Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Visible-Light-Driven PCy₃-promoted deselenization of 1,2-diselenides

Yi Liu,^a Fan Li,^a Miao-Chang Liu,^a Yun-Bing Zhou*^{ab} and Hua-Yue Wu*^a

^aCollege of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China. E-mail: huayuewu@wzu.edu.cn; zyb@wzu.edu.cn.

^bKey Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou, 325035, China.

Table of Contents

1.	General information	3
2.	Materials and methods	4
3.	Gram-Scale synthesis	6
4.	Mechanistic studies	6
4	.1 Radical inhibition experiment	6
4	.2 Ultraviolet absorption and fluorescence quenching experiments	7
4	.3 Light on/off experiment	
5.	Computational details	8
6.	Characterization of products in details	14
7.	¹ H, ¹³ C and ¹⁹ F NMR spectra of products	
8.	Reference	137

1. General information

All reagents and solvents were purchased from TCI, Sigma-Aldrich, Alfa Aesar, Acros and Energy Chemical. All commercial reagents were used as supplied unless otherwise stated. Organic solutions were concentrated by rotary evaporation below 45 °C. All reactions were monitored by TLC, GC-MS. Analytical thin-layer chromatography was performed using Merck Kieselgel 60 F254 0.20 mm precoated glass-backed silica gel plates. Visualization of the chromatogram was performed by UV absorbance ($\lambda_{max} = 254$ nm) and/or by staining with aqueous potassium permanganate. Flash column chromatography was performed using silica gel (EM 60 F254 300 - 400 mesh) with the appropriate solvent system.

The photoreactor used in this research was bought from Taobao (www.taobao.com) (Fig. S1: blue LED, 50W, 450 nm).

Fig. S1 The photoreactor

Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker DPX 400 (400 MHz) or Avance 500 (500 MHz) spectrometer. Chemical shifts (δ) are recorded in parts per million (ppm) and are quoted to the nearest 0.01 ppm relative to the residual solvent protons (CDCl₃ = 7.26 ppm). Coupling constants (J) are quoted in Hertz (Hz), and data reported as follows: Chemical shift (multiplicity, coupling constant, number of protons). Coupling constants were reported to the nearest 0.1 Hz and multiplicity reported according to the following: s =singlet, d = doublet, t = triplet, q = quartet, qui = quintet m = multiplet, br = broad, with associated combinations e.g. dd = doublet of doublets

Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker AVANCE 500 (125 MHz) spectrometer. Chemical shifts (δ) are recorded in parts per million (ppm) and are quoted to the nearest 0.1 ppm relative to the residual solvent protons (CDCl₃ = 77.2 ppm). High-resolution mass spectra were recorded on a micrOTOF-Q II 10410 mass spectrometer.

Unless otherwise noted, all reagents and solvents were obtained commercially and used without further purification.

2. Materials and methods

Preparation of starting materials

Phenylboric acid (5 mmol), selenium powder (15 mmol), and silver nitrate (5 mmol) were added to DMSO solution (15 mL) and the reaction mixture was stirred in air at 130 °C for 12 hours. Then the reaction mixture was cooled to ambient temperature, and evaporated under reduced pressure. The residue was purified by column chromatography to give the desired diselenides ^[1].

1) EtOH, 0° C
Se + NaBH₄
$$0.5 h$$

2) Se, 0.5 h alkyl Se_{Se} alkyl
3) alkyl-X, rt.
1 h

Selenium (2 mmol) was added to a stirred solution of sodium borohydride (5 mmol) in ethanol (5 mL) at 0 °C. Stirring was continued for 30 min at this temperature. Then, selenium (2 mmol) was added to the reaction mixture and stirred for 30 min at 0 °C. Finally, iodides (7 mmol) was added over a period of 5 min. After stirring for a further hour at room temperature, the reaction mixture was extracted with hexane and washed with water, dried over Na₂SO₄, and concentrated in vacuo. ^[2].

n-Butyl lithium (8 mmol) was added to the THF (15 mL) solution of bromobenzene (2 mmol) at - 40 °C. Stirring was continued for 2 hours at this temperature. Then, selenium (8 mmol) was added to the reaction mixture and stirred for 2 hours at - 40 °C. After stirring for a further hour at room temperature, water was added to the reaction. the reaction was concentrated, and the residue was purified by silica gel column chromatography separation to give the desired diselenides.^[3].

To a solution of bromide (1 mmol) in ethanol (5 mL) was added potassium selenocyanate (1.2 mmol). After being stirred for 15 min, the reaction mixture was added with an aqueous solution of sodium hydroxide (3 M 0.8 mL). After 1 h, the mixture was added with water and then extracted with Et₂O. The organic layer was washed with brine, dried over anhydrous magnesium sulfate. The residue was purified by silica gel column chromatography separation to give the desired diselenides. ^[4].

Se + NaBH₄
$$\longrightarrow$$
 Na₂Se₂ +
Cl $\xrightarrow{a) 30 \text{ min}}_{b) l_2, \text{ Kl}}$ Se Se O

Selenium (2 mmol) was added to a stirred solution of sodium borohydride (2.4 mmol) in ethanol (3 mL) at 0 °C. Stirring was continued for 30 min at this temperature. Then, benzoyl chloride (2 mmol) was added to the reaction mixture and stirred for 30 min at 0 °C. Stirring was continued for 30 min at this temperature. Finally, a solution of iodine (1 mmol) and potassium iodide (0.4 mmol) was added to the reaction mixture and stirred for 30 min at 0 °C. After reaction finished, the organic phase was washed with 1 % NaHCO₃ solution. The reaction mixture was then concentrated, and purified by silica gel column chromatography separation to give the desired diselenides ^[5].

General procedure A for deselenizative reaction of diselenides

Diselenide (0.2 mmol) and PCy₃ (0.3 mmol) were placed in a 10.0 mL quarz test tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), DCM (2.0 mL) was added. The quarz test tube was sealed and placed approximately 3 cm from a 50W blue LED (λ =450 nm). This mixture was then stirred and irradiated for 2 h at room temperature. The reaction mixture was evaporated and purified directly by column chromatography to afford the product.

General procedure B for deselenizative cross-coupling reaction of two different diselenides

Diselenide (0.1 mmol), another diselenide (0.1 mmol) and PCy₃ (0.3 mmol) were placed in a 10.0 mL quarz test tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), DCM (2.0 mL) was added. The quarz test tube was sealed and placed approximately 3 cm from a 50W blue LED (λ =450 nm). This mixture was then stirred and irradiated for 2 h at room temperature. The reaction mixture was evaporated and purified directly by column chromatography to afford the product.

General procedure C for deselenizative cross-coupling reaction between a diselenide and a disulfide

Diselenide (0.1 mmol), disuifide (0.1 mmol) and PCy₃ (0.3 mmol) were placed in a 10.0 mL quarz test tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), DCM (2.0 mL) was added. The quarz test tube was sealed and placed approximately 3 cm from a 50W blue LED (λ =450 nm). This mixture was then stirred and irradiated for 2 h at room

temperature. The reaction mixture was evaporated and purified directly by column chromatography to afford the product.

3. Gram-Scale synthesis

$$\begin{array}{c} \mathsf{PCy}_3\\ \mathsf{Ph}^{\mathsf{Se}} \xrightarrow{\mathsf{Ph}} \underbrace{450\mathsf{nm}\,\mathsf{LED}}_{\mathsf{DCM},\,\mathsf{N}_2,\,\mathsf{2}\,\mathsf{h}} & \mathsf{Ph}^{\mathsf{Se}}_{\mathsf{Ph}} \end{array}$$

Diphenyl diselenide (5 mmol) and PCy₃ (15 mmol) were placed in a 30 mL quarz test tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), DCM (10 mL) was added. The quarz test tube was sealed and placed approximately 3 cm from a 50W blue LED (λ = 450 nm). This mixture was then stirred and irradiated for 2 h at room temperature. The reaction mixture was evaporated and purified directly by column chromatography to afford the product (90%, 1.05 g).

4. Mechanistic studies

4.1 Radical inhibition experiment

$$Ph^{Se}Se^{Ph} \xrightarrow{PCy_3 (1.5 \text{ equiv})} Ph^{Se}Ph^{+}Ph^{Se}Se^{Ph}$$

Diphenyl diselenide (0.2 mmol), PCy₃ (0.3 mmol) and TEMPO (0.5 mmol) were placed in a 10 mL quarz test tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), DCM (2 mL) was added. The quarz test tube was sealed and placed approximately 3 cm from a 50 W blue LED (λ =450 nm). This mixture was then stirred and irradiated for 2 h at room temperature. No target product generation was detected by GC-MS.

1,2-Bis(cyclopropylmethyl)diselane (0.2 mmol) and PCy₃ (0.3 mmol) were placed in a 10.0 mL quarz test tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), DCM (2 mL) was added. The quarz test tube was sealed and placed approximately 3 cm from a 50W blue LED (λ =450 nm). The reaction mixture was detected by GC-MS. ¹H NMR (400 MHz, CDCl₃) δ 5.89 – 5.76 (m, 1H), 5.10 – 4.99 (m, 2H), 2.71 – 2.64 (m, 2H), 2.60 – 2.50 (m, 3H), 2.46 – 2.39 (m, 2H), 1.24 (s, 3H), 1.11 – 0.99 (m, 1.5H), 0.59 (d, *J* = 7.6 Hz, 6H), 0.20 (d, *J* = 4.5 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 137.6, 115.5, 35.0, 29.3, 29.7, 22.6, 12.2, 12.1, 6.64, 6.59.

$$Ph \xrightarrow{Ph} (3 \text{ equiv})$$

$$Ph \xrightarrow{Ph} (3 \text{ equiv})$$

$$Ph \xrightarrow{Se} Se^{Ph} \xrightarrow{PCy_3 (1.5 \text{ equiv})} Ph \xrightarrow{Se} Ph \xrightarrow{Ph} \xrightarrow{Ph} Ph \xrightarrow{Ph} Ph$$

$$DCM, 2 h \xrightarrow{58\%} 17\% \xrightarrow{Ph} 18\%$$

Diphenyl diselenide (0.2 mmol), PCy₃ (0.3 mmol) and 1,1-diphenylethylene (0.6 mmol) were placed in a 10 mL quarz test tube equipped with a magnetic stir bar. After back-filled with nitrogen (this process was repeated three times), DCM (2 mL) was added. The quarz test tube was sealed and placed approximately 3 cm from a 50W blue LED (λ =450 nm). This mixture was then stirred and irradiated for 2 h at room temperature. The reaction mixture was detected by GC-MS.

4.2 Ultraviolet absorption and fluorescence quenching experiments

UV/Vis absorption spectra were recorded on a SHIMADZU UV-2600 spectrophotometer. $1*10^{-3}$ mol/L⁻¹ PhSeSePh and PCy₃ solutions using DCM as the solvent were prepared. The samples were measured in Surui[®] fluorescence quartz cuvettes (chamber volume = 3.500 mL, H × W × D = 48 mm × 12.5 mm, path length = 10 mm).

Fig. S2 UV-Vis absorption spectrum

The fluorescence spectrum is recorded on the burker F-7000. Solution with PhSeSePh and different concentrations PCy₃ were prepared. The samples were measured in Surui[®] fluorescence quartz cuvettes (chamber volume = 3.500 mL, H × W × D = $48 \text{ mm} \times 12.5 \text{ mm} \times 12.5 \text{ mm}$, path length = 10 mm). The following parameters were set: data interval = 0.5 nm, scan-speed = 500 nm/min, excitation wavelength $\lambda ex = 330 \text{ nm}$.

Fig. S3 Fluorescence spectrum

4.3 Light on/off experiment

To study the necessity of continuous irradiation with visible light for the progress of the reaction, the reaction proceeding was monitored by GC-MS using 1,2-diphenyldiselane as an internal standard before and after light irradiation and dark periods.

The control experiments shown below with successive intervals of irradiation and dark periods did result in interruption of the reaction progress in the absence of light, demonstrating that light is a necessary component for the reaction after triggering the reaction in the first part.

Fig. S4 Light on-off experiment.

5. Computational details

The density functional theory (DFT) method was used to optimize geometries of XXX. The bond dissociation energy (BDE)^[6]was calculated based on the homolytic reaction. The geometries of all radicals were also optimized. Moreover, the natural bond orbital (NBO)^[7] analysis was performed to obtain the atomic charge of all radicals. All the calculations were carried out at the level of M06-2X^[8]/6-311+g* within Gaussian 09 package.

PCy₃

Zero-point correction=	0.487906 (Hartree/Particle)
Thermal correction to Energy=	0.507526
Thermal correction to Enthalpy=	0.508470
Thermal correction to Gibbs Free Energy=	0.440402
Sum of electronic and zero-point Energies=	-1046.461974

Sum of electronic and thermal Energies=	-1046.442354
Sum of electronic and thermal Enthalpies=	-1046.441410
Sum of electronic and thermal Free Energies=	-1046.509478

PhCH₂SeSeCH₂Ph

Zero-point correction=	0.241117 (Hartree/Particle)
Thermal correction to Energy=	0.256464
Thermal correction to Enthalpy=	0.257408
Thermal correction to Gibbs Free Energy=	0.194927
Sum of electronic and zero-point Energies=	-5344.692057
Sum of electronic and thermal Energies=	-5344.676710
Sum of electronic and thermal Enthalpies=	-5344.675766
Sum of electronic and thermal Free Energies=	-5344.738246

PhCH₂SeCH₂Ph

Zero-point correction=	0.240076 (Hartree/Particle)
Thermal correction to Energy=	0.253663
Thermal correction to Enthalpy=	0.254607
Thermal correction to Gibbs Free Energy=	0.195731
Sum of electronic and zero-point Energies=	-2943.114040
Sum of electronic and thermal Energies=	-2943.100453
Sum of electronic and thermal Enthalpies=	-2943.099509
Sum of electronic and thermal Free Energies=	-2943.158385

$PhCH_2SePCy_3\\$

Zero-point correction=	0.609498 (Hartree/Particle)
Thermal correction to Energy=	0.637741
Thermal correction to Enthalpy=	0.638685
Thermal correction to Gibbs Free Energy=	0.549698
Sum of electronic and zero-point Energies=	-3718.789620
Sum of electronic and thermal Energies=	-3718.761377

Sum of electronic and thermal Enthalpies=	-3718.760433
Sum of electronic and thermal Free Energies=	-3718.849420

PhSeSePh

Zero-point correction=	0.182876 (Hartree/Particle)
Thermal correction to Energy=	0.195967
Thermal correction to Enthalpy=	0.196912
Thermal correction to Gibbs Free Energy=	0.138515
Sum of electronic and zero-point Energies=	-5266.134974
Sum of electronic and thermal Energies=	-5266.121882
Sum of electronic and thermal Enthalpies=	-5266.120938
Sum of electronic and thermal Free Energies=	-5266.179334

PhSeCH₂Ph

Zero-point correction=	0.211001 (Hartree/Particle)
Thermal correction to Energy=	0.222602
Thermal correction to Enthalpy=	0.223546
Thermal correction to Gibbs Free Energy=	0.169537
Sum of electronic and zero-point Energies=	-2903.836546
Sum of electronic and thermal Energies=	-2903.824946
Sum of electronic and thermal Enthalpies=	-2903.824002
Sum of electronic and thermal Free Energies=	-2903.878011

PhSePCy₃

Zero-point correction=	0.580742 (Hartree/Particle)
Thermal correction to Energy=	0.607899
Thermal correction to Enthalpy=	0.608844
Thermal correction to Gibbs Free Energy=	0.521173
Sum of electronic and zero-point Energies=	-3679.513080
Sum of electronic and thermal Energies=	-3679.485923
Sum of electronic and thermal Enthalpies=	-3679.484979

PhSePh

Zero-point correction=	0.182636 (Hartree/Particle)
Thermal correction to Energy=	0.193718
Thermal correction to Enthalpy=	0.194663
Thermal correction to Gibbs Free Energy=	0.142211
Sum of electronic and zero-point Energies=	-2864.561040
Sum of electronic and thermal Energies=	-2864.549957
Sum of electronic and thermal Enthalpies=	-2864.549013
Sum of electronic and thermal Free Energies=	-2864.601465

SePCy₃

Zero-point correction=	0.490319 (Hartree/Particle)
Thermal correction to Energy=	0.510946
Thermal correction to Enthalpy=	0.511890
Thermal correction to Gibbs Free Energy=	0.441102
Sum of electronic and zero-point Energies=	-3448.061467
Sum of electronic and thermal Energies=	-3448.040840
Sum of electronic and thermal Enthalpies=	-3448.039896
Sum of electronic and thermal Free Energies=	-3448.110684

PhCH ₂ Se [•] radical	
Zero-point correction=	0.119555 (Hartree/Particle)
Thermal correction to Energy=	0.126578
Thermal correction to Enthalpy=	0.127522
Thermal correction to Gibbs Free Energy=	0.085495
Sum of electronic and zero-point Energies=	-2672.302625
Sum of electronic and thermal Energies=	-2672.295603
Sum of electronic and thermal Enthalpies=	-2672.294659

Sum of electronic and thermal Free Energies= -2672.336686

PhCH₂ radical

Zero-point correction=	0.115176 (Hartree/Particle)
Thermal correction to Energy=	0.120857
Thermal correction to Enthalpy=	0.121801
Thermal correction to Gibbs Free Energy=	0.085500
Sum of electronic and zero-point Energies=	-270.727485
Sum of electronic and thermal Energies=	-270.721803
Sum of electronic and thermal Enthalpies=	-270.720859
Sum of electronic and thermal Free Energies=	-270.757160

PhSe[•] radical

Zero-point correction=	0.090785 (Hartree/Particle)
Thermal correction to Energy=	0.096537
Thermal correction to Enthalpy=	0.097482
Thermal correction to Gibbs Free Energy=	0.059137
Sum of electronic and zero-point Energies=	-2633.024554
Sum of electronic and thermal Energies=	-2633.018801
Sum of electronic and thermal Enthalpies=	-2633.017857
Sum of electronic and thermal Free Energies=	-2633.056201

Ph' radical

Zero-point correction=	0.088129 (Hartree/Particle)
Thermal correction to Energy=	0.092472
Thermal correction to Enthalpy=	0.093416
Thermal correction to Gibbs Free Energy=	0.060104
Sum of electronic and zero-point Energies=	-231.417821
Sum of electronic and thermal Energies=	-231.413478
Sum of electronic and thermal Enthalpies=	-231.412534
Sum of electronic and thermal Free Energies=	-231.445846

PhCO' radical

Zero-point correction=	0.098259 (Hartree/Particle)
Thermal correction to Energy=	0.104568
Thermal correction to Enthalpy=	0.105512
Thermal correction to Gibbs Free Energy=	0.067031
Sum of electronic and zero-point Energies=	-344.759101
Sum of electronic and thermal Energies=	-344.752792
Sum of electronic and thermal Enthalpies=	-344.751848
Sum of electronic and thermal Free Energies=	-344.790329

•SPCy₃ radical

0.491215 (Hartree/Particle)
0.512146
0.513090
0.442099
-1444.689471
-1444.668540
-1444.667596
-1444.738587

PhCOSePCy₃

Zero-point correction=	0.591243 (Hartree/Particle)
Thermal correction to Energy=	0.620088
Thermal correction to Enthalpy=	0.621032
Thermal correction to Gibbs Free Energy=	0.530292
Sum of electronic and zero-point Energies=	-3792.830300
Sum of electronic and thermal Energies=	-3792.801455
Sum of electronic and thermal Enthalpies=	-3792.800511
Sum of electronic and thermal Free Energies=	-3792.891251

$PhCOSPCy_{3} \\$

Zero-point correction=	0.591486 (Hartree/Particle)
Thermal correction to Energy=	0.620095
Thermal correction to Enthalpy=	0.621040
Thermal correction to Gibbs Free Energy=	0.530568
Sum of electronic and zero-point Energies=	-1789.460045
Sum of electronic and thermal Energies=	-1789.431436
Sum of electronic and thermal Enthalpies=	-1789.430492
Sum of electronic and thermal Free Energies=	-1789.520963

6. Characterization of products in details

Diphenylselane (1)

1, obtained by the **General method A**, is a colorless liquid (44.3 mg, 95%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.35 (m, 4H), 7.34 – 7.17 (m, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 132.9, 131.1, 129.3, 127.3; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₂H₁₁Se: 235.0020; found: 235.0027.

di-*p*-tolylselane (2)

2, obtained by the **General method A**, is a succinite liquid (35 mg, 67%).¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (d, J = 7.9 Hz, 4H), 7.08 (d, J = 7.6 Hz, 4H), 2.33 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 137.1, 132.9, 130.1, 127.7, 21.1; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₅Se: 263.0333; found: 263.0339.

bis(4-(tert-butyl)phenyl)selane (3)

3, obtained by the **General method A**, is a succinite solid (53.9 mg, 78%), melting point: 96-97°C; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.5 Hz, 4H), 7.29 (d, J = 8.5 Hz, 4H), 1.30 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 150.3, 132.7, 127.6, 126.3, 34.5, 31.2;

HRMS (ESI) $m/z [M+H]^+$ Calcd. for C₂₀H₂₇Se: 347.1272; found: 347.1260.

bis(2,6-dimethylphenyl)selane (4)

4, obtained by the **General method A**, is a succinite solid (53.2 mg, 92%), melting point: $50 - 51^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.10 – 7.02 (m, 2H), 7.00 (d, J = 7.5 Hz, 4H), 2.27 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 132.9, 128.0, 127.3, 23.6; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₆H₁₉Se: 291.0646; found: 291.0652.

Dimesitylselane (5)

5, obtained by the **General method A**, is a succinite solid (60.9 mg, 96%), melting point: $93 - 94^{\circ}$ C; ¹H NMR δ 6.82 (s, 4H), 2.23 (s, 12H), 2.22 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 136.9, 129.4, 128.9, 23.5, 20.8; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₈H₂₃Se: 319.0959; found: 319.0965.

bis(4-methoxyphenyl)selane (6)

6, obtained by the **General method A**, is a succinite solid (35.8 mg, 61%), melting point: 47-48°C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.4 Hz, 4H), 6.81 (d, J = 8.5 Hz, 4H), 3.78 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 134.6, 122.1, 115.0, 55.3; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₅O₂Se: 295.0232; found: 295.0240.

bis(2-methoxyphenyl)selane (7)

7, obtained by the **General method A**, is a succinite solid (35.2 mg, 60%), melting point: $48 - 49^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ 7.35 - 7.05 (m, 4H), 7.05 - 6.71 (m, 4H), 3.86 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 158.1, 133.7, 128.7, 121.5, 118.8, 110.6, 55.9;

HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₅O₂Se: 295.0232; found: 295.0241.

bis(4-chlorophenyl)selane (8)

8, obtained by the **General method A**, is a succinite solid (44.1 mg, 73%), melting point: $94 - 95^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.4 Hz, 4H), 7.24 (d, J = 8.5 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 134.3, 133.9, 129.6, 129.0; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₂H₉Cl₂Se: 302.9241; found: 302.9243.

bis(3-chlorophenyl)selane (9)

9, obtained by the **General method A**, is a succinite solid (35.2 mg, 60%), melting point: $94 - 95^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (s, 2H), 7.37 - 7.18 (m, 6H); ¹³C

NMR (125 MHz, CDCl₃) δ 135.1, 132.7, 132.0, 131.1, 130.5, 128.0; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₂H₉Cl₂Se: 302.9241; found: 302.9248.

bis(4-bromophenyl)selane (10)

10, obtained by the **General method A**, is a succinite solid (57.9 mg, 74%), melting point: $114 - 115^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.35 (m, 4H), 7.30 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 134.5, 133.3, 132.5, 132.3; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₂H₉Br₂Se: 390.8231; found: 390.8238.

bis(4-iodophenyl)selane (11)

11, obtained by the **General method A**, is a succinite solid (51.4 mg, 53%), melting point: 140–141°C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.0 Hz, 4H), 7.16 (d, *J* = 8.0 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 134.7, 130.5, 93.3; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₂H₉I₂Se: 484.7797; found: 484.7791.

bis(4-fluorophenyl)selane (12)

12, obtained by the **General method A**, is a succinite liquid (44.7 mg, 83%).¹**H NMR** (400 MHz, CDCl₃) δ 7.43 (dd, J = 8.7, 5.4 Hz, 4H), 6.98 (t, J = 8.7 Hz, 4H); ¹³**C NMR** (100 MHz, CDCl₃) δ 162.5 (d, J = 247.6 Hz), 134.9 (d, J = 7.9 Hz), 125.7 (d, J = 3.4 Hz), 116.6 (d, J = 21.6 Hz); ¹⁹**F NMR** (471 MHz, CDCl₃) δ -113.10; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₂H₉F₂Se: 270.9832; found: 270.9836.

4,4'-selenodibenzonitrile (13)

13, obtained by the **General method A**, is a succinite solid (28.3 mg, 50%), melting point: $103 - 105^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.2 Hz, 4H), 7.55 (d, *J* = 8.0 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 136.3, 132.7, 130.5, 118.2, 111.4; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₉N₂Se: 284.9925; found: 284.9931.

Bis (4-(trifluoromethyl) phenyl) selane (14)

14, obtained by the **General method A**, is a succinite liquid (44.3 mg, 60%).¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 7.3 Hz, 6H), 7.52 (d, J = 7.6 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 134.9, 130.8, 126.1 (q, J = 3.6 Hz), 123.9 (d, J = 272.1 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -62.68; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₉F₆Se: 370.9768; found: 370.9764.

4,4'-selenodibenzaldehyde (15)

15, obtained by the **General method A**, is a succinite solid (28.3 mg, 62%), melting point: $73 - 76^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ 9.99 (s, 2H), 7.80 (d, *J* = 8.1 Hz, 4H), 7.61 (d, *J* = 8.1 Hz, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 191.3, 138.8, 135.5, 133.0, 130.5; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₁O₂Se: 290.9919; found: 290.9912.

di(naphthalen-2-yl) selane (16)

16, obtained by the **General method A**, is a succinite solid (45.3 mg, 68%), melting
point: $138 - 139^{\circ}$ C; ¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (s, 2H), 7.81-7.66 (m 7H), 7.58
- 7.39 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 134.0, 132.4, 131.9, 130.4, 128.8, 128.5,
127.8, 127.4, 126.5, 126.2;
HRMS (ESI) m/z [M+H]⁺ Calcd. for C₂₀H₁₅Se: 335.0333; found: 335.0309.

Di (pyridin-3-yl) selane (17)

17, obtained by the **General method A**, is a succinite solid (22 mg, 47%).¹**H NMR** (500 MHz, CDCl₃) δ 8.83 – 8.61 (m, 2H), 8.53 – 8.42 (m, 2H), 7.93 – 7.62 (m, 2H), 7.22 – 7.13 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 152.4, 149.2, 140.1, 127.7, 124.2; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₀H₉N₂Se: 236.9925; found: 236.9934.

Bis (cyclobutylmethyl) selane (18)

Se

18, obtained by the **General method A**, is a colorless liquid (33.5 mg, 70%).¹**H NMR** (400 MHz, CDCl₃) δ 2.87 – 2.56 (m, 4H), 2.56 – 2.31 (m, 2H), 2.10 (s, 4H), 1.81 (s, 4H), 1.73 – 1.53 (m, 4H); ¹³**C NMR** (125 MHz, CDCl₃) δ 36.4, 30.8, 28.9, 17.5; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₀H₁₉Se: 219.0646; found: 219.0650.

Dipentylselane (19) Sé

19, obtained by the **General method A**, is a colorless liquid (38 mg, 86%).¹**H NMR** (400 MHz, CDCl₃) δ 2.54 (t, *J* = 7.5 Hz, 4H), 1.78 – 1.52 (m, 4H), 1.44 – 1.23 (m,8H), 0.89 (t, *J* = 7.0 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 32.2, 30.4, 23.9, 22.2, 14.0; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₀H₂₃Se: 223.0959; found: 223.0963.

Di (pentan-3-yl) selane (20)

20, obtained by the **General method A**, is a colorless liquid (23.9 mg, 54%).¹**H NMR** (400 MHz, CDCl₃) δ 2.68 (p, *J* = 6.4 Hz, 2H), 1.67 (td, *J* = 13.7, 7.2 Hz, 8H), 0.98 (t, *J* = 7.3 Hz, 12H); ¹³**C NMR** (100 MHz, CDCl₃) δ 45.0, 28.5, 12.1; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₀H₂₃Se: 223.0959; found: 223.0963.

Dicyclopentylselane (21)

21, obtained by the **General method A**, is a colorless liquid (26.1 mg, 60%).¹**H NMR** (400 MHz, CDCl₃) δ 3.25 (p, *J* = 7.0 Hz, 2H), 2.55 – 1.93 (m, 4H), 1.80-1.69 (m, 4H), 1.74-1.55 (m, 8H). ¹³**C NMR** (100 MHz, CDCl₃) δ 37.5, 34.8, 25.0; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₀H₁₉Se: 219.0646; found: 219.0650.

Bis (4-fluorobutyl) selane (22)

F Se F

22, obtained by the **General method A**, is a colorless liquid (36.7 mg, 80%).¹**H NMR** (400 MHz, CDCl₃) δ 4.51 (d, J = 5.6 Hz, 2H), 4.40 (d, J = 0.9 Hz, 2H), 2.59 (s, 4H), 1.91 – 1.70 (m, 8H).¹³**C NMR** (100 MHz, CDCl₃) δ 83.5 (d, J = 164.9 Hz), 30.5 (d, J = 19.7 Hz), 26.3 (d, J = 4.7 Hz), 23.3; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₈H₁₇F₂Se: 231.0458; found: 231.0464.

dimethyl 3,3'-selenodipropionate (23)

23, obtained by the **General method A**, is a succinite liquid (45.1 mg, 89%).¹H NMR (400 MHz, CDCl₃) δ 3.69 (d, J = 12.8 Hz, 6H), 2.84 – 2.68 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 51.7, 35.4, 17.8; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₈H₁₅O₄Se: 255.0130; found: 255.0138.

4,4'-selenodibutanenitrile (24)

NC Se CN 24, obtained by the **General method A**, is a succinite liquid (37.9 mg, 88%).¹H NMR (400 MHz, CDCl₃) δ 2.68 (t, J = 7.1 Hz, 4H), 2.51 (t, J = 7.0 Hz, 4H), 1.99 (p, J = 7.0 Hz, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 118.9, 25.8, 22.1, 17.0; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₈H₁₃N₂Se: 217.0238; found: 217.0232.

Bis (3-methoxypropyl) selane (25)

_O____Se___O_

25, obtained by the **General method A**, is a succinite liquid (38.3 mg, 85%).¹**H NMR** (400 MHz, CDCl₃) δ 3.44 (t, J = 6.2 Hz, 4H), 3.33 (s, 6H), 2.62 (t, J = 7.3 Hz, 4H), 1.98 – 1.85 (m, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 72.0, 58.6, 30.5, 20.4; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₈H₁₉O₂Se: 227.0545; found: 227.0550.

Di (but-3-yn-1-yl) selane (26)

Se

26, obtained by the **General method A**, is a succinite liquid (35.2 mg, 95%).¹**H NMR** (400 MHz, CDCl₃) δ 2.77 (t, J = 7.4 Hz, 4H), 2.66 – 2.52 (m, J = 7.1, 2.3 Hz, 4H), 2.04 (t, J = 2.6 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 83.1, 69.4, 21.9, 20.7; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₈H₁₁Se: 187.0020; found: 187.0016.

Dibenzylselane (27)

27, obtained by the **General method A**, is a succinite liquid (38.7 mg, 74%).¹**H NMR** (500 MHz, CDCl₃) δ 7.59 – 6.92 (m, 10H), 3.82 (s, 4H).¹³**C NMR** (125 MHz, CDCl₃) δ 139.0, 129.0, 128.4, 127.1, 32.6; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₅Se: 263.0333; found: 263.0339.

Diallylselane (28)

Se_____

28, obtained by the **General method A**, is a colorless liquid (27.7 mg, 86%).¹**H NMR** (400 MHz, CDCl₃) δ 5.88 (td, J = 17.5, 7.6 Hz, 2H), 5.19 – 4.82 (m, 4H), 3.16 (d, J = 6.2 Hz, 4H). ¹³**C NMR** (125 MHz, CDCl₃) δ 135.0, 116.4, 25.4; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₆H₁₁Se: 163.0020; found: 163.0011.

Bis (3,7-dimethyloct-6-en-1-yl) selane (29)

29, obtained by the **General method A**, is a colorless liquid (55.8 mg, 78%).¹**H NMR** (500 MHz, CDCl₃) δ 5.09 (t, J = 6.5 Hz, 2H), 3.02 – 2.84 (m, 4H), 2.06 – 1.92 (m, 4H), 1.80 – 1.71 (m, 2H), 1.68 (s, 6H), 1.61 (s, 6H), 1.59 – 1.48 (m, 4H), 1.40 – 1.32 (m, 2H), 1.21 – 1.12 (m, 2H), 0.91 (d, J = 5.9 Hz, 6H);¹³**C NMR** (100 MHz, CDCl₃) δ 131.2, 124.7, 37.8, 36.7, 32.9, 25.7, 25.4, 21.4, 19.2, 17.6;

HRMS (ESI) m/z [M+H]⁺ Calcd. for C₂₀H₃₉Se: 359.2211; found: 359.2190.

(2S,3S,4R,5S)-2-(acetoxymethyl)-6-(((3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl) tetrahydro-2H-pyran-2-yl)selanyl)tetrahydro-2H-pyran-3,4,5triyl triacetate (30)

30, obtained by the **General method A**, is a succinite liquid (99.4 mg, 67%). ¹**H NMR** (500 MHz, CDCl₃) δ 5.46 (s, 2H), 5.38 – 5.27 (m, 2H), 5.14 – 4.86 (m, 3H), 4.47 (s, 1H), 4.26 – 3.90 (m, 6H), 2.24 – 1.87 (m, 24H); ¹³**C NMR** (125 MHz, CDCl₃) δ 170.3, 170.1, 167.0, 169.5, 80.8, 75.4, 71.4, 69.2, 67.1, 60.8, 20.7, 20.5, 20.41, 20.35; **HRMS** (ESI) m/z [M+Na]⁺ Calcd. for C₂₈H₃₈NaO₁₈Se: 765.1116; found: 765.1235.

Dibenzo [b,d] selenophene (31)

31, obtained by the **General method A**, is a succinite solid (30.1 mg, 65%), melting point: $73 - 74^{\circ}$ C;¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 7.8 Hz, 2H), 7.90 (d, *J* = 7.9 Hz, 2H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 138.2, 126.8, 126.0, 124.8, 122.8; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₂H₉Se: 232.9864; found: 232.9869.

dimethyl tetrahydroselenophene-2,5-dicarboxylate (32)

ÇOOMe

∖ COOMe

Se

32, obtained by the **General method A**, is a succinite liquid (32.1 mg, 64%).¹**H NMR** (400 MHz, CDCl₃) δ 4.16 (t, J = 5.5 Hz, 2H), 3.67 (s, 6H), 2.60 (td, J = 8.1, 3.5 Hz, 2H), 2.18 – 2.08 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 173.3, 52.3, 42.1, 34.1; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₈H₁₃O₄Se: 252.9974; found: 252.9980.

Diphenyltellane(33)

Te

33, obtained by the **General method A**, is a succinite liquid (46.8 mg, 83%).¹**H NMR** (500 MHz, CDCl₃) δ 8.04 – 7.63 (m, 1H), 7.40 – 6.95 (m, 2H). ¹³**C NMR** (125 MHz, CDCl₃) δ 137.58, 129.26, 128.05, 107.92; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₂H₁₁Te: 284.9917; found: 284.9927.

4-(phenylselanyl)benzaldehyde (34)

34, obtained by the **General method B**, is a succinite liquid (46.8 mg, 30%).¹**H NMR** (500 MHz, CDCl₃) δ 9.92 (s, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.62 (d, J = 7.0 Hz, 2H), 7.50 – 7.29 (m, 5H); ¹³**C NMR** (125 MHz, CDCl₃) δ 191.4, 142.8, 135.5, 134.4, 130.1, 129.9, 128.9, 127.9; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₁OSe: 262.9970; found: 262.9976.

Benzyl (phenyl) selane (35)

35, obtained by the **General method B**, is a succinite liquid (40 mg, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 2H), 7.21 (dd, J = 13.6, 6.8 Hz, 8H), 4.09 (d, J = 7.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 133.5, 130.4, 128.9, 128.8, 128.4, 127.3, 126.8, 32.2;

HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₃N₂Se: 249.0177; found: 249.0182.

Benzyl (p-tolyl) selane (36)

36, obtained by the **General method B**, is a succinite liquid (37.1 mg, 71%).¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (d, J = 8.0 Hz, 2H), 7.27 – 7.09 (m, J = 18.0, 7.3 Hz, 5H), 7.04 (d, J = 7.7 Hz, 2H), 4.05 (s, 2H), 2.31 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 138.9, 137.4, 134.0, 129.8, 128.8, 128.4, 126.7, 126.5, 32.5, 21.1; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₅Se: 263.0333; found: 263.0338.

Benzyl (4-iodophenyl) selane (37)

37, obtained by the **General method B**, is a succinite solid (56 mg, 75%), melting point: 80 – 81°C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (s, 2H), 7.36 – 6.97 (m, *J* = 30.1, 11.1 Hz, 7H), 4.07 (d, *J* = 8.9 Hz, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 138.2, 137.9, 135.2, 130.1, 128.8, 128.2, 127.0, 93.0, 32.3; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₂ISe: 374.9143; found: 374.9149.

Benzyl (2-bromophenyl) selane (38)

38, obtained by the **General method B**, is a succinite solid (58.7 mg, 90%), melting point: $68 - 70^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.9 Hz, 1H), 7.38 – 7.12 (m, 7H), 7.12 – 6.94 (m, J = 7.6 Hz, 1H), 4.17 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 136.9, 134.4, 132.8, 131.6, 129.0, 128.6, 127.74, 127.69, 127.1, 125.6, 31.4; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₂BrSe: 326.9282; found: 326.9295.

Benzyl (3-chlorophenyl) selane (39)

39, obtained by the **General method B**, is a succinite solid (34.4 mg, 61%), melting point: $55 - 56^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.35 - 7.04 (m, 8H), 4.12 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 138.0, 134.5, 132.9, 132.0, 131.3, 129.9, 128.9, 128.5, 127.4, 127.1, 32.2; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₂ClSe: 282.9787; found: 282.9794.

Benzyl (2,6-dimethylphenyl) selane (40)

40, obtained by the **General method B**, is a succinite liquid (42.4 mg, 77%).¹**H NMR** (400 MHz, CDCl₃) δ 7.21 – 6.82 (m, *J* = 25.1, 21.6, 5.9 Hz, 8H), 3.82 (s, 2H), 2.40 (s, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 143.7, 139.4, 131.1, 128.54, 128.52, 128.2, 127.4, 126.6, 31.4, 24.4; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₅H₁₇Se: 277.0490; found: 277.0498.

Benzyl (4-(trifluoromethyl) phenyl) selane (41)

41, obtained by the **General method B**, is a succinite liquid (38.5 mg, 61%).¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.36 (m, 4H), 7.36 – 6.66 (m, 5H), 4.17 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.6, 132.4, 128.9, 128.6, 127.2, 125.6 (q, *J* = 3.8 Hz), 124.1 (d, *J* = 272.0 Hz), 31.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.57; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₂F₃Se: 317.0051; found: 317.0047. (4-chlorobenzyl)(phenyl)selane (42)

42, obtained by the **General method B**, is a succinite solid (43.4 mg, 77%), melting point: $55 - 56^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.33 (m, 2H), 7.27 – 7.15 (m, 5H), 7.13 – 7.05 (m, 2H), 4.03 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 137.3, 133.9, 132.5, 130.1, 129.8, 129.0, 128.5, 127.6, 31.4; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₂ClSe: 282.9787; found: 282.9794.

(2-chlorobenzyl)(phenyl)selane (43)

43, obtained by the **General method B**, is a succinite solid (36.1 mg, 64%), melting point: $55 - 56^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 - 7.43 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.28 - 7.19 (m, 3H), 7.17 - 6.96 (m, 3H), 4.17 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 136.6, 134.4, 133.8, 130.6, 129.8, 129.7, 128.9, 128.2, 127.6, 126.6, 30.0; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₂ClSe: 282.9787; found: 282.9794.

(3-fluorobenzyl)(phenyl)selane (44)

44, obtained by the **General method B**, is a succinite liquid (26.5 mg, 50%).¹**H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.34 (m, 2H), 7.29 – 7.06 (m, 4H), 7.02 – 6.76 (m, 3H), 4.05 (s, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 162.7 (d, J = 245.9 Hz), 141.3 (d, J = 7.5 Hz), 133.8, 129.8 (d, J = 8.0 Hz), 129.0, 127.6,124.5 (d, J = 2.8 Hz), 115.7 (d, J = 21.7 Hz), 113.7 (d, J = 21.1 Hz), 31.6 (d, J = 1.7 Hz).;¹⁹**F NMR** (471 MHz, CDCl₃) δ - 113.12;**HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₂FSe: 267.0083; found: 267.0090.

(4-methylbenzyl)(phenyl)selane (45)

45, obtained by the **General method B**, is a succinite liquid (37.6 mg, 72%).¹**H NMR** (400 MHz, CDCl₃) δ 7.52 – 7.32 (m, 2H), 7.32 – 7.16 (m, 3H), 7.07 (dd, *J* = 22.1, 8.0 Hz, 4H), 4.08 (s, 2H), 2.30 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 136.5, 135.4, 133.3,

130.7, 129.1, 128.9, 128.7, 127.1, 32.0, 21.1; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₅Se: 263.0333; found: 263.0338.

(2,6-dimethylbenzyl)(phenyl)selane (46)

46, obtained by the **General method B**, is a succinite liquid (30.8 mg, 56%).¹**H NMR** (400 MHz, CDCl₃) δ 7.60 – 7.45 (m, 2H), 7.34 – 7.21 (m, 3H), 7.15 – 6.86 (m, 3H), 4.18 (s, 2H), 2.34 (s, 6H). ¹³**C NMR** (125 MHz, CDCl₃) δ 137.0, 134.2, 133.6, 130.9, 129.0, 128.2, 127.2, 126.9, 77.3, 19.7; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₅H₁₇Se: 277.0490; found: 277.0498.

phenyl(4-(trifluoromethyl)benzyl)selane (47)

47, obtained by the **General method B**, is a succinite white solid (46.7 mg, 74%), melting point: $64 - 65^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 - 7.36 (m, 4H), 7.28 - 7.20 (m, 5H), 4.08 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 141.8, 135.3, 130.4, 129.4 (d, *J* = 32.4 Hz), 129.1, 129.0, 126.9, 125.4 (q, *J* = 3.7 Hz), 124.1 (d, *J* = 272.0 Hz). 38.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.43; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₂F₃Se: 317.0051; found: 317.0057.

allyl(phenyl)selane (48)

48, obtained by the **General method B**, is a succinite liquid (30.8 mg, 78%).¹**H NMR** (500 MHz, CDCl₃) δ 7.56 – 7.42 (m, 2H), 7.25 (d, *J* = 4.8 Hz, 3H), 6.05 – 5.79 (m, 1H), 5.07 – 4.85 (m, 2H), 3.52 (d, *J* = 7.4 Hz, 2H).¹³**C NMR** (125 MHz, CDCl₃) δ 134.4, 133.3, 128.9, 127.1, 116.8, 30.7; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₉H₁₁Se: 199.0020; found: 199.0023.

Se-phenyl benzoselenoate (49)

49, obtained by the **General method B**, is a succinite liquid (38.1 mg, 73%).¹**H NMR** (500 MHz, CDCl₃) δ 7.93 (d, *J* = 7.6 Hz, 2H), 7.66 – 7.57 (m, 3H), 7.56 – 7.34 (m, 5H).

¹³C NMR (125 MHz, CDCl₃) δ 193.4, 138.6, 136.4, 133.9, 129.4, 129.1, 129.0, 127.4, 125.9; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₁OSe: 262.9970; found: 262.9975.

Se-(4-formylphenyl) benzoselenoate (50)

50, obtained by the **General method B**, is a white solid (38.2 mg, 66%), melting point: 73 – 74°C; ¹H NMR (500 MHz, CDCl₃) δ 10.06 (s, 1H), 8.00 – 7.87 (m, 4H), 7.79 (d, J = 8.1 Hz, 2H), 7.73 – 7.61 (m, 1H), 7.59 – 7.45 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 191.8, 191.7, 138.1, 136.5, 136.3, 134.3, 133.9, 130.0, 129.1, 127.4; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₁O₂Se: 290.9919; found: 290.9925.

Se-(p-tolyl) benzoselenoate (51)

51, obtained by the **General method B**, is a white solid (47.9 mg, 87%), melting point: 72 – 73°C; ¹H NMR (500 MHz, CDCl₃) δ 8.10 – 7.76 (m, 2H), 7.74 – 7.55 (m, 1H), 7.53 – 7.34 (m, 4H), 7.38 – 7.09 (m, 2H), 2.39 (d, *J* = 3.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 193.8, 139.2, 138.6, 136.3, 133.8, 130. 2, 128.9, 127.3, 122.1, 21.3; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₃OSe: 277.0126; found: 277.0133.

Se-(2-bromophenyl) benzoselenoate (52)

52, obtained by the **General method B**, is a succinite solid (50.3 mg, 74%), melting point: $91 - 92^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 7.4 Hz, 2H), 7.82 - 7.68 (m, 2H), 7.67 - 7.57 (m, 1H), 7.55 - 7.43 (m, 2H), 7.40 - 7.31 (m, 1H), 7.31 - 7.26 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 191.6, 138.7, 138.3, 134.0, 133.3, 130.8, 130.1, 129.2, 129.0, 127.9, 127.4; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₀BrOSe: 340.9075; found: 340.9084.

Se-(4-fluorophenyl) benzoselenoate (53)

53, obtained by the **General method B**, is a succinite liquid (44.7 mg, 80%).¹**H NMR** (500 MHz, CDCl₃) δ 7.93 (d, *J* = 7.5 Hz, 2H), 7.68 – 7.46 (m, 5H), 7.18 – 7.06 (m, 2H);

¹³C NMR (125 MHz, CDCl₃) δ 193.2, 163.4 (d, *J* = 249.3 Hz), 138.3 (d, *J* = 8.3 Hz), 138.3, 134.0, 129.0, 127.3, 120.5 (d, *J* = 3.4 Hz), 116.7 (d, *J* = 21.7 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -111.86; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₀FOSe: 280.9875; found: 280.9870.

Se-benzyl benzoselenoate (54)

54, obtained by the **General method B**, is a succinite liquid (50 mg, 89%).¹**H NMR** (500 MHz, CDCl₃) δ 7.89 (d, J = 7.5 Hz, 2H), 7.70 – 7.52 (m, 1H), 7.48 – 7.10 (m, 7H), 4.34 (s, 2H);³**C NMR** (125 MHz, CDCl₃) δ 194.5, 139.0, 138.9, 133.7, 129.1, 128.9, 128. 7, 127.3, 127.1, 29.1; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₃OSe: 277.0126; found: 277.0133.

Se-(2-chlorobenzyl) benzoselenoate (55)

55, obtained by the **General method B**, is a white solid (46.4 mg, 75%).¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, 2H), 7.65 – 7.50 (m, 2H), 7.49 – 7.41 (m, 2H), 7.40 – 7.34 (m, 1H), 7.24 – 7.11 (m, 2H), 4.44 (s, 2H); ¹³**C NMR** (125MHz, CDCl₃) δ 194.3, 138.7, 137.1, 134.1, 133.7, 131.1, 129.5, 128.8, 128.5, 127.2, 127.0, 26.7; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₂ClOSe: 310.9736; found: 310.9744.

Se-(4-chlorobenzyl) benzoselenoate (56)

56, obtained by the **General method B**, is a white solid (52.6 mg, 85%), melting point: 84 – 85°C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.88 (d, *J* = 7.5 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.27 (dd, *J* = 25.6, 8.3 Hz, 4H), 4.28 (s, 2H).; ¹³**C NMR** (125 MHz, CDCl₃) δ 194.1, 138.6, 137.7, 133.8, 132.7, 130.3, 128.8, 128.7, 127.2, 28.1; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₂ClOSe: 310.9736; found: 310.9744.

Se-(4-methylbenzyl) benzoselenoate (57)

57, obtained by the **General method B**, is a white solid (45.7 mg, 79%), melting point: 77 – 79°C; ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 8.2 Hz, 2H), 7.69 – 7.48 (m, 1H), 7.48 – 7.36 (m, 2H), 7.34 – 7.18 (m, 2H), 7.09 (d, J = 7.7 Hz, 2H), 4.32 (s, 2H), 2.31 (s, 3H);¹³C NMR (125 MHz, CDCl₃) δ 194.6, 138.9, 136.7, 135.9, 133.6, 129.3, 128.9, 128.8, 127.2, 28.9, 21.1; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₅H₁₅OSe: 291.0283; found: 291.0289.

Se-(4-(trifluoromethyl)benzyl) benzoselenoate (58)

58, obtained by the **General method B**, is a white solid (52.2 mg, 76%), melting point: $96 - 97^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.83 (m, 2H), 7.64 – 7.57 (m, 1H), 7.55 (d, J = 8.2 Hz, 2H), 7.51 – 7.42 (m, 4H), 4.36 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 193.8, 143.5, 138.5, 133.9, 129.3, 129.2 (d, J = 32.5 Hz), 128.9, 127.3, 125.5 (q, J = 3.7 Hz), 124.1 (d, J = 272.0 Hz), 28.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.48; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₅H₁₂F₃OSe: 345.0000; found: 345.0009.

Se-benzyl 4-methylbenzoselenoate (59)

59, obtained by the **General method B**, is a white solid (38.8 mg, 67%), melting point: 77 – 78°C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 2H), 7.63 – 7.05 (m, 7H), 4.40 (s, 2H), 2.45 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 193.9, 144.6, 139.1, 136.3, 129.4, 129.0, 128.6, 127.3, 126.9, 21.7; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₅H₁₅OSe: 291.0283; found: 291.0288.

Se-phenyl 4-methylbenzoselenoate (60)

60, obtained by the **General method B**, is a white solid (34.1 mg, 62%), melting point: $72 - 73^{\circ}$ C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 3.4 Hz, 2H), 7.46 (d, *J* = 3.2 Hz, 3H), 7.29 (d, *J* = 7.9 Hz, 2H), 2.44 (s, 3H);¹³C NMR (125 MHz, CDCl₃) δ 189.6, 144.5, 135.1, 134.1, 129.4, 129.2, 127.5, 21.7; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₃OSe: 277.0126; found: 277.0133.

Se-benzyl 4-chlorobenzoselenoate (61)

61, obtained by the **General method B**, is a succinite solid (34.7 mg, 56%), melting point: $84 - 85^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H), 7.36 (d, J = 7.3 Hz, 2H), 7.32 – 7.26 (m, 2H), 7.25 – 7.15 (m, 1H), 4.34 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 193.3, 140.1, 138.7, 137.2, 129.1, 129.0, 128.6, 128.5, 127.1, 29.3; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₂ClOSe: 310.9736; found: 310.9731.

Se-phenyl 4-chlorobenzoselenoate (62)

62, obtained by the **General method B**, is a white solid (36.7 mg, 62%), melting point: 81 – 82°C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.88 (d, *J* = 8.4 Hz, 2H), 7.60 (d, *J* = 5.4 Hz, 2H), 7.58 – 7.30 (m, 5H); ¹³**C NMR** (125 MHz, CDCl₃) δ 192.2, 140.3, 136.9, 136.2, 129.4, 129.2, 129.2, 128.6, 125.5; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₀ClOSe: 296.9580; found: 296.9586.

Se-phenyl furan-2-carboselenoate (63)

63, obtained by the **General method B**, is a white solid (42.7 mg, 80%), melting point: $51 - 52^{\circ}C$; ¹**H NMR** (500 MHz, CDCl₃) δ 7.65 (s, 1H), 7.59 (d, J = 7.4 Hz, 2H), 7.42 (d, J = 6.5 Hz, 3H), 7.22 (d, J = 3.4 Hz, 1H), 6.62 - 6.56 (m, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 180.8, 151.8, 146.6, 136.3, 129.3, 129.1, 124.8, 115.2, 112.8; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₁H₉O₂Se: 252.9762; found: 252.9768.

Se-benzyl furan-2-carboselenoate (64)

64, obtained by the **General method B**, is a white solid (42.4 mg, 80%), melting point: $53 - 54^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ 7.59 (s, 1H), 7.35 (d, J = 7.4 Hz, 2H), 7.32 – 7.27 (m, 2H), 7.24 – 7.16 (m, 2H), 6.55 (d, J = 1.9 Hz, 1H), 4.32 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 181.8, 152.2, 146.4, 138.9, 129.0, 128.6, 127.0, 114.9, 112.6, 27.9; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₂H₁₁OSe: 266.9919; found: 266.9927.

(2R,3R,4S,5R)-2-(acetoxymethyl)-6-(benzylselanyl)tetrahydro-2H-pyran-3,4,5triyl triacetate (65)

65, obtained by the **General method B**, is a succinite liquid (35.1 mg, 35%).¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.20 (m, 5H), 5.43 (s, 1H), 5.38 – 5.30 (m, 1H), 4.96 (d, *J* = 9.4 Hz, 1H), 4.52 (d, *J* = 10.1 Hz, 1H), 4.20 – 4.09 (m, 2H), 4.05 (d, *J* = 11.5 Hz, 1H), 3.93 (d, *J* = 11.5 Hz, 1H), 3.82 (s, 1H), 2.16 (s, 3H), 2.12 – 1.95 (m, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 170.3, 170.2, 170.0, 169.7, 137.9, 129.0, 128.5, 127.0, 77.4, 75.50, 71.6, 67.8, 67.3, 61.5, 26.7, 20.8, 20.7, 20.5; HRMS (ESI) m/z [M+Na]⁺ Calcd. for C₂₁H₂₆NaO₉Se: 525.0634; found: 525.0663.

(2R,3R,4S,5R)-2-(acetoxymethyl)-6-(phenylselanyl)tetrahydro-2H-pyran-3,4,5triyl triacetate (66)

66, obtained by the **General method B**, is a succinite liquid (22.4 mg, 23%).¹**H NMR** (500 MHz, CDCl₃) δ 7.55 (s, 2H), 7.28 (d, *J* = 7.1 Hz, 3H), 6.28 (s, 1H), 5.50 (s, 1H), 5.32 – 5.20 (m, 2H), 4.69 (s, 1H), 4.05 (d, *J* = 16.7 Hz, 2H), 2.13 (d, *J* = 15.4 Hz, 6H), 2.00 (d, *J* = 22.5 Hz, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 170.3, 170.1, 170.0, 169.9, 134.4, 129.1, 128.0, 127.4, 83.4, 68.8, 68.6, 68.4, 67.6, 61.6, 20.9, 20.61, 20.57; **HRMS** (ESI) m/z [M+Na]⁺ Calcd. for C₂₀H₂₄NaO₉Se: 511.0478; found: 511.0495.

Se,Se'-([1,1'-biphenyl]-2,2'-diyl) dibenzoselenoate (67)

67, obtained by the **General method B**, is a white solid (62.4 mg, 60%), melting point: $154 - 156^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ 7.78 - 7.67 (m, 6H), 7.56 - 7.51 (m, 2H), 7.43 - 7.32 (m, 10H). ¹³C NMR (126 MHz, CDCl₃) δ 193.0, 146.7, 138.5, 137.4, 133.6, 130.5, 129.0, 128.7, 128.4, 127.3, 126.9; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₂₆H₁₉O₂Se: 522.9710; found: 522.9731.

6,11-dihydrotribenzo[*b*,*d*,*h*][1,6]diselenecine (68)

68, obtained by the **General method B**, is a white solid (19.5 mg, 47%), melting point: 118 – 120°C; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 6.8 Hz, 2H), 7.61 (d, *J* = 6.9 Hz, 2H), 7.39 – 7.30 (m, 2H), 7.26 – 7.20 (m, 4H), 7.19 – 7.11 (m, 2H), 4.31 (s, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 141.9, 141.6, 131.8, 131.1, 129.5, 128.8, 127.5, 126.4, 125.9, 29.8;

HRMS (ESI) $m/z [M+H]^+$ Calcd. for C₂₀H₁₇OSe: 416.9655; found: 416.9681.

benzyl(phenyl)sulfane (69)

69, obtained by the **General method C**, is a colorless liquid (32.4 mg, 81%).¹**H NMR** (500 MHz, CDCl₃) δ 7.35 – 7.20 (m, 9H), 7.20 – 7.13 (m, 1H), 4.11 (d, *J* = 2.3 Hz, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 137.4, 136.3, 129.8, 128.8, 128.5, 127.1, 126.3, 39.0; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₃S: 201.0732; found: 201.0728.

Benzyl (p-tolyl) sulfane (70)

70, obtained by the **General method C**, is a colorless liquid (35.6 mg, 83%).¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.11 (m, 7H), 7.05 (d, *J* = 7.7 Hz, 2H), 4.06 (s, 2H), 2.29 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 137.8, 136.6, 132.5, 130.7, 129.7, 128.9, 128.5, 127.1, 39.8, 21.1; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₅S: 215.0889; found: 215.0893.

Benzyl (4-chlorophenyl) sulfane (71)

71, obtained by the **General method C**, is a colorless liquid (42.3 mg, 90%).¹**H NMR** (400 MHz, CDCl₃) δ 7.28 – 7.22 (m, 5H), 7.20 (s, 4H), 4.07 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 137.1, 134.6, 132.4, 131.3, 128.9, 128.8, 128.5, 127.3, 39.2; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₂ClS: 235.0343; found: 235.0348.

Benzyl (3,5-dichlorophenyl) sulfane (72)

72, obtained by the **General method C**, is a white solid (30.1 mg, 56%), melting point: $60 - 61^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (s, 5H), 7.12 (s, 3H), 4.11 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 140.3, 136.0, 135.0, 128.8, 128.7, 127.6, 126.6, 126.0, 38.2; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₁Cl₂S: 268.9953; found: 268.9960.

Benzyl (3-bromophenyl) sulfane (73)

73, obtained by the **General method C**, is a succinite solid (45.6 mg, 87%), melting point: $64 - 65^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 7.34 – 7.20 (m, 6H), 7.18 (d, *J* = 7.9 Hz, 1H), 7.14 – 7.03 (m, 1H), 4.10 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 138.8, 136.7, 131.8, 130.1, 129.2, 128.8, 128.6, 127.8, 127.4, 122.6, 38.7; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₂BrS: 278.9838; found: 278.9827.

Benzyl (2-fluorophenyl) sulfane (74)

74, obtained by the **General method C**, is a colorless liquid (38.9 mg, 89%).¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.11 (m, 7H), 7.11 – 6.93 (m, 2H), 4.09 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 161.7 (d, *J* = 245.5 Hz), 137.2, 133.0, 128.82, 128.76, 128.4, 127.2, 124.3 (d, *J* = 3.7 Hz), 122.7 (d, *J* = 17.7 Hz), 115.6 (d, *J* = 22.5 Hz), 38.37; ¹⁹F NMR (471 MHz, CDCl₃) δ -128.34; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₂FS: 219.0638; found: 219.0642.

4-(benzylthio) phenol (76)

76, obtained by the **General method C**, is a white solid (38.9 mg, 90%), melting point: 111 – 112°C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.02 (m, 7H), 6.70 (d, *J* = 7.3 Hz, 2H), 5.19 (s, 1H), 3.97 (s, 2H). ¹³**C NMR** (125 MHz, CDCl₃) δ 155.2, 138.0, 134.3, 128.9, 128.3, 127.0, 126.1, 115.9, 41.2; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₃OS: 217.0682; found: 217.0690.

3-(benzylthio) phenol (77)

76, obtained by the **General method C**, is a white solid (35.9 mg, 83%), melting point: 111 – 113°C; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.16 (m, 5H), 7.16 – 7.01 (m, *J* = 7.9 Hz, 1H), 6.90 – 6.69 (m, 2H), 6.62 (d, *J* = 8.1 Hz, 1H), 4.08 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 155.7, 138.0, 137.2, 129.9, 128.8, 128.5, 127.2, 121.6, 116.0, 113.4, 38.5; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₃OS: 217.0682; found: 217.0690.

4-(benzylthio) aniline (78)

78, obtained by the **General method C**, is a white solid (40 mg, 93%), melting point: 217 – 220°C; ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.13 (m, 5H), 7.12 (d, *J* = 8.2 Hz, 2H), 6.54 (d, *J* = 8.3 Hz, 2H), 3.92 (s, 2H), 3.53 (s, 2H);¹³C NMR (125 MHz, CDCl₃) δ 146.2, 138.4, 134.7, 128.9, 128.2, 126.8, 122.9, 115.47, 41.7; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₄NS: 216.0841; found: 216.0850.

4-(benzylthio)pyridine (79)

79, obtained by the **General method C**, is a white solid (38.2 mg, 95%), melting point: 161 – 163°C; ¹H NMR (500 MHz, CDCl₃) δ 8.38 (d, J = 4.4 Hz, 2H), 7.43 – 7.26 (m, 5H), 7.12 (d, J = 6.0 Hz, 2H), 4.21 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 149.14, 149.10, 135.5, 128.9, 128.7, 127.7, 120.8, 35.7; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₂H₁₂NS: 202.0685; found: 202.0691.

3-(benzylthio)-2-methylfuran (80)

80, obtained by the **General method C**, is a colorless liquid (29 mg, 71%).¹**H NMR** (400 MHz, CDCl₃) δ 7.23 (d, J = 5.9 Hz, 4H), 7.09 (d, J = 6.7 Hz, 2H), 6.21 (s, 1H), 3.73 (s, 2H), 1.95 (s, 3H).¹³**C NMR** (100 MHz, CDCl₃) δ 156.2, 140.4, 138.4, 128.9,

128.2, 126.9, 115.2, 109.2, 40.7, 11.2; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₂H₁₃OS: 205.0682; found: 205.0679.

2-(benzylthio)thiophene (81)

82, obtained by the **General method C**, is a colorless liquid (39.2 mg, 95%).¹**H NMR** (400 MHz, CDCl₃) δ 7.36 – 7.17 (m, 4H), 7.15 (d, J = 6.4 Hz, 2H), 7.08 – 6.65 (m, 2H), 3.95 (s, 2H). ¹³**C NMR** (125 MHz, CDCl₃) δ 137.6, 134.3, 133.5, 129.7, 128.9, 128.3, 127.4, 127.2, 43.8;

HRMS (ESI) m/z $[M+H]^+$ Calcd. for C₁₁H₁₁S₂: 207.0297; found: 207.0300.

2-(benzylthio)benzo[d]thiazole (82)

82, obtained by the **General method C**, is a white solid (37.6 mg, 73%), melting point: 40 – 41°C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.1 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.53 – 7.37 (m, 3H), 7.37 – 6.95 (m, 4H), 4.62 (s, 1H). ¹³**C NMR** (125 MHz, CDCl₃) δ 166.4, 153.1, 136.1, 135.3, 129.1, 128.7, 127.7, 126.0, 124.3, 121.5, 121.0, 37.7; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₂NS₂: 258.0406; found: 258.0415.

(4-chlorobenzyl) (phenyl) sulfane (83)

84, obtained by the **General method C**, is a succinite liquid (46.5 mg, 99%)white solid (46.5 mg, 99%), melting point: 77 – 78°C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 6.96 (m, 9H), 4.04 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 136.1, 135.6, 132.9, 130.2, 130.1, 128.9, 128.6, 126.6, 38.5;

HRMS (ESI) $m/z [M+H]^+$ Calcd. for C₁₃H₁₂ClS: 235.0343; found: 235.0348.

(2-chlorobenzyl)(phenyl)sulfane (84)

84, obtained by the **General method C**, is a white solid (46.5 mg, 87%), melting point: 77 – 78°C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.27 (m, 3H), 7.27 – 7.06 (m, 6H), 4.20 (s, 2H). ¹³**C NMR** (125 MHz, CDCl₃) δ 135.7, 135.2, 134.0, 130.7, 129.6, 128.8, 128.5, 126.7, 37.0; **HRMS** (ESI) $m/z [M+H]^+$ Calcd. for C₁₃H₁₂ClS: 235.0343; found: 235.0348.

(3-fluorobenzyl)(phenyl)sulfane (85)

85, obtained by the **General method C**, is a succinite liquid (33.6 mg, 77%).¹**H NMR** (500 MHz, CDCl₃) δ 7.48 – 7.14 (m, 6H), 7.10 – 6.83 (m, 3H), 4.07 (s, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 162.8 (d, J = 246.1 Hz), 140.1 (d, J = 7.4 Hz), 140.1, 135.7, 130.1, 129.9 (d, J = 8.3 Hz), 128.9, 126.6, 124.4 (d, J = 2.8 Hz), 115.7 (d, J = 21.8 Hz), 114.1 (d, J = 21.1 Hz). 38.7; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -113.12; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₂FS: 219.0638; found: 219.0642.

(4-methylbenzyl)(phenyl)sulfane (86)

86, obtained by the **General method C**, is a pink solid (39.9 mg, 93%), melting point: 46 – 47°C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.30 (d, *J* = 8.1 Hz, 2H), 7.27 – 7.22 (m, 2H), 7.22 – 7.13 (m, 3H), 7.08 (d, *J* = 7.4 Hz, 2H), 4.08 (s, 2H), 2.31 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 136.8, 136.6, 134.3, 129.6, 129.2, 128.8, 128.7, 126.1, 38.6, 21.1; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₅S: 215.0889; found: 215.0893.

(2,6-dimethylbenzyl)(phenyl)sulfane (87)

87, obtained by the **General method C**, is a white solid (42.5 mg, 93%), melting point: $50 - 51^{\circ}$ C; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 7.5 Hz, 2H), 7.33 – 7.23 (m, 2H), 7.23 – 7.11 (m, 1H), 7.11 – 6.76 (m, 3H), 4.15 (s, 2H), 2.37 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 137.3, 137.3, 133.0, 129.9, 128.8, 128.2, 127.3, 126.3, 33.9, 19.6; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₅H₁₇S: 229.1045; found: 229.1050.

phenyl(4-(trifluoromethyl) benzyl) sulfane (88)

 CF_3

88, obtained by the **General method C**, is a succinite liquid (47.8 mg, 89%).¹**H NMR** (400 MHz, CDCl₃) δ 7.44 (dd, J = 63.0, 8.0 Hz, 4H), 7.31 – 7.15 (m, 4H), 4.12 (s, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 141.8, 135.3, 130.4, 129.4 (d, J = 32.4 Hz), 129.05, 128.96, 126.9, 125.4 (q, J = 3.7 Hz), 124.1 (d, J = 272.0 Hz), 38.8;¹⁹**F NMR** (471 MHz, CDCl₃) δ -62.46; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₂F₃S: 269.0606; found: 269.0615.

S-phenyl benzothioate (89)

89, obtained by the **General method C**, is a white solid (38.6 mg, 89%), melting point: $56-57^{\circ}$ C; ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 7.8 Hz, 2H), 7.68 – 7.58 (m, 1H), 7.54 – 7.40 (m, 7H). ¹³C NMR (125 MHz, CDCl₃) δ 189.6, 136.4, 136.3, 136.0, 133.9, 129.5, 128.9, 127.5, 125.9; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₁OS: 215.0525; found: 215.0529.

S-phenyl 4-chlorobenzothioate (90)

90, obtained by the **General method C**, is a white solid (40.8 mg, 82%), melting point: 81 – 82°C; ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.77 – 7.35 (m, 7H). ¹³C NMR (125 MHz, CDCl₃) δ 189.0, 140.0, 135.0, 134.9, 129.6, 129.3, 129.0, 128.8, 126.9; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₀OS: 249.0135; found: 249.0141.

S-phenyl furan-2-carbothioate (91)

91, obtained by the **General method C**, is a colorless liquid (34.3 mg, 84%). ¹H NMR (500 MHz, CDCl₃) δ 7.62 (s, 1H), 7.50 (d, J = 2.9 Hz, 2H), 7.48 – 7.43 (m, 3H), 7.26 (d, J = 3.5 Hz, 1H), 6.59 – 6.55 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 178.6, 150.3, 146.4, 135.1, 129.6, 129.2, 126.2, 116.2, 112.4; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₁H₉O₂S: 205.0318; found: 205.0312.

S-phenyl 4-methylbenzothioate (92)

92, obtained by the **General method C**, is a white solid (32.9 mg, 72%), melting point: 64 – 65°C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8.1 Hz, 2H), 7.61 (d, *J* = 4.6 Hz, 2H), 7.44 (d, *J* = 1.4 Hz, 3H), 7.29 (d, *J* = 7.9 Hz, 2H), 2.42 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 192.7, 144.9, 136.3, 136.0, 129.6, 129.3, 128.9, 127.4, 125.9, 21.7; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₄H₁₃OS: 229.0682; found: 229.0688.

S-(4-(tert-butyl) phenyl) benzothioate (93)

93, obtained by the **General method C**, is a hite solid (51.9 mg, 96%), melting point: 79 – 81°C; ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 7.6 Hz, 2H), 7.71 – 7.51 (m, 1H), 7.51 – 7.33 (m, 6H), 1.34 (s, 9H);¹³C NMR (125 MHz, CDCl₃) δ 190.5, 152.7, 136.9, 134.7, 133.5, 128.7, 127.4, 126.4, 123.8 34.8, 31.2; HRMS (ESI) m/z [M+H]⁺ Calcd. for C₁₇H₁₉OS: 271.1151; found: 271.1160.

S-(4-chlorophenyl) benzothioate (94)

94, obtained by the **General method C**, is a white solid (49.2 mg, 99%), melting point: $72 - 74^{\circ}$ C; ¹**H NMR** (500 MHz, CDCl₃) δ 8.05 (d, J = 7.7 Hz, 2H), 7.71 - 7.58 (m, 1H), 7.58 - 7.36 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 190.1, 136.6, 135.1, 133.6, 129.5, 129.2, 128.7, 127.4, 127.3; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₀OS: 249.0135; found: 249.0141.

S-(4-aminophenyl) benzothioate (95)

95, obtained by the **General method C**, is a white solid (27.5 mg, 60%), melting point: $113 - 115^{\circ}$ C; ¹**H NMR** (500 MHz, CDCl₃) δ 8.02 (d, *J* = 6.9 Hz, 2H), 7.58 (s, 1H), 7.47 (d, *J* = 7.1 Hz, 2H), 7.25 (d, *J* = 7.8 Hz, 2H), 6.72 (d, *J* = 8.0 Hz, 2H), 3.77 (s, 2H). ¹³C **NMR** (125 MHz, CDCl₃) δ 191.8, 148.0, 136.8, 136.4, 133.4, 128.6, 127.4, 115.6, 114.3; **HRMS** (ESI) m/z [M+H]⁺ Calcd. for C₁₃H₁₂NOS: 230.0634; found: 230.0639.
7. ¹ H, ¹³ C and ¹⁹ F NMR spectra of products

7.47 7.46 7.45 7.26 7.25 7.25

7.27 7.17 7.16 7.16 6.89 6.89 6.89 6.84 6.84

220 210 200 130 120 170 160 150 140 110 100

12.5 11.5 -1.0 -2.0 10.5

---9.99

7.81 7.79 7.62 7.60 7.26

2.70 2.68 2.67 2.67 1.68 1.68 1.66 1.66 0.98 0.98

-7.26

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

4.51 4.50 4.39 -2.59 -2.59

3.71 3.67 2.82 2.80 2.79 2.74 2.74 2.74 2.71

7.26 2.70 2.55 2.55 2.55 1.199

// Sé 26

¹³C NMR(100 MHz, CDCl₃)

-7.26

// Se 26

¹H NMR(400 MHz, CDCl₃)

	 anna ann an Anna ann an Anna ann an Anna	4

7.29 7.28 7.24 7.21 7.21 7.21 7.21

6,11 (500) (50

AcO ,se^{AcO} AcO AcO 0 OAc ≁OAc OAc ò -OAc 30

¹H NMR(500 MHz, CDCl₃)

¹H NMR(400 MHz, CDCl₃)

7.79 7.78 7.78 7.72 7.18 7.17

Se CHO 1H NMR(500 MHz, CDCl₃)

7.13 7.12 7.18 7.18 7.18

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

F₃C 41

¹H NMR(400 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

10.5 11.5 -1.0

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230

-2.34

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

60 50 40 30 20 10 0 -10 -20 -30 -40 50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180

---62.43

$\begin{array}{c} 7.50\\ 7.50\\ 7.25\\ 7.25\\ 7.25\\ 5.92\\ 5.92\\ 5.92\\ 5.92\\ 4.95\\ 4.93\\ 3.51\\ 3.51\end{array}$

¹H NMR(500 MHz, CDCl₃)

134.36 133.31 128.91 127.11 -116.81

---30.65

12.5 11.5 10.5 -1.5

 60
 50
 40
 30
 20
 10
 0
 -10
 -20
 -30
 -40
 -50
 -60
 -70
 -80
 -90
 -100
 -110
 -120
 -130
 -160
 -170
 -180

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Se 56 ¹H NMR(500 MHz, CDCl₃)

Ö Sé 56 ¹³C NMR(125 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

12.5 11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 -1.0 -2.0 1.0 0.5 0.0 6.5 6.0

2.5 11.5 10.5 -1.0 -2.0

12.5 11.5 10.5 -1.5

2.5 11.5 10.5 -1.0 -2.0

12.5 11.5 10.5 -1.5

12.5 11.5 10.5 -1.0 -2.0

 12.5
 11.5
 10.5
 9.5
 9.0
 8.5
 8.0
 7.5
 7.0
 6.5
 5.0
 4.5
 4.0
 3.5
 3.0
 2.5
 1.0
 0.5
 0.0
 -1.0
 -2.0

7.29 7.25 7.25 7.22 7.22 7.22 7.22 7.22 6.83 6.63 6.63 6.63 6.63 6.61 4.08

8.38 8.37 8.37 8.37 7.39 7.33 7.33 7.33 7.33 7.12 7.12 7.12 7.12 7.12 7.12

(149.14 (149.10 (135.49 (128.78 (128.66 (127.69 (127.69

-35.67

∫7.22 7.22 7.09 -6.21 -3.73 -1.95

7.29 7.72 7.72 7.72 7.72 7.72 7.72 7.19 7.11 7.11 7.119

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

2.5 11.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 10.5 -1.5

-38.81

 60
 50
 40
 30
 20
 10
 0
 -10
 -20
 -30
 -40
 -50
 -60
 -70
 -80
 -90
 -100
 -110
 -120
 -130
 -140
 -150
 -160
 -170
 -180

8.03 67.64 7.51 7.51 7.51 7.51 7.51 7.42 7.42

7.98 7.52 7.51 7.48 7.46 7.46

7.62 7.51 7.55 7.45 7.45 7.45 7.45 7.45 7.26 6.57 6.57 6.57

-2.42

7.85 7.61 7.61 7.60 7.44 7.43 7.29 7.29

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

8.06 8.04 7.63 7.65 7.60 7.54 7.54 7.48 7.48 7.48 7.48

8.02 7.58 7.48 7.46 6.71 6.72 6.77

Se + Se

3:8 ¹H NMR(500 MHz, CDCl₃)

8. Reference

[1] a) Y. Liu, et al. Transition-Metal-Free Cascade Cyclization/Dearomatization Reaction to Access Selenylated Spirocyclohexadienones. *Eur. J. Org. Chem.*, 2023, **26**, e202301072. b) J. Wu, et al. Selective [3 + 2] Cycloaddition of Cyclopropenone Derivatives and Elemental Chalcogens. *Org. Lett.*, 2020, **22**, 5555-5560.

[2] V. P. Ananikov, et al. emarkable Ligand Effect in Ni- and Pd-Catalyzed Bisthiolation andBisselenation of Terminal Alkynes: Solving the Problem of StereoselectiveDialkyldichalcogenide Addition to the CC Bond. *Chem. Eur. J.*, 2008, 14, 2420-2434.
[3] S. Murata, et al. Syntheses of dibenzo[c,e][1,2]diselenin and related novel chalcogenide heterocyclic compounds. *J. Heterocyclic Chem.*, 1991, 28, 433-438.

[4] M. Iwaoka, et al. Experimental and Theoretical Studies on the Nature of Weak Nonbonded Interactions between Divalent Selenium and Halogen Atoms. *J. Org. Chem.*, 2005, **70**, 321-327.

[5] J. Młochowski, and L. Syper, Sodium Hydrogen Selenide. In Encyclopedia of Reagents for Organic Synthesis; Wiley: Chichester, U.K., 2001. DOI: 10.1002/047084289X.rs079.

[6] B. J. Stephen and E. G. Barney, Bond dissociation energies of organic molecules. *Cheminform*, 2003, **34**, 255-263.

[7] F. Weinhold and C. R. Landis, NATURAL BOND ORBITALS AND EXTENSIONS OF LOCALIZED BONDING CONCEPTS. *Chem. educ. res. Pract.*, 2001, **2**, 91-104.

[8] Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.*, 2008, **120**, 215-241.