Supporting Information

Xanthrysols A–D, Novel Meroterpenoids with Antiviral Activities from *Xanthostemon chrysanthus*⁺

Fen Liu,^{‡a, c} Ji-Hong Gu,^{‡b} Zi-Yue Zhang^a, Qiong Zhan^a, Hai-Xia Yang^a, Yun Hu^a, Jin-Yan Zhang^a, Wei Tang^{*a}, Wen-Cai Ye,^{*a} and Lei Wang^{*a}

^aState Key Laboratory of Bioactive Molecules and Druggability Assessment, Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, and Center for Natural Bioactive Molecules and Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.

^bScience and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, P. R. China.

^cKey Laboratory of Medicinal Resources Chemistry and Pharmacology in Wuling Mountainous of Hunan Province College, Jishou University, Jishou 416000, P. R. China.

^{*}Corresponding authors. Tel./fax: + 86 20 85223553.

E-mail addresses: <u>cpuwanglei@126.com</u> (L. Wang), <u>chywc@aliyun.com</u> (W.-C. Ye), <u>tangw@jnu.edu.cn</u> (W. Tang).

Table of Contents

1	General experimental procedures	S 3
2	Plant materials	S 3
3	Extraction and isolation	S 3
4	X-Ray Crystallographic analyses of 3 and 4	S5
5	Antiviral effect assay	S 6
6	Chiral separation of 1–4	S 7
7	Quantum chemical ECD calculations of 1–4	S 9

For Compounds 1–4

Fig. S9. UV spectrum of 1 in MeOH	S32
Fig. S10. IR (KBr disc) spectrum of 1	S32
Fig. S11. HR-ESI-MS spectrum of 1	S33
Fig. S12–S18. 1D and 2D NMR spectra of 1 in CDCl ₃	S33
Fig. S19. UV spectrum of 2 in MeOH	S37
Fig. S20. IR (KBr disc) spectrum of 2	S37
Fig. S21. HR-ESI-MS spectrum of 2	S38
Fig. S22–S28. 1D and 2D NMR spectra of 2 in CDCl ₃	S38
Fig. S29. UV spectrum of 3 in MeOH	S42
Fig. S30. IR (KBr disc) spectrum of 3	S42
Fig. S31. HR-ESI-MS spectrum of 3	S43
Fig. S32–S38. 1D and 2D NMR spectra of 3 in CDCl ₃	S43
Fig. S39. UV spectrum of 4 in MeOH	S47
Fig. S40. IR (KBr disc) spectrum of 4	S47
Fig. S41. HR-ESI-MS spectrum of 4	S48
Fig. S42–S48. 1D and 2D NMR spectra of 4 in CDCl ₃	S48
References	S52

1 General experimental procedures

Melting points were obtained on an X-5 micro melting point apparatus without correction (Fukai Instrument, Beijing, China). Optical rotations were measured on a JASCO P-2000 digital polarimeter (Jasco, Tokyo, Japan). UV spectra were recorded on a JASCO V-550 UV-vis spectrophotometer (Jasco, Tokyo, Japan). IR spectra were determined on a JASCO FT/IR-4600 plus Fourier transform infrared spectrometer (Jasco, Tokyo, Japan) using KBr pellets. ECD spectra were obtained on a Chirascan Plus qCD spectropolarimeter (Applied Photophysics Limited, Leatherhead, UK). HR-ESI-MS were obtained on an Agilent 6210 ESI-TOF mass spectrometer (Agilent Technologies, CA, USA). NMR spectra were measured on a Bruker AV-500 spectrometer (Bruker, Fällanden, Switzerland). Single-crystal data were performed using an Agilent Gemini S Ultra diffractometer and Cu K α radiation ($\lambda = 1.54178$ Å). Column chromatography (CC) was carried out on a silica gel (200-300 mesh, Qingdao Marine Chemical Inc., Qingdao, China), ODS (Merck, Darmstadt, Germany), or Sephadex LH-20 (Pharmacia Biotec AB, Uppsala, Sweden). Preparative HPLC was performed on an Agilent system equipped with a semipreparative column (Phenomenex C18, 10×250 mm²). The chiral separation was carried out using Phenomenex Lux Cellulose-1 and Industries ChromegaChiral CC4 (250×4.6 mm, 5 µm) (4.6×250 mm²) chiral HPLC columns. All solvents used in CC and HPLC were of analytical (Shanghai Chemical Plant, Shanghai, China)

2 Plant materials

The leaves of *X. chrysanthus* were collected in Guangzhou city of P. R. China in October of 2016 and identified by Prof. Guang-Xiong Zhou (Jinan University). A voucher specimen (No. 2016100501) has been deposited in the Center for Bioactive Natural Molecules and Innovative Drugs Research, Jinan University, Guangzhou, P. R. China.

3 Extraction and isolation

The air-dried leaves of *X. chrysanthus* (20 kg) were powdered and extracted with 95% EtOH for 4 times at room temperature. The crude extract (3.0 kg) was suspended in H₂O and extracted with petroleum ether (PE). The PE extract (930 g) was subjected to a silica gel CC eluted with a gradient mixture of PE/EtOAc (100:0 \rightarrow 0:100) to afford

ten fractions (Fr.1–10). Fr.2 (45 g) was separated on Sephadex LH-20 (6×160 cm, CH₃OH/CH₂Cl₂, 1:1) to yield four fractions (Fr.2A-2D). Fr.2B (32 g) was subjected to ODS column chromatography using CH₃OH/H₂O (60:40 \rightarrow 100:0) as eluent to yield Fr.2B.1-Fr.2B.40. Fr.2B.30 was separated on Sephadex LH-20 (1 × 100 cm, CH₃OH) and further purified by reversed-phase HPLC (CH₃CN/H₂O, 85:15, 3 mL/min) to afford compound 1 (12.0 mg, $t_R = 16$ min). Fr.3 (40 g) was separated on Sephadex LH-20 (6 × 160 cm, CH₃OH) to yield four fractions (Fr.3A-3D). Fr.3B-3D (35 g) was subjected to ODS column chromatography using CH₃OH/H₂O (60:40 \rightarrow 100:0) as eluent to yield Fr.3B.1-Fr.3B.60. Fr.3B.20 was separated on Sephadex LH-20 (1 × 100 cm, CH₃OH) and further purified by reversed-phase HPLC (CH₃CN/H₂O, 75:25, 3 mL/min) to afford compounds 2 (50.2 mg, $t_R = 12 \text{ min}$), 3 (20.5 mg, $t_R = 14 \text{ min}$), and 4 (11.2 mg, $t_R = 11$ min). Fr.9 (60.7 g) was repeatedly chromatographed using silica gel CC to yield nine subfractions (Fr.9A-9I). Fr.9D (10.2 g) was subjected to ODS column chromatography using CH₃OH/H₂O (40:60 \rightarrow 100:0) as an eluent to yield Fr.9D.1-Fr.9D.40. Fr.9D.5 was further purified by semipreparative HPLC (CH₃CN/H₂O, 60:40, 3 mL/min) to afford compounds 5 (20 mg) and 6 (100 mg).

Xanthrysol A (1). Yellowish oil (CH₃OH); (+)-**1** $[\alpha]_{p}^{26}$ + 58.9 (*c* 0.9, CH₃OH), ECD (CH₃CN) λ_{max} ($\Delta \varepsilon$) 212 (-67.7), 248 (+14.3), 284 (+30.2), 368 (+4.0); (-)-**1** $[\alpha]_{p}^{26}$ -58.7 (*c* 0.8, CH₃OH), ECD (CH₃CN) λ_{max} ($\Delta \varepsilon$) 212 (+67.7), 248 (-14.3), 284 (-30.2), 368 (-4.0); UV (CH₃OH) λ_{max} (log ε) 207 (3.40), 290 (3.07) nm; IR (KBr) v_{max} 3453, 2927, 1726, 1628, 1435, 1308, 1121, 969, 697, 504 cm⁻¹; HR-ESI-MS *m/z* 535.2694 [M+H]⁺ (calcd for C₃₂H₃₉O₇, 535.2690).

Xanthrysol B (2). Yellowish oil (CH₃OH); (+)-**2** $[\alpha]_{D}^{26}$ + 62.9 (*c* 1.0, CH₃OH), ECD (CH₃CN) λ_{max} ($\Delta \varepsilon$) 201 (+21.8), 218 (-7.2), 238 (-3.3), 285(+3.2), 373 (+1.4); (-)-**2** $[\alpha]_{D}^{26}$ -70.5 (*c* 1.0, CH₃OH), ECD (CH₃CN) λ_{max} ($\Delta \varepsilon$) 203 (-22.8), 218 (+6.6), 238 (+2.8), 285(-4.1), 373 (-2.1); UV (CH₃OH) λ_{max} (log ε) 207 (4.38), 291 (3.83), 369 (3.09) nm; IR (KBr) ν_{max} 3127, 2940, 1682, 1444, 1385, 1211, 1141, 844, 803, 725, 699, 601, 557, 519, 475, 431 cm⁻¹; HR-ESI-MS *m/z* 537.2844 [M+H]⁺ (calcd for C₃₂H₄₁O₇, 537.2847).

Xanthrysol C (3). Yellowish blocks (CH₃OH);); m.p. 110~112 °C; (+)-3 $[\alpha]_{D}^{26}$ + 46.7 (*c* 1.0, CH₃OH), ECD (CH₃CN) λ_{max} ($\Delta \varepsilon$) 223 (+20.1), 255 (+2.0), 291(-4.0), 348

(-0.9); (-)-**3** $[\alpha]_{D}^{26}$ -42.5 (*c* 1.0, CH₃OH), ECD (CH₃CN) λ_{max} ($\Delta \varepsilon$) 223 (-19.4), 255 (-2.4), 291(+3.1), 348 (+0.5); UV (CH₃OH) λ_{max} (log ε) 209 (5.51), 290 (5.03), 369 (4.34) nm; IR (KBr) ν_{max} 3419, 2930, 1698, 1628, 1430, 1379, 1250, 1142, 749, 699 cm⁻¹; HR-ESI-MS *m*/*z* 559.2663 [M+Na]⁺ (calcd for C₃₂H₄₀NaO₇, 559.2666).

Xanthrysol D (4). Yellowish blocks (CH₃OH); m.p. 130~132 °C; (+)-4 $[\alpha]_D^{26}$ + 56.5 (*c* 0.2, CH₃OH), ECD (CH₃CN) λ_{max} ($\Delta \varepsilon$) 220 (-7.3), 289 (+3.8), 369 (+1.9); (-)-4 $[\alpha]_D^{26}$ -52.8 (*c* 0.2, CH₃OH), ECD (CH₃CN) λ_{max} ($\Delta \varepsilon$) 220 (+6.5), 289 (-2.6), 369 (-1.2); UV (CH₃OH) λ_{max} (log ε) 207 (4.22), 290 (3.65), 369 (2.83) nm; IR (KBr) v_{max} 3415, 2922, 1685, 1633, 1618, 1427, 1376, 1302, 1257, 1125, 1062, 956, 742, 701 cm⁻¹; HR-ESI-MS *m*/*z* 557.2559 [M+Na]⁺ (calcd for C₃₂H₃₈NaO₇, 557.2510).

Myrigalone G (5). Amorphous powder (CH₃OH); HR-ESI-MS *m/z* 287.1272 [M + H]⁺ (calcd for C₁₇H₁₉O₄, 287.1278); ¹H NMR (400 MHz, CDCl₃) δ 7.28 (4H, overlapped), 7.19 (1H, m), 5.96 (1H, s), 3.82 (3H, s), 3.42 (2H, d, *J* = 7.6 Hz), 3.03 (2H, d, *J* = 7.6 Hz), 2.01 (3H, s) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 204.9, 161.4, 163.4, 159.8, 141.8, 128.6 (×4), 126.1, 104.7, 103.5, 91.6, 55.8, 45.9, 30.8, 7.2 ppm.

(*E*, *E*)-farnesoic acid (6). Yellowish oil (CH₃OH); HR-ESI-MS *m/z* 237.1852 [M + H]⁺ (calcd for C₁₅H₂₅O₂, 237.1849); ¹H NMR (400 MHz, CDCl₃) δ 5.69 (1H, s), 5.08 (2H, overlapped), 2.18–2.19 (4H, overlapped), 2.18 (3H, s), 2.06 (2H, m), 1.98 (2H, m), 1.67 (3H, s), 1.60 (6H, overlapped) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 163.1, 136.4, 131.6, 124.3, 122.8, 115.4, 41.3, 39.8, 26.8, 26.1, 25.8, 19.3, 17.8, 16.2 ppm.

4 X-Ray Crystallographic analyses of 3 and 4

The single crystals of **3** and **4** were obtained from CH₃OH solution by slow evaporation at room temperature. X-ray diffraction data were collected on an Agilent Gemini S Ultra diffractometer using Cu K α radiation ($\lambda = 1.54178$ Å). The crystal structures were solved by direct methods and refined by full-matrix least squares on F₂ using the SHELXL-2015 program. The crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC 2340348 for **3**, CCDC 2340233 for **4**).

Crystal data of **3**. C₃₂H₄₀O₇ (Formula weight = 536.64); Triclinic, space group $P\overline{1}$; *a*

= 10.1786(4) Å, b = 12.0107(3) Å, c = 13.3288(4) Å, $a = 103.806(2)^{\circ}$; $\beta = 108.912(3)^{\circ}$; $\gamma = 101.165(3)^{\circ}$; V = 1430.37 (8) Å³; T = 149.95 (13) K; Z = 2; $\rho_{calc} = 1.246$ g/cm³; F(000) = 576.0; A total of 23668 reflections in $-12 \le h \le 12$, $-14 \le k \le 14$, $-16 \le 1 \le 16$ were collected in the range $7.412 \le \theta \le 148.308$, of which 5709 unique reflections with $I > 2\sigma(I)$ were collected for the analysis. The final *R* indices $[I > 2\sigma(I)]$: $R_1 = 0.0463$, $wR_2 = 0.1291$, *R* indices (all data): $R_1 = 0.0505$, $wR_2 = 0.1333$; the goodness of fit on F^2 was 1.060.

Crystal data of **4**. C₃₂H₃₈O₇ (Formula weight = 534.62); Triclinic, space group $P\overline{1}$; a = 9.57700(10) Å, b = 10.91970(10) Å, c = 14.0119(2) Å, $a = 92.2630(10)^{\circ}$; $\beta = 97.3280(10)^{\circ}$; $\gamma = 102.0190(10)^{\circ}$; V = 1418.21(3) Å³; T = 100.00(10) K; Z = 2; $\rho_{calc} = 1.252$ g/cm³; F(000) = 572.0; A total of 50257 reflections in $-11 \le h \le 11$, $-13 \le k \le 13$, $-17 \le 1 \le 17$ were collected in the range $8.298 \le \theta \le 147.382$, of which 5650 unique reflections with $I > 2\sigma(I)$ were collected for the analysis. The final *R* indices $[I > 2\sigma(I)]$: $R_1 = 0.0370$, w $R_2 = 0.0979$, *R* indices (all data): $R_1 = 0.0383$, w $R_2 = 0.0990$; the goodness of fit on F^2 was 1.029.

5 Antiviral effect assay

5.1 Cells, viruses, and antiviral compounds

HEp-2 (a human epithelial type 2 cell line) and Vero (an African green monkey kidney cell line) cells were purchased from the American Type Culture Collection (ATCC, USA) and cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS, Biological Industries) containing 1% Penicillin-Streptomycin solution. RSV A2 and HSV-1 F strains were propagated in HEp-2 and Vero cells, respectively. Viral suspensions were stored at –80°C. Compound samples were dissolved in Dimethyl sulfoxide (DMSO) at 50 mM for subsequent experiments.

5.2 Antiviral assay

Vero and HEp-2 cells were seeded in 96-well plates and incubated overnight. The cells were treated with DMSO or diluted compounds, and then inoculated with HSV-1 and RSV, respectively. After incubation for 36 h or 60 h, the cytopathic effect (CPE) induced by the HSV-1 and RSV were determined as previously described.^[1-2]

5.3 Confocal assay

HEp-2 cells were seeded in confocal dishes and inoculated with RSV in the presence of DMSO, ribavirin, or compound **1**. At 48 post-infection, the fusion (F) glycoprotein in the cells was stained with anti-RSV F and Alexa flour 488-conjugated secondary antibodies. The cell nucleus was stained with 4',6-diamidino-2-phenylindole (DAPI). After washing with PBS, the fluorescence intensity in cells was detected with a laser scanning confocal microscopy.

5.4 Time of addition assay

Vero or HEp-2 cells were infected with HSV-1/GFP and RSV respectively, and then treated with compound 1 or DMSO at indicated time points after viral infection. At 24 or 48 h post-infection, the cells were fixed with 4% paraformaldehyde in PBS and permeabilized with 0.1% Triton X-100 for 10 min. For RSV infection, the cells were incubated with RSV F specific antibody, followed by incubation with Alexa flour 488-conjugated secondary antibody. All the cells were stained with DAPI. After washing with PBS, the fluorescence in Vero or HEp-2 cells was measured using a fluorescence microscope.

6 Chiral separation of 1–4

The racemic mixtures (\pm) -1– (\pm) -4 were subjected to a chiral HPLC column to afford the optical pure enantiomers (+)-1, (–)-1, (+)-2, (–)-2, (+)-3, (–)-3, (+)-4, and (–)-4.

Fig. S1. Chiral HPLC Chromatogram of **1** [column: Industries ChromegaChiral CC4 $(4.6 \times 250 \text{ mm}, 5 \mu \text{m})$, mobile phase: CH₃CN/H₂O/CF₃COOH (86:14:0.1, *V/V/V*), flow rate: 1.0 mL/min, detection wavelength: 210 nm].

Fig. S2. Chiral HPLC Chromatogram of **2** [column: Phenomenex Cellulose-1 ($4.6 \times 250 \text{ mm}$, 5 µm), mobile phase: CH₃CN/H₂O/CF₃COOH (70:30:0.1, *V/V/V*), flow rate: 1.0 mL/min, detection wavelength: 280 nm].

Fig. S3. Chiral HPLC Chromatogram of **3** [column: Phenomenex Cellulose-1 ($4.6 \times 250 \text{ mm}$, 5 µm), mobile phase: CH₃CN/H₂O/CF₃COOH (70:30:0.1, *V/V/V*), flow rate: 1.0 mL/min, detection wavelength: 210 nm].

Fig. S4. Chiral HPLC Chromatogram of **4** [column: Phenomenex Cellulose-1 ($4.6 \times 250 \text{ mm}$, 5 µm), mobile phase: CH₃CN/H₂O/CF₃COOH (65:35:0.1, *V/V/V*), flow rate: 1.0 mL/min, detection wavelength: 280 nm].

7 Quantum chemical ECD calculations of 1–4

7.1 ECD calculation for 1

The conformational analysis of compound **1** was performed in the SYBYL 8.1 program by using MMFF94s molecular force field, which afforded 36 conformers of **1**, with an energy cutoff of 10 kcal mol⁻¹ to the global minima. All the obtained conformers were further optimized using DFT at the B3LYP/6-31+G(d) level in acetonitrile by using Gaussian09 software,^[3] and 26 conformers of **1** were selected. All of the optimized stable conformers were used for TDDFT computation of the excited stats at the same levels, with the consideration of the first 30 excitations. The overall ECD curves of **1** were weighted by Boltzmann distribution of each conformer (with a half-bandwidth of 0.12 eV), with a UV correction of 3 nm. The calculated ECD spectra of **1** were subsequently compared with the experimental one. The ECD spectra were produced by SpecDis 1.71 software.^[4]

Fig. S8. Key molecular orbitals involved in important transitions regarding the ECD spectra of conformer 6 in acetonitrile at the B3LYP/6-31+G(d) level.

HOMO is 143							
No.	Energy (cm ⁻¹)	Wavelength (nm)	R(length)	Osc. Strength	Major contribs		
1	26375.1 3638	379.1449589	-10.253	0.0209	HOMO->LUMO (96%)		
2	27221.2 1198	367.3605719	17.1003	0.038	HOMO->L+1 (95%)		
3	33345.3 7976	299.8916213	-10.5545	0.0316	H-1->LUMO (94%)		
4	34059.1 8043	293.6065952	13.0796	0.0054	H-5->L+1 (33%), H- 2->LUMO (15%), H-2->L+1 (37%)		
5	34779.4 3353	287.5262471	0.721	0.0024	H-3->LUMO (89%)		
6	35659.3 8441	280.4310889	-58.3272	0.2482	H-1->L+1 (78%)		
7	36201.3 8899	276.2324949	12.6078	0.0397	H-5->L+1 (31%), H- 2->LUMO (23%), H-2->L+1 (24%)		
8	36628.8 6284	273.0087484	-19.825	0.0099	HOMO->L+2 (76%)		
9	37286.2 047	268.1957062	0.7312	0.0009	H-8->LUMO (16%), H- 7->LUMO (61%)		
10	37357.9 8804	267.6803684	-1.3307	0.0009	H-2->LUMO (59%), H- 2->L+1 (35%)		
11	37842.7 2725	264.2515676	-0.43	0.0009	H-4->LUMO (36%), H- 4->L+1 (58%)		
12	38205.6 7675	261.7412084	3.0641	0.0057	HOMO->L+3 (82%)		
13	38240.3 5859	261.503824	-1.5511	0.0007	H-3->L+1 (90%)		
14	38558.9 4759	259.3431778	-6.0822	0.0032	HOMO->L+2 (15%), HOMO->L+5 (11%), HOMO->L+6 (15%), HOMO->L+7 (19%), HOMO->L+8 (22%)		
15	39009.0 0496	256.3510659	-0.1235	0.0009	HOMO->L+4 (90%)		
16	39491.3 2451	253.2201724	-2.815	0.0026	HOMO->L+5 (88%)		
17	39635.6 9775	252.2978166	0.0168	0.0001	H-4->LUMO (62%), H- 4->L+1 (38%)		
18	40004.2 9312	249.9731709	0.1495	0.0001	HOMO->L+6 (64%), HOMO->L+7 (21%), HOMO->L+8 (10%)		
19	40685.0 2506	245.7906806	3.1524	0.0159	HOMO->L+7 (47%), HOMO->L+8 (39%)		
20	42321.5 24	236.286387	-2.0684	0.0799	HOMO->L+9 (15%), HOMO->L+10 (55%)		

Table S11. Key transitions and their related rotatory and oscillator strengths ofconformer 6 of 1 at the B3LYP/6-31+G(d) level in acetonitrile

21	42433.6	235 6621106	1 2853	0.0014	H-4->L+5 (23%), H-2->L+3
	3506	235.0021100	1.2035	0.0011	(14%), H-2->L+4(41%)
	126328				HOMO->L+9 (59%),
22	42032.0	234.5608858	2.1533	0.0016	HOMO->L+10 (13%),
	5401				HOMO->L+12 (12%)
22	42847.3	222 2864025	1 7277	0.0000	H-5->LUMO (78%), H-
23	9749	255.5804055	1./3//	0.0008	5->L+1 (21%)
24	43347.4	220 604018	2 5062	0.0025	HOMO->L+9 (14%),
24	6123	230.094018	-3.3062	0.0055	HOMO->L+12 (53%)
	12560.2				H-8->LUMO (10%), H-
25	45509.2	229.5196005	35.5641	0.0347	6->LUMO (16%), H-1->L+2
	057				(20%)
26	43611.2	220 2099710	51 176	0.0205	H-6->LUMO (14%), H-
20	0453	229.2900/19	51.170	0.0203	1->L+2 (54%)
					H-7->L+1 (12%), H-
27	43762.8 3676	229 5042927	-11.1155	0.0594	6->LUMO (23%), H-6->L+1
21		228.3043827			(18%), HOMO->L+11
					(21%)
	44224 1				H-7->LUMO (14%), H-
28	44224.1	226.1206125	68.296	0.0627	6->L+1 (28%),
	839				HOMO->L+11 (22%)
20	44572.6	224 2520002	6 5000	0.0021	HOMO->L+13 (65%),
29	1741 224.35299	224.3529903	0.3988	0.0021	HOMO->L+15 (14%)
20	44819.4	222 117552	0.2974	0.0052	H-8->LUMO (34%), H-
30	2307	223.11/333	0.3874	0.0053	7->L+1 (56%)

Standard orientation:						
Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Χ	Y	Ζ	
1	6	0	-2.010541	2.962915	-1.239329	
2	8	0	-0.914152	2.412593	-1.990579	
3	8	0	-3.109797	2.040766	-1.220526	
4	6	0	-5.895511	0.832361	0.600509	
5	6	0	-5.095624	1.261022	-0.39641	
6	6	0	-4.060576	2.315874	-0.294148	
7	6	0	-5.332251	-2.166384	0.111335	
8	6	0	-6.559871	-1.645512	0.809339	
9	6	0	-6.94169	-0.236881	0.319706	
10	6	0	0.003801	1.810772	-1.168036	
11	6	0	0.117729	0.409251	-1.172929	
12	6	0	-0.736451	-0.42194	-2.092235	
13	6	0	-0.967217	-1.81993	-1.501793	
14	6	0	-1.978322	-1.701643	-0.326463	
15	6	0	-2.981775	-2.862794	-0.253728	
16	6	0	-4.144381	-2.500535	0.653742	
17	6	0	0.843632	2.573682	-0.362253	
18	6	0	1.772601	1.955717	0.465579	
19	6	0	1.905224	0.559634	0.48826	
20	6	0	1.054861	-0.215159	-0.321588	
21	8	0	1.123492	-1.575406	-0.183485	
22	6	0	0.411203	-2.415067	-1.109338	
23	6	0	-3.836151	-2.503955	2.125846	
24	6	0	-5.855641	1.325738	2.021522	
25	8	0	-4.073186	3.262326	0.472823	
26	6	0	0.258992	-3.770784	-0.40077	
27	6	0	1.318935	-2.644067	-2.335233	
28	8	0	0.773386	3.940959	-0.354988	
29	8	0	2.528314	2.793624	1.256557	
30	6	0	2.95894	0.000206	1.385453	
31	8	0	3.347397	0.734659	2.300737	
32	6	0	3.539385	-1.38143	1.145056	
33	6	0	4.963763	-1.523754	1.688043	
34	6	0	5.980721	-0.78921	0.84626	
35	6	0	6.442106	-1.344727	-0.355496	
36	6	0	7.367039	-0.657925	-1.14385	
37	6	0	7.837811	0.590288	-0.740283	
38	6	0	7.384459	1.152589	0.451662	
39	6	0	6.46027	0.466628	1.241452	
40	1	0	-1.722789	3.249324	-0.21971	
41	1	0	-2.33502	3.863646	-1.771671	
42	1	0	-5,175589	0.812808	-1.383214	
43	1	0	-5.431477	-2.214842	-0.9733	
44	1	0	-6.453168	-1.63951	1.89671	
45	1	0	-7.389171	-2.32868	0.588561	

 Table S12. Cartesian coordinates of conformer 6 of 1

46	1	0	-7.885934	0.062209	0.792897
47	1	0	-7.157969	-0.279121	-0.756673
48	1	0	-1.703714	0.052861	-2.287988
49	1	0	-0.235317	-0.489528	-3.064969
50	1	0	-1.418102	-2.439046	-2.288396
51	1	0	-1.452032	-1.603889	0.630665
52	1	0	-2.557897	-0.7762	-0.440531
53	1	0	-2.505871	-3.779594	0.108286
54	1	0	-3.351097	-3.090142	-1.261673
55	1	0	-3.180804	-1.665504	2.381257
56	1	0	-4.726401	-2.437198	2.754561
57	1	0	-3.328834	-3.434786	2.40157
58	1	0	-4.975556	1.930453	2.248469
59	1	0	-6.746953	1.923919	2.235945
60	1	0	-5.833628	0.482619	2.71948
61	1	0	-0.217668	-3.661219	0.578799
62	1	0	-0.317374	-4.479384	-1.004098
63	1	0	1.24026	-4.215783	-0.195171
64	1	0	1.614047	-1.706018	-2.815364
65	1	0	0.830074	-3.279456	-3.080895
66	1	0	2.258819	-3.124199	-2.036914
67	1	0	1.465699	4.212562	0.283959
68	1	0	3.023586	2.206441	1.885878
69	1	0	3.541927	-1.605305	0.073513
70	1	0	2.892411	-2.100133	1.660492
71	1	0	5.236162	-2.586976	1.705551
72	1	0	5.023216	-1.184942	2.729747
73	1	0	6.082704	-2.316933	-0.684548
74	1	0	7.719661	-1.096625	-2.073327
75	1	0	8.557048	1.12497	-1.354525
76	1	0	7.749023	2.126589	0.766494
77	1	0	6.111289	0.92056	2.166543

7.2 ECD calculation for 2

The conformational analysis of compound **2** was performed in the SYBYL 8.1 program by using MMFF94s molecular force field, which afforded 48 conformers of **2**, with an energy cutoff of 10 kcal mol⁻¹ to the global minima. All the obtained conformers were further optimized using DFT at the CAM-B3LYP/6-31+G(d) level in acetonitrile by using Gaussian09 software,^[3] and 22 conformers of **2** were selected. All of the optimized stable conformers were used for TDDFT computation of the excited stats at the same levels, with the consideration of the first 30 excitations. The overall ECD curves of **2** were weighted by Boltzmann distribution of each conformer (with a half-bandwidth of 0.15 eV), with a UV correction of 6 nm. The calculated ECD spectra of

2 were subsequently compared with the experimental one. The ECD spectra were produced by SpecDis 1.71 software.^[4]

Fig. S9. Key molecular orbitals involved in important transitions regarding the ECD spectra of conformer 4 in acetonitrile at the CAM-B3LYP/6-31+G(d) level.

HOMO is 144							
No.	Energy (cm ⁻¹)	Wavelength (nm)	R (length)	Osc. Strength	Major contribs		
1	31102.351 89	321.519094	4.0093	0.127	HOMO->LUMO (95%)		
2	36787.754 06	271.8295872	5.3204	0.0004	H-6->LUMO (70%), H- 3->LUMO (14%)		
3	37421.705 84	267.22459	-16.6878	0.4747	H-1->LUMO (92%)		
4	41159.279 07	242.9585801	0.064	0.0001	HOMO->L+2 (59%), HOMO->L+6 (18%)		
5	42164.245 88	237.167766	37.2435	0.0322	H-8->L+1 (79%)		
6	43979.799 9	227.3771145	-0.055	0.0019	H-4->L+4 (28%), H- 3->L+5 (49%)		
7	45741.314 78	218.6207381	- 108.0944	0.5982	H-8->L+1 (11%), H- 5->L+1 (39%), H-2->L+1 (45%)		
8	46855.166 44	213.4236363	-45.304	0.2497	HOMO->L+14 (11%), HOMO->L+16 (44%)		
9	47539.124 6	210.3530531	-1.7921	0.0386	H-1->L+2 (46%), H- 1->L+6 (11%), HOMO->L+16 (10%)		
10	48389.232 97	206.6575431	-7.6506	0.0069	H-1->L+2 (11%), HOMO->L+8 (10%), HOMO->L+11 (12%)		
11	48870.745 96	204.6213906	45.734	0.0163	H-7->LUMO (24%), H- 3->LUMO (44%)		
12	48960.273 5	204.247225	-12.6997	0.03	H-4->L+5 (25%), H- 3->LUMO (12%), H- 3->L+4 (35%)		
13	49220.790 58	203.16618	-37.0296	0.0467	H-7->LUMO (17%), H- 3->LUMO (17%)		
14	49319.190 22	202.7608311	-13.1262	0.1291	H-5->L+1 (44%), H- 2->L+1 (34%)		
15	49827.319 51	200.6931157	-6.5847	0.0759	H-7->LUMO (17%), HOMO->L+9 (22%)		
16	50073.318 62	199.707155	-11.8478	0.0467	HOMO->L+3 (13%), HOMO->L+6 (19%), HOMO->L+7 (10%), HOMO->L+10 (12%)		
17	50241.888 49	199.0371043	-0.7699	0.0012	HOMO->L+1 (96%)		
18	50704.044 18	197.2229269	-45.4341	0.0365	H-2->L+2 (15%), H- 2->L+3 (31%), H-2->L+7 (13%)		
19	50825.027 34	196.7534603	40.66	0.128	H-1->L+16 (24%), HOMO->L+8 (12%), HOMO->L+29 (13%)		
20	51648.519 42	193.6163924	-8.6092	0.0136	H-2->LUMO (74%)		

Table S13. Key transitions and their related rotatory and oscillator strengths ofconformer 4 of 2 at the CAM-B3LYP/6-31+G(d) level in acetonitrile

21	52368.772 52	190.9534923	-22.4948	0.0731	H-4->LUMO (71%)
22	52640.581 36	189.9675068	-3.1347	0.0048	H-4->LUMO (19%), H- 3->L+2 (23%), H-3->L+6 (30%)
23	52818.829 89	189.3264205	-1.3898	0.0007	HOMO->L+3 (15%), HOMO->L+4 (34%), HOMO->L+6 (11%)
24	53301.149 44	187.6132148	165.0636	0.2956	H-2->L+6 (14%), H- 2->L+8 (29%), H-2->L+9 (19%)
25	53574.571 39	186.6557163	2.2318	0.0156	HOMO->L+2 (15%), HOMO->L+4 (34%), HOMO->L+7 (12%)
26	53708.459 43	186.1904085	-65.5898	0.0987	H-1->L+16 (10%), HOMO->L+5 (39%)
27	53861.704 77	185.6606664	9.3274	0.02	H-1->L+3 (14%), H- 1->L+7 (15%)
28	54231.913 25	184.3932733	13.2047	0.0129	HOMO->L+3 (11%), HOMO->L+10 (11%), HOMO->L+17 (25%)
29	54275.467 19	184.2453049	10.6885	0.0216	H-4->L+2 (23%), H- 4->L+3 (11%), H-4->L+6 (37%)
30	54625.511 81	183.0646463	160.2453	0.4609	H-4->L+4 (40%), H- 3->L+5 (30%)
31	54656.967 44	182.9592908	0.3736	0.0108	H-1->L+8 (23%)
32	54823.924 2	182.40212	-78.7536	0.0251	H-2->L+8 (16%), H- 2->L+11 (16%), H- 2->L+15 (10%)
33	54877.156 79	182.2251841	-19.417	0.0317	HOMO->L+8 (10%)
34	55203.004 78	181.1495595	-60.6351	0.0594	HOMO->L+5 (16%), HOMO->L+29 (14%)
35	55411.902 38	180.4666429	-46.8327	0.878	H-4->L+5 (50%), H- 3->L+4 (18%)
36	55558.695 29	179.9898278	17.1017	0.021	H-9->LUMO (60%)
37	55774.045 32	179.2948663	-13.7356	0.0238	HOMO->L+12 (16%)
38	55858.733 53	179.0230348	10.3084	0.0123	H-1->L+1 (61%)
39	55878.090 84	178.9610176	3.7799	0.0016	H-1->L+1 (33%)
40	55924.871	178.8113199	28.6765	0.0964	HOMO->L+29 (10%)
41	56239.427 23	177.8111992	-4.5521	0.0125	H-5->L+3 (22%), H- 2->L+7 (13%)
42	56930.644 37	175.6523242	23.3091	0.0647	
43	56975.811 42	175.5130774	-5.2603	0.0177	H-6->L+2 (13%), H- 3->L+2 (12%), H-3->L+10 (22%)

44	57780.752 74	173.0680119	10.0792	0.155	H-2->L+20 (11%)
45	57948.516 06	172.5669729	42.7462	0.069	HOMO->L+3 (16%)
46	58075.145 11	172.1907019	5.6957	0.0051	H-1->L+4 (19%)
47	58270.331 28	171.6139205	0.0093	0.0058	H-1->L+4 (32%)
48	58480.035 43	170.9985284	-2.0121	0.0048	H-3->L+9 (15%), H- 3->L+12 (28%), H- 3->L+14 (16%)
49	58579.241 62	170.7089358	55.5155	0.0332	H-3->L+10 (14%)
50	58709.903 44	170.3290146	-40.0414	0.0465	H-2->L+2 (11%)

Standard orientation:						
Center Atomic A		Atomic	Coordinates (
Number	Number	Туре	Χ	Y	Ζ	
1	6	0	2.089235	3.546557	0.019251	
2	6	0	3.418503	3.889621	-0.211228	
3	6	0	4.389004	2.897304	-0.367129	
4	6	0	4.076072	1.53253	-0.28543	
5	6	0	2.737658	1.177692	-0.051772	
6	6	0	1.745161	2.172668	0.076043	
7	6	0	5.211204	0.565004	-0.444665	
8	6	0	5.017708	-0.925378	-0.253781	
9	8	0	6.31398	1.048896	-0.726773	
10	8	0	1.035223	4.40405	0.199444	
11	8	0	5.669151	3.362296	-0.601576	
12	6	0	6.340106	-1.687895	-0.3563	
13	6	0	6.218393	-3.717588	1.142735	
14	6	0	6.137429	-3.167191	-0.143555	
15	6	0	5.830965	-4.004826	-1.224507	
16	6	0	5.619586	-5.369893	-1.023189	
17	6	0	5.708181	-5.908629	0.259324	
18	6	0	6.006736	-5.082934	1.341928	
19	6	0	0.302165	1.786014	0.301892	
20	8	0	2.43287	-0.150886	0.01152	
21	6	0	1.182364	-0.552295	0.603974	
22	6	0	0.027729	0.302438	0.02663	
23	6	0	1.032988	-2.029156	0.194657	
24	6	0	1.319552	-0.49781	2.135432	
25	8	0	3.861896	5.182208	-0.305416	
26	6	0	-9.344334	-0.220497	-0.020719	
27	6	0	-8.48505	-0.820916	-0.867402	
28	6	0	-7.101166	-0.232241	-1.077905	
29	6	0	-5.993575	-1.121993	-0.503166	
30	6	0	-4.637388	-0.500665	-0.698444	
31	6	0	-3.881681	0.124814	0.225906	
32	6	0	-2.515036	0.669636	-0.145486	
33	6	0	-4.312063	0.375465	1.646381	
34	6	0	-10.699336	-0.693026	0.319741	
35	6	0	-8.786582	-2.05216	-1.679821	
36	8	0	-11.225465	-1.753142	0.045892	
37	8	0	-11.331557	0.253162	1.039247	
38	6	0	-1.375448	-0.111481	0.526363	
39	6	0	1.283603	5.801855	0.212604	
40	1	0	0.046926	0.175071	-1.0666	
41	1	0	4.584642	-1.09903	0.737682	
42	1	0	4.334247	-1.291261	-1.027967	
43	1	0	6.239545	2.55619	-0.718729	
44	1	0	6.804191	-1.519933	-1.336886	
45	1	0	7.059481	-1.306826	0.380213	

Table S14. Cartesian coordinates of conformer 4 of 2

46	1	0	6.446316	-3.085114	1.997451
47	1	0	5.754321	-3.597817	-2.230018
48	1	0	5.384555	-6.012682	-1.867184
49	1	0	5.543396	-6.9712	0.415196
50	1	0	6.073734	-5.502038	2.342228
51	1	0	0.033256	2.039505	1.334994
52	1	0	-0.331318	2.383732	-0.364712
53	1	0	0.184439	-2.516058	0.68389
54	1	0	1.936983	-2.595692	0.450266
55	1	0	0.912137	-2.122152	-0.890783
56	1	0	2.196893	-1.069429	2.461525
57	1	0	1.474832	0.521871	2.501086
58	1	0	0.4403	-0.911042	2.63894
59	1	0	4.824942	5.092828	-0.473816
60	1	0	-9.046029	0.685057	0.500999
61	1	0	-7.037695	0.763073	-0.617603
62	1	0	-6.940745	-0.072823	-2.152324
63	1	0	-5.989963	-2.095833	-1.00883
64	1	0	-6.188542	-1.338784	0.552575
65	1	0	-4.240929	-0.605852	-1.708211
66	1	0	-2.375625	0.639643	-1.233653
67	1	0	-2.475795	1.728003	0.137898
68	1	0	-5.381884	0.217455	1.804398
69	1	0	-3.766974	-0.280736	2.331779
70	1	0	-4.107174	1.414461	1.926348
71	1	0	-8.386464	-2.942192	-1.184603
72	1	0	-9.854247	-2.198654	-1.856589
73	1	0	-8.32628	-1.976432	-2.671278
74	1	0	-12.213687	-0.127316	1.231223
75	1	0	-1.533368	-1.178075	0.331412
76	1	0	-1.435349	0.024545	1.612608
77	1	0	1.963792	6.079084	1.024036
78	1	0	1.638474	6.150607	-0.762074
79	1	0	0.329802	6.303037	0.406222

7.3 ECD calculation for 3

The conformational analysis of compound **3** was performed in the SYBYL 8.1 program by using MMFF94s molecular force field, which afforded 25 conformers of **3**, with an energy cutoff of 10 kcal mol⁻¹ to the global minima. All the obtained conformers were further optimized using DFT at the CAM-B3LYP/6-31+G(d) level in acetonitrile by using Gaussian09 software,^[3] and 12 conformers of **3** were selected. All of the optimized stable conformers were used for TDDFT computation of the excited stats at the same levels, with the consideration of the first 30 excitations. The overall ECD curves of **3** were weighted by Boltzmann distribution of each conformer (with a half-bandwidth of 0.10 eV), with a UV correction of 5 nm. The calculated ECD spectra of **3** were subsequently compared with the experimental one. The ECD spectra were produced by SpecDis 1.71 software.^[4]

Fig. S10. Key molecular orbitals involved in important transitions regarding the ECD spectra of conformer 3 in acetonitrile at the CAM-B3LYP/6-31+G(d) level.

HOMO is 144						
No	Energy	Wavelength	P (longth)	Osc.	Major contribe	
110.	(cm ⁻¹)	(nm)	K(length)	Strength		
1	26838.0 9863	372.6046372	10.3484	0.0875	HOMO->LUMO (97%)	
2	30636.1 6343	326.4116286	-0.0339	0.0004	HOMO->L+1 (100%)	
3	33809.9 5511	295.7708748	11.358	0.0083	H-6->LUMO (41%), H- 3->LUMO (54%)	
4	34098.7 0159	293.2662985	-9.7133	0.2027	H-2->LUMO (34%), H- 1->LUMO (64%)	
5	34389.0 6119	290.7901424	-19.6515	0.2279	H-2->LUMO (64%), H- 1->LUMO (31%)	
6	36089.2 7793	277.090609	0.072	0.0014	H-1->L+1 (100%)	
7	36453.0 3397	274.3255886	0.1812	0.0008	H-2->L+1 (100%)	
8	37717.7 1132	265.1274335	-1.1484	0.0009	H-6->LUMO (54%), H- 3->LUMO (43%)	
9	37916.1 2371	263.7400404	-1.1852	0.0004	HOMO->L+4 (83%), HOMO->L+5 (12%)	
10	38689.6 094	258.4673289	-0.177	0.0026	H-4->LUMO (100%)	
11	39264.6 8271	254.6817982	-0.2796	0.0004	H-8->L+1 (82%), H-7->L+1 (15%)	
12	39629.2 4531	252.3388957	0.4983	0.0028	HOMO->L+2 (98%)	
13	39654.2 485	252.1797885	0.1636	0.0002	HOMO->L+3 (99%)	
14	39990.5 817	250.0588782	-0.2517	0.0014	H-3->L+1 (100%)	
15	41701.2 8364	239.8007717	8.9368	0.032	H-7->LUMO (23%), H- 5->LUMO (65%)	
16	42142.4 6892	237.2903216	-0.0328	0	H-4->L+1 (100%)	
17	42239.2 5545	236.7465973	-14.1258	0.0204	HOMO->L+4 (11%), HOMO->L+5 (44%), HOMO->L+6 (14%), HOMO->L+11 (11%)	
18	42535.2 6092	235.0990633	12.7086	0.0575	H-5->LUMO (14%), HOMO->L+5 (21%), HOMO->L+6 (12%), HOMO->L+7 (23%)	
19	42647.3 7199	234.4810368	1.3087	0.0013	H-4->L+3 (38%), H-3->L+2 (51%)	
20	42940.9 578	232.8778982	9.8592	0.0216	H-7->LUMO (21%), HOMO->L+6 (47%)	
21	43452.3 1331	230.1373446	-23.6038	0.0175	H-7->LUMO (29%), HOMO->L+7 (16%), HOMO->L+9 (15%)	

Table S15. Key transitions and their related rotatory and oscillator strengths ofconformer 3 of 3 at the CAM-B3LYP/6-31+G(d) level in acetonitrile.

22	43741.8 6635	228.6139307	0.7419	0.0004	H-1->L+4 (74%)
23	43852.3 643	228.0378757	-0.032	0.0028	H-2->L+2 (78%)
24	43995.1 2444	227.2979137	-0.8917	0.0007	H-2->L+3 (81%)
25	44104.8 1584	226.7326098	-52.0869	0.5718	H-5->L+1 (92%)
26	44304.0 3479	225.7130767	14.0765	0.0879	HOMO->L+7 (11%), HOMO->L+9 (52%)
27	44651.6 5974	223.9558408	-1.1782	0.002	HOMO->L+5 (12%), HOMO->L+10 (29%), HOMO->L+11 (33%)
28	44982.3 4706	222.3094314	4.2001	0.0052	HOMO->L+8 (69%)
29	45083.1 6636	221.8122818	0.254	0.0002	H-1->L+3 (86%)
30	45152.5 3004	221.4715319	-0.3199	0.0043	H-1->L+2 (81%)
31	45498.5 4189	219.7872631	1.9071	0.0028	H-2->L+4 (25%), H-2->L+6 (14%), HOMO->L+10 (21%), HOMO->L+11 (10%)
32	45534.8 3684	219.6120749	13.7761	0.0157	H-2->L+4 (21%), H-2->L+6 (10%), HOMO->L+10 (25%), HOMO->L+11 (12%)
33	46518.8 3325	214.9666985	21.1141	0.1186	H-8->LUMO (34%)
34	46550.2 8887	214.8214381	-17.7008	0.0053	H-6->L+1 (88%)
35	46746.2 816	213.9207582	-12.8576	0.1369	H-8->LUMO (40%), HOMO->L+7 (11%), HOMO->L+12 (14%)
36	47051.9 6572	212.5309718	4.9202	0.0159	HOMO->L+12 (45%), HOMO->L+15 (34%)
37	47129.3 9495	212.1818031	-35.3934	0.0118	H-8->L+1 (13%), H-7->L+1 (76%)
38	47316.5 1558	211.3426967	9.3763	0.0246	H-4->L+2 (24%), H-3->L+3 (60%)
39	47340.7 1221	211.2346759	1.8049	0.0012	HOMO->L+13 (48%), HOMO->L+14 (22%)
40	47768.1 8606	209.3443529	1.5288	0.0046	H-2->L+4 (45%), H-2->L+5 (12%), H-2->L+6 (27%)
41	47860.9 3982	208.9386468	-1.817	0.0009	H-9->LUMO (73%), H- 8->LUMO (12%)
42	47953.6 9358	208.5345102	3.4339	0.0082	HOMO->L+14 (48%)
43	48008.5 3928	208.2962771	-1.3812	0.0008	H-1->L+5 (62%), H- 1->L+10 (10%)
44	48077.0 964	207.9992501	15.1731	0.0347	H-1->L+6 (45%), HOMO->L+15 (14%)

45	48220.6 6309	207.3799769	-15.8423	0.0116	H-3->L+4 (29%), H-3->L+6 (22%), H-2->L+5 (15%), H- 2->L+6 (13%)
46	48288.4 1366	207.0890146	8.1383	0.0372	H-1->L+6 (19%), HOMO->L+17 (15%)
47	48457.7 9009	206.3651681	17.509	0.0163	H-3->L+4 (21%), H-3->L+6 (15%), H-2->L+5 (25%), H- 2->L+6 (20%)
48	49078.8 37	203.7538094	-6.9608	0.0079	H-2->L+9 (67%), H-1->L+9 (15%)
49	49155.4 5968	203.4362015	-3.6081	0.005	HOMO->L+16 (56%)
50	49340.1 6064	202.6746543	-7.0293	0.013	H-2->L+9 (13%), H-1->L+9 (47%)

Standard orientation:							
Center	Center Atomic Atomic		Coordinates (Angstroms)				
Number	Number	Туре	Χ	Y	Ζ		
1	6	0	-1.174786	3.850742	0.037711		
2	6	0	-0.095722	4.726919	0.045972		
3	6	0	1.210311	4.236516	0.009969		
4	6	0	1.490968	2.860502	-0.020557		
5	6	0	0.406582	1.96296	-0.010735		
6	6	0	-0.91597	2.456436	-0.013701		
7	6	0	2.941782	2.478727	-0.054879		
8	6	0	3.373374	1.03306	-0.080677		
9	8	0	3.763785	3.402413	-0.056681		
10	8	0	-2.504941	4.18126	0.072644		
11	8	0	-0.224918	6.089847	0.082380		
12	6	0	-2.870064	5.551174	0.148526		
13	8	0	2.194196	5.207947	0.011778		
14	6	0	4.893154	0.876226	-0.151380		
15	6	0	5.278898	-0.581582	-0.203912		
16	6	0	5.440251	-1.2298	-1.435979		
17	6	0	5.750893	-2.589937	-1.484019		
18	6	0	5.89774	-3.314812	-0.302666		
19	6	0	5.736171	-2.680337	0.927781		
20	6	0	5.427813	-1.319852	0.978068		
21	8	0	0.670308	0.620186	-0.024522		
22	6	0	-2.087755	1.507718	-0.055842		
23	6	0	-1.691669	0.070927	-0.408655		
24	6	0	-2.871981	-0.902755	-0.167779		
25	6	0	-0.377099	-0.311303	0.333966		
26	6	0	0.111175	-1.709704	-0.159665		
27	6	0	-4.13925	-0.545022	-0.961259		
28	6	0	-5.232792	-1.585746	-0.798051		
29	6	0	-6.34049	-1.286901	-0.091207		
30	6	0	-7.461784	-2.203473	0.187329		
31	6	0	1.456892	-2.18171	0.405263		
32	6	0	1.870116	-3.49945	-0.191545		
33	6	0	1.763793	-4.721402	0.364469		
34	6	0	2.281341	-5.93817	-0.355508		
35	6	0	1.137315	-5.007963	1.700205		
36	8	0	-7.536028	-3.397971	-0.021137		
37	6	0	-4.982935	-2.896279	-1.496317		
38	8	0	-8.467235	-1.514205	0.758742		
39	6	0	-0.519302	-0.326458	1.868616		
40	1	0	3.010292	0.558269	0.83711		
41	1	0	2.928443	0.554813	-0,960068		
42	1	0	0.700608	6.417296	0.072094		
43	1	0	-3,963181	5.597986	0.184464		
44	1	0	-2,497525	6.012756	1.068275		
45	1	0	-2,553636	6.096624	-0.745888		

Table S16. Cartesian coordinates of conformer 3 of 3

46	1	0	3.062695	4.724236	-0.016472
47	1	0	5.292165	1.396037	-1.031915
48	1	0	5.369552	1.351161	0.715958
49	1	0	5.318943	-0.679601	-2.366019
50	1	0	5.873918	-3.084893	-2.443445
51	1	0	6.134391	-4.374463	-0.340433
52	1	0	5.845194	-3.246472	1.848799
53	1	0	5.295349	-0.840578	1.94513
54	1	0	-2.597281	1.538543	0.91535
55	1	0	-2.794803	1.864643	-0.814795
56	1	0	-1.466406	0.062449	-1.486145
57	1	0	-3.118506	-0.934664	0.900538
58	1	0	-2.569427	-1.914867	-0.452196
59	1	0	0.195584	-1.680095	-1.254841
60	1	0	-0.633764	-2.475135	0.084865
61	1	0	-3.899057	-0.440278	-2.026621
62	1	0	-4.512857	0.433162	-0.636339
63	1	0	-6.450077	-0.301778	0.35434
64	1	0	2.240009	-1.461529	0.164152
65	1	0	1.426591	-2.242052	1.496186
66	1	0	2.332232	-3.415483	-1.175062
67	1	0	3.039084	-6.443365	0.252476
68	1	0	1.464438	-6.640946	-0.549238
69	1	0	2.741113	-5.688686	-1.317652
70	1	0	0.370066	-5.782901	1.596509
71	1	0	1.896111	-5.366467	2.403192
72	1	0	0.648762	-4.137912	2.145245
73	1	0	-4.390308	-3.560487	-0.859914
74	1	0	-5.904531	-3.409009	-1.781138
75	1	0	-4.430558	-2.734043	-2.428562
76	1	0	-9.167498	-2.180487	0.918222
77	1	0	-0.949733	0.602968	2.253581
78	1	0	-1.148371	-1.154859	2.208765
79	1	0	0.458836	-0.411205	2.354607

7.4 ECD calculation for 4

The conformational analysis of compound **4** was performed in the SYBYL 8.1 program by using MMFF94s molecular force field, which afforded 38 conformers of **4**, with an energy cutoff of 10 kcal mol⁻¹ to the global minima. All the obtained conformers were further optimized using DFT at the CAM-B3LYP/6-31+G(d) level in acetonitrile by using Gaussian09 software,^[3] and 16 conformers of **4** were selected. All of the optimized stable conformers were used for TDDFT computation of the excited stats at the same levels, with the consideration of the first 30 excitations. The overall ECD curves of **4** were weighted by Boltzmann distribution of each conformer (with a half-bandwidth of 0.18 eV), with a UV correction of 3 nm. The calculated ECD spectra of **4** were subsequently compared with the experimental one. The ECD spectra were produced by SpecDis 1.71 software.^[4]

Fig. S11. Key molecular orbitals involved in important transitions regarding the ECD spectra of conformer 2 in acetonitrile at the CAM-B3LYP/6-31+G(d) level.

HOMO	HOMO is 143							
No.	Energy (cm ⁻¹)	Wavelength (nm)	R (length)	Osc. Strength	Major contribs			
1	26094.45544	383.2231725	20.0537	0.0694	HOMO->LUMO (98%)			
2	31368.51485	318.790993	0.0369	0	HOMO->L+1 (100%)			
3	32587.21859	306.8687796	-64.9959	0.1054	H-7->LUMO (31%), H-3->LUMO (44%), H-1->LUMO (23%)			
4	33659.12943	297.0962164	50.1804	0.3177	H-7->LUMO (19%), H-1->LUMO (71%)			
5	34258.39937	291.8992184	-0.6008	0.0011	H-2->LUMO (98%)			
6	34877.02662	286.7216896	15.7157	0.0604	H-2->L+1 (99%)			
7	36313.50006	275.3796793	-0.9744	0.0098	H-7->LUMO (43%), H-3->LUMO (46%)			
8	36731.29525	272.2474101	-2.6742	0.0027	H-4->LUMO (97%)			
9	36983.74679	270.3890457	0.0157	0	H-1->L+1 (100%)			
10	37028.91384	270.0592311	-0.6432	0.0006	H-5->LUMO (93%)			
11	37940.32034	263.5718389	-2.2289	0.0003	HOMO->L+2 (25%), HOMO->L+5 (61%)			
12	38824.30399	257.5706187	-1.5714	0.0004	HOMO->L+2 (73%), HOMO->L+5 (19%)			
13	39211.45012	255.0275486	1.1279	0.0034	HOMO->L+3 (64%), HOMO->L+4 (29%)			
14	39611.50112	252.4519323	-1.1338	0.0005	HOMO->L+3 (32%), HOMO->L+4 (53%), HOMO->L+5 (11%)			
15	39663.1206	252.1233793	0.1883	0.0002	H-3->L+1 (100%)			
16	40540.65182	246.6659896	-0.41	0	H-9->L+1 (97%)			
17	40703.57581	245.6786609	2.5421	0.0036	H-4->L+1 (99%)			
18	41484.3205	241.0549306	0.9273	0.0018	H-5->L+1 (99%)			
19	41985.99736	238.1746446	16.1498	0.0541	H-8->LUMO (69%), HOMO->L+9 (16%)			
20	42485.25455	235.3757817	-1.2822	0.001	H-6->LUMO (20%), HOMO->L+6 (36%), HOMO->L+7 (18%)			
21	42549.7789	235.0188475	-1.4433	0.0087	H-6->LUMO (72%), HOMO->L+6 (10%)			
22	42616.72292	234.6496707	-0.2967	0.0019	H-5->L+2 (23%), H- 5->L+3 (12%), H- 3->L+2 (17%), H- 3->L+3 (26%)			
23	42920.79394	232.9873025	-4.2961	0.0067	HOMO->L+6 (24%), HOMO->L+7 (48%)			
24	43272.45167	231.0939088	-28.0881	0.0403	H-8->LUMO (14%), HOMO->L+7 (16%), HOMO->L+9 (25%), HOMO->L+10 (13%)			
25	43816.87591	228.2225693	1.3034	0.0037	H-1->L+2 (37%), H- 1->L+5 (28%)			

Table S15. Key transitions and their related rotatory and oscillator strengths of conformer 2 of **4** at the CAM-B3LYP/6-31+G(d) level in acetonitrile.

26	44138 69113	226 5585985	-22,7301	0.0485	H-1->L+2 (14%),
	11120107112	220.0000000	22.7501	0.0100	HOMO->L+8 (55%)
27	1116605050	224 00 00700	17 1026	0.0077	H-1->L+2 (31%), H-1
27	44466.95878	224.8860789	-17.1936	0.0077	$1 \rightarrow L+3 (14\%), H-1 \rightarrow L+5 (20\%)$
					$1 \rightarrow L+5(39\%)$
20	44557 20200	004 4201517	55 0900	0.200	H-6->L+1(34%), H-
28	44557.29288	224.4301517	55.2823	0.396	$2 \rightarrow L+3 (12\%), H-$
					$2 \rightarrow L + 4 (41\%)$
20	44911 25752	000 1577116	0.0400	0.0122	HOMO->L+10 (29%),
29	44811.35752	223.15//116	8.9498	0.0132	HOMO > $L + 12(20\%)$
					HOMO->L+12 (20%)
30	44895.23918	222.7407668	-3.8698	0.005	H-1->L+3 (04%), H-1>L+4 (100())
					$I \rightarrow L + 4 (10\%)$
31	44971.86185	222.361263	-10.0062	0.0861	H-0->L+1(1/%), H-
					2 - > L + 2(75%)
					H-0->L+1(30%), H-
32	45311.42127	220.6949092	-1.2472	0.1597	2 > L + 2 (10%), H = 2 > L + 2 (25%) H
					$2 \rightarrow L+3 (35\%), H-2 \rightarrow L+4 (12\%)$
					$2 \rightarrow L + 4 (12\%)$
33	45374.33251	220.388917	10.3317	0.0049	H-1->L+4 (08%), H-1>L+5 (16%)
					I - >L + 3(10%)
34	45813.90468	218.2743442	-37.5489	0.0425	$\Pi - 2 - 2L + 3 (30\%), \Pi - 2 > L + 4 (27\%)$
25	45016 22700	217 7874071	2.064	0.0017	2 - 2L + 4(37%)
	43910.33709	217.7874071	-2.004	0.0017	HOMO > L + 0 (14%)
					HOMO > L+9(14%),
36	45917.9502	217.7797562	13.0268	0.0386	HOMO > L + 12 (21%),
					HOMO > L + 12 (2170),
					HOMO > L + 11 (28%)
37	46006.67118	217.3597816	22.9432	0.0436	HOMO > L + 12 (22%)
					HOMO > L + 11 (35%)
38	46507 54149	215 0188911	-36 73/3	0.0595	$HOMO_{L+11} (18\%)$
50	40307.34149	213.0100911	-30.7343	0.0575	HOMO > L + 15 (10%),
					HOMO > L + 13 (41%)
39	46663.20649	214.301604	-23.6949	0.059	HOMO > L + 1/2 (26%)
					$H_{2} > L + 5 (47\%) H_{-}$
40	46962.43818	212.9361334	43.9209	0.0138	2 > L + 6 (31%)
					$H_{-5} > I + 2 (10\%) H_{-1}$
41	47051 15917	212 534615	-38 0673	0.0417	$3 \rightarrow L + 2 (42\%) H_{-}$
11	17051115717	212.334013	-30.0075	0.0417	$3 \rightarrow L + 3 (19\%)$
					$HOMO_{->I} + 14(22\%)$
42	47389.10548	211.0189652	-0.7714	0.0008	HOMO-> $L+14(2270)$,
43	47756 8943	209 3938508	-0.0004	0	H-9->LUMO(100%)
15	17750.0915	207.5750500	0.0001	0	$H_{-1}>I + 9(10\%)$
					HOMO->L+14 (13%)
44	47931.91661	208.6292539	34.5081	0.0551	HOMO->L+16 (24%)
					HOMO->L+19 (19%)
45	48089.19472	207.9469215	-5.5892	0.0026	H-8->L+1 (89%)
					H-8->L+1 (10%). H-
46	48106.93892	207.8702205	13.1878	0.0184	$1 \rightarrow L + 6 (17\%)$
	40100.93092	201.0102203	13.1070	0.0104	HOMO->L+16 (25%)
					H-1->L+6 (20%). H-
47	48198.07957	207.4771462	-17.2591	0.0382	$1 \rightarrow L + 8 (13\%).$
	+01/0.0/93/		-11.4371	0.0302	HOMO->L+16 (13%)

48	48298.89887	207.0440576	6.1037	0.0047	H-2->L+5 (29%), H- 2->L+6 (48%)
49	48319.06273	206.9576568	0.7092	0.0004	H-10->LUMO (84%)
50	48501.34403	206.1798533	-1.1245	0.004	H-1->L+6 (12%), H- 1->L+7 (64%)

Standard orientation:							
Center	er Atomic Atomic Coordinates (Angstroms)						
Number	Number	Туре	X	X Y			
1	8	0	3.649891	2.803253	-0.358259		
2	8	0	2.311719	-0.526962	1.761444		
3	8	0	4.581221	1.276068	-2.087431		
4	1	0	4.300585	2.125164	-1.620097		
5	8	0	4.387938	-3.416184	-1.39092		
6	8	0	5.118229	-1.118679	-2.991161		
7	1	0	5.264783	-0.208369	-3.308684		
8	8	0	-8.982357	-0.41867	0.820386		
9	6	0	3.462817	0.471408	-0.070941		
10	8	0	-8.181757	-2.312079	-0.085665		
11	1	0	-8.921851	-2.640886	0.458332		
12	6	0	4.169133	0.265379	-1.291552		
13	6	0	3.270947	1.86124	0.374945		
14	6	0	4.135798	-2.131353	-1.022737		
15	6	0	3.068662	-3.215394	0.997896		
16	1	0	3.910749	-3.91504	0.981159		
17	1	0	2.223551	-3.747637	0.539426		
18	6	0	3.06029	-0.712735	0.629318		
19	6	0	3.416998	-1.986363	0.189771		
20	6	0	4.485651	-1.0101	-1.775796		
21	6	0	2.662828	2.259111	1.707321		
22	1	0	3.112384	3.225002	1.959432		
23	1	0	2.91443	1.5334	2.48186		
24	6	0	-0.189909	-1.513343	0.778694		
25	1	0	0.28382	-0.673357	0.272326		
26	6	0	-6.134594	-0.625996	-1.45263		
27	6	0	1.731719	-1.660545	2.460505		
28	6	0	0.410103	-2.067469	1.835511		
29	1	0	-0.068142	-2.911827	2.337623		
30	6	0	-8.166548	-0.958691	0.090329		
31	6	0	1.501185	-1.155305	3.890428		
32	1	0	2.454553	-0.890048	4.360639		
33	1	0	1.020526	-1.932918	4.494231		
34	1	0	0.852025	-0.274221	3.885538		
35	6	0	-2.99479	-0.308145	-0.91414		
36	1	0	-2.535289	-0.658502	-1.842319		
37	6	0	2.727994	-2.830081	2.436459		
38	1	0	2.303326	-3.683466	2.978394		
39	1	0	3.634988	-2.52073	2.972424		
40	6	0	0.614581	3.531388	0.768349		
41	6	0	0.108845	3,258367	-0.509975		
42	1	0	0.065447	2.228789	-0.859654		
43	6	0	1.115211	2.419367	1.666991		
44	1	0	0.664414	1.466365	1.375432		
45	1	0	0.793016	2.614122	2.69833		

Table S18. Cartesian coordinates of conformer 2 of 4

46	6	0	-1.509509	-1.965457	0.1955
47	1	0	-1.861477	-2.852297	0.742829
48	1	0	-1.347448	-2.274196	-0.846492
49	6	0	-7.132805	-0.208347	-0.640279
50	1	0	-7.233643	0.858233	-0.452924
51	6	0	-2.583095	-0.883769	0.229768
52	6	0	0.64838	4.867095	1.19694
53	1	0	1.031274	5.101068	2.189042
54	6	0	-4.005044	0.792302	-1.102378
55	1	0	-3.499465	1.653029	-1.565352
56	1	0	-4.398011	1.145542	-0.14427
57	6	0	-5.20157	0.426687	-2.027833
58	1	0	-5.764543	1.347801	-2.21978
59	1	0	-4.811244	0.082494	-2.994975
60	6	0	-0.296141	5.613646	-0.903774
61	1	0	-0.64541	6.416194	-1.548549
62	6	0	-0.340549	4.288059	-1.341757
63	1	0	-0.722978	4.053366	-2.332383
64	6	0	0.199404	5.900144	0.372036
65	1	0	0.234854	6.928011	0.725049
66	6	0	-3.100624	-0.548622	1.607564
67	1	0	-3.880286	0.215972	1.601523
68	1	0	-2.286723	-0.197551	2.255237
69	1	0	-3.516841	-1.445988	2.087202
70	6	0	5.545127	-3.748655	-2.175866
71	1	0	6.434062	-3.240248	-1.788554
72	1	0	5.402163	-3.486727	-3.22529
73	1	0	5.657503	-4.829335	-2.064905
74	6	0	-5.835367	-2.043084	-1.859343
75	1	0	-6.46398	-2.779112	-1.362721
76	1	0	-4.780923	-2.268488	-1.65581
77	1	0	-5.970031	-2.14203	-2.946341

Fig. S9. UV spectrum of 1 in MeOH

Fig. S10. IR spectrum of 1 (KBr disc)

Fig. S14. DEPT-135 and ¹³C NMR spectra of 1 in CDCl₃

Fig. S16. HSQC spectrum of 1 in CDCl₃

Fig. S19. UV spectrum of 2 in MeOH

Fig. S20. IR spectrum of 2 (KBr disc)

Fig. S22.¹H NMR spectrum of 2 in CDCl₃

Fig. S24. DEPT-135 and 13 C NMR spectra of 2 in CDCl₃

Fig. S28. NOESY spectrum of 2 in CDCl₃

Fig. S29. UV spectrum of 3 in MeOH

Fig. S30. IR spectrum of 3 (KBr disc)

Fig. S34. DEPT-135 and 13 C NMR spectra of 3 in CDCl₃

Fig. S39. UV spectrum of 4 in MeOH

Fig. S40. IR spectrum of 4 (KBr disc)

Fig. S44. DEPT-135 and ¹³C NMR spectra of 4 in CDCl₃

Reference

- [1]. X. L. Zhang, Y. P. Xia, P. B. Li, Z. N. Wu, R. L. Li, J. L. Cai, Y. B. Zhang, G. C. Wang, Y. L. Li, W. Tang, W. W. Su. Discovery of cyperenoic acid as a potent and novel entry inhibitor of influenza A virus, *Antiviral Research*, **2024**, 105822.
- [2]. W. Tang, Y. Y. Li, Q. Y. Song, Z. Q. Wang, M. M. Li, Q. W. Zhang, Y. Wang, W. C. Ye, Y. L. Li. Mechanism of cross-resistance to fusion inhibitors conferred by the K394R mutation in respiratory syncytial virus fusion protein. *Journal of Virology*, 2021, 95(20), e01205-21.
- [3]. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [4]. T. Bruhn, A. Schaumloffel, Y. Hemberger, G. Pescitelli, SpecDis version 1.71, Berlin, Germany, 2017, <u>http://specdis-software.jimdo.com</u>