107.24 (ddd, *J* = 278.2, 18.8, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{19}H_{16}O_3F_2Na$: 353.0560; found: 353.0964. (3,3-difluoro-7-isobutyl-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl acetate(3ma)

A light yellow oily (79% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H NMR** (400 MHz, CDCl₃) $\delta = 8.05 - 8.02$ (m, 1H), 7.25 - 7.20 (m, 2H), 4.48 - 4.36 (m, 2H), 3.58 - 3.53 (m, 1H), 2.72 - 2.50 (m, 4H), 2.07 (s, 3H), 1.94 - 1.86 (m, 1H), 0.93 - 0.89 (m, 6H).

¹³**C NMR** (100 MHz, CDCl₃) $\delta = 184.4$ (t, ²*J*_{C-F} = 26.0 Hz), 170.7, 150.5, 141.8, 129.4, 129.1, 128.7, 128.0, 113.3 (t, ¹*J*_{C-F} = 246.0 Hz), 66.1 (d, ²*J*_{C-F} = 3.0 Hz), 45.6, 34.5 (t, ²*J*_{C-F} = 5.0 Hz), 34.6 (t, ²*J*_{C-F} = 23.0 Hz), 30.1, 22.4, 22.2, 20.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.43 (ddd, *J* = 274.5, 22.6, 11.3 Hz, 1F), -107.44 (ddd, *J* = 274.5, 22.6, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{17}H_{20}O_3F_2Na$: 333.1273; found: 333.1278. (3,3-difluoro-6-methyl-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl acetate and (3,3-difluoro-8-methyl-4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl)methyl acetate (3na:3na'=4:5)

A light yellow oily (75% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.97 - 7.84 (m, 1H), 7.51 - 7.41 (m, 1H), 7.36 - 7.28 (m, 1H), 4.44 - 3.92 (m, 2H), 3.71 - 3.49 (m, 1H), 2.98 - 2.33 (m, 5H), 2.09 - 2.02 (m, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 185.0 (t, ²*J*_{C-F} = 27.0 Hz), 170.7, 140.1, 139.2, 138.3, 137.7, 137.4, 136.5, 113.4 (t, ¹*J*_{C-F} = 246.0 Hz), 64.7, 34.5, 33.5 (d, t, ²*J*_{C-F} = 11.0 Hz), 32.9 (t, ²*J*_{C-F} = 22.0 Hz), 20.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -96.81 (ddd, *J* = 285.8, 26.32, 15.0 Hz, 1F), -103.16 (dd, *J* = 289.5, 26.32 Hz, 1F).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.97 - 7.84 (m, 1H), 7.51 - 7.41 (m, 1H), 7.36 - 7.28 (m, 1H), 4.44 - 3.92 (m, 2H), 3.71 - 3.49 (m, 1H), 2.98 - 2.33 (m, 5H), 2.09 - 2.02 (m, 3H).

¹³**C NMR** (100 MHz, CDCl₃) $\delta = 185.0$ (t, ²*J*_{C-F} = 27.0 Hz), 170.7, 130.7, 129.9, 129.0, 128.3, 128.1, 127.2, 112.7 (t, ¹*J*_{C-F} = 246.0 Hz), 66.1, 35.1, 34.5 (t, ²*J*_{C-F} = 20.0 Hz), 32.9 (t, ²*J*_{C-F} = 22.0 Hz), 18.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -104.76 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F), -107.55 (ddd, *J* = 274.5, 18.8, 11.3 Hz, 1F).

 $\label{eq:HRMS} \begin{array}{l} \textbf{(ESI-TOF): } m/z \ [M+Na]^+ \ calcd \ for \ C_{14}H_{14}O_3F_2Na: 291.0803; \ found: 291.0809. \\ \textbf{(8,8-difluoro-9-oxo-7,8,9,11-tetrahydro-6H-benzo[b]fluoren-6-yl)methyl} \\ acetate \ and \ \ \textbf{(3,3-difluoro-4-oxo-2,3,4,11-tetrahydro-1H-benzo[a]fluoren-1-yl)methyl} \\ acetate \ \textbf{(3oa:3oa'=1:1.4)} \end{array}$

A light yellow oily (79% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.23$ (d, J = 8.0 Hz, 1H), 7.85 (d, J = 4.0 Hz, 2H), 7.46 - 7.43 (m, 3H), 4.63 (t, J = 12.0 Hz, 1H), 4.19 - 4.15 (m, 1H), 3.92 (d, J = 8.0 Hz, 1H), 3.76 (s, 1H), 3.02 (t, J = 12.0 Hz, 1H), 2.76 - 2.63 (m, 1H), 2.18 (d, J = 4.0 Hz, 3H), 1.29 (t, J = 12.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ = 184.5 (t, ²*J*_{C-F} = 24.0 Hz), 170.9, 149.0, 144.4, 142.0, 139.6, 138.1, 129.2, 129.0, 128.4, 127.4, 125.5, 121.4, 120.2, 113.0 (t, ¹*J*_{C-F} = 249.0 Hz), 65.1 (d, ²*J*_{C-F} = 5.0 Hz), 35.78 (d, ²*J*_{C-F} = 3.0 Hz), 35.6, 33.0 (t, ²*J*_{C-F} = 22.0 Hz), 20.94 (d, ²*J*_{C-F} = 8.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -96.70 (ddd, *J* = 270.7, 37.6, 15.0 Hz, 1F), -103.84 (ddd, *J* = 278.2, 18.8, 11.3 Hz, 1F), -103.93 (d, *J* = 285.8 Hz, 1F).

¹**H** NMR (400 MHz, CDCl₃) δ = 8.28 (s, 1H), 7.85 (d, *J* = 4.0 Hz, 2H), 7.84 (d, *J* = 4.0 Hz, 1H), 7.79 (s, 1H), 7.59 (t, *J* = 8.0 Hz, 1H), 4.44 (t, *J* = 8.0 Hz, 1H), 4.13 (d, *J* = 4.0 Hz, 1H), 3.97 (s, 1H), 3.76 (s, 1H), 3.02 (t, *J* = 12.0 Hz, 1H), 2.58 - 2.50 (m, 1H), 2.15 (d, *J* = 4.0 Hz, 3H), 2.07 (d, *J* = 4.0 Hz, 1H).

¹³**C** NMR (100 MHz, CDCl₃) δ = 185.0 (t, ²*J*_{C-F} = 26.0 Hz), 170.9, 148.9, 145.1, 246.0, 141.3, 140.0, 138.1, 129.2, 127.4, 125.5, 125.4, 121.4, 118.9, 113.4 (t, ¹*J*_{C-F} = 123.0 Hz), 66.3 (d, ²*J*_{C-F} = 8.0 Hz), 36.6, 35.7 (d, ²*J*_{C-F} = 4.0 Hz), 34.7 (d, ²*J*_{C-F} = 10.0 Hz), 34.5 (t, ²*J*_{C-F} = 19.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -103.88 (ddd, *J* = 274.5, 18.8, 15.0 Hz, 1F), -106.93 (ddd, *J* = 278.2, 18.8, 11.3 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{20}H_{16}O_3F_2Na$: 365.0960; found: 365.0963. (2,2-difluoro-1-oxo-1,2,3,4-tetrahydrophenanthren-4-yl)methyl acetate (3pa)

A light yellow oily (79% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.43$ (d, J = 8.0 Hz, 1H), 8.12 (d, J = 8.0 Hz, 1H), 7.92 - 7.86 (m, 2H), 7.73 - 7.67 (m, 2H), 4.71 (d, J = 12.0 Hz, 1H), 4.37 (s, 1H), 4.14 (t, J = 8.0 Hz, 1H), 3.16 - 3.08 (m, 1H), 2.70 - 2.53 (m, 1H), 2.18 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ = 185.0 (t, ²*J*_{C-F} = 26.0 Hz), 171.1, 141.2, 136.7, 130.3, 129.5(t, ²*J*_{C-F} = 26.0 Hz), 129.0, 128.2, 125.3, 124.5 (t, ²*J*_{C-F} = 4.0 Hz), 123.9, 123.1, 112.7 (t, ¹*J*_{C-F} = 246.0 Hz), 66.0 (d, ²*J*_{C-F} = 5.0 Hz), 33.0 (t, ²*J*_{C-F} = 11.0 Hz), 32.7, 19.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -97.75 (ddd, *J* = 285.8, 37.6 15.0 Hz, 1F), -104.59 (dd, *J* = 282.0, 7.52 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{17}H_{14}O_3F_2Na$: 327.0803; found: 327.0808. (6,6-difluoro-7-oxo-4,5,6,7-tetrahydrobenzo[b]thiophen-4-yl)methyl acetate(3qa)

A light yellow oily (30% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H NMR** (400 MHz, CDCl₃) δ = 7.91 - 7.89 (m, 1H), 7.19 - 7.17 (m, 1H), 4.44 (d, *J* = 8.0 Hz, 2H), 3.63 - 3.56 (m, 1H), 2.28 - 2.71 (m, 1H), 2.60 - 2.45 (m, 1H), 2.11 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ = 178.3 (t, ²*J*_{C-F} = 26.0 Hz), 170.7, 151.9, 138.3, 134.5, 127.3, 114.2 (t, ¹*J*_{C-F} = 246.0 Hz), 65.2, 36.3 (t, ²*J*_{C-F} = 23.0 Hz), 34.1 (q, ³*J*_{C-F} = 83.0 Hz), 20.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -106.77 (ddd, *J* = 274.5, 26.3, 11.3 Hz, 1F), -108.29 (ddd, *J* = 278.2, 15.0, 7.52 Hz, 1F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{11}H_{10}O_3F_2SNa$: 283.0211; found: 283.0219.

4,4-difluoro-2-iodo-5-oxo-5-phenylpentyl acetate(4aa)

A light yellow oily (80% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) δ = 8.12 (d, *J* = 8.0 Hz, 2H), 7.68 (t, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 2H), 4.52 - 4.42 (m, 2H), 4.31 (q, *J* = 8.0 Hz, 1H), 3.16 - 2.91(m, 2H),

2.09 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ = 185.2 (t, ²*J*_{C-F} = 30.0 Hz), 170.2, 143.7, 131.5, 130.3 (t, ¹*J*_{C-F} = 3.0 Hz), 128.9, 118.6(t, ¹*J*_{C-F} = 254.0 Hz), 68.9, 41.0 (t, ²*J*_{C-F} = 22.0 Hz), 20.8, 15.1 (t, ²*J*_{C-F} = 3.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -98.58 (dd, *J* = 33.84, 18.8 Hz, 2F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{13}H_{13}O_3F_2INa$: 404.9770; found: 404.9771. 4,4-difluoro-2-iodo-5-(4-methoxyphenyl)-5-oxopentyl acetate(4ba)

A light yellow oily (80% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) $\delta = 8.11$ (d, J = 6.0 Hz, 2H), 6.99 (d, J = 4.0 Hz, 1H), 6.97 (d, J = 4.0 Hz, 1H), 4.52 - 4.40 (m, 2H), 4.30 (q, J = 4.0 Hz, 1H), 3.90(s, 3H), 3.13 - 2.88 (m, 2H), 2.09 (s, 3H).

¹³**C** NMR (100 MHz, CDCl₃) δ = 186.6 (t, ²*J*_{C-F} = 30.0 Hz), 170.2, 164.8, 132.9(t, ²*J*_{C-F} = 3.0 Hz), 124.3, 118.8 (t, ¹*J*_{C-F} = 254.0 Hz), 114.2, 68.9, 55.7, 41.1 (t, ²*J*_{C-F} = 22.0 Hz), 20.8, 15.4 (t, ²*J*_{C-F} = 4.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -98.14 (dd, *J* = 33.84, 15.0 Hz, 2F).

HRMS (ESI-TOF): m/z [M+Na]⁺ calcd for C₁₄H₁₅O₄F₂INa: 434.9875; found: 434.9873. **4,4-difluoro-2-iodo-5-(naphthalen-2-yl)-5-oxopentyl acetate(4ca)**

A light yellow oily (80% yield), purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 80:1).

¹**H** NMR (400 MHz, CDCl₃) δ = 8.73 (s, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 8.01 (d, *J* = 8.0 Hz, 1H), 7.92 (q, *J* = 8.0 Hz, 2H), 7.68 (t, *J* = 8.0 Hz, 1H), 7.60 (t, *J* = 8.0 Hz, 1H), 4.58 - 4.46 (m, 2H), 4.38 - 4.33 (m, 1H), 3.23 - 2.99 (m, 2H), 2.10 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ = 188.1 (t, ²*J*_{C-F} = 31.0 Hz), 170.3, 136.2, 133.1, 132.3, 130.2, 129.7, 128.8, 128.6, 127.9, 127.2, 124.8, 118.8 (t, ¹*J*_{C-F} = 254.0 Hz), 68.9, 41.1 (t, ²*J*_{C-F} = 23.0 Hz), 20.8, 15.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ = -97.85 (dd, *J* = 37.60, 18.8 Hz, 2F).

HRMS (ESI-TOF): $m/z [M+Na]^+$ calcd for $C_{17}H_{15}O_3F_2INa:454.9926$; found: 454.9921.

7 References

[1] a) I. Saidalimu, X. Fang, F. H. Wu, *Angew. Chem. Int. Ed.* 2013, 52, 5566-5570; b)
H. Chen, J. X. Wang, J. J. Wu, Y. J. Kuang, F. H. Wu, *J. Fluor. Chem.* 2017, 200, 41-46; c) J. X. Wang, J. J. Wu, H. Chen, S. W. Zhang, F. H. Wu, *Chin. Chem. Lett.* 2019, 26, 1381-1384.

[2] White, M. C., W. Liu, R. L. Ma: Sulfoxide Ligand Metal Catalyzed: US 10266503
8 NMR spectra (¹H, ¹³C and ¹⁹F)

N 1.01 1.04 1.06 °- 1.05 Å 1.05 Å 3.06 ∞ 1.00-≭ 16 15 13 12 10 14 'n -2 -3 -4 9 6 f1 (ppm) 0 -1 8 i

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

i

-1

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

3.20-2-12.3.1.1r

-105.98 -106.09 -106.01 -113.39 -113.44 -114.10

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80

14. 3. 3. 1. 1r

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

9 X-Ray structures

