## Supporting Information

# Iridium-catalyzed meta-selective C-H borylation of phenol derivatives 

Wenjie Ju ${ }^{[a]}$, Du Gao ${ }^{[a]}$, Min Liang ${ }^{[a]}$, Shuxiong Han ${ }^{[a]}$, Chuangchuang Liu ${ }^{[a]}$, Yingsheng Zhao*[a],[b]

${ }^{[a]}$ Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China, *email: yszhao@suda.edu.cn ${ }^{[b]}$ School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China

## Table of Content

1. General information ..... 3
2. Synthesis of the starting materials .....  3
2.1. General procedure for the preparation of $1 \mathrm{a}-1 \mathrm{~d}, 1 \mathrm{~h}-1 \mathrm{r}, 1 \mathrm{t}-1 \mathrm{w}, 1 \mathrm{y}-1 \mathrm{ao}$. ..... 3
2.2. General procedure for the preparation of $1 \mathrm{e}-1 \mathrm{~g}, 4 \mathrm{a}$ and 5 a ..... 4
2.3. General procedure for the preparation of 1 s and 1 x ..... 4
3. Reactions of 1a and 2a under different conditions ..... 15
3.1 Screening of unsubstituted substrates ..... 15
3.2 Screening of substituted substrates ..... 20
4. Preparation of 3a-3j, 3an-3ao ..... 23
5. Preparation of substrate 3I-3am ..... 30
6. Application ..... 42
7. Useful Synthetic Transformations ..... 45
8. References ..... 50
9. Crystal data and structure refinement for 3ah. ..... 51
10. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of new substrates and all product ..... 52

## 1. General information

Analytic methods. All reactions were carried out at inert atmosphere using reaction tubes and were monitored through thin layer chromatography (TLC) on silica gel-precoated glass plates. Chromatograms were visualized by fluorescence quenching with UV-light at 254 nm and 365 nm . Flash column chromatography was performed using Yantai Yinlong flash silica gel (200300 mesh). Melting points were recorded on an Electrothermal digital melting point apparatus. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on Bruker 400 MHz spectrometer in $\mathrm{CDCl}_{3}$ with tetramethylsilane (TMS) as internal standard. The chemical shifts are expressed in ppm and coupling constants are given in Hz . Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift $(\delta, \mathrm{ppm})$, multiplicity $(\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quarter; $\mathrm{p}=$ pentet; $\mathrm{m}=$ multiplet; $\mathrm{br}=$ broad $)$, coupling constant $(\mathrm{Hz})$, integration. Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift ( $\delta, \mathrm{ppm}$ ). Data for ${ }^{19} \mathrm{~F}$ NMR are reported in terms of chemical shift $(\delta, \mathrm{ppm})$. HRMS spectra were obtained by using BRUKER micrOTOF-Q III instrument with ESI source or EI source. The crystal was measured by using Agilent or Bruker instrument. IR spectra were recorded on a BRUKER VERTEX 70 spectrophotometer and are reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$.

General preparation for chemicals. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. An oil bath was used for reactions requiring heating. Temperatures quoted are external.

## 2. Synthesis of the starting materials

### 2.1. General procedure for the preparation of $1 \mathrm{a}-1 \mathrm{~d}, 1 \mathrm{~h}-1 \mathrm{r}, 1 \mathrm{t}-1 \mathrm{w}, 1 \mathrm{y}-1 \mathrm{ao}$



General procedure to protect the phenol substrates: In a clean, oven dried 50 mL round bottom flask containing magnetic stir-bar, phenol ( 5.0 mmol ), imidazole ( 2.5 equiv, 12.5 mmol ) were added DCM
$(20 \mathrm{~mL})$. Then drop $\operatorname{TIPSCl}(1.2$ equiv, 5.5 mmol$)$ at $0^{\circ} \mathrm{C}$. This reaction flask was placed in a preheated oil bath at $25^{\circ} \mathrm{C}$ to stir vigorously for 12 h . After TLC analysis had shown complete conversion of the starting materials, $1 \mathrm{M} \mathrm{NaOH}(20 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried with sodium sulphate, filtered and the solvent was removed in vacuo. The resulting residue was purified by column chromatography (pe.ether $/ \operatorname{EtOAc}=50 / 1$ ) on silica gel to give the product $\mathbf{1 a - 1 d}, \mathbf{1 h} \mathbf{- 1} \mathbf{r}, \mathbf{1} \mathbf{- 1} \mathbf{w}, \mathbf{1} \mathbf{y} \mathbf{- 1} \mathbf{a o}$. These compound


### 2.2. General procedure for the preparation of $1 \mathrm{e}-1 \mathrm{~g}, 4 \mathrm{a}$ and 5 a .



General procedure to protect the phenol substrates: In a clean, oven dried 50 mL round bottom flask containing magnetic stir-bar, phenol ( 5.0 mmol ), DMAP ( $10 \mathrm{~mol} \%, 0.5 \mathrm{mmol}$ ), $\mathrm{Et}_{3} \mathrm{~N}$ ( 2.5 equiv, 12.5 mmol) were added $\operatorname{DCM}(20 \mathrm{~mL})$. Then drop $\operatorname{TIPSCl}(1.2$ equiv, 5.5 mmol$)$ at $0^{\circ} \mathrm{C}$. This reaction flask was placed in a preheated oil bath at $25^{\circ} \mathrm{C}$ to stir vigorously for 12 h . After TLC analysis had shown complete conversion of the starting materials, $1 \mathrm{M} \mathrm{NaOH}(20 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were dried with sodium sulphate, filtered and the solvent was removed in vacuo. The resulting residue was purified by column chromatography (pe.ether $/ \mathrm{EtOAc}=20 / 1$ ) on silica gel to give the product $\mathbf{1 e - 1 g}, \mathbf{4 a}$ and $\mathbf{5 a}$. These compound $\mathbf{1} \mathbf{e}^{6}, \mathbf{4} \mathbf{a}^{7}$ have been reported.

### 2.3. General procedure for the preparation of 1 s and 1 x .



General procedure to protect the phenol substrates: In a clean, oven dried 50 mL round bottom flask containing magnetic stir-bar, phenol ( 5.0 mmol ), DMAP ( $10 \mathrm{~mol} \%, 0.5 \mathrm{mmol}$ ), imidazole ( 2.5 equiv, 12.5 $\mathrm{mmol})$ were added Toluene ( 20 ml ). Then drop $\operatorname{TIPSCl}(1.2$ equiv, 5.5 mmol$)$ at $0{ }^{\circ} \mathrm{C}$. This reaction flask
was placed in a preheated oil bath at $120^{\circ} \mathrm{C}$ to stir vigorously for 18 h . After TLC analysis had shown complete conversion of the starting materials, $1 \mathrm{M} \mathrm{NaOH}(20 \mathrm{~mL})$ was added, the organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The resulting residue was purified by column chromatography (pe.ether $/ \operatorname{EtOAc}=50 / 1$ ) on silica gel to give the product $\mathbf{1 s}$ and $\mathbf{1 x}$.

1-(2-((triisopropylsilyl)oxy)phenyl)butan-1-one (1f)

${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.51(\mathrm{dd}, \mathrm{J}=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.31-7.27 (m, 1H), $6.95(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, \mathrm{J}=8.2$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.93(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.28$ $(\mathrm{m}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 19 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 204.2,154.6,132.3,131.5,129.8$, $121.0,119.5,77.5,77.2,76.8,45.6,18.0,17.8,13.9,13.4$. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 321.2244$, found: 321.2240 .
isopropyl 2-((triisopropylsilyl)oxy)benzoate (1g)

337.2193, found: 337.2192.
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.64(\mathrm{dd}, \mathrm{J}=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.33-7.27 (m, 1H), 6.96-6.89 (m, 1H), $6.87(\mathrm{dd}, \mathrm{J}=8.3,0.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.21(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.29(\mathrm{~m}, 9 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}$, 18H). ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 166.3,155.4,132.5$, 131.1, 123.9, 120.4, 120.3, 77.5, 77.2, 76.8, 68.1, 22.1, 18.1, 17.9, 13.3. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}^{+}$, m/z:

Triisopropyl(2-(2-((triisopropylsilyl)oxy)ethyl)phenoxy)silane (1h)

${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.22(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (t, J = $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, 1H), 3.92 (t, J = 7.1 Hz, 2H), $2.95(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.41-1.29 $(\mathrm{m}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 18 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 18 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 154.3,131.5,129.3,127.2$,
120.6, 118.0, 77.5, 77.2, 76.8, 63.5, 34.7, 18.3, 18.2, 13.3, 12.2. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{26} \mathrm{H}_{51} \mathrm{O}_{2} \mathrm{Si}_{2}{ }^{+}, \mathrm{m} / \mathrm{z}: 451.3422$, found: 451.3417 .
methyl 3-((triisopropylsilyl)oxy)benzoate (1n)

309.1885 .
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.62(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54$ (dd, J = 2.6, 1.6 Hz, 1H), 7.28 (t, J = 7.9 Hz, 1H), 7.09-7.05 $(\mathrm{m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}$, $18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 167.1,156.2,131.6$, 129.4, 124.7, 122.4, 120.9, 52.2, 18.0, 12.7. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 309.1880$, found:
triisopropyl(3-(trifluoromethyl)phenoxy)silane (10)


10
${ }^{\mathbf{1}} \mathbf{H} \operatorname{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.33(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.14 (s, 1H), 7.06 (dd, $J=8.2,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 19 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 156.5,132.0(\mathrm{q}, J=32.2 \mathrm{~Hz}), 130.0$, $124.1(\mathrm{q}, J=272.3 \mathrm{~Hz}), 123.3,117.8(\mathrm{q}, J=3.8 \mathrm{~Hz}), 116.9(\mathrm{q}$, $J=3.7 \mathrm{~Hz}), 17.9,12.7 .{ }^{19} \mathbf{F}$ NMR ( $377 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta-$ 62.76. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{OSi}^{+}, \mathrm{m} / \mathrm{z}: 319.1700$, found: 319.1705.

## (2,3-dimethylphenoxy)triisopropylsilane (1r)

${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 6.99(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80$ $(\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.24$ $(\mathrm{s}, 3 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 19 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 154.2,138.2,127.1,125.6,122.5,115.8$, 77.5, 77.2, 76.8, 20.5, 18.2, 13.3, 12.6. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{31} \mathrm{OSi}^{+}, \mathrm{m} / \mathrm{z}: ~ 279.2139$, found: 279.2136.
((3-methyl-1,2-phenylene)bis(oxy))bis(triisopropylsilane) (1s)


## ((2-methyl-1,3-phenylene)bis(oxy))bis(triisopropylsilane) (1t)

${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 6.72-6.62(\mathrm{~m}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$, 1.41-1.27 (m, 6H), 1.12 (t, J = 7.4 Hz, 36H). ${ }^{13}$ C NMR ( $\mathbf{1 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 147.3,145.8,130.5,123.2,120.5,117.5,77.5$, 77.2, 76.8, 18.2, 18.2, 17.9, 14.4, 13.8. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{49} \mathrm{O}_{2} \mathrm{Si}_{2}{ }^{+}, \mathrm{m} / \mathrm{z}: 437.3266$, found: 437.3265.

${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{3}_{3}$ ) $\delta 6.84(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.44$ (d, J = 8.1 Hz, 2H), 2.16 (s, 3H), 1.33-1.23 (m, 6H), 1.11 (d, J $=7.5 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 155.4,125.4$, 119.6, 111.5, 77.5, 77.2, 76.8, 18.2, 13.2, 10.4. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{49} \mathrm{O}_{2} \mathrm{Si}_{2}{ }^{+}, \mathrm{m} / \mathrm{z}: ~ 437.3266$, found: 437.3270.
((2-bromo-1,3-phenylene)bis(oxy))bis(triisopropylsilane) (1u)

${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 6.92(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ (d, J = $8.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.40-1.23 (m, 6H), 1.13 (d, J = 7.4 Hz, 36H). ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 153.5, 126.2, 117.6, 112.8, 77.5, 77.2, 76.8, 18.1, 13.1. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{24} \mathrm{H}_{46} \mathrm{BrO}_{2} \mathrm{Si}_{2}{ }^{+}, \mathrm{m} / \mathrm{z}: 501.2214$, found: 501.2219.
(2-fluoro-3-methoxyphenoxy)triisopropylsilane (1v)

${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 6.89-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{q}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=7.7$
$\mathrm{Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 149.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.1 \mathrm{~Hz}\right), 145.8,144.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.9\right.$ $\mathrm{Hz}), 143.4,122.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.4 \mathrm{~Hz}\right), 114.2,105.8,56.4,17.9,12.8 .{ }^{19}$ F NMR ( 377 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta-155.01$. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{FO}_{2} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 299.1837$, found: 299.1835 .

## ((2-chloro-1,3-phenylene)bis(oxy))bis(triisopropylsilane) (1w)


${ }^{1} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 6.92(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ $(\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.23(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}$, $36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 153.5, 126.2, 117.6, 112.8, 77.5, 77.2, 76.8, 18.1, 13.1. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{24} \mathrm{H}_{46} \mathrm{ClO}_{2} \mathrm{Si}_{2}{ }^{+}, \mathrm{m} / \mathrm{z}: 457.2719$, found: 457.2716 .
((3-bromo-1,2-phenylene)bis(oxy))bis(triisopropylsilane) (1x)

${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.08(\mathrm{dd}, \mathrm{J}=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.79 (dd, $\mathrm{J}=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-$ $1.41(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 148.7,145.5,125.5,121.5,118.8$, 117.1, 77.48, 77.2, 76.8, 18.2, 18.1, 14.4, 13.8. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \quad \mathrm{C}_{24} \mathrm{H}_{46} \mathrm{BrO}_{2} \mathrm{Si}_{2}{ }^{+}, \mathrm{m} / \mathrm{z}: 501.2214$, found: 501.2217.
(2-fluoro-3-methylphenoxy)triisopropylsilane (1z)
(z)
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 6.87(\mathrm{dd}, \mathrm{J}=11.8,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.82-6.78 (m, 1H), 6.77-6.72 (m, 1H), 2.29 (d, J = $2.2 \mathrm{~Hz}, 3 \mathrm{H})$, 1.35-1.26(m, 3H), $1.15(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 154.2,151.8,143.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=12.6 \mathrm{~Hz}\right), 126.1$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=15.2 \mathrm{~Hz}\right), 123.3\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{F}}=4.2 \mathrm{~Hz}\right), 119.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.4\right.$
$\mathrm{Hz}), 18.0,14.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.5 \mathrm{~Hz}\right), 12.9 .{ }^{19} \mathbf{F}$ NMR ( $\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta-136.70$. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{FOSi}^{+}, \mathrm{m} / \mathrm{z}: 283.1888$, found: 283.1886.

1-(2-methoxy-6-((triisopropylsilyl)oxy)phenyl)ethan-1-one (1ab)
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} \mathbf{3}_{3}$ ) 87.09 (t, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.45


1ab (dd, J=13.3, 8.3 Hz, 2H), 3.74 (s, 3H), 2.44 (s, 3H), 1.30-1.20 $(\mathrm{m}, 3 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathbf{C D C l}_{3}\right) \delta 202.9,156.8,152.9,129.9,123.2,111.6,103.6,77.5$, 77.2, 76.8, 55.7, 32.4, 18.0, 13.0. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 323.2037$, found: 323.2039.

## 1-(2,6-bis((triisopropylsilyl)oxy)phenyl)ethan-1-one (1ac)


${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 6.99(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.42$ (d, J = $8.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.45 (s, 3H), 1.30-1.20 (m, 6H), 1.07 (d, J $=7.5 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 202.9,153.0$, 129.4, 126.1, 111.6, 77.5, 77.2, 76.8, 32.6, 18.1, 13.0. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{26} \mathrm{H}_{49} \mathrm{O}_{3} \mathrm{Si}_{2}{ }^{+}, \mathrm{m} / \mathrm{z}: 465.3215$, found: 465.3210.

## 5-((triisopropylsilyl)oxy)-3,4-dihydronaphthalen-1(2H)-one (1ad)


${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.63(\mathrm{dd}, \mathrm{J}=7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, \mathrm{J}=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{t}$, $\mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.35-$ $1.24(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 198.7,153.5,135.3,134.1,126.5,122.5,119.5,77.5$, 77.2, 76.8, 38.8, 23.7, 22.6, 18.1, 13.0. HRMS (ESI) calcd for
$[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 319.2088$, found: 319.2084.

## 4-((triisopropylsilyl)oxy)-2,3-dihydro-1H-inden-1-one (1ae)


${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 7.63(\mathrm{dd}, \mathrm{J}=7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.13 (t, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.97 (dd, J = 8.0, 1.1 Hz, 1H), 2.92 (t, $\mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.63-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.35-$ $1.24(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 198.7,153.5,135.3,134.1,126.5,122.5,119.5,77.5$, 77.2, 76.8, 38.8, 23.7, 22.6, 18.1, 13.0. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 305.1931$, found: 305.1934.
(3-bromo-2-chlorophenoxy)triisopropylsilane (1af)

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{H}_{3}$ ) $7.21(\mathrm{dd}, \mathrm{J}=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.97 (t, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.86 (dd, J = 8.2, 1.4 Hz, 1H), 1.37$1.26(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$ ) $\delta$ 153.4, 127.6, 126.5, 125.8, 123.8, 118.6, 77.5, 77.2, 76.8, 18.0, 13.0. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BrClOSi}^{+}, \mathrm{m} / \mathrm{z}: 363.0541$, found: 363.0545 .

## (2-bromo-3-chlorophenoxy)triisopropylsilane (1ag)


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.12-7.02 (m, 2H), 6.79 (dd, J $=7.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 18 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 154.7,135.8,128.0,122.6$, 117.4, 116.3, 77.5, 77.2, 76.8, 18.1, 13.1. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \quad \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BrClOSi}{ }^{+}, \mathrm{m} / \mathrm{z}: ~ 363.0541$, found: 363.0544.
(2-bromo-3-methylphenoxy)triisopropylsilane (1ah)
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.05$ (t, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.83
(d, J = 7.5 Hz, 1H), $6.76(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.41-$ $1.31(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}$,
$\mathbf{C D C l}_{3}$ ) $\delta 153.2,139.9,127.2,123.0,117.9,116.8,77.5,77.2,76.8,23.8,18.2,13.2$ HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{BrOSi}^{+}, \mathrm{m} / \mathrm{z}: 343.1087$, found: 343.1089.
(3-bromo-2-methylphenoxy)triisopropylsilane (1ai)
1ai
${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.16(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (t, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.77 (d, J = $7.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.38 ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.37$1.28(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$ ) $\delta 155.0,129.1,127.0,126.0,125.0,117.1,77.5,77.2$, 76.8, 18.2, 16.8, 13.2. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{BrOSi}^{+}, \mathrm{m} / \mathrm{z}: 343.1087$, found: 343.1082.

## 1-(2-chloro-6-((triisopropylsilyl)oxy)phenyl)ethan-1-one (1aj)


${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.11(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ $(\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.33-$ $1.21(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 201.5,153.0,133.1,130.0,129.8,121.9,117.0,77.5$, 77.2, 76.8, 31.9, 18.0, 12.9. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{ClO}_{2} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 327.1542$, found: 327.1536.
(3-chloro-2-fluorophenoxy)triisopropylsilane (1ak)


1ak
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$ ) $\delta$ 6.97-6.94 (m, 1H), 6.92-6.82 (m, 2H), 1.35-1.24 (m, 3H), 1.12 (d, J = $7.5 \mathrm{~Hz}, 18 \mathrm{H}$ ). ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 151.8,149.4,145.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=11.8\right.$ $\mathrm{Hz}), 123.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.1 \mathrm{~Hz}\right), 122.5,122.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=15.8 \mathrm{~Hz}\right)$, 120.2, 17.9, 12.8. ${ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$ ) $\delta-133.54$. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{ClFOSi}{ }^{+}, \mathrm{m} / \mathrm{z}$ : 303.1342, found: 303.1340 .
(3-bromo-2-fluorophenoxy)triisopropylsilane (1al)

${ }^{1} \mathbf{H}$ NMR ( $400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.12-7.08 (m, 1H), 6.92-6.82 (m, 2H), 1.34-1.24 (m, 3H), 1.12 (d, J = $7.3 \mathrm{~Hz}, 19 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 152.7,150.3,145.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=12.9\right.$ $\mathrm{Hz}), 125.2,124.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.8 \mathrm{~Hz}\right), 120.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.4 \mathrm{~Hz}\right)$, $110.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=18.9 \mathrm{~Hz}\right), 17.9,12.8 .{ }^{19} \mathbf{F}$ NMR ( $\mathbf{3 7 7} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$ ) $\delta$-125.00. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BrFOSi}^{+}, \mathrm{m} / \mathrm{z}: 347.0837$, found: 347.0833.

## (2,3-dichlorophenoxy)triisopropylsilane (1am)


${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J=6.9$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 153.6,133.9,127.1,124.7,122.6,118.1,77.5$, 77.2, 76.8, 18.0, 13.0. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{OSi}^{+}, \mathrm{m} / \mathrm{z}: 319.1046$, found: 319.1039.

## (5-chloro-2-fluorophenoxy)triisopropylsilane (1an)


${ }^{1} \mathbf{H}$ NMR ( $400 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ) $\delta 7.00-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.83$ (m, 1H), $1.35-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\left.\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 154.3,151.9,144.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=13.4\right.$ $\mathrm{Hz}), 128.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 122.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right), 121.5(\mathrm{~d}$, $J_{\mathrm{C}-\mathrm{F}}=6.8 \mathrm{~Hz}$ ), 117.2, 117.0, 17.9, 12.8. ${ }^{19}$ F NMR ( $\mathbf{3 7 7} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$ ) $\delta$-134.16. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{ClFOSi}^{+}, \mathrm{m} / \mathrm{z}: 303.1342$, found: 303.1333.

## (5-bromo-2-fluorophenoxy)triisopropylsilane (1ao)


${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 7.09(\mathrm{dd}, \mathrm{J}=7.6,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.02-6.98 (m, 1H), 6.92 (dd, J = 10.3, $8.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.34-1.23 $(\mathrm{m}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 154.8,152.3,145.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=13.2 \mathrm{~Hz}\right), 125.1\left(\mathrm{~d}, J_{\mathrm{C}-}\right.$ $\mathrm{F}=1.9 \mathrm{~Hz}), 124.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.7 \mathrm{~Hz}\right), 117.8,117.6,116.0(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 17.9,12.8 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-$
133.57. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BrFOSi}^{+}$, m/z: 347.0837, found: 347.0833.
ethyl 2-((triisopropylsilyl)oxy)benzoate (5a)

${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$ ) $\delta 7.69(\mathrm{dd}, \mathrm{J}=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.33-7.29 (m, 1H), 6.95-6.91 (m, 1H), 6.87 (dd, J = 8.3, 0.8 Hz , $1 \mathrm{H}), 4.33$ (q, J = $7.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.39-1.27 (m, 6H), $1.11(\mathrm{~d}, \mathrm{~J}=$ $7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 167.0,155.4$, $132.7,131.3,123.4,120.5,120.3,77.5,77.2,76.8,60.8,18.0$, 14.5, 13.2. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}$ : 323.2037, found: 323.2030.

## 3. Reactions of 1a and $2 a$ under different conditions

### 3.1 Screening of unsubstituted substrates

Table S-1: Screening of Solvent

${ }^{a}$ Reaction conditions: $\mathbf{1 - 1}(0.2 \mathrm{mmol})$, $\mathbf{2 a}(0.24 \mathrm{mmol}),[\mathrm{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(1.5 \mathrm{~mol} \%)$, bpy $(6 \mathrm{~mol} \%)$, Solvent $(0.5$ mL ) at $100^{\circ} \mathrm{C}$ for 12 h in a sealed tube, isolated yield after chromatography.

## Table S-2: Screening of Additive

|  <br> 1-1 | $\mathrm{B}_{2} \mathrm{pin}_{2}$ | $\xrightarrow[\begin{array}{c} \text { Additive }(10 \mathrm{~mol} \%) \\ \text { bpy }(6 \mathrm{~mol} \%) \end{array}]{[\mathrm{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(1.5 \mathrm{~mol} \%)} \text { Cyclohexane, } 100^{\circ} \mathrm{C}, 12 \mathrm{~h} \text {. }$ |  <br> m |  <br> p |  <br> di |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Entry ${ }^{\text {a }}$ |  | Additve | Yield (\%) |  | $m / p / d i$ |
| 1 |  | None | 51 |  | $6 / 1 / 0.35$ |
| 2 |  | 1-Ad-OH | 64 |  | 4.4/1/0.6 |
| 3 |  | $\mathrm{Fe}(\mathrm{OAc})_{2}$ | 66 |  | 4.2/1/0.8 |
| 4 |  | $\mathrm{AlCl}_{3}$ | N.R. |  | - |
| 5 |  | $\mathrm{FeCl}_{3}$ | trace |  | - |
| 6 |  | $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ | 94 |  | $2 / 1 / 3.6$ |
| 7 |  | $\mathrm{Cu}(\mathrm{OAc})_{2}$ | N.R. |  | - |

${ }^{a}$ Reaction conditions: $\mathbf{1 - 1}(0.2 \mathrm{mmol})$, $\mathbf{2 a}(0.15 \mathrm{mmol}),[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(1.5 \mathrm{~mol} \%)$, bpy $(6 \mathrm{~mol} \%)$, Solvent $(0.5$ $\mathrm{mL})$ at $100^{\circ} \mathrm{C}$ for 12 h in a sealed tube, isolated yield after chromatography.

Table S-3:Screening of B-Source

$\qquad$

m
$p$
di

2a, $\mathrm{B}_{2} \mathrm{Pin}_{2}$

51\%, m / p / di=6:1:0.35

2b, $\mathrm{B}_{2}$ hex $_{2}$

$2 \mathrm{c}, \mathrm{B}_{2} \mathrm{dmpd}_{2}$
$81 \%, \mathrm{~m} / \mathrm{p} / \mathrm{di}=7: 1: 0.8$

2d, $\mathrm{B}_{2}$ nep $_{2}$ N.R
${ }^{a}$ Reaction conditions: $\mathbf{1 - 1}(0.2 \mathrm{mmol}), \mathbf{2}(0.24 \mathrm{mmol}),[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(1.5 \mathrm{~mol} \%)$, bpy ( $\left.6 \mathrm{~mol} \%\right)$, Cyclohexane $(0.5 \mathrm{~mL})$ at $100^{\circ} \mathrm{C}$ for 12 h in a sealed tube, isolated yield after chromatography.

Table S-4 : Screening of Ligand


${ }^{a}$ Reaction conditions: 1-1 ( 0.2 mmol ), 2c ( 0.24 mmol ), $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(1.5 \mathrm{~mol} \%)$, Ligand ( $6 \mathrm{~mol} \%$ ), Cyclohexane $(0.5 \mathrm{~mL})$ at $100^{\circ} \mathrm{C}$ for 12 h in a sealed tube, isolated yield after chromatography.

Table S-5 : Screening of reaction time

${ }^{a}$ Reaction conditions: $\mathbf{1 - 1}(0.2 \mathrm{mmol}), \mathbf{2 c}(0.24 \mathrm{mmol}),[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(5 \mathrm{~mol} \%), \mathbf{L}_{\mathbf{3}}(6 \mathrm{~mol} \%)$, Cyclohexane $(0.5$ $\mathrm{ml})$ at $100^{\circ} \mathrm{C}$ for t h in a sealed tube, isolated yield after chromatography.

Table S-6 : Screening of raw-material ratio

${ }^{a}$ Reaction conditions: $\mathbf{1 - 1}(0.2 \mathrm{mmol}), \mathbf{2 c}(\mathbf{x ~ m m o l}),[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(1.5 \mathrm{~mol} \%), \mathbf{L}_{\mathbf{3}}(6 \mathrm{~mol} \%)$, Cyclohexane $(0.5$ $\mathrm{ml})$ at $100^{\circ} \mathrm{C}$ for 12 h in a sealed tube, isolated yield after chromatography.


### 3.2 Screening of substituted substrates

Table S-7 : Screening of raw-material ratio

|  <br> 1 1a | $\mathrm{B}_{2} \mathrm{dmpd}_{2}$ <br> 2c | $[\operatorname{lr}(\mathrm{OMe})$ <br> Cyclohe |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Entry ${ }^{\text {a }}$ |  | 1a:2c | Yield (\%) | $m / p$ |
| 1 |  | 1.2:1 | 90 | 5.1:1 |
| 2 |  | 1.5:1 | 93 | 6.2:1 |
| 3 |  | 2.0:1 | 89 | 6.0:1 |
| 4 |  | 2.5:1 | 88 | 5.6:1 |

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathbf{2 c}(\mathbf{x ~ m m o l}),[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(1.5 \mathrm{~mol} \%), \mathbf{L}_{\mathbf{3}}(6 \mathrm{~mol} \%)$, Cyclohexane $(0.5$ $\mathrm{ml})$ at $100^{\circ} \mathrm{C}$ for 12 h in a sealed tube, isolated yield after chromatography.

Table S-8 : Screening of Ligand


${ }^{a}$ Reaction conditions: 1a $(0.3 \mathrm{mmol}), \mathbf{2 c}(0.2 \mathrm{mmol}),[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(1.5 \mathrm{~mol} \%)$, Ligand ( $\left.6 \mathrm{~mol} \%\right)$, Cyclohexane $(0.5 \mathrm{ml})$ at $100^{\circ} \mathrm{C}$ for 2 h in a sealed tube, isolated yield after chromatography.

Table SS-3 : Screening of Additive


[^0]

## 4. Preparation of 3a-3j, 3an-3ao.



To a 10 mL reaction tube was sequentially added $\mathbf{L}_{13}(6 \mathrm{~mol} \%, 2.5 \mathrm{mg}),[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}$ ( $1.5 \mathrm{~mol} \%, 2.0 \mathrm{mg}$ ), $\operatorname{PivOH}(20 \mathrm{~mol} \%, 4.1 \mathrm{mg}), 1(0.3 \mathrm{mmol}, 1.5$ equiv), $\operatorname{Bis}(2,4-$ dimethylpentane-2,4-glycolato)diboron 2c ( $0.2 \mathrm{mmol}, 56.4 \mathrm{mg}, 1.0$ equiv) and Cyclohexane $(0.5 \mathrm{ml})$ in golvebox. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 2 hours. After the reaction mixture cooled down, ethyl acetate was added to dilute the reaction mixture. Then the reaction mixture was filtered through a plug of celite. The solution was concentrated by rotary evaporation under reduced pressure. After this, the mixture was purified by column chromatography (pe.ether/EtOAc $=50: 1-10: 1)$ to afford the product.
(2-chloro-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3a)


According to the general procedure, 3ac was obtained in $88 \%$ yield ( 74.8 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $7.80(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.59-7.56(\mathrm{~m}, 1 \mathrm{H})^{*}, 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.34$ - $7.27(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}$, 12H), 1.33-1.29 (m, 3H), 1.15 (d, J = 7.4 Hz, 18H). ${ }^{13}$ C NMR $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 152.1,132.5,127.1,124.9,117.4,77.4$, 77.0, 76.7, 70.9, 48.8, 31.8, 31.8, 18.0, 12.8. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{22} \mathrm{H}_{38} \mathrm{BClO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}$ : 424.2372, found: 424.2383.
(2-bromo-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3b)
 According to the general procedure, 3ae was obtained in $81 \%$ yield ( 76.0 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $7.98(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.62(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.48(\mathrm{~d}$, $\mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, \mathrm{J}=7.8,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 12 \mathrm{H})$, $1.36-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 152.1,132.5,127.1,124.9,117.4,70.9,48.8,31.8,18.0,12.8$. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{22} \mathrm{H}_{38} \mathrm{BBrO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 468.1867$, found: 468.1853.
triisopropyl(5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-2-(trifluoromethyl)phenoxy)silane (3c)


According to the general procedure, 3ah was obtained in $97 \%$ yield ( 88.9 mg ). White solid, m.p. $=37-39^{\circ} \mathrm{C} . .^{1} \mathbf{H}$ NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta 8.03(\mathrm{~s}, 1 \mathrm{H})^{*}, 7.87(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.50(\mathrm{~d}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $1 \mathrm{H})^{*}, 1.93(\mathrm{~s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 12 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}$
$=7.5 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 153.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=1.0 \mathrm{~Hz}\right), 126.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=5.0\right.$ $\mathrm{Hz}), 125.0,124.8,124.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=271.0 \mathrm{~Hz}\right), 121.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=30.0 \mathrm{~Hz}\right), 71.1,48.8,31.7,17.9$, 12.8. ${ }^{19} \mathbf{F}$ NMR ( $\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$-62.2. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{23} \mathrm{H}_{38} \mathrm{BF}_{3} \mathrm{O}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}$ : 458.2635, found: 458.2629 .

4-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-2-((triisopropylsilyl)oxy)benzonitrile (3d)


According to the general procedure, 3ai was obtained in $83 \%$ yield ( 69.0 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $8.01(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.87(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.46$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H})^{*}, 1.92(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 12 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=$ $7.4 \mathrm{~Hz}, 18 \mathrm{H}$ ) ${ }^{13} \mathbf{C} \mathbf{~ N M R ~ ( 1 0 0 ~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 157.5,132.4$, 125.9, 124.4, 117.5, 105.7, 71.3, 48.8, 31.7, 17.9, 12.7. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{23} \mathrm{H}_{38} \mathrm{BNO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 415.2714$, found: 415.2701 .

1-(4-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-2-((triisopropylsilyl)oxy)phenyl)-ethan-1-one (3e)


According to the general procedure, 3ai was obtained in $81 \%$ yield ( 70.1 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $8.04(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.56(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=3.8,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H})^{*}, 2.63(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 12 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 3 \mathrm{H})$, $1.13(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 201.4,154.4,131.7,128.9$, $125.8,125.1,71.1,48.8,31.8,31.5,18.0,13.1$. HRMS (EI) calcd for $[M]^{+} \mathrm{C}_{24} \mathrm{H}_{41} \mathrm{BO}_{4} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}$ : 432.2867, found: 432.2852.

1-(4-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-2-((triisopropylsilyl)oxy)phenyl)-butan-1-one (3f)


According to the general procedure, 3aj was obtained in 79\% yield ( 72.8 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right.$ ) $\delta 7.96(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.77(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H})^{*}$, $7.48(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{dd}, J$ $=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 2.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 2 \mathrm{H}), 1.72$ $-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 12 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 18 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 204.6,153.7,132.2$, 128.6, 125.9, 125.0, 71.0, 48.8, 45.6, 31.8, 18.0, 17.8, 13.8, 13.0. HRMS (EI) calcd for $[\mathrm{M}]^{+}$ $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{BO}_{4} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 460.3180$, found: 460.3171 .

Isopropyl-4-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-2-((triisopropylsilyl)oxy)benzoate (3g)


According to the general procedure, 3ak was obtained in $76 \%$ yield ( 72.4 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $8.06(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.77(\mathrm{dd}, \mathrm{J}=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.59(\mathrm{~d}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{dd}, \mathrm{J}=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ $(\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 5.21(\mathrm{~m}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.89$ $(\mathrm{s}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 12 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 9 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}$, 18H). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta$ 166.6, 154.3, 129.9, 125.7, 125.3, 124.7, 71.0, 67.8, 48.8, 31.8, 22.0, 18.0, 12.9. HRMS (EI) calcd for [M] ${ }^{+}$ $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{BO}_{5} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 476.3129$, found: 476.3118 .
triisopropyl(4-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-2-((triisopropylsilyl)oxy)phenethoxy)silane (3h)


According to the general procedure, 3af was obtained in 88\% yield ( 104.0 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ( 400 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 7.69(\mathrm{~s}, 1 \mathrm{H})^{*}, 7.58(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})^{*}$, $7.33(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}$, $\mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 3.87(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.41$ (s, 12H), 1.37-1.31 (m, 3H), 1.15 (d, J = $7.4 \mathrm{~Hz}, 18 \mathrm{H}$ ), 1.13 - 1.09 (m, 3H), 1.06 (d, J $=4.2 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 153.5,131.1,130.4,125.9,123.4,70.6,63.5$, 48.9, 34.8, 31.8, 18.2, 18.1, 12.9, 12.1, 1.1. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C} 33 \mathrm{H} 63 \mathrm{BO} 4 \mathrm{Si}^{+}$, m/z: 590.4358 , found: 590.4350 .
((4-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-1,2-phenylene)bis(oxy))bis(triisopropylsilane) (3i)


According to the general procedure, 3ag was obtained in 70\% yield (78.8 mg). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 7.35(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, \mathrm{J}=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.94$ $(\mathrm{dd}, \mathrm{J}=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 6.86(\mathrm{~s}, 1 \mathrm{H})^{*}, 6.79(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75(\mathrm{dd}, \mathrm{J}=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 1.88(\mathrm{~s}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 12 \mathrm{H})$, $1.33-1.27(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 149.0, 146.1, 126.6, 125.7, 119.2, 70.5, 48.9, 31.9, 18.1, 18.0, 13.2, 13.0. HRMS (EI) calcd for $[\mathrm{M}]^{+}$C31H59BO4Si2 ${ }^{+}$, m/z: 562.4045, found: 562.4039.
(2-ethyl-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3j)



According to the general procedure, 3ab was obtained in $61 \%$ yield ( 51.1 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $7.63(\mathrm{~s}, 1 \mathrm{H})^{*}, 7.57(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.34(\mathrm{~d}, J=7.3$ Hz, 1H), $7.31(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 1 \mathrm{H})^{*}, 2.67(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 12 \mathrm{H}), 1.36-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 153.1,136.5,128.5$, 126.1, 123.3, 70.6, 48.9, 31.8, 23.9, 18.1, 14.3, 12.9. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{24} \mathrm{H}_{43} \mathrm{BO}_{3} \mathrm{Si}^{+}$, $\mathrm{m} / \mathrm{z}: 418.3075$, found: 418.3071 .
triisopropyl(2-methyl-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)silane (3k)


According to the general procedure, 3aa was obtained in $83 \%$ yield ( 67.1 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $7.62(\mathrm{~s}, 1 \mathrm{H})^{*}, 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.31-7.29(\mathrm{t}, J=3.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})^{*}$, $2.26(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 12 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 3 \mathrm{H})$, $1.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $153.6,130.7,130.1,126.0,123.4,70.6,48.9,31.9,18.1,17.1$, 12.9. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{23} \mathrm{H}_{41} \mathrm{BO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 404.2918$, found: 404.2916 .
(5-chloro-2-fluoro-3-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3an)


According to the general procedure, 3by was obtained in $92 \%$ yield ( 81.5 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.18 (dd, J = 4.0, 2.7 Hz, 1H), $6.92(\mathrm{dd}, \mathrm{J}=7.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ $(\mathrm{s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 12 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}$, 18H). ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 158.0,155.5,144.6\left(\mathrm{~d}, J_{\mathrm{C}-}\right.$ $\left.\mathrm{F}_{\mathrm{F}}=15.7 \mathrm{~Hz}\right), 127.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}\right), 126.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.5 \mathrm{~Hz}\right)$, $123.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.2 \mathrm{~Hz}\right), 71.7,49.1,31.9,18.0,12.8 .{ }^{19} \mathbf{F}$ NMR
( $\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$-126.65. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{22} \mathrm{H}_{37} \mathrm{BClFO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 442.2278$, found: 442.2273 .
(5-bromo-2-fluoro-3-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3ao)


According to the general procedure, $\mathbf{3 b z}$ was obtained in $87 \%$ yield ( 84.8 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta$ 7.32 (dd, $J=4.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=7.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (s, 2H), $1.43(\mathrm{~s}, 12 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 158.5,156.0,144.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=15.6 \mathrm{~Hz}), 129.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.4 \mathrm{~Hz}\right), 126.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}\right), 115.3$ $\left.\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 77.5,77.2,76.8,71.7,49.1,31.9,18.0,12.8 .{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{~ N M R ~ ( 3 7 7 ~ M H z}, \mathbf{C D C l}_{3}\right)$ $\delta$-126.07. HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{22} \mathrm{H}_{37} \mathrm{BBrFO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 486.1772$, found: 486.1771.

## 5. Preparation of substrate 31-3am



To a 10 mL reaction tube was sequentially added $\mathbf{L}_{13}(6 \mathrm{~mol} \%, 2.5 \mathrm{mg}),[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}$ ( $1.5 \mathrm{~mol} \%, 2.0 \mathrm{mg}$ ), $\operatorname{PivOH}(20 \mathrm{~mol} \%, 4.1 \mathrm{mg})$, $1(0.2 \mathrm{mmol}, 1.0$ equiv), $\operatorname{Bis}(2,4-$ dimethylpentane-2,4-glycolato)diboron 2c ( $0.3 \mathrm{mmol}, 84.6 \mathrm{mg}, 1.5$ equiv) and Cyclohexane $(0.5 \mathrm{ml})$. The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 2 hours. After the reaction mixture cooled down, ethyl acetate was added to dilute the reaction mixture. Then the reaction mixture was filtered through a plug of celite. The solution was concentrated by rotary evaporation under reduced pressure. After this, the mixture was purified by column chromatography (pe.ether/EtOAc $=50: 1$ ) to afford the product.
(3-chloro-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropyl-silane (31)


According to the general procedure, 3am was obtained in 99\% yield ( 84.1 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $7.37(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 12 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 156.3,133.9$, 126.3, 123.4, 121.8, 71.2, 49.0, 31.9, 18.1, 12.8. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{22} \mathrm{H}_{38} \mathrm{BClO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 424.2372$, found: 424.2380.
(3-(tert-butyl)-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)tri-isopropylsilane (3m)


$3 m$

According to the general procedure, 3an was obtained in 41\% yield ( 36.6 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.43 (d, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 12 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.29-1.24(\mathrm{~m}$,
$3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 155.3,151.6,123.0,122.4$, 119.4, 70.8, 49.1, 34.7, 32.0, 31.6, 18.2, 12.9. HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{26} \mathrm{H}_{47} \mathrm{BO}_{3} \mathrm{Si}^{+}$, m/z: 446.3388, found: 446.3379 .
methyl 3-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-5-((triisopropylsilyl)oxy)benzoate (3n)


According to the general procedure, 3ao was obtained in $89 \%$ yield ( 79.8 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $8.04(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 12 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 167.6,155.6$, 130.6, 129.9, 127.6, 122.3, 71.1, 52.1, 49.0, 31.9, 18.1, 12.7. HRMS (EI) calcd for [M] ${ }^{+}$ $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{BO}_{5} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 448.2816$, found: 448.2811 .
triisopropyl(3-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-5-(trifluoromethyl)phenoxy)silane (3o)


According to the general procedure, 3ap was obtained in 93\% yield ( 85.3 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3} \mathbf{)} \delta 7.65$ ( $\mathrm{s}, 1 \mathrm{H}$ ), $7.51(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 2 \mathrm{H}), 1.44$ ( $\mathrm{s}, 12 \mathrm{H}$ ), $1.31-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.14$ (d, $J=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 155.7,131.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=31.7 \mathrm{~Hz}\right), 128.5$, $124.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=270.8 \mathrm{~Hz}\right), 122.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 118.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=3.7 \mathrm{~Hz}), 71.3,49.1,31.9,18.1,12.8 .{ }^{19}$ F NMR ( $\left.\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l} 3\right) \delta-62.20$. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{23} \mathrm{H}_{38} \mathrm{BF}_{3} \mathrm{O}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 458.2635$, found: 458.2629.
triisopropyl((3-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-5,6,7,8-tetrahydro-naphthalen-1-yl)oxy)silane (3p)


According to the general procedure, 3bc was obtained in 78\% yield ( 69.3 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta$
$7.15(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 2.77(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.83$ $-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~s}, 12 \mathrm{H}), 1.34-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta 153.2,137.7,130.2,126.8,120.0,70.5,48.9,31.8,29.8,24.3,23.2,23.1,18.2$, 12.9. HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{26} \mathrm{H}_{45} \mathrm{BO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 444.3231$, found: 444.3224 .
triisopropyl((6-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-2,3-dihydro-1H-inden-4yl)oxy)silane (3q)


According to the general procedure, 3bd was obtained in 75\% yield ( 64.6 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $7.21(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 2.81(\mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.00-1.90$ $(\mathrm{m}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 12 \mathrm{H}), 1.22-1.18(\mathrm{~m}, 3 \mathrm{H}), 1.04$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 151.8$, $145.6,136.6,122.2,121.7,70.6,48.9,33.2,31.9,30.1,25.0$, 18.1, 12.8. HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{25} \mathrm{H}_{43} \mathrm{BO}_{3} \mathrm{Si}^{+}$, m/z: 430.3075, found: 430.3080 .
(2,3-dimethyl-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3r)


According to the general procedure, 3bg was obtained in 56\% yield ( 46.9 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta$ $7.20(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 2 \mathrm{H})$, $1.41(\mathrm{~s}, 12 \mathrm{H}), 1.34-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$ ) $\delta 153.4,137.0,129.2,127.5,121.2$, 70.6, 48.9, 31.8, 20.2, 18.1, 12.9, 12.7. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{24} \mathrm{H}_{43} \mathrm{BO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 418.3075$, found: 418.3083.
((3-methyl-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-1,2-phenylene)bis(oxy))bis (triisopropylsilane) (3s)


According to the general procedure, 3bs was obtained in $94 \%$ yield ( 105.0 mg ). Colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $7.23(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 2 \mathrm{H})$, $1.40(\mathrm{~s}, 12 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{dd}, \mathrm{J}=12.7,7.5 \mathrm{~Hz}, 36 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 147.7,146.4,129.4,128.8$, $123.4,77.5,77.2,76.8,70.6,49.0,32.0,18.3,18.2,17.8,14.4$, 13.5. HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{32} \mathrm{H}_{61} \mathrm{BO}_{4} \mathrm{Si}_{2}{ }^{+}, \mathrm{m} / \mathrm{z}: 353.1416$, found: 353.1421 .
((2-methyl-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-1,3-phenylene)bis(oxy)) bis(triisopropylsilane) (3t)

576.4201, found: 576.4118.

According to the general procedure, 3bp was obtained in $62 \%$ yield ( 71.5 mg ). Colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 6.94 (s, 2H), 2.18 (s, 3H), 1.89 (s, 2H), 1.39 (s, 12H), 1.35-1.29 $(\mathrm{m}, 6 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, \mathbf{3 6 H}) \cdot{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 154.6,121.6,116.6,77.5,77.2,76.8,70.6,48.9,32.0,18.2$, 13.0, 10.5. HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{32} \mathrm{H}_{61} \mathrm{BO}_{4} \mathrm{Si}_{2}{ }^{+}, \mathrm{m} / \mathrm{z}$ : ((2-bromo-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-1,3-phenylene)bis(oxy))bis (triisopropylsilane) (3u)


According to the general procedure, 3br was obtained in 94\% yield ( 120.6 mg ). Colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 6.98 (s, 2H), 1.89 (s, 2H), 1.39 (s, 12H), 1.35-1.29 (m, 6H), 1.15 (d, $J=7.4$ $\mathrm{Hz}, \mathbf{3 6 H}$ ). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 153.7, 117.3, 110.9, 77.5, 77.2, 76.8, 70.9, 48.9, 31.9, 18.2, 13.0. HRMS (EI) calcd for [M] ${ }^{+}$ $\mathrm{C}_{31} \mathrm{H}_{58} \mathrm{BBrO}_{4} \mathrm{Si}_{2}{ }^{+}, \mathrm{m} / \mathrm{z}: 640.3150$, found: 640.3152 .
(2-fluoro-3-methoxy-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3v)


According to the general procedure, $\mathbf{3 b l}$ was obtained in $92 \%$ yield ( 80.7 mg ). Colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.07 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$, $1.90(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 12 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 148.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.5\right.$ $\mathrm{Hz}), 147.3,144.8,143.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.5 \mathrm{~Hz}\right), 119.8,110.6,70.9$, 56.4, 48.9, 31.8, 17.8, 12.7. ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ( $\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 152.0. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{23} \mathrm{H}_{40} \mathrm{BFO}_{4} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 438.2773$, found: 438.2767 .
((2-chloro-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-1,3-phenylene)bis(oxy))bis (triisopropylsilane) (3w)


According to the general procedure, 3bq was obtained in $94 \%$ yield ( 112.3 mg ). Colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.02 (s, 2H), 1.89 (s, 2H), 1.40 (s, 12H), 1.35-1.29 (m, 6H), 1.15 $(\mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathbf{3 6 H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 152.6$, $119.3,117.8,77.5,77.2,76.8,70.9,48.9,31.9,18.1,13.0$.

HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{31} \mathrm{H}_{58} \mathrm{BClO}_{4} \mathrm{Si}_{2}{ }^{+}$, m/z: 596.3655, found: 596.3650.
((3-bromo-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-1,2-phenylene)bis(oxy))bis (triisopropylsilane) (3x)


According to the general procedure, 3bt was obtained in $71 \%$ yield ( 91.1 mg ). Colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$ ) $\delta$ $7.52(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 2 \mathrm{H})$, $1.50-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 12 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{dd}, \mathrm{J}$
$=7.5,4.4 \mathrm{~Hz}, 36 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 147.7,146.9,130.9,124.4,116.6,77.5$, $77.2,76.8,71.0,48.9,31.9,18.3,18.2,14.4,13.5$. HRMS (EI) calcd for $[\mathrm{M}]^{+}$ $\mathrm{C}_{31} \mathrm{H}_{58} \mathrm{BBrO}_{4} \mathrm{Si}_{2}{ }^{+}, \mathrm{m} / \mathrm{z}: 640.3150$, found: 640.3158 .
(3-fluoro-2-methyl-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3y)


According to the general procedure, 3bb was obtained in 73\% yield ( 61.7 mg ). COlorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $7.10(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.92(\mathrm{~s}, 1 \mathrm{H})^{*}, 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 1 \mathrm{H})^{*}, 1.40(\mathrm{~s}, 12 \mathrm{H}), 1.37-$ $1.21(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 163.0,160.6,154.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.5 \mathrm{~Hz}\right), 118.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $2.2 \mathrm{~Hz}), 118.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=18.2 \mathrm{~Hz}\right), 112.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20.9 \mathrm{~Hz}\right), 70.8$, $48.8,31.8,18.0,12.8,8.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.9 \mathrm{~Hz}\right) .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ( $\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta-117.5^{*},-117.6$. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{23} \mathrm{H}_{40} \mathrm{BFO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 422.2824$, found: 422.2821.
(2-fluoro-3-methyl-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3z)


According to the general procedure, 3bk was obtained in $79 \%$ yield ( 66.7 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta$ $7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 12 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 3 \mathrm{H})$, $\left.1.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ ( 1 0 0 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 155.7$, $153.2,142.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=12.0 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.2 \mathrm{~Hz}\right), 124.8$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=14.6 \mathrm{~Hz}\right), 124.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.0 \mathrm{~Hz}\right), 70.8,48.9,31.8$, $17.9,14.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.5 \mathrm{~Hz}\right), 12.7 .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ( $\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$-134.1. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C} 23 \mathrm{H} 40 \mathrm{BFO}^{2} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 422.2824$, found: 422.2821.
(3-chloro-2-methyl-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3aa)


According to the general procedure, 3ba was obtained in $85 \%$ yield ( 74.6 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $7.39(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.40(\mathrm{~s}$, 12H), $1.37-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$ ) $\delta 154.4,134.7,128.9,126.6,121.6,70.9$, 48.8, 31.8, 18.0, 13.8, 12.8. HRMS (EI) calcd for $[\mathrm{M}]^{+}$ $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{BClO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 438.2528$, found: 438.2520 .

1-(2-methoxy-4-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-6-((triisopropylsilyl)oxy)-phenyl)ethan-1-one (3ab)


According to the general procedure, 3bm was obtained in $84 \%$ yield ( 77.7 mg ). Colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $7.00(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H})$, $1.40(\mathrm{~s}, 12 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 203.2,156.1,152.0,124.6,117.2$, 108.1, 71.0, 55.8, 48.8, 32.3, 31.8, 18.0, 12.8. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{25} \mathrm{H}_{43} \mathrm{BO}_{5} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 462.2973$, found: 462.2971.

1-(4-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-2,6-bis((triisopropylsilyl)oxy)phenyl) ethan-1-one (3ac)



According to the general procedure, 3bo was obtained in $90 \%$ yield ( 108.8 mg ). Colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3\right) ~ \delta$ $6.91(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 12 \mathrm{H}), 1.31-1.21$ (m, 6H), 1.09 (d, J = 7.4 Hz, 36H). ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l 3 ) ~}$ $\delta 203.1,152.0,127.1,116.5,70.8,48.7,32.3,31.7,18.0,12.7$.

HRMS (EI) calcd for [M]+ $\mathrm{C}_{33} \mathrm{H}_{61} \mathrm{BO}_{5} \mathrm{Si}_{2}{ }^{+}$, m/z: 604.4151, found: 604.4144.

7-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-5-((triisopropylsilyl)oxy)-3,4-di-hydronaphthalen-1(2H)-one (3ad)


According to the general procedure B, 3be was obtained in 71\% yield ( 65.1 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $8.10(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.59$ (m, 2H), $2.12-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~s}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 12 \mathrm{H}), 1.34-$ $1.28(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$ ) $\delta 199.3,152.7,137.0,133.3,127.8,125.0,70.9,48.9$, 39.0, 31.8, 23.9, 22.6, 18.1, 12.8. HRMS (EI) calcd for [M] ${ }^{+}$ $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{BO}_{4} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 458.3024$, found: 458.3016 .

6-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-4-((triisopropylsilyl)oxy)-2,3-dihydro-1H-inden-1-one (3ae)


According to the general procedure, 3ea was obtained in 49\% yield ( 43.6 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $7.85(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.64(\mathrm{~m}, 2 \mathrm{H})$, $1.91(\mathrm{~s}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 12 \mathrm{H}), 1.32-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta$ 207.8, 153.0, 147.7, 138.3, 128.7, 121.8, 71.0, 48.8, 36.4, 31.8, 23.1, 18.0, 12.7. HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{25} \mathrm{H}_{41} \mathrm{BO}_{4} \mathrm{Si}^{+}$, m/z: 444.2867, found: 444.2861 .
(3-bromo-2-chloro-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropyl -silane (3af)


According to the general procedure, 3bu was obtained in $85 \%$ yield ( 85.6 mg ). Colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$
$7.62(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 12 \mathrm{H}), 1.34-1.29(\mathrm{~m}$, $3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 152.6, 130.7, 127.9, 123.8, 123.1, 77.5, 77.2, 76.8, 71.3, 48.9, 31.9, 18.1, 12.9. HRMS (EI) calcd for $[\mathrm{M}]^{+}$ $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{BBrClO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 502.1477$, found: 502.1473.
(2-bromo-3-chloro-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3ag)


According to the general procedure, 3bu was obtained in $98 \%$ yield ( 98.7 mg ). Colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta$ 7.45 (d, J = $0.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.25(\mathrm{~s}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 12 \mathrm{H})$, 1.36-1.30 (m, 3H), 1.15 (d, J = $7.4 \mathrm{~Hz}, 18 \mathrm{H}$ ). ${ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$ ) ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.9,135.0,127.4$, $122.6,118.0,77.5,77.2,76.8,71.3,48.9,31.9,18.1,12.9$. HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{22} \mathrm{H}_{37} \mathrm{BBrClO}_{3} \mathrm{Si}^{+}$, m/z: 502.1477, found: 502.1474.
(2-bromo-3-methyl-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3ah)


According to the general procedure, 3bw was obtained in $82 \%$ yield ( 79.3 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ $7.25(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}$, 12H), 1.35-1.31 (m, 3H), 1.16 (d, J = $7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 152.4,138.7,128.0,122.1,120.2,77.5$, 77.2, 76.8, 71.0, 49.0, 31.9, 23.6, 18.2, 13.0. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{23} \mathrm{H}_{40} \mathrm{BBrO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 482.2023$, found: 482.2021.
(3-bromo-2-methyl-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3ai)


According to the general procedure, $\mathbf{3 b x}$ was obtained in $80 \%$ yield (77.4 mg). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $7.57(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.40(\mathrm{~s}$, 12H), 1.33-1.28 (m, 3H), $1.13(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}$ (100 MHz, $\mathbf{C D C l}_{3}$ ) ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 154.3,130.8$, $130.0,125.7,122.4,77.5,77.2,76.8,71.0,49.0,31.9,18.2,16.9$, 13.0. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{23} \mathrm{H}_{40} \mathrm{BBrO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}$ :
482.2023, found: 482.2026.

1-(2-chloro-4-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-6-((triisopropylsilyl)oxy)-phenyl)ethan-1-one (3aj)


According to the general procedure, 3bn was obtained in $97 \%$ yield ( 90.6 mg ). Colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ $7.37(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.40(\mathrm{~s}$, $12 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 201.8,152.1,134.1,128.8,126.7,122.1$, 71.2, 48.8, 31.7, 31.7, 17.9, 12.7. HRMS (EI) calcd for $[\mathrm{M}]^{+}$ $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{BClO}_{4} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 466.2477$, found: 466.2472 .

## (3-chloro-2-fluoro-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triiso-

 propylsilane (3ak)

According to the general procedure, 3bi was obtained in $99 \%$ yield $(87.7 \mathrm{mg})$. Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta$ 7.42 (dd, $J=6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.92(\mathrm{~s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 12 \mathrm{H}), 1.33-1.29(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 18 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 152.9,150.4,144.2$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=11.5 \mathrm{~Hz}\right), 127.7,125.3,71.2,48.9,31.7,17.8,12.7 .{ }^{19} \mathbf{F}$

NMR ( $377 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta$-131.28. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{22} \mathrm{H}_{37} \mathrm{BClFO}_{3} \mathrm{Si}^{+}$, m/z: 442.2278, found: 442.2274 .
(3-bromo-2-fluoro-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3al)


According to the general procedure, 3bj was obtained in $99 \%$ yield ( 96.5 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.55 (dd, $J=6.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 12 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 153.7, 151.3, 144.1 $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=12.3 \mathrm{~Hz}\right), 130.5,126.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.9 \mathrm{~Hz}\right), 109.2\left(\mathrm{~d}, J_{\mathrm{C}-}\right.$ $\mathrm{F}_{\mathrm{F}}=18.2 \mathrm{~Hz}$ ), $71.2,48.8,31.7,17.8,12.7$. ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ( $\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta-122.80$. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{22} \mathrm{H}_{37} \mathrm{BBrFO}_{3} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 486.1772$, found: 486.1771 .
(2,3-dichloro-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)triisopropylsilane (3am)


According to the general procedure, 3bh was obtained in $92 \%$ yield ( 84.5 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 7.46 (d, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 12 \mathrm{H})$, $1.34-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 152.6, 132.9, 127.4, 126.0, 123.0, 71.2, 48.8, 31.7, 17.9, 12.8. HRMS (EI) calcd for [M] ${ }^{+} \mathrm{C}_{22} \mathrm{H}_{37} \mathrm{BCl}_{2} \mathrm{O}_{3} \mathrm{Si}^{+}$, m/z: 458.1982, found: 458.1974.

## 6. Application

a)The borylation of drug molecules:

4, $72 \%, m / p>20: 1$
from Methyl Salicylate

5, $89 \%, \mathrm{~m} / \mathrm{p}>20: 1$
from Ethyl Salicylate

$6,99 \%, m / p>20: 1$
from Resorcinol

7,92\%, m/p>20:1
from Pyrogallol
b) Gram scale reaction:


General Procedure for $\mathbf{4 , 5 , 6 , 7}$ as above procedure 4.
methyl 4-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-2-((triisopropylsilyl)oxy)benzoate (4)


According to the general procedure 3, 3aa was obtained in $72 \%$ yield $(64.6 \mathrm{mg})$. Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.68(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.41$ ( $\mathrm{s}, 12 \mathrm{H}$ ), $1.34-1.28(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta 168.0,154.7,130.5,125.9,125.5,123.7,77.5,77.2$, $76.8,71.1,51.8,48.9,31.9,18.1,13.0$. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{24} \mathrm{H}_{41} \mathrm{BO}_{5} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}$ : 448.2816, found: 448.2811.
ethyl 4-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)-2-((triisopropylsilyl)oxy)benzoate (5)


According to the general procedure $\mathbf{3 , 5}$ was obtained in $89 \%$ yield ( 82.3 mg ). Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 7.81(\mathrm{~d}, \mathrm{~J}=$
$7.8 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 7.67(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H})^{*}, 7.39(\mathrm{dd}, \mathrm{J}=9.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 4.43(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 4.36(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 1 \mathrm{H})^{*}$, $1.43(\mathrm{~s}, 12 \mathrm{H}), 1.41-1.31(\mathrm{~m}, 6 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta$ 167.4, 154.5, 130.2, 125.8, 125.4, 124.3, 71.1, 60.7, 48.9, 31.9, 18.1, 14.5, 13.0. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{25} \mathrm{H}_{43} \mathrm{BO}_{5} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 462.2973$, found: 462.2964.
triisopropyl(3-methoxy-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)silane (6)


According to the general procedure 4, $\mathbf{6}$ was obtained in $99 \%$ yield $(83.3 \mathrm{mg})$. Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 6.99(\mathrm{~d}, \mathrm{~J}=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 12 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.3$ $\mathrm{Hz}, 18 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 160.2,156.6,118.0,110.9$, 108.4, 70.9, 55.4, 49.0, 31.9, 18.1, 12.8. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{23} \mathrm{H}_{41} \mathrm{BO}_{4} \mathrm{Si}^{+}$, m/z: 420.2867 , found: 420.2860 .
triisopropyl(3-methoxy-5-(4,4,6,6-tetramethyl-1,3,2-dioxaborinan-2-yl)phenoxy)silane (7)


According to the general procedure 4, $\mathbf{6}$ was obtained in $99 \%$ yield $(83.3 \mathrm{mg})$. Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.07$ ( $\mathrm{s}, 2 \mathrm{H}$ ), $3.91(\mathrm{~s}, 6 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ( 100 $\mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta 152.8,140.3,110.5,71.03,60.8,56.2,49.1,31.9$. HRMS (EI) calcd for $[\mathrm{M}]^{+} \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{BO}_{5}{ }^{+}, \mathrm{m} / \mathrm{z}: 308.1795$, found: 308.1792 .

Gram-scale synthesis of $\mathbf{3 a h}$ : To a 25 mL round bottom flask was sequentially added L13 (6 $\mathrm{mol} \%, 31.3 \mathrm{mg}),[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(1.5 \mathrm{~mol} \%, 25.0 \mathrm{mg}), \operatorname{PivOH}(20 \mathrm{~mol} \%, 51.3 \mathrm{mg})$, 1ah ( 3.75 mmol, 1.5 equiv), $\operatorname{Bis}(2,4$-dimethylpentane-2,4-glycolato)diboron $\mathbf{2 c}(2.5 \mathrm{mmol}, 715 \mathrm{mg}, 1.0$ equiv) and Cyclohexane ( 8 ml ). The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 4 hours. After the reaction mixture cooled down, ethyl acetate was added to dilute the reaction mixture. Then
the reaction mixture was filtered through a plug of celite. The solution was concentrated by rotary evaporation under reduced pressure. After this, the mixture was purified by column chromatography $(\mathrm{pe} . e$ ether/EtOAc $=50: 1)$ to afford the product 3ah $(1.08 \mathrm{~g}, 94 \%)$.


## 7. Useful Synthetic Transformations



To a stirred solution of 3ab ( $0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$ ) in THF ( 2 mL ), NaOH (aq., $2 \mathrm{M}, 2 \mathrm{ml}$ ) and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \mathrm{wt} \%, 2 \mathrm{ml})$ was added. After this, the mixture was stirred for 12 h at room temperature. Monitor the progress of the reaction by TLC. When the reaction is complete, dilute the reaction mixture with water, extract the reaction mixture with $\operatorname{EtOAc}(3 \times 5 \mathrm{ml})$. The combine organic layer was washed with brine ( 10 mL ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Chromatographic purification with silica gel (pe.ether/EtOAc $=3: 1$ ) gave $48.2 \mathrm{mg}(86 \%)$ of the product $\mathbf{8 a}$ as colorless oil.


In a 10.0 mL reaction tube was charged with $\mathbf{3 a b}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathrm{CuCl}_{2}(80.7 \mathrm{mg}, 3.0$ equiv.), $\mathrm{MeOH}(2.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$. The reaction vial was capped with a teflon pressure cap and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h . After 12 h , the reaction mixture was cooled to room temperature, diluted with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate ( 5 $\mathrm{mL} \times 3$ ). The combine organic layer was washed with brine ( 10 mL ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Chromatographic purification of crude mass with silica gel (pe.ether/EtOAc $=100: 1)$ gave $40.7 \mathrm{mg}(68 \%)$ of the product $(\mathbf{8 b})$ as colourless liquid.


In a 10.0 mL reaction tube was charged with $\mathbf{3 a b}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq}), \mathrm{CuBr}_{2}(134.0 \mathrm{mg}, 3.0$ equiv. $)$, $\mathrm{MeOH}(2.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$. The reaction vial was capped with a teflon pressure cap and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h . After 12 h , the reaction mixture was cooled to room temperature, diluted with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate ( 5 $\mathrm{mL} \times 3$ ). The combine organic layer was washed with brine ( 10 mL ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Chromatographic purification of crude mass with silica gel (pe.ether/EtOAc $=100: 1)$ gave $43.3 \mathrm{mg}(63 \%)$ of the product $(\mathbf{8 c})$ as colourless liquid.


In a 15 mL pressure tube, $\mathrm{CuI}(3.80 \mathrm{mg}, 10 \mathrm{~mol} \%)$, phen ( $7.2 \mathrm{mg}, 20.0 \mathrm{~mol} \%$ ) , KI ( 49.8 mg , $1.5 \mathrm{eq}), \mathbf{3 a b}(0.2 \mathrm{mmol}, 1.0 \mathrm{eq})$ were dissolved in $\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL}: 0.5 \mathrm{~mL})$ under air. The reaction mixture was then stirred at $80^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then cooled to room temperature and all solvent evaporated. Next it was extracted with EtOAc ( $10 \mathrm{ml} \times 3$ ). After that, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mass was purified by silica gel column chromatography (pe.ether/EtOAc $=100: 1$ ) to give $\mathbf{8 d}(47.6 \mathrm{mg}, 61 \%)$ as colourless liquid.


To a degassed 25 mL round-bottom flask equipped with a reflux condenser and a magnetic stirrer under an argon atmosphere were added 3ah ( $0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$ ), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.6 \mathrm{mg}, 5$ $\mathrm{mol} \%$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( $55.2 \mathrm{mg}, 2.0$ equiv.) and 3 -Bromoanisole ( $44.9 \mathrm{mg}, 1.2 \mathrm{eq}$ ). The system was degassed well and the toluene $: \mathrm{H}_{2} \mathrm{O}(10: 1,2.75 \mathrm{ml})$ was added into the flask. Then the reaction mixture heated at $120^{\circ} \mathrm{C}$. After 12 h , the reaction mixture was cooled to room temperature and extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent evaporated under reduced pressure and chromatographic separation with silica gel (pe.ether/EtOAc $=20: 1$ ) gave 66.2 mg of $\mathbf{8 e}(78 \%)$ as colourless liquid.



In an argon filled glove box, a 5.0 mL reaction tube was charged with $[\operatorname{Ir}(\mathrm{OMe})(\mathrm{cod})]_{2}(2.0$ $\mathrm{mg}, 1.5 \mathrm{~mol} \%$ ), 3ah ( $0.2 \mathrm{mmol}, 1.0 \mathrm{eq}$ ) and dry THF ( 2.0 mL ). The reaction vial was sealed and brought out of the glove box and charged with $\mathrm{D}_{2} \mathrm{O}(0.5 \mathrm{~mL})$. The reaction vial was resealed and heated at $80{ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was then cooled to room temperature and extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 3)$. The combine organic layer was washed with brine ( 20 mL ), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Chromatographic purification with silica gel (pe.ether/EtOAc $=100: 1$ ) gave $56.9 \mathrm{mg}(89 \%)$ of
the product $\mathbf{8 f}$ as colourless liquid.


Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 6.95(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.41-6.24 (m, 2H), $5.10(\mathrm{~s}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 3 \mathrm{H}), 1.12$ $(\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 155.3,154.4$, 131.2, 121.1, 107.6, 106.1, 18.3, 16.5, 13.2. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NaO}_{2} \mathrm{Si}^{+}$, m/z: 303.1751, found: 303.1745.


Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 7.07(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.90-6.85 (m, 1H), $6.84(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.18$ $(\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 155.0,131.5$, 131.5, 127.2, 120.9, 118.4, 18.1, 16.7, 13.1. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{16} \mathrm{H}_{27} \mathrm{ClNaOSi}^{+}, \mathrm{m} / \mathrm{z}: 321.1412$, found: 321.1409.


Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 7.01(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.98(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.39-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta$ 155.2, 131.9, 127.7, 123.8, 121.2, 119.1, 18.1, 16.7, 13.1. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{BrNaOSi}^{+}, \mathrm{m} / \mathrm{z}: 365.0907$, found: 365.0898 .


Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 7.15$ (dd, $\mathrm{J}=7.9,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}$, $3 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$ ) $\delta 155.3,132.4,129.9,128.6,127.1,90.0,18.1,16.9$, 13.1. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{16} \mathrm{H}_{27} \mathrm{INaOSi}^{+}, \mathrm{m} / \mathrm{z}$ : 413.0768, found: 413.0763 .


Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$ ) $\delta 7.60(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}$,

2H), 7.10-7.05 (m, 1H), $6.96(\mathrm{dd}, \mathrm{J}=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.17$ $(\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 160.2,154.8,146.1,141.5,130.2$, $128.2\left(\mathrm{C}-\mathrm{F}, J_{\mathrm{C}-\mathrm{F}}=270.6 \mathrm{~Hz}\right), 127.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=5.1 \mathrm{~Hz}\right), 125.5\left(\mathrm{C}-\mathrm{F}, J_{\mathrm{C}-\mathrm{F}}=270.6 \mathrm{~Hz}\right), 122.8(\mathrm{C}-\mathrm{F}$, $\left.J_{\mathrm{C}-\mathrm{F}}=270.6 \mathrm{~Hz}\right), 120.0\left(\mathrm{C}-\mathrm{F}, J_{\mathrm{C}-\mathrm{F}}=270.6 \mathrm{~Hz}\right), 119.7,118.9,118.1,113.6,113.1,55.4,18.0$, 13.2. ${ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 7} \mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta$-61.87. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{NaO}_{2} \mathrm{Si}^{+}, \mathrm{m} / \mathrm{z}: 447.1938$, found: 447.1931.


Colorless Oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \boldsymbol{\delta} 7.55(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$ $(\mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ) $\delta 153.6(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}), 128.3\left(\mathrm{C}-\mathrm{F}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $270.6 \mathrm{~Hz}), 126.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=5.0 \mathrm{~Hz}\right), 125.6\left(\mathrm{C}-\mathrm{F}, J_{\mathrm{C}-\mathrm{F}}=270.6 \mathrm{~Hz}\right)$, $125.2,124.9,122.9\left(\mathrm{C}-\mathrm{F}, J_{\mathrm{C}-\mathrm{F}}=270.6 \mathrm{~Hz}\right), 122.2,121.9,121.6,121.3$, $\left.120.19\left(\mathrm{C}-\mathrm{F}, J_{\mathrm{C}-\mathrm{F}}=270.6 \mathrm{~Hz}\right), 71.3,48.9,31.9,18.0,13.0 .{ }^{19} \mathbf{F} \mathbf{~ N M R ~ ( 3 7 7 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta-$ 62.21. HRMS (ESI) calcd for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{DF}_{3} \mathrm{NaOSi}^{+}, \mathrm{m} / \mathrm{z}: 342.1582$, found: 342.1580.

## 8. References

[1] C. Cheng, J. F. Hartwig, Rhodium-Catalyzed Intermolecular C-H Silylation of Arenes with High Steric Regiocontrol. Science. 2014, 343, 853-857.
[2] M. Elena, S. Manfred, The site-selective functionalization of halogen-bearing phenols: an exercise in diversity-oriented organometallic synthesis. Tetrahedron. 2005, 61, 33933401.
[3] J.-Y. Geng, Z. Fang, G.-L. Tu, Y.-S. Zhao, Chin.Chem.Lett. DOI: 10.1016/ j.cclet. 2022.06.032.
[4] V. P. Kumar, K. K. Gruner, O. Kataeva and H.-J. Knçlker, Total Synthesis of the Biscarbazole Alkaloids Murrafoline A-D by a Domino Sonogashira Coupling/Claisen Rearrangement/Electrocyclization Reaction. Angew. Chem. Int. Ed. 2013, 52, 1107311077.
[5] S. E. Varjosaari, J. P. Hess, P. Suating, J. M. Price, T. M. Gilbert, M. J. Adler, Stereoelectronics of silyloxybenzoic acids. Tetrahedron Lett. 2015, 56, 642-645.
[6] A. k. Shaikh, G. Varvounis, Novel Synthesis of 3-Substituted 2,3-Dihydrobenzofurans via ortho-Quinone Methide Intermediates Generated in Situ. Org. Lett. 2014, 16, 1478-1481.
[7] J. Dhankhar, E. González-Fernández, C.-C. Dong, T. K. Mukhopadhyay, A. Linden, I. Čorić, Spatial Anion Control on Palladium for Mild C-H Arylation of Arenes. J. Am. Chem. Soc. 2020, 142, 19040-19046.
[8] A. Wiebe, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Selective Synthesis of Partially Protected Nonsymmetric Biphenols by Reagent- and Metal-Free Anodic Cross-Coupling Reaction, Angew. Chem. Int. Ed. 2016, 55, 11801.

## 9. Crystal data and structure refinement for 3ah

t system (dichloromethane and hexane), the solution was evaporated at room temperature for about one week, sing crystals were formed


3ah


CCDC 2205174

The thermal ellipsoid was drawn at the $50 \%$ probability level.

10. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of new substrates and all product



 $\stackrel{N}{N}$ $\stackrel{\sim}{\infty} \underset{\sim}{\infty}$


















| 200 | 190 | 180 | 170 | 160 | ${ }_{150}^{15}$ | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | $\stackrel{1}{20}$ | ${ }_{10}^{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

















$\begin{array}{cc}\stackrel{\infty}{y} & \infty \\ \stackrel{\infty}{=} & \stackrel{\infty}{=} \\ \underset{1}{1}\end{array}$

$\stackrel{\circ}{\infty} \stackrel{\stackrel{\rightharpoonup}{m}}{\stackrel{m}{1}}$



$\stackrel{\underbrace{}}{=}$




にルロ



Le






$\stackrel{\stackrel{\circ}{0}-\infty}{\stackrel{\circ}{\circ}}$


210
$200 \quad 1$
140
120
110
om）


$\stackrel{\text { NiN }}{\substack{\sim}}$

$\underbrace{}_{10}$


[^1]
$3 a b$









š' ºz- $^{-}$




$\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ & & & & & & & & & & & & \\ \mathrm{fl} 1\end{array}$

$\stackrel{n}{i} \stackrel{-}{i} \stackrel{\stackrel{n}{4}}{1}$


|  |
| :---: |
|  |
|  |
|  |
|  |
|  |
|  |










[^2]








Nin

99
00

$\stackrel{8}{i}$


1. $20 \mathrm{E}+09$








1

$\qquad$ N
0
0


$\qquad$
$\qquad$ -



## 


$\stackrel{\sim}{\infty}$
$\stackrel{\circ}{\stackrel{\circ}{\circ}} \stackrel{\sim}{\sim}$














8c

$\qquad$













[^0]:    ${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.3 \mathrm{mmol}), \mathbf{2 c}(0.2 \mathrm{mmol}),[\operatorname{Ir}(\mathrm{OMe})(\operatorname{cod})]_{2}(1.5 \mathrm{~mol} \%), \mathbf{L}_{13}(6 \mathrm{~mol} \%)$, Additive, Cyclohexane $(0.5 \mathrm{ml})$ at $100^{\circ} \mathrm{C}$ for 2 h in a sealed tube, isolated yield after chromatography.

[^1]:    $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & & & \mathrm{f} 1\end{array}$

[^2]:    $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ & & & & & & & & & & & f 1(\mathrm{ppm})\end{array}$

