Supporting Information

Efficient Synthesis of Benzophosphole Oxides by Ag-Promoted

Radical Cycloisomerization

Liyao Ma,^a Sonia Mallet-Ladeira,^b Julien Monot,^a Blanca Martin-Vaca,^{a,*} Didier

Bourissou^{a,*}

^aLaboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse (UPS), CNRS, 118 route de Narbonne, F-31062 Toulouse, France. ^bUniversité de Toulouse III Paul Sabatier, Institut de Chimie de Toulouse, ICT, UAR 2599, 118, route de Narbonne, F-31062 Toulouse, France.

Table of Content

1.	General information	S2
2.	Optimization of the reaction conditions	S13
3.	General procedures for catalysis and characterization data	S14
4.	Scale-up experiment	S21
5.	Mechanistic studies	S21
6.	Figures complementary to main text	S24
7.	General procedures for the C-H vinylation reaction ^[14]	S26
8.	Crystallographic Data	S27
9.	References	S28

1. General information

Unless otherwise indicated, all reactions were performed under an atmosphere of Argon. Dry and degassed solvents were employed. All organic reagents were obtained from commercial sources and used as received or prepared from known literature procedures. ¹H NMR, ¹³C NMR, ³¹P NMR and ¹⁹F NMR spectra were obtained on Bruker Avance 300, 400 or 500 MHz spectrometers at 293 K. Chemical shifts are given in ppm relative to residual solvent as an internal standard for ¹H and ¹³C NMR (CDCl₃: $\delta = 7.26$ ppm for ¹H and $\delta = 77.0$ ppm for ¹³C), CCl₃F and H₃PO₄ as external references for ¹⁹F and ³¹P NMR spectra, respectively. Multiplicities were given as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), dt (doublet of triplets), dq (doublet of quartets). Coupling constants (*J*) are reported in Hertz (Hz). The number of proton atoms (n) for a given resonance was indicated by *n*C. High resolution mass spectra were obtained using high resolution DCI-CH₄-TOF or ESI-TOF mass spectrometer.

General experimental procedures and characterization data for the substrates.

General procedures for the synthesis of 2-alkynylaryl bromobenzene are based on reported literature. S-1a, S-1b, S-1c, S-1l, S-1i, S-1q;^[1] S-1d;^[2] S-1j, S-1r;^[3] S-1k, S-1p, S-1s, S-1t;^[4] S-1e;^[5] S-1f;^[15] S-1g;^[16] S-1h;^[17] S-1m;^[18] S-1n.^[6]

General procedure A^[6]:

A 50 mL Schlenk tube equipped with a magnetic stirrer was charged under Ar atmosphere with 1-bromo-2-(phenylethynyl)benzene **S-1a** (5.0 mmol, 1.29 g) and Et₂O (10 mL). A solution of 1.60 M

"BuLi (5.0 mmol, 3.13 mL) in hexane was added dropwise at -50 °C, the resulting solution was slowly warmed to RT and stirred for 1 h. Then, the mixture solution was cooled to -78 °C and dichlorophenylphosphine (5.0 mmol, 0.68 mL) was added dropwise. The resulting reaction mixture was warmed at RT and stirred overnight. After adding H₂O (20 mL), the biphasic mixture was extracted with Ethyl Acetate (EA) (15 mL×3) and the combined organic fractions were dried over anhydrous Na₂SO₄, the solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel (Pentane/EA = 2/1 to 1/1) to afford the desired product **1a** as a light yellow oil (yield 72%, 1.09 g).

Figure S1. Secondary phosphine oxides synthesized according to General procedure A.

General procedure B:

Step I: Prepare aminochlorophosphine according to reference.^[7]

(2-Bromophenyl)ethynyl)trimethylsilane **S-1p** (10 mmol, 2.53 g) was dissolved in dry THF (20 mL) and cooled to -78° C. A solution of 1.6 M ^{*n*}BuLi (10 mmol, 6.3 mL) was added dropwise over 5 minutes under stirring, resulting in a deep yellow/dark orange color. After stirring at the same temperature for 1 h, a solution of Ph(NEt₂)PCl (10 mmol, 2.15 g, 2.0 mL) in 5 mL of dry THF was added dropwise via syringe at -78° C. The reaction mixture was allowed to warm at RT overnight. The resulting mixture was treated with 4.0 M HCl in cyclopentyl methyl ether (CPME) (35 mmol, 8.8 mL) for 1 h, followed

by quenching with aqueous NaHCO₃ (20 mL) and stirring for 1 h. The residue was extracted with EA (20 mL×3) and the combined organic fractions were dried over anhydrous Na₂SO₄, the solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel (Pentane/EA = 2/1 to 1/1) to afford the desired product **1p** as a light yellow oil (yield 65%, 1.93 g).

Figure S2. Secondary phosphine oxides synthesized according to General procedure B.

Phenyl(2-(phenylethynyl)phenyl)phosphine oxide (1a)^[6]

The general procedure **A** was used to obtain **1a**: total yield 72% (1.09 g, scale: 5.0 mmol), light yellow oil. **¹H NMR (300 MHz, CDCl₃)** δ 8.34 (d, J_{PH} = 496.5Hz, 1H), 7.97 – 7.90 (m, 1H), 7.68 – 7.61(m, 2H), 7.50 – 7.19 (m, 11H). ¹³C NMR (75 MHz, **CDCl₃)** δ 132.7 (d, J_{PC} =8.3 Hz), 132.5, 132.1, 132.1, 132.1 (d, J_{PC} =6.5 Hz),

131.3,131.0 (d, $J_{PC}=31.4$ Hz), 130.6 (d, $J_{PC}=11.6$ Hz), 128.9, 128.5 (d, $J_{PC}=12.9$ Hz), 128.4 (d, $J_{PC}=11.4$ Hz), 128.2, 124.8 (d, $J_{PC}=9.8$ Hz), 121.8, 96.7, 85.8 (d, $J_{PC}=8.4$ Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 16.8. ³¹P NMR (121 MHz, CDCl₃) δ 15.8 (dq, $J_{I}=498.0$ Hz, $J_{2}=14.0$ Hz).

Phenyl(2-(p-tolylethynyl)phenyl)phosphine oxide (1b)

Ме

The general procedure **A** was used to obtain **1b**: total yield 62% (0.98 g, scale: 5.0 mmol), yellow solid. ¹H NMR (**300 MHz, CDCl**₃) δ 8.43 (d, J_{PH} = 497.7 Hz,1H), 8.06 – 7.96 (m, 1H), 7.77 – 7.70 (m, 2H), 7.58 – 7.39 (m, 6H), 7.23 – 7.20 (m, 2H), 7.13 – 7.10 (m, 2H), 2.34 (s, 3H). ¹³C NMR (**75 MHz, CDCl**₃) δ 139.3, 132.7 (d, J_{PC} = 8.3 Hz), 132.4, 132.2, 132.2 (d, J_{PC} = 4.0

Hz), 132.1, 131.3, 131.0 (d, $J_{PC} = 14.5$ Hz), 130.7 (d, $J_{PC} = 11.5$ Hz), 129.1, 128.6 (d, $J_{PC} = 13.0$ Hz), 128.3 (d, $J_{PC} = 11.2$ Hz), 125.0 (d, $J_{PC} = 9.9$ Hz), 118.8, 97.1, 85.3 (d, $J_{PC} = 8.6$ Hz), 21.5. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 17.0. ³¹P NMR (121 MHz, CDCl₃) δ 17.0 (dq, J_1 =496.6 Hz, J_2 =14.3 Hz). HRMS (DCI-CH₄): m/z calcd for C₂₁H₁₈OP [M + H]⁺: 317.1095, Found: 317.1094.

(2-((4-methoxyphenyl)ethynyl)phenyl)(phenyl)phosphine oxide (1c)^[6]

The general procedure **A** was used to obtain **1c**: total yield 72% (1.19 g, scale: 5.0 mmol), light yellow oil. ¹**H NMR** (**300 MHz**, **CDCl**₃) δ 8.44 (d, $J_{PH} = 496.8$ Hz, 1H), 8.06 – 7.99 (m, 1H), 7.79– 7.71 (m, 2H), 7.60 – 7.40 (m, 6H), 7.30 – 7.25 (m, 2H), 6.87 – 6.82 (m, 2H), 3.80 (s, 3H). ¹³**C NMR** (**75 MHz**, **CDCl**₃) δ 160.1, 132.9, 132.6 (d, $J_{PC} = 8.4$ Hz), 132.4 (d, $J_{PC} = 8.4$ Hz), 132

1.7 Hz), 132.2 (d, $J_{PC} = 2.5$ Hz), 132.09 (d, $J_{PC} = 5.2$ Hz), 132.08, 131.0 (d, $J_{PC} = 2.2$ Hz), 130.7 (d, $J_{PC} = 11.6$ Hz), 128.6 (d, $J_{PC} = 12.8$ Hz), 128.1 (d, $J_{PC} = 11.3$ Hz), 125.2 (d, $J_{PC} = 9.8$ Hz), 114.0, 113.9,

97.1, 84.8 (d, $J_{PC} = 8.6 \text{ Hz}$), 55.2. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 16.9. ³¹P NMR (121 MHz, **CDCl**₃) $\delta 16.9$ (dq, J_1 =495.7 Hz, J_2 =14.3 Hz).

(2-(hex-1-yn-1-yl)phenyl)(phenyl)phosphine oxide (1d)

The general procedure A was used to obtain 1d: total yield 42% (352 mg, scale: 3.0 mmol), light yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.33 (d, J = 499.2 Hz, 1H), 7.98 – 7.91 (m, 1H), 7.73 – 7.65 (m, 2H), 7.55 – 7.42 (m, 6H), 2.29 (t, J = 6.9 Hz, 2H), 1.45 - 1.28 (m, 4H), 0.86 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 132.8 (d, $J_{PC} = 8.6$ Hz), 132.3, 132.1 (d, $J_{PC} = 5.0$ Hz), 132.1, 132.0 (d, $J_{PC} = 3.5$ Hz), 130.8 (d, $J_{PC} = 5.0$ Hz)

14.1 Hz), 130.6 (d, $J_{PC} = 11.4$ Hz), 128.5 (d, $J_{PC} = 12.8$ Hz), 127.8 (d, $J_{PC} = 11.3$ Hz), 125.8 (d, $J_{PC} = 12.8$ Hz), 127.8 (d, $J_{PC} = 11.3$ Hz), 125.8 (d, $J_{PC} = 12.8$ Hz), 127.8 (d, $J_{PC} = 11.3$ Hz), 125.8 (d, $J_{PC} = 12.8$ Hz), 127.8 (d, $J_{PC} = 11.3$ Hz), 125.8 (d, $J_{PC} = 12.8$ Hz), 127.8 (d, $J_{PC} = 11.3$ Hz), 125.8 (d, $J_{PC} = 12.8$ Hz), 127.8 (d, $J_{PC} = 11.3$ Hz), 125.8 (d, $J_{PC} = 12.8$ Hz), 127.8 (d, $J_{PC} = 11.3$ Hz), 125.8 (d, $J_{PC} = 12.8$ Hz), 127.8 (d, $J_{PC} = 11.3$ Hz), 125.8 (d, $J_{PC} = 12.8$ Hz), 127.8 (d, $J_{PC} = 11.3$ Hz), 125.8 (d, $J_{PC} = 12.8$ Hz), 127.8 (d, $J_{PC} = 11.3$ Hz), 125.8 (d, $J_{PC} = 12.8$ Hz), 125.8 (d, J_{PC} = 12.8 Hz) 10.1 Hz), 98.9, 77.5 (d, $J_{PC} = 8.6$ Hz), 30.2, 21.9, 19.1, 13.5. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 17.2. ³¹P NMR (121 MHz, CDCl₃) δ17.3 (dq, J₁=497.3 Hz, J₂=13.8 Hz). HRMS (DCI-CH₄): m/z calcd for C₁₈H₂₀OP [M + H]⁺: 283.1252, Found: 283.1246.

phenyl(2-((triethylsilyl)ethynyl)phenyl)phosphine oxide (1e)

The general procedure **B** was used to obtain **1e**: total yield 57% (1.93 g, scale: 10.0 mmol), light yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.43 (d, J = 500.4 Hz, 1H), 8.00 - 7.90 (m, 1H), 7.72 - 7.65 (m, 2H), 7.54 - 7.35 (m, 6H), 0.90 (t, J = 8.1 Hz,

9H), 0.59 - 0.51 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 133.4 (d, $J_{PC} = 8.3$ Hz), TES 132.4 (d, $J_{PC} = 26.0 \text{ Hz}$), 132.1 (d, $J_{PC} = 2.9 \text{ Hz}$), 131.9 (d, $J_{PC} = 2.5 \text{ Hz}$), 131.8 (d, $J_{PC} = 2.7 \text{ Hz}$), 131.0 (d, $J_{PC} = 26.7$ Hz), 130.5 (d, $J_{PC} = 11.3$ Hz), 128.6 (d, $J_{PC} = 11.0$ Hz), 128.5 (d, $J_{PC} = 12.8$ Hz), 124.7 (d, $J_{PC} = 10.3 \text{ Hz}$), 102.1 (d, $J_{PC} = 8.1 \text{ Hz}$), 100.7, 7.2, 3.9. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 15.5. ³¹P NMR (121 MHz, CDCl₃) δ 15.5 (dq, J_1 =498.4 Hz, J_2 =13.3 Hz). HRMS (ESI): m/z calcd for $C_{20}H_{26}OPSi [M + H]^+$: 341.1491, Found: 341.1492.

(2-(mesitylethynyl)phenyl)(phenyl)phosphine oxide (1f)

The general procedure A was used to obtain 1f: total yield 68% (0.94 g, scale: 4.0 mmol), white solid. ¹H NMR (300 MHz, CDCl₃) δ 8.56 (d, J = 496.5 Hz, 1H), 7.99 – 7.92 (m, 1H), 7.75 – 7.61 (m, 3H), 7.56 – 7.35 (m, 5H), 6.84 (d, J = 0.6 Hz, 2H), 2.30 (s, 6H), 2.26 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 140.3, 138.6, 133.0 (d, $J_{PC} = 8.5$ Hz), 132.1 (d, $J_{PC} = 2.9$ Hz), 132.0 (d, $J_{PC} =$ 1.6 Hz), 132.0 (d, $J_{PC} = 12$ Hz), 132.0 (d, $J_{PC} = 2.8$ Hz), 130.6 (d, $J_{PC} = 11.3$

Hz), 130.6 (d, $J_{PC} = 1.5$ Hz), 128.5 (d, $J_{PC} = 12.8$ Hz), 128.2 (d, $J_{PC} = 11.1$ Hz), 127.6, 125.7 (d, $J_{PC} = 12.8$ Hz), 128.2 (d, $J_{PC} = 11.1$ Hz), 127.6, 125.7 (d, $J_{PC} = 12.8$ Hz), 128.2 (d, $J_{PC} = 11.1$ Hz), 127.6, 125.7 (d, $J_{PC} = 12.8$ Hz), 128.2 (d, $J_{PC} = 11.1$ Hz), 127.6, 125.7 (d, $J_{PC} = 12.8$ Hz), 128.2 (d, $J_{PC} = 11.1$ Hz), 127.6, 125.7 (d, $J_{PC} = 12.8$ Hz), 128.2 (d, $J_{PC} = 11.1$ Hz), 127.6, 125.7 (d, $J_{PC} = 12.8$ Hz), 128.2 (d, $J_{PC} = 11.1$ Hz), 127.6, 125.7 (d, $J_{PC} = 12.8$ Hz), 128.2 (d, $J_{PC} = 11.1$ Hz), 127.6, 125.7 (d, $J_{PC} = 12.8$ Hz), 128.2 (d, $J_{PC} = 11.1$ Hz), 127.6, 125.7 (d, $J_{PC} = 11.1$ Hz), 128.2 (d, J_{PC} = 11.1 Hz), 128.2 (d, 9.9 Hz), 118.7, 95.0, 93.1 (d, $J_{PC} = 8.6$ Hz), 21.2, 20.8. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 15.9. ³¹P **NMR** (121 MHz, CDCl₃) δ16.1 (dq, J₁=494.8 Hz, J₂=13.9 Hz). HRMS (DCI-CH₄): m/z calcd for $C_{23}H_{22}OP [M + H]^+$: 345.1408, Found: 345.1408.

(2-((2-methoxyphenyl)ethynyl)phenyl)(phenyl)phosphine oxide (1g)

The general procedure **A** was used to obtain **1g**: total yield 61% (1.71 g, scale: 8.5 mmol), light yellow oil. ¹**H NMR (300 MHz, CDCl**₃) δ 8.61 (d, *J* = 506.4, 1H), δ 8.06 – 7.99 (m, 1H), 7.87 – 7.80 (m, 2H), 7.64 – 7.31 (m, 8H), 6.95 – 6.87 (m, 2H), 3.83 (s, 3H). ¹³**C NMR (75 MHz, CDCl**₃) δ 159.8, 132.9, 132.4 (d, *J*_{PC} = 8.3 Hz), 132.0, 131.9 (d, *J*_{PC} = 2.9 Hz), 131.8 (d, *J*_{PC} = 2.4 Hz), 131.4

(d, $J_{PC} = 7.6$ Hz), 130.9 (d, $J_{PC} = 29.0$ Hz), 130.4, 130.2, 128.3 (d, $J_{PC} = 12.9$ Hz), 128.2 (d, $J_{PC} = 11.0$ Hz), 124.8 (d, $J_{PC} = 10.4$ Hz), 120.2, 110.9, 110.4, 93.5, 89.7 (d, $J_{PC} = 8.6$ Hz), 55.2. ³¹P{¹H} **NMR (121 MHz, CDCl**₃) δ 15.8. ³¹P NMR (121 MHz, CDCl₃) δ 16.3 (dq, $J_1 = 504.3$ Hz, $J_2 = 13.4$ Hz). HRMS (DCI-CH4): m/z calcd for C₂₁H₁₈O₂P [M + H]⁺: 333.1044, Found: 333.1043.

(2-((3-methoxyphenyl)ethynyl)phenyl)(phenyl)phosphine oxide (1h)

The general procedure **B** was used to obtain **1h**: total yield 89% (1.18 g, scale: 4.0 mmol), light yellow oil.¹**H NMR (300 MHz, CDCl₃)** δ 8.36 (d, J = 493.8, 1H), 8.09 – 7.86 (m, 1H),7.76 – 7.68 (m, 2H), 7.57 – 7.36 (m, 6H), 7.28 (dd, $J_1 = 5.4$ Hz, $J_2 = 1.2$ Hz, 1H), 7.12 (dd, $J_1 = 3.9$ Hz, $J_2 = 1.2$ Hz, 1H), 6.97 – 6.94 (m, 1H). ¹³**C NMR (75 MHz, CDCl₃)** δ 159.1,

132.7 (d, $J_{PC} = 8.5 \text{ Hz}$), 132.6, 132.2 (d, $J_{PC} = 1.8 \text{ Hz}$), 132.1, 132.1 (d, $J_{PC} = 6.0 \text{ Hz}$), 131.0 (d, $J_{PC} = 29.0 \text{ Hz}$), 130.6 (d, $J_{PC} = 11.6 \text{ Hz}$), 129.3, 128.5 (d, $J_{PC} = 13.0 \text{ Hz}$), 128.5 (d, $J_{PC} = 11.3 \text{ Hz}$), 124.7 (d, $J_{PC} = 9.8 \text{ Hz}$), 123.8, 122.9, 116.1, 115.4, 96.6, 85.6 (d, $J_{PC} = 7.8 \text{ Hz}$), 55.1.³¹P{¹H} NMR (121 MHz, CDCl₃) δ 16.8.³¹P NMR (121 MHz, CDCl₃) δ 16.8 (dq, $J_1 = 495.0 \text{ Hz}$, $J_2 = 13.6 \text{ Hz}$). HRMS (DCI-CH₄): m/z calcd for C₂₁H₁₈O₂P [M + H]⁺: 333.1044, Found: 333.1030.

(2-((4-chlorophenyl)ethynyl)phenyl)(phenyl)phosphine oxide (1i)

The general procedure **A** was used to obtain **1i**: total yield 65% (1.09 g, scale: 4.7 mmol), white solid. **¹H NMR (300 MHz, CDCl₃)** δ 8.39 (d, J_{PH} = 495.3 Hz, 1H), 8.05 – 7.97 (m, 1H), 7.76 – 7.68 (m, 2H), 7.61 – 7.49 (m, 4H), 7.46 – 7.39 (m, 2H), 7.31 – 7.21 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 135.0, 132.8 (d, J_{PC} = 8.4 Hz), 132.6, 132.5, 132.3 (d, J_{PC} = 6.3 Hz), 132.2 (d, J_{PC} =

2.3 Hz), 132.2, 132.7 (d, J_{PC} = 56.9 Hz), 130.6 (d, J_{PC} = 11.5 Hz), 128.7 (d, J_{PC} = 11.4 Hz), 128.6, 128.6 (d, J_{PC} = 13.1 Hz), 124.5 (d, J_{PC} = 9.4 Hz), 120.3, 95.5, 86.9 (d, J_{PC} = 8.3 Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 17.0. ³¹P NMR (121 MHz, CDCl₃) δ 17.1 (dq, J_1 =493.8 Hz, J_2 =14.2 Hz). HRMS (DCI-CH₄): m/z calcd for C₂₀H₁₅OPCl [M + H]⁺: 337.0549, Found: 337.0545.

Phenyl(2-((4-(trifluoromethyl)phenyl)ethynyl)phenyl)phosphine oxide (1j)^[2]

The general procedure **A** was used to obtain **1j**: total yield 66% (487 mg, scale: 2.0 mmol), light yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 8.35 (d, J = 499.5 Hz, 1H), 8.03 – 7.93 (m, 1H), 7.74 – 7.64 (m, 2H), 7.61 – 7.45 (m, 6H), 7.42 – 7.36 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 132.9 (d, $J_{PC} = 8.3$ Hz), 132.4, 132.4 (d, $J_{PC} = 68.3$ Hz), 132.3 (t, $J_{PC} = 1.5$ Hz), 132.2 (d, $J_{PC} = 2.3$ Hz), 131.5, 131.0 (d, $J_{PC} = 70.1$ Hz), 130.6 (d, $J_{PC} = 11.6$ Hz), 130.4 (q,

 $J_{FC} = 32.7 \text{ Hz}$), 128.9 (d, $J_{PC} = 11.4 \text{ Hz}$), 128.6 (d, $J_{PC} = 12.8 \text{ Hz}$), 125.6 (d, $J_{PC} = 1.5 \text{ Hz}$), 125.1 (q, $J_{FC} = 3.8 \text{ Hz}$), 124.1 (d, $J_{PC} = 9.3 \text{ Hz}$), 123.6 (q, $J_{FC} = 270.7 \text{ Hz}$), 94.9, 88.0 (d, $J_{PC} = 8.3 \text{ Hz}$). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 17.0. ³¹P NMR (121 MHz, CDCl₃) δ 17.1 (dq, $J_I = 493.2 \text{ Hz}$, $J_2 = 13.6 \text{ Hz}$). ¹⁹F NMR (282 MHz, CDCl₃) δ -62.9.

(2-((4-fluorophenyl)ethynyl)phenyl)(phenyl)phosphine oxide (1k)

The general procedure **A** was used to obtain **1k**: total yield 72% (1.19 g, scale: 5.0 mmol), light yellow oil.¹**H NMR (300 MHz, CDCl**₃) δ 8.39 (d, *J* = 495.6 Hz, 1H), 8.04 – 7.94 (m, 1H), 7.75 – 7.67 (m, 2H), 7.56 – 7.47 (m, 4H), 7.44 – 7.38 (m, 2H), 7.30 – 7.23 (m, 2H), 7.02 – 6.95 (m, 2H). ¹³**C NMR (75 MHz, CDCl**₃) δ 162.7 (d, *J*_{FC} = 249.4 Hz), 133.3 (d, *J*_{PC} = 8.6 Hz), 132.7 (d, *J*_{PC} =

8.4Hz), 132.3 (d, J_{PC} = 35.9 Hz), 132.2 (d, J_{PC} = 9.9 Hz), 132.1, 132.1 (d, J_{PC} = 7.6 Hz), 132.9 (d, J_{PC} = 37.1 Hz), 130.6 (d, J_{PC} = 11.5 Hz), 128.5 (d, J_{PC} = 13.05 Hz), 128.5 (d, J_{PC} = 11.4 Hz), 124.6 (d, J_{PC} = 9.6 Hz), 117.9 (d, J_{PC} = 3.5 Hz), 115.6 (d, J_{PC} = 22.1 Hz), 95.6, 85.6 (dd, J_{PC1} = 8.6 Hz, J_{PC2} = 1.6 Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 17.0. ³¹P NMR (121 MHz, CDCl₃) δ 17.1 (dq, J_I =493.9 Hz, J_2 =14.2 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -109.4. HRMS (DCI-CH₄): m/z calcd for C₂₀H₁₅OFP [M + H]⁺: 321.0845, Found: 321.0840.

(2-([1,1'-biphenyl]-4-ylethynyl)phenyl)(phenyl)phosphine oxide (11)

The general procedure **A** was used to obtain **1**l: total yield 35% (1.34 g, scale: 10.0 mmol), white solid. ¹H NMR (**300** MHz, CDCl₃) δ 8.47 (d, *J* = 497.1 Hz, 1H), 8.09 – 8.02 (m, 1H), 7.81 – 7.73 (m, 2H), 7.65 – 7.34 (m, 15H). ¹³C NMR (**75** MHz, CDCl₃) δ 141.7, 139.9, 132.8 (d, *J*_{PC}= 8.3 Hz), 132.6, 132.3, 132.3, 132.2, 132.2, 132.2, 131.8, 131.0 (d, *J*_{PC}= 26.0 Hz), 130.7 (d,

 J_{PC} = 11.5 Hz), 128.8, 128.7 (d, J_{PC} = 12.9 Hz), 128.5 (d, J_{PC} = 11.4 Hz), 127.8, 127.0 (d, J_{PC} = 5.9 Hz), 124.9 (d, J_{PC} = 9.7 Hz), 120.7, 96.8, 86.6 (d, J_{PC} = 8.5 Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 16.9. ³¹P NMR (121 MHz, CDCl₃) δ 17.0 (dq, J_1 =495.0 Hz, J_2 =13.4 Hz). HRMS (DCI-CH₄): m/z calcd for C₂₆H₂₀OP [M + H]⁺: 379.1252, Found: 379.1245.

2-(cyclohex-1-en-1-yl)-1-phenylphosphindole 1-oxide (1m)

The general procedure A was used to obtain 1m: total yield 83% (2.54 g, scale: 10.0 mmol), white solid. ¹H NMR (300 MHz, CDCl₃) δ 8.26 (d, J = 497.7 Hz, 1H), 7.89 – 7.82 (m, 1H), 7.66 – 7.58 (m, 2H), 7.42 – 7.26 (m, 6H), 5.99 – 5.96 (m, 1H), 2.01 – 1.91 (m, 4H), 1.53 – 1.40 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ 136.4, 132.3 (d, J_{PC} = 8.3 Hz), 132.0 (d, J_{PC} = 8.3 Hz), 131.8 (d, J_{PC} = 2.9 Hz),

131.8, 131.7 (d, $J_{PC} = 5.2$ Hz), 130.6 (d, $J_{PC} = 8.2$ Hz), 130.3 (d, $J_{PC} = 11.3$ Hz), 128.2 (d, $J_{PC} = 12.8$ Hz), 127.6 (d, *J*_{PC} = 11.3 Hz), 125.2 (d, *J*_{PC} = 9.9 Hz), 119.6, 98.7, 83.3 (d, *J*_{PC} = 8.8 Hz), 28.2, 25.3, 21.7, 20.9. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ16.5. ³¹P NMR (121 MHz, CDCl₃) δ16.6 (dq, J₁=496.3 Hz, $J_2 = 13.2$ Hz). HRMS (DCI-CH₄): m/z calcd for C₂₀H₂₀OP [M + H]⁺: 307.1252, Found: 307.1248.

phenyl(2-(thiophen-2-ylethynyl)phenyl)phosphine oxide (1n)

The general procedure A was used to obtain 1n: total yield 77% (1.89 g, scale: 8.0 mmol), light yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.36 (d, J = 493.8, 1H), 8.09 - 7.86 (m, 1H), 7.76 - 7.68 (m, 2H), 7.57 - 7.36 (m, 6H), 7.28 (dd, $J_1 =$ 5.4 Hz, $J_2 = 1.2$ Hz, 1H), 7.12 (dd, $J_1 = 3.9$ Hz, $J_2 = 1.2$ Hz, 1H), 6.97 - 6.94 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 132.5, 132.5 (d, J_{PC} = 8.3 Hz), 132.2 (d, J_{PC} = 1.5 Hz), 132.1 (d, J_{PC} = 6.5 Hz), 132.1, (d, J_{PC} = 2.4 Hz), 132.1, 130.9 (d, J_{PC} =

25.2 Hz), 130.6 (d, $J_{PC} = 11.6$ Hz), 128.6 (d, $J_{PC} = 12.8$ Hz), 128.6 (d, $J_{PC} = 11.2$ Hz), 128.2, 127.1, 124.3 (d, $J_{PC} = 9.7 \text{ Hz}$), 121.6, 90.2, 89.5 (d, $J_{PC} = 8.6 \text{ Hz}$). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 17.1. ³¹P NMR (121 MHz, CDCl₃) δ 17.2 (dq, J_1 = 494.8 Hz, J_2 = 14.0 Hz). HRMS (DCI-CH₄): m/z calcd for C₁₈H₁₄OPS [M + H]⁺: 309.0503, Found: 309.0496.

Phenyl(2-((trimethylsilyl)ethynyl)phenyl)phosphine oxide (1p)

The general procedure **B** was used to obtain 1p: total yield 65% (1.93 g, scale: 10.0 mmol), light yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.37 (d, J = 501.3 Hz, 1H), 8.04 - 7.95 (m, 1H), 7.75 - 7.66 (m, 2H), 7.51 - 7.29 (m, 6H), 0.13 (s, 9H). ¹³C TMS NMR (75 MHz, CDCl₃) δ 132.9 (d, J_{PC} = 8.3 Hz), 132.3, 132.0 (d, J_{PC} = 2.9 Hz), 131.8, 131.8 (d, $J_{PC} = 4.6$ Hz), 130.7 (d, $J_{PC} = 33.8$ Hz), 130.5 (d, $J_{PC} = 11.5$ Hz), 128.6 (d, $J_{PC} = 11.0$ Hz), 128.3 (d, $J_{PC} = 12.8$ Hz), 124.3 (d, $J_{PC} = 10.1$ Hz), 102.8, 100.8 (d, $J_{PC} = 8.2$ Hz), 0.8. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 16.3. ³¹P NMR (121 MHz, CDCl₃) δ16.3 (dq, J₁=499.6 Hz, J₂=13.7 Hz). **HRMS (DCI-CH₄):** m/z calcd for C₁₇H₂₀OSiP [M + H]⁺: 299.1021, Found: 299.1014.

(5-methyl-2-(phenylethynyl)phenyl)(phenyl)phosphine oxide (1q)

The general procedure A was used to obtain 1q: total yield 69% (1.05 g, scale: 4.8 mmol), white solid. ¹H NMR (300 MHz, CDCl₃) δ 8.40 (d, J = 496.5 Hz, 1H), 7.86 (d, J = 1.8 Hz, 1H), 7.76 – 7.68 (m, 2H), 7.46 – 7.36 (m, 4H), 7.29 – 7.26 (m, 6H), 2.36 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 138.8 (d, J_{PC} = 11.2 Hz), 132.7 (d, $J_{PC} = 2.4$ Hz), 132.5 (d, $J_{PC} = 17.6$ Hz), 132.5, 132.1 (d, $J_{PC} = 13.4$ Hz), 131.9 (d, $J_{PC} = 2.9$ Hz), 131.0, 130.7 (d, $J_{PC} = 12.4$ Hz), 130.4 (d, $J_{PC} = 11.5$ Hz), 128.5, 128.4 (d, $J_{PC} = 12.8$ Hz), 128.1, 121.8, 121.5 (d, $J_{PC} = 9.8$ Hz), 95.80, 85.8 (d, $J_{PC} = 8.4$ Hz), 21.10. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 16.7. ³¹P NMR (121 MHz, CDCl₃) δ 16.8 (dq, $J_{I}=494.6$ Hz, $J_{2}=13.6$ Hz). HRMS (DCl-CH₄): m/z calcd for C₂₁H₁₈OP [M + H]⁺: 317.1095, Found: 317.1093.

(5-methoxy-2-(phenylethynyl)phenyl)(phenyl)phosphine oxide (1r)

The general procedure **A** was used to obtain **1r**: total yield 73% (486 mg, scale: 2.0 mmol), white solid. **¹H NMR (300 MHz, CDCl**₃) δ 8.40 (d, *J* = 500.1 Hz, 1H), 7.76 – 7.69 (m, 2H), 7.59 – 7.35 (m, 5H), 7.26 (s, 5H), 7.01 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.4 Hz, 1H), 3.81 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.5 (d,

 $J_{PC} = 13.5 \text{ Hz}$), 134.2 (d, $J_{PC} = 10.0 \text{ Hz}$), 133.2 (d, $J_{PC} = 100.4 \text{ Hz}$), 132.1 (d, $J_{PC} = 2.8 \text{ Hz}$), 131.3 (d, $J_{PC} = 102.7 \text{ Hz}$), 131.0, 130.5 (d, $J_{PC} = 11.6 \text{ Hz}$), 128.4, 128.4 (d, $J_{PC} = 12.9 \text{ Hz}$), 128.1, 122.0, 118.6 (d, $J_{PC} = 2.4 \text{ Hz}$), 116.3 (d, $J_{PC} = 9.8 \text{ Hz}$), 116.3 (d, $J_{PC} = 8.6 \text{ Hz}$), 95.1, 85.7 (d, $J_{PC} = 8.4 \text{ Hz}$), 55.4. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 16.7. ³¹P NMR (121 MHz, CDCl₃) δ 16.8 (dq, $J_{I}=498.3 \text{ Hz}$, J_{2} =14.0 Hz). HRMS (DCI-CH₄): m/z calcd for C₂₁H₁₈O₂P [M + H]⁺: 333.1044, Found: 333.1039.

Phenyl(2-(phenylethynyl)-5-(trifluoromethyl)phenyl)phosphine oxide (1s)

The general procedure A was used to obtain 1s: total yield 12% (86 mg, scale: 2.0 mmol), yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.44 (d, J = 502.8 Hz, 1H), 8.34 (d, J = 12.6 Hz, 1H), 7.81 – 7.69 (m, 4H), 7.58 – 7.26 (m, 8H). ¹³C
Ph NMR (75 MHz, CDCl₃) δ 133.2 (d, J_{PC} = 8.2 Hz), 132.7 (d, J_{PC} = 2.9 Hz),

131.9 (q, $J_{FC} = 100.1$ Hz), 131.5, 130.7 (d, $J_{PC} = 11.7$ Hz), 130.3 (d, $J_{PC} = 11.6$ Hz), 129.3 (m, $J_{FC} = 5.1$ Hz), 128.9, 128.9, 128.8, 128.8, 128.5, 128.5, 123.3 (d, $J_{PC} = 271.8$ Hz), 121.2, 99.5, 84.9 (d, $J_{PC} = 8.5$ Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 15.9. ³¹P NMR (121 MHz, CDCl₃) δ 16.0 (dq, $J_I = 500.1$ Hz, $J_2 = 13.3$ Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -62.8. HRMS (DCI-CH₄): m/z calcd for C₂₁H₁₅F₃OP [M + H]⁺: 371.0831, Found: 371.0812.

(2-methyl-6-(phenylethynyl)phenyl)(phenyl)phosphine oxide (1t)

The general procedure **A** was used to obtain **1t**: total yield 51% (320 mg, scale: 2.0 mmol), yellow oil. ¹³**C NMR** (**75 MHz**, **CDCl**₃) δ 9.09 (d, *J* = 506.1 Hz, 1H), 7.81 – 7.73 (m, 2H), 7.54 – 7.30 (m, 10H), 7.20 – 7.16 (m, 1H), 7.24 – 7.17 (m, 1H), 2.51

Ph (s, 3H). ¹H NMR (300 MHz, CDCl₃) δ 143.5 (d, $J_{PC} = 7.3$ Hz), 132.0 (d, $J_{PC} = 3.0$ Hz), 131.8 (d, $J_{PC} = 1.9$ Hz), 131.7 (d, $J_{PC} = 5.6$ Hz), 131.5 (d, $J_{PC} = 98.2$ Hz), 131.3, 131.0 (d, $J_{PC} = 7.7$ Hz), 130.3 (d, $J_{PC} = 11.3$ Hz), 130.0 (d, $J_{PC} = 101.4$ Hz), 128.8 (d, $J_{PC} = 10.1$ Hz), 128.6, 128.4, 126.0 (d, $J_{PC} = 11.3$ Hz), 122.1, 96.5, 86.7 (d, $J_{PC} = 11.2$ Hz), 20.8 (d, $J_{PC} = 5.2$ Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 15.0. ³¹P NMR (121 MHz, CDCl₃) δ 16.0 (dt, $J_{I}=504.3$ Hz, $J_{2}=13.7$ Hz). HRMS (DCI-CH₄): m/z calcd for C₂₁H₁₈OP [M + H]⁺: 317.1095, Found: 317.1087.

Isopropyl(2-(phenylethynyl)phenyl)phosphine oxide (1v)

The general procedure **A** was used with dichloroisopropylphoshine instead of dichlorophenylphosphine to obtain **1v**: total yield 80% (1.07 g, scale: 5.0 mmol), light yellow oil. ¹**H NMR** (**300 MHz, CDCl**₃) δ 7.67 (d, *J* = 473.7 Hz, 1H), 7.93 – 7.86 (m, 1H), 7.57 – 7.53 (m, 1H), 7.52 – 7.41 (m, 4H), 7.35 – 7.29 (m, 3H), 6.88 (s,

1H), 2.44 – 7.36 (m, 1H), 1.29 (dd, JI = 18.9 Hz, J2 =7.2 Hz, 3H), 1.07 (dd, J_1 = 17.4 Hz, J_2 =7.2 Hz Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 132.5 (d, J_{PC} = 8.0 Hz), 132.2 (d, J_{PC} = 6.8 Hz), 131.7 (d, J_{PC} = 2.4 Hz), 131.1 (d, J_{PC} = 91.8 Hz), 131.1, 129.0, 128.4, 128.3 (d, J_{PC} = 10.4 Hz), 123.8 (d, J_{PC} = 9.2 Hz), 121.8, 96.3, 85.8 (d, J_{PC} = 7.4 Hz), 27.5 (d, J_{PC} = 69.5 Hz), 15.9 (d, J_{PC} = 1.4 Hz), 13.8 (d, J_{PC} = 3.0 Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 33.1. ³¹P NMR (121 MHz, CDCl₃) δ 33.1 (dm, J=472.1 Hz). HRMS (DCI-CH4): m/z calcd for C₁₇H₁₈OP [M + H]⁺: 269.1095, Found: 269.1088.

(2-ethynylphenyl)(phenyl)phosphine oxide (10)

(2-Bromophenyl)ethynyl)trimethylsilane **S-1k** (8.3 mmol, 2.11 g) was dissolved in dry THF (15 mL) and cooled to -78°C. A solution of 1.6 M "BuLi (8.3 mmol, 5.2 mL) was added dropwise over 5 minutes with stirring, resulting in a deep yellow/dark orange color. After stirring at the same temperature for 1 h, a solution of Ph(NEt₂)PCl (8.3 mmol, 1.8 g, 1.6 mL) in 5 mL of dry THF was added dropwise via syringe. The reaction mixture was allowed to warm to RT overnight. The mixture was filtered through celite, the solvent was evaporated under reduced pressure and the residue was dissolved in a mixture of THF:MeOH (15 mL:15 mL) and treated with K₂CO₃(1.7 mmol, 235 mg) stirred for 4h, The progress of was monitored by ³¹P NMR (58.2 ppm to 57.1 ppm), Once the reaction was complete, the mixture was immediately filtered by cannula under Ar and the solvent was removed under vacuum. The resulting mixture was dissolved in THF (20 mL) treated with 4.0 M HCl in cyclopentyl methyl ether (CPME) (29 mmol, 7.3 mL) for 1 h, followed by quenching with aqueous NaHCO₃ (20 mL) and stirring for 1 h. The residue was extracted with EA (20 mL×3) and the combined organic fractions were dried over anhydrous Na₂SO₄, the solvent was evaporated under reduced pressure and the residue was purified by chromatography on silica gel (Pentane/EA = 2/1 to 1/1) to afford the desired product **10** as a light yellow oil, yield 45%, 848 mg.

¹H NMR (300 MHz, CDCl₃) δ 8.29 (d, J = 499.5 Hz, 1H), 7.90 – 7.80 (m, 1H), 7.66 – 7.59 (m, 2H), 7.47 – 7.29 (m, 6H), 3.36 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 133.3 (d, J_{PC} = 8.5 Hz), 132.6 (d, J_{PC} = 100.3 Hz), 132.0 (d, J_{PC} = 2.9 Hz), 131.8 (d, J_{PC} = 2.4 Hz), 131.6 (d, J_{PC} = 8.2 Hz), 130.9 (d, J_{PC} = 102.5 Hz), 130.4 (d, J_{PC} = 11.4 Hz), 128.8 (d, J_{PC} = 11.3 Hz), 128.3 (d, J_{PC} = 13.0 Hz), 123.3 (d, J_{PC} = 9.6 Hz), 85.0, 79.8 (d, J_{PC} = 8.3 Hz).³¹P{¹H} NMR (121 MHz, CDCl₃) δ 16.4 (s). ³¹P NMR (121

MHz, CDCl₃) δ16.5 (dq, *J*₁=497.9 Hz, *J*₂=13.8 Hz). **HRMS (DCI-CH**₄): m/z calcd for C₁₄H₁₂OP [M + H]⁺: 227.0626, Found: 227.0618.

(3,5-bis(trifluoromethyl)phenyl)(2-(phenylethynyl)phenyl)phosphine oxide (1u) Step I: Prepare (3,5-bis(trifluoromethyl)phenyl)dichlorophosphine according to reference.^[8]

Et₂N、P^{,Cl} Bis(diethylamino)chlorophosphine was prepared by slow addition of a solution of hEt₂ trichlorophosphine (20 mmol, 1.74 mL) to a stirring solution of diethylamine (80 mmol, 8.24 mL) in 50 mL dry heptane at 0 °C. A large quantity of white precipitate was formed immediately. The reaction solution was stirred at 0 °C for 30 min, allowed to warm to RT and heat to 70 °C for 48 h. The reaction vessel was cooled and the solution filtered rapidly through a cannula under Ar and washed with dry heptane. Solvent removed in vacuo to give crude Bis(diethylamino)chlorophosphine as a pale yellow viscous liquid (yield 97%, 4.1 g), which was used without purification.³¹P{¹H} NMR (121 MHz, CDCl₃) δ 159.8 ppm (consistent with literature).^[8]

^{F₃C} ^{F₃C} ^{C₁} ^{C_{}}

Step II:

A 100 mL Schlenk tube equipped with a magnetic stirrer under Ar atmosphere was charged with 1bromo-2-(phenylethynyl)benzene (13 mmol, 3.34 g) and Et₂O (20 mL). A solution of 1.60 M ^{*n*}BuLi (13.0 mmol, 8.10 mL) in hexane was added dropwise at a temperature of -50 °C, the resulting solution was slowly returned to RT and stirred for 1 h. Then the mixture solution was cooled to -78°C and (3,5-

bis(trifluoromethyl)phenyl)dichlorophosphane (15.0 mmol) was added slowly. The resulting reaction mixture was allowed to reach RT and stirred overnight. After adding H₂O (40 mL), the residue was extracted with EA (15 mL×3) and the combined organic fractions were dried over anhydrous Na₂SO₄, the solvent was evaporated under reduced pressure and the residue was purified by chromatography on silica gel (Pentane/EA = 2/1 to 1/1) to afford the desired product **1u** as a light yellow oil (yield 48%, 2.67 g).

¹H NMR (300 MHz, CDCl₃) δ 8.51(d, J = 509.1 Hz, 1H), 8.21 (d, J = 12.9 Hz, 2H), 8.09 – 8.02 (m, 1H), 7.96 (s, 1H), 7.65 – 7.53 (m, 3H), 7.36 – 7.31 (m, 5H). ¹³C NMR (75 MHz, CDCl₃) δ 135.3 (d, Jpc = 98.8 Hz), 133.1 (d, Jpc = 2.5 Hz), 132.8 (dd, $J_{FC1} = 67.7$ Hz, $J_{FC2} = 8.7$ Hz), 132.1 (dd, $J_{FC1} = 33.8$ Hz, $J_{FC2} = 12.7$ Hz),132.1 (dd, $J_{FC1} = 101.4$ Hz, $J_{FC2} = 12.8$ Hz),131.3, 130.8, 130.6 (d, Jpc = 3.2 Hz), 129.4, 128.9 (d, Jpc = 11.8 Hz),128.5, 125.8 (q, $J_{FC} = 3.3$ Hz), 124.9 (d, Jpc = 10.0 Hz), 122.6 (d, Jpc = 271.5 Hz), 121.2, 97.8, 85.5 (d, Jpc = 8.7 Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 13.8. ³¹P NMR (121 MHz, CDCl₃) δ 14.0 (dt, $J_I = 507.4$ Hz, $J_2 = 13.1$ Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -63.1. HRMS (DCI-CH₄): m/z calcd for C₂₂H₁₄F₆OP [M + H]⁺: 439.0686, Found: 439.0689.

Ethyl (2-(phenylethynyl)phenyl)phosphinate (1w)

1-Bromo-2-(phenylethynyl)benzene **S-1a** (10 mmol, 2.6 g) was dissolved in dry THF (20 mL) and cooled to -78°C. A solution of 1.6 M ^{*n*}BuLi (10 mmol, 6.3 mL) was added dropwise over 5 minutes with stirring, resulting in a deep yellow/dark orange color. After stirring at the same temperature for 1 h, then (EtO) ₂PCl (10 mmol, 1.57g, 1.5 mL) was added dropwise via syringe. The reaction mixture was allowed to slowly return to RT overnight. The resulting mixture was treated with 1.0 M HCl in H₂O (10 mmol, 10 mL) stirring for 1 h. The residue was extracted with EA (20 mL×3) and the combined organic fractions were dried over anhydrous Na₂SO₄, the solvent was evaporated under reduced pressure and the residue was purified by chromatography on silica gel (Pentane/EA = 2/1 to 1/1) to afford the desired product **1w** as a light yellow oil (yield 51%, 1.37 g).

¹**H NMR** (**300 MHz**, **CDCl**₃) δ 8.01 – 7.94 (m, 1H), 7.83 (d, *J* = 579.6 Hz, 1H), 7.61 – 7.41 (m, 5H), 7.37 – 7.31 (m, 3H), 4.20 – 4.06 (m, 2H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (**75 MHz**, **CDCl**₃) δ 132.7 (d, *J*_{PC} = 9.7 Hz), 132.5 (d, *J*_{PC} = 2.5 Hz), 132.4 (d, *J*_{PC} = 8.5 Hz), 131.3, 129.9 (d, *J*_{PC} = 224.0 Hz), 129.6, 128.9, 128.0 (d, *J*_{PC} = 12.2 Hz), 125.1 (d, *J*_{PC} = 10.9 Hz), 122.2, 95.9, 85.5 (d, *J*_{PC} = 9.0 Hz), 62.2 (d, *J*_{PC} = 6.5 Hz), 16.2 (d, *J*_{PC} = 6.8 Hz). ³¹**P**{¹**H**} **NMR** (**121 MHz**, **CDCl**₃) δ 22.1. ³¹**P NMR** (**121 MHz**, **CDCl**₃) δ 22.1 (dm, *J*=577.5 Hz). **HRMS** (**ESI**): m/z calcd for C₁₆H₁₆O₂P [M + H]⁺: 271.0888, Found: 271.0887.

2. Optimization of the reaction conditions

Table S1^[a]

entry	Cat.	additive	T°C	Solvent	t/h	Conv.%	Yield%
1	Pd ₂ (dba) ₃ (0.5 mol%)		120	Toluene	11	>96	36
2	Pd ₂ (dba) ₃ (0.5 mol%)	dppe (1.0 mol%)	120	Toluene	24	>96	44
3	AuPPh ₃ Cl (5 mol%)		120	Toluene	20	>96	40
4	AuPPh ₃ Cl (5 mol%)	AgSbF ₆ (5 mol%)	120	Toluene	18	>96	77
5	Under air		80	Toluene	20	15	$10(4)^{c}$
6	AgSbF6(5 mol%) Under air		80	Toluene	9	87	67(15) ^c
7	$AgSbF_6(5 mol\%)$		120	Toluene	2	>96	93
8	AgSbF6(5 mol%)		80	Toluene	9	>96	96(91) ^b
9	$AgSbF_6(20 \text{ mol}\%)$		80	Toluene	4	>96	96
10	AgSbF ₆ (100 mol%)		80	Toluene	1	>96	$27(49)^{c}$
11			80	Toluene	9	9	7
12	$AgNTf_2(5 mol\%)$		80	Toluene	9	51	49
13	AgOTf (5 mol%)		80	Toluene	9	61	60
14	AgBF ₄ (5 mol%)		80	Toluene	9	44	44
15	AgNO ₃ (5 mol%)		80	Toluene	9	>96	20
16	Mn(OAc) ₃ (100 mol%))		80	Toluene	4	>96	20
17	TBHP (20 mol%)		80	Toluene	9	24	$3(20)^{c}$
18	AIBN (20 mol%)		80	Toluene	9	8	5
19	TBPB (20 mol%)		80	Toluene	9	33	9(8) ^c
20	$K_2S_2O_8$ (20 mol%)		80	Toluene	9	13	6(5) ^c
21	$K_2S_2O_8$ (20 mol%)		80	CH ₃ CN	9	45	$10(27)^{c}$
22	$AgSbF_6(5 mol\%)$		80	Benzene	9	>96	96
23	$AgSbF_6(5 mol\%)$		80	'BuPh	9	85	83
24	$AgSbF_6(5 mol\%)$		80	DCM	22	>96	84
25	$AgSbF_6(5 mol\%)$		80	CH ₃ CN	33	>96	86
26	$AgSbF_6(5 mol\%)$		80	DCE	47	>96	82
27	$AgSbF_6(5 mol\%)$		80	DMF	9	>61	48
28	Under air		90	DMF	9	>93	$30(40)^{c}$
29	$AgSbF_6(5 mol\%)$	Ph ₂ P(O)OH (5 mol%)	80	Toluene	13	>96	92
30	$AgSbF_6(5 mol\%)$	C ₆ H ₃ (OH) ₃ (5 mol%)	80	Toluene	14	>96	96
31	$AgSbF_6(5 mol\%)$	HFIP (0.5 mL)	80	Toluene	45	>96	11

32	$AgSbF_6(5 mol\%)$	Et ₃ N (10 mol%)	80	Toluene	16	23	10
33	$AgSbF_6(5 mol\%)$	2,6-Dibutylpyridine (10 mol%)	80	Toluene	16	> 96	96
34	$AgSbF_6(5 mol\%)$	K ₂ CO ₃ (10 mol%)	80	Toluene	16	31	2
35	$AgSbF_6(5 mol\%)$	PPh ₃ (10 mol%)	80	Toluene	16	11	10

[a] Reaction conditions: 1a (0.25 mmol), solvent (2 mL). Yield estimated by ³¹P NMR, ^bisolated Yield, ^cPhosphaisocoumarin 3a by-product.

3. General procedures for catalysis and characterization data

General catalytic procedure C:

An oven-dried Schlenk tube under Ar atmosphere was charged with secondary phosphine oxide **1a** (0.25 mmol, 1.0 eq., 75.6 mg), AgSbF₆ (5 mol%, 4.3 mg) and toluene (2 mL). The mixture was stirred at 80°C and the progress of the reaction was monitored by ³¹P NMR. Upon completion, the solvent was evaporated under reduced pressure and the residue was purified by chromatography on silica gel (Pentane/EA = 2/1 to 1/1) to afford the desired light yellow solid benzophosphole oxide **2a**, yield 91%, 68.9 mg.

1,2-diphenylphosphindole 1-oxide (2a)^[2]

The general procedure **C** was used to obtain **2a**: yield 91% (68.9 mg), 9h, white solid. **H NMR (300 MHz, CDCl₃)** δ 7.82 – 7.26 (m, 15H). ¹³**C NMR (75 MHz, CDCl₃)** δ 141.6 (d, $J_{PC} = 28.1$ Hz), 138.8 (d, $J_{PC} = 94.1$ Hz), 136.5 (d, $J_{PC} = 20.0$ Hz), 133.1 (d, $J_{PC} = 2.0$ Hz), 133.0 (d, $J_{PC} = 65.6$ Hz), 132.2 (d, $J_{PC} = 32.0$ Hz), 132.2 (d, $J_{PC} = 2.9$ Hz), 130.7 (d, $J_{PC} = 10.7$ Hz), 129.9 (d, $J_{PC} = 97.7$ Hz), 129.1 (d, $J_{PC} = 1.4$ Hz), 128.9, 128.9, 128.8, 128.8, 126.6 (d, $J_{PC} = 6.3$ Hz), 124.6 (d, $J_{PC} = 9.6$ Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 39.2.

1-phenyl-2-(p-tolyl)phosphindole 1-oxide (2b)

The general procedure **C** was used to obtain **2b**: yield 95% (75.0 mg), 8h, light yellow solid. ¹H NMR (**300** MHz, CDCl₃) δ 7.81 – 7.74 (m, 2H), 7.66 – 7.60 (m, 3H), 7.50 – 7.28 (m, 7H), 7.14 (d, *J* = 8.1 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 141.8 (d, *J*_{PC} = 28.3 Hz), 138.9, 138.6 (d, *J*_{PC}

= 94.1 Hz), 135.4 (d, J_{PC} = 20.0 Hz), 133.1 (d, J_{PC} = 2.1 Hz), 132.6 (d, J_{PC} = 108.2 Hz), 132.1 (d, J_{PC} = 3.0 Hz), 130.7 (d, J_{PC} = 10.7 Hz), 130.2 (d, J_{PC} = 73.9 Hz), 129.6, 129.4 (d, J_{PC} = 13.0 Hz), 128.8 (d, J_{PC} = 1.9 Hz), 128.8 (d, J_{PC} = 22.7 Hz), 128.8 (d, J_{PC} = 12.2 Hz), 126.4 (d, J_{PC} = 6.4 Hz), 124.4 (d, J_{PC} = 9.4 Hz), 21.3. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 39.3. HRMS (DCI-CH₄): m/z calcd for C₂₁H₁₈OP [M + H]⁺: 317.1095, Found: 317.1089.

2-(4-methoxyphenyl)-1-phenylphosphindole 1-oxide (2c)^[2]

2-butyl-1-phenylphosphindole 1-oxide (2d)

The general procedure **C** was used to obtain **2d**: yield 81% (45.8 mg), 4h, light yellow oil. ¹H NMR (**300** MHz, CDCl₃) δ 7.72 – 7.64 (m, 2H), 7.59 – 7.38 (m, 5H), 7.30 – 7.23 (m, 2H), 7.05 – 6.91 (m, 1H), 2.51 – 2.23 (m, 2H), 1.56 – 1.46 (m, 2H), 1.37 – 1.24 (m, 2H), 0.83 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 142.5 (q, *J*_{PC} = 29.8 Hz), 137.6 (d, *J*_{PC} = 21.0 Hz), 133.0 (d, *J*_{PC} = 2.1 Hz), 132.1 (d, *J*_{PC} = 2.7 Hz), 131.9, 130.7 (q, *J*_{PC} = 101.0 Hz), 130.8 (d, *J*_{PC} = 10.7 Hz), 128.9 (d, *J*_{PC} = 9.9 Hz), 128.7 (d, *J*_{PC} = 10.1 Hz), 128.4 (d, *J*_{PC} = 10.1 Hz), 128.2 (d, *J*_{PC} = 10.2 Hz), 123.6 (d, *J*_{PC} = 9.9 Hz), 29.7 (d, *J*_{PC} = 5.1 Hz), 27.2 (d, *J*_{PC} = 10.1 Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 40.5. HRMS (DCI-CH4): m/z calcd for C₁₈H₂₀OP [M + H]⁺: 283.1252, Found: 283.1255.

1-phenyl-2-(triethylsilyl)phosphindole 1-oxide (2e)

The general procedure **C** was used to obtain **2e**: yield 53% (45.3 mg), 3h, white solid. ¹H NMR (**300** MHz, **CDCl**₃) δ 7.67 – 7.26 (m, 10H), 0.84 (t, *J* = 7.8 Hz, 9H), 0.74 – 0.47 (m, 6H). ¹³C NMR (**75** MHz, **CDCl**₃) δ 152.6 (d, *J*_{PC} = 7.6 Hz), 143.2 (d, *J*_{PC} = 37.2 Hz), 139.2 (d, *J*_{PC} = 57.5 Hz), 135.2 (d, *J*_{PC} = 101.5 Hz), 132.7 (d, *J*_{PC} = 2.1 Hz), 131.8 (d, *J*_{PC} = 2.9 Hz), 130.8 (d, *J*_{PC} = 10.4 Hz), 130.3 (d, *J*_{PC} = 95.6 Hz), 129.4 (d, *J*_{PC} = 9.7 Hz), 128.8 (d, *J*_{PC} = 9.9 Hz), 128.5 (d, *J*_{PC} = 12.0 Hz), 124.1 (d, *J*_{PC} = 11.6 Hz), 7.0, 3.2 (d, *J*_{PC} = 1.7 Hz). ³¹P{¹H} NMR (**121** MHz, **CDCl**₃) δ 48.7. HRMS (**ESI**): m/z calcd for C₂₀H₂₆OPSi [M + H]⁺: 341.1491, Found: 341.1498.

2-mesityl-1-phenylphosphindole 1-oxide (2f)

The general procedure **C** was used to obtain **2f**: yield 96% (82.6 mg), 12 h, white solid. ¹**H NMR** (**300 MHz**, **CDCl**₃) δ 7.75 (t, *J* = 8.4 Hz, 1H), 7.61 – 7.29 (m, 8H), 6.96 (d, *J* = 39.6 Hz, 1H), 6.80 (s, 2H), 2.24 (s, 3H), 1.94 (bs, 6H). ¹³**C NMR** (**75 MHz**, **CDCl**₃) δ 142.6 (d, *J*_{PC} = 89.9 Hz), 142.4 (d, *J*_{PC} = 28.7 Hz), 140.3 (d, *J*_{PC} = 22.3 Hz), 137.1 (d, *J*_{PC} = 2.0 Hz), 133.2 (d, *J*_{PC}

= 2.1 Hz), 132.2 (d, J_{PC} = 2.9 Hz), 131.0 (d, J_{PC} = 40.7 Hz), 131.0 (d, J_{PC} = 10.5 Hz), 129.9, 129.6, 129.4, 129.2 (d, J_{PC} = 7.5 Hz), 128.8 (d, J_{PC} = 10.1 Hz), 128.5 (d, J_{PC} = 12.1 Hz), 128.1, 124.3 (d, J_{PC}

= 9.5 Hz), 20.8, 20.2. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 40.5. HRMS (DCI-CH₄): m/z calcd for C₂₃H₂₂OP [M + H]⁺: 345.1408, Found: 345.1408.

2-(2-methoxyphenyl)-1-phenylphosphindole 1-oxide (2g)

The general procedure **C** was used to obtain **2g**: yield 92% (76.3 mg), 16 h, light yellow solid. ¹H NMR (**300** MHz, CDCl₃) δ 8.90 – 7.96 (m, 1H), 7.87 – 7.74 (m, 3H), 7.59 – 7.53 (m, 1H), 7.46 – 7.32 (m, 5H), 7.29 – 7.17 (m, 2H), 6.91 – 6.84 (m, 2H), 3.73 (s, 3H). ¹³C NMR (**75** MHz, CDCl₃) δ 157.7 (d, $J_{PC} = 7.7$

Hz), 141.9 (d, $J_{PC} = 29.0$ Hz), 140.1 (d, $J_{PC} = 18.5$ Hz), 134.9 (d, $J_{PC} = 92.7$ Hz), 132.7 (d, $J_{PC} = 2.0$ Hz), 132.3 (d, $J_{PC} = 108.3$ Hz), 131.6 (d, $J_{PC} = 2.6$ Hz), 130.3, 130.2 (d, $J_{PC} = 10.7$ Hz), 129.5, 129.5 (d, $J_{PC} = 5.9$ Hz), 128.6 (d, $J_{PC} = 10.4$ Hz), 128.5 (d, $J_{PC} = 12.3$ Hz), 128.4 (d, $J_{PC} = 10.4$ Hz), 124.4 (d, $J_{PC} = 9.4$ Hz), 121.4 (d, $J_{PC} = 10.7$ Hz), 120.7, 111.1, 54.9. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 41.5. HRMS (DCI-CH₄): m/z calcd for C₂₁H₁₈O₂P [M + H]⁺: 333.1044, Found: 333.1041.

2-(3-methoxyphenyl)-1-phenylphosphindole 1-oxide (2h)

The general procedure **C** was used to obtain **2h**: yield 99% (83.0 mg), 10 h, light yellow solid. ¹H NMR (**300** MHz, CDCl₃) δ 7.80 – 7.72 (m, 2H), 7.63 – 7.18 (m, 11H), 6.83 – 6.79 (m, 1H), 3.73 (s, 3H). ¹³C NMR (**75** MHz, CDCl₃) δ 159.6, 141.4 (d, *J*_{PC} = 27.9 Hz), 138.5 (d, *J*_{PC} = 94.2 Hz), 136.7 (d,

 $J_{PC} = 20.0 \text{ Hz}$), 133.6 (d, $J_{PC} = 10.7 \text{ Hz}$), 133.1 (d, $J_{PC} = 2.1 \text{ Hz}$), 132.5 (d, $J_{PC} = 108.2 \text{ Hz}$), 132.1 (d, $J_{PC} = 2.9 \text{ Hz}$), 130.6 (d, $J_{PC} = 10.7 \text{ Hz}$), 129.8, 129.2, 128.9 (d, $J_{PC} = 18.7 \text{ Hz}$), 128.9 (d, $J_{PC} = 2.3 \text{ Hz}$), 128.7 (d, $J_{PC} = 12.3 \text{ Hz}$), 124.5 (d, $J_{PC} = 9.5 \text{ Hz}$), 119.1 (d, $J_{PC} = 6.2 \text{ Hz}$), 114.7, 111.5 (d, $J_{PC} = 6.6 \text{ Hz}$), 55.0. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 38.9. HRMS (DCI-CH₄): m/z calcd for C₂₁H₁₈O₂P [M + H]⁺: 333.1044, Found: 333.1037.

2-(4-chlorophenyl)-1-phenylphosphindole 1-oxide (2i)

The general procedure **C** was used to obtain **2i** yield 90% (75.7 mg), 15h, light yellow solid. ¹H NMR (**300** MHz, CDCl₃) δ 7.79 – 7.70 (m, 2H), 7.67 – 7.27 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ 141.4 (d, $J_{PC} = 27.8$ Hz), 138.2, 137.0, 135.6 (d, $J_{PC} = 152.6$ Hz), 133.2 (d, $J_{PC} = 2.2$ Hz), 133.2, 132.3 (d, $J_{PC} = 2.9$ Hz), 131.4 (d, $J_{PC} = 51.7$ Hz), 130.6 (d, $J_{PC} = 7.5$ Hz), 130.5 (d, $J_{PC} = 52.7$ Hz), 129.3, 129.0 (d, $J_{PC} = 13.3$ Hz), 129.1, 128.9 (d, $J_{PC} = 12.5$ Hz), 127.7 (d, $J_{PC} = 6.4$ Hz), 124.7 (d, $J_{PC} = 9.6$ Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 39.0. HRMS (DCI-CH4): m/z calcd for C₂₀H₁₅OPCl [M + H]⁺: 337.0549, Found: 337.0545.

1-phenyl-2-(4-(trifluoromethyl)phenyl)phosphindole 1-oxide (2j)^[2]

The general procedure **C** was used to obtain **2j**: yield 79% (73.4 mg), 23h, white solid. ¹H NMR (**300** MHz, **CDCl**₃) δ 7.82 – 7.35 (m, 14H). ¹³C NMR (**75** MHz, **CDCl**₃) δ 141.1 (d, $J_{PC} = 27.4$ Hz), 138.6 (d, $J_{PC} = 19.8$ Hz), 137.6 (d, $J_{PC} = 94.7$ Hz), 136.0 (d, $J_{PC} = 10.9$ Hz), 133.4 (d, $J_{PC} = 2.2$ Hz), 132.5 (d, $J_{PC} = 2.9$ Hz), 132.7 (d, $J_{PC} = 108.6$ Hz), 130.2, 129.9 (d, JI = 123.2 Hz, J2 = 10.8 Hz), 129.9, 129.7 (d, $J_{PC} = 10.6$ Hz), 129.3, 128.6, 126.7 (d, $J_{PC} = 6.1$ Hz), 125.9 (q, $J_{PC} = 3.8$ Hz), 125.1 (d, $J_{PC} = 9.5$ Hz), 123.9 (d, $J_{PC} = 270.2$ Hz). ³¹P{¹H} NMR (**121** MHz, **CDCl**₃) δ 38.9. ¹⁹F NMR (**282** MHz, **CDCl**₃) δ 62.8.

2-(4-fluorophenyl)-1-phenylphosphindole 1-oxide (2k)

The general procedure **C** was used to obtain **2k**: yield 89% (71.3 mg), 15h, white solid. ¹H NMR (**300** MHz, **CDCl**₃) δ 7.77 – 7.26 (m, 12H), 6.99 (t, *J* = 8.7 Hz, 2H). ¹³C NMR (**75** MHz, **CDCl**₃) δ 162.9 (d, *J*_{PC} = 248.1 Hz), 141.5 (d, *J*_{PC} = 27.9 Hz), 137.7 (d, *J*_{PC} = 94.0 Hz), 136.3 (d, *J*_{PC} = 2.3 Hz), 136.0 (d, *J*_{PC} = 2.3 Hz), 133.2 (d, *J*_{PC} = 2.1 Hz), 131.0 (q, *J*_{FC} = 108.5 Hz), 132.3 (d, *J*_{PC} = 2.9 Hz), 130.7 (d, *J*_{PC} = 10.7 Hz), 129.0 (d, *J*_{PC} = 10.1 Hz), 128.9 (d, *J*_{PC} = 12.2 Hz), 128.7 (d, *J*_{PC} = 3.4 Hz), 128.4 (d, *J*_{PC} = 6.2 Hz), 128.3 (d, *J*_{PC} = 6.2 Hz), 124.6 (d, *J*_{PC} = 9.7 Hz), 116.0 (d, *J*_{PC} = 21.8 Hz). ³¹P{¹H} NMR (121 MHz, **CDCl**₃) δ 39.1.¹⁹F NMR (282 MHz, CDCl₃) δ -111.5. HRMS (DCI-CH4): m/z calcd for C₂₀H₁₅OFP [M + H]⁺: 321.0845, Found: 321.0839.

2-([1,1'-biphenyl]-4-yl)-1-phenylphosphindole 1-oxide (2l)

The general procedure **C** was used to obtain **2**I: yield 97% (91.5 mg), 18h, light yellow solid. ¹H NMR (**300** MHz, **CDCl**₃) δ 7.83 – 7.76 (m, 4H), 7.69 – 7.29 (m, 15H). ¹³C NMR (**75** MHz, **CDCl**₃) δ 141.6 (d, *J*_{PC} = 30.0 Hz), 140.8 (d, *J*_{PC} = 94.7 Hz), 138.2 (d, *J*_{PC} = 94.1 Hz), 136.3, 136.1, 133.2 (d, *J*_{PC} = 2.0 Hz), 132.6 (d, *J*_{PC} = 108.3 Hz), 132.2 (d, *J*_{PC} = 3.0 Hz), 131.4 (d, *J*_{PC} = 12.2 Hz), 130.7 (d, *J*_{PC} = 10.7 Hz), 129.9 (d, *J*_{PC} = 97.5 Hz), 129.0, 128.9, 128.9 (d, *J*_{PC} = 12.2 Hz), 128.7, 127.5, 127.5, 126.9 (d, *J*_{PC} = 6.5 Hz), 126.8, 124.6 (d, *J*_{PC} = 9.5 Hz). ³¹P{¹H} NMR (**121** MHz, **CDCl**₃) δ 39.2. HRMS (**DCI-CH**₄): m/z calcd for C₂₆H₂₀OP [M + H]⁺: 379.1252, Found: 379.1245.

2-(cyclohex-1-en-1-yl)-1-phenylphosphindole 1-oxide (2m)

The general procedure **C** was used to obtain **2m**: yield 94% (71.6 mg), 4 h, white solid. ¹**H NMR** (**300 MHz**, **CDCl**₃) δ 7.70 – 7.62 (m, 2H), 7.49 – 7.32 (m, 5H), 7.26 – 7.14 (m, 2H), 6.98 (d, *J* = 36.6 Hz, 1H), 6.29 (s, 1H), 2.31 – 1.93 (m, 4H), 1.72 – 1.43 (m, 4H). ¹³**C NMR** (**75 MHz**, **CDCl**₃) δ 141.9 (d, *J*_{PC}

= 28.5 Hz), 140.5 (d, J_{PC} = 92.6 Hz), 133.0 (d, J_{PC} = 5.5 Hz), 132.8 (d, J_{PC} = 2.0 Hz), 132.8 (d, J_{PC} = 20.7 Hz), 132.4 (d, J_{PC} = 124.8 Hz), 131.8 (d, J_{PC} = 2.9 Hz), 130.6 (d, J_{PC} = 8.8 Hz), 130.3, 130.3 (d, J_{PC} = 10.8 Hz), 128.6 (d, J_{PC} = 12.2 Hz), 128.5 (d, J_{PC} = 10.2 Hz), 128.2 (d, J_{PC} = 10.5 Hz), 124.0 (d,

 $J_{PC} = 9.5 \text{ Hz}$, 25.9, 25.6 (d, $J_{PC} = 7.2 \text{ Hz}$), 22.0, 21.6. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 39.1. HRMS (DCI-CH₄): m/z calcd for C₂₀H₂₀OP [M + H]⁺: 307.1252, Found: 307.12459.

phenyl-2-(thiophen-2-yl)phosphindole 1-oxide (2n)

The general procedure **C** was used to obtain **2n** yield 73% (56.3 mg), 60 h, light yellow solid. ¹H NMR (**300** MHz, CDCl₃) δ 7.80 – 7.72 (m, 2H), 7.62 – 7.56 (m, 1H), 7.52 – 7.21 (m, 9H), 6.94 – 6.91 (m, 1H). ¹³C NMR (**75** MHz, CDCl₃) δ 141.9 (d, $J_{PC} = 27.5$ Hz), 135.9 (d, $J_{PC} = 14.6$ Hz), 134.1 (d, $J_{PC} = 19.1$ Hz), 133.5

(d, $J_{PC} = 94.0 \text{ Hz}$), 133.3 (d, $J_{PC} = 2.2 \text{ Hz}$), 132.3 (d, $J_{PC} = 3.0 \text{ Hz}$), 131.8 (d, $J_{PC} = 108.6 \text{ Hz}$), 130.8 (d, $J_{PC} = 11.0 \text{ Hz}$), 130.2, 129.1 (d, $J_{PC} = 10.5 \text{ Hz}$), 128.9, 128.9 (d, $J_{PC} = 12.4 \text{ Hz}$), 128.7 (d, $J_{PC} = 10.7 \text{ Hz}$), 127.6 (d, $J_{PC} = 3.8 \text{ Hz}$), 127.2 (d, $J_{PC} = 140.9 \text{ Hz}$), 124.4 (d, $J_{PC} = 9.6 \text{ Hz}$). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 38.3. HRMS (DCI-CH₄): m/z calcd for C₁₈H₁₄OPS [M + H]⁺: 309.0503, Found: 309.0512.

1-phenylphosphindole 1-oxide (2o)^[3]

The general procedure **C** was used to obtain **20**: yield 40% (21.8 mg), 4h, light yellow oil. ¹H NMR (**300** MHz, CDCl₃) δ 7.75 – 7.68 (m, 2H), 7.61 (t, *J* = 6.9Hz, 1H), 7.52 – 7.33 (m, 7H), 6.45 (dd, *J*₁ = 25.8 Hz, *J*₂ = 8.4 Hz, 1H). ¹³C NMR (**75** MHz, CDCl₃) δ 145.3 (d, *J*_{PC} = 13.0 Hz), 141.9 (d, *J*_{PC} = 31.1 Hz), 132.9 (d, *J*_{PC} = 1.95 Hz), 132.2 (d, *J*_{PC} = 2.9 Hz), 132.1 (d, *J*_{PC} = 107.3 Hz), 130.7 (d, *J*_{PC} = 10.8 Hz), 129.6, 129.2 (d, *J*_{PC} = 40.7 Hz), 128.8, 128.6, 126.4 (d, *J*_{PC} = 95.7 Hz), 124.8 (d, *J*_{PC} = 9.9 Hz). ³¹P{¹H} NMR (**121** MHz, CDCl₃) δ 41.2.

6-methyl-1,2-diphenylphosphindole 1-oxide (2q)

6-methoxy-1,2-diphenylphosphindole 1-oxide (2r)

The general procedure **C** was used to obtain **2r**: yield 97% (80.9 mg), 15h, light yellow solid. ¹**H NMR** (**300 MHz**, **CDCl**₃) δ 7.82 – 7.74 (m, 2H), 7.68 – 7.17 (m, 11H), 6.98 (dd, $J_1 = 8.1$ Hz, $J_2 = 1.8$ Hz, 1H), 3.78 (s, 3H). ¹³**C NMR**

(**75 MHz, CDCl**₃) δ 160.6 (d, J_{PC} = 13.4 Hz), 136.6 (d, J_{PC} = 20.0 Hz), 136.2 (d, J_{PC} = 95.8 Hz), 134.6

(d, $J_{PC} = 107.3 \text{ Hz}$), 133.9 (d, $J_{PC} = 27.9 \text{ Hz}$), 132.6 (d, $J_{PC} = 10.7 \text{ Hz}$), 132.1 (d, $J_{PC} = 2.9 \text{ Hz}$), 130.6 (d, $J_{PC} = 10.7 \text{ Hz}$), 129.9 (d, $J_{PC} = 97.5 \text{ Hz}$), 128.8 (d, $J_{PC} = 12.3 \text{ Hz}$), 128.77, 128.3, 126.1 (d, $J_{PC} = 6.5 \text{ Hz}$), 125.7 (d, $J_{PC} = 11.3 \text{ Hz}$), 118.1 (d, $J_{PC} = 2.0 \text{ Hz}$), 114.8 (d, $J_{PC} = 11.7 \text{ Hz}$), 55.5. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 39.4. HRMS (DCI-CH₄): m/z calcd for C₂₁H₁₈O₂P [M + H]⁺: 333.1044, Found: 333.1054.

1,2-diphenyl-6-(trifluoromethyl)phosphindole 1-oxide (2s)

The general procedure **C** was used to obtain **2s**: yield 89% (66.3 mg), 13h, light yellow solid. ¹**H** NMR (**300** MHz, CDCl₃) δ 7.85 (d, J = 9.6 Hz, 1H), 7.80 – 7.69 (m, 5H), 7.57 – 7.29 (m, 8H). ¹³**C** NMR (**75** MHz, CDCl₃) δ 144.8 (d, J_{PC} = 27.2 Hz), 141.6 (d, $J_{PC} = 93.4$ Hz), 134.9 (d, $J_{PC} = 18.8$ Hz), 133.8 (d, $J_{PC} = 107.6$ Hz), 132.7 (d, J_{PC} = 2.9 Hz), 131.9 (d, $J_{PC} = 10.4$ Hz), 130.7 (d, $J_{PC} = 10.8$ Hz), 130.4 (q, $J_{PC} = 1.7$ Hz), 130.1 (q, $J_{PC} = 11.0$ Hz), 129.6, 129.3, 129.1, 127.9, 126.8 (d, $J_{PC} = 6.4$ Hz), 126.6 (q, $J_{PC} = 179.6$ Hz) 125.8 (q, $J_{PC} = 3.8$ Hz), 124.6 (d, $J_{PC} = 9.4$ Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 38.3. ¹⁹F NMR (282 MHz, CDCl₃) δ -62.6. HRMS (DCI-CH4): m/z calcd for C₂₁H₁₅F₃OP [M + H]⁺: 371.0831, Found: 371.0806.

7-methyl-1,2-diphenylphosphindole 1-oxide (2t)

 $\begin{array}{c} Me \\ P \\ Ph \\ Ph \\ Ph \\ Ph \\ Ph \\ H \\ H \\ NMR \\ (300 \\ MHz, \\ CDCl_3) \\ \delta \\ 7.73 \\ -7.66 \\ (m, 2H), \\ 7.61 \\ -7.10 \\ (m, 11H), \\ 6.97 \\ (dd, \\ J_1 \\ = \\ 7.5 \\ Hz, \\ J_2 \\ = \\ 5.1 \\ Hz, \\ 1H), \\ 2.26 \\ (s, 3H). \\ {}^{13}C \\ NMR \\ (75 \\ MHz, \\ CDCl_3) \\ \delta \\ 141.7 \\ (d, \\ J \\ = \\ 28.4 \\ Hz), \\ 141.1 \\ (d, \\ J \\ = \\ 9.5 \\ Hz), \\ 138.4 \\ (d, \\ J \\ = \\ 94.3 \\ Hz), \\ 136.5 \\ (d, \\ J \\ = \\ 100 \\ Hz), \\ 100$

20.3 Hz), 133.2 (d, J = 1.8 Hz), 132.5 (d, J = 10.7 Hz), 132.0 (d, J = 2.8 Hz), 130.8, 130.7 (d, J = 107.5 Hz), 130.7, 130.6, 128.8 (d, J = 12.2 Hz), 128.8, 128.6, 126.5 (d, J = 6.2 Hz), 122.1 (d, J = 9.6 Hz), 19.1 (d, J = 4.4 Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 39.3. HRMS (DCI-CH₄): m/z calcd for C₂₁H₁₈OP [M + H]⁺: 317.1095, Found: 317.1097.

1-(3,5-bis(trifluoromethyl)phenyl)-2-phenylphosphindole 1-oxide (2u)

The general procedure **C** was used to obtain **2u**: yield 97% (106.0 mg), 9h, white solid. ¹**H NMR** (**300 MHz**, **CDCl**₃) δ 8.09 (d, J = 11.7 Hz, 2H), 7.87 (s, 1H), 7.87 – 7.18 (m, 10H). ¹³**C NMR** (75 MHz, CDCl₃) δ 141.4 (d, $J_{PC} = 29.6$ Hz), 137.6 (d, $J_{PC} = 21.1$ Hz), 135.9 (dd, $J_{Fc1} = 233.9$ Hz, $J_{Fc2} = 95.9$ Hz), 134.2 (d, $J_{PC} = 2.0$ Hz), 133.0 (dd, $J_{Fc1} = 101.2$ Hz, $J_{Fc2} = 12.1$ Hz), 132.4 (dd, $J_{Fc1} = 23.2$ Hz), 132.4 (dd, $J_{Fc1} = 2.0$ Hz), 132.4 (dd, J_{Fc1} = 2.0 Hz), 132.4 (dd

33.6 Hz, J_{Fc2} = 12.1 Hz), 131.6 (t, J_{PC} = 9.9 Hz), 130.9 (m), 130.0,129.5 (t, J_{PC} = 10.9 Hz), 129.4, 129.2, 129.1, 126.4 (d, J_{PC} = 6.5 Hz), 126.0 (m), 125.2 (d, J_{PC} = 9.9 Hz), 122.7 (d, J_{PC} = 271.6 Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ35.9. ¹⁹F NMR (282 MHz, CDCl₃) δ-62.9. HRMS (DCI-CH₄): m/z calcd for C₂₂H₁₄F₆OP [M + H]⁺: 439.0681, Found: 439.0703.

1-isopropyl-2-phenylphosphindole 1-oxide (2v)

The general procedure **C** was used to obtain **2v**: yield 99% (67.0 mg), 33h, white solid. ¹H NMR (**300** MHz, **CDCl**₃) δ 7.82 (d, *J* = 7.5 Hz, 2H), 7.71 (t, *J* = 7.5 Hz, 1H), 7.50 – 7.30 (m, 7H), 2.39 – 2.24 (m, 1H), 1.27 (dd, *J*₁ = 16.5 Hz, *J*₂ = 7.2 Hz, 3H), 0.85 (dd, *J*₁ = 18.3 Hz, *J*₂ = 7.2 Hz, 3H). ¹³C NMR (**75** MHz, **CDCl**₃) δ 141.9 (d, *J*_{PC} = 25.7 Hz), 136.8 (d, *J*_{PC} = 86.1 Hz), 136.4 (d, *J*_{PC} = 17.9 Hz), 133.7 (d, *J*_{PC} = 10.4 Hz), 132.9 (d, *J*_{PC} = 2.0 Hz), 129.5 (d, *J*_{PC} = 98.6 Hz), 129.2 (d, *J*_{PC} = 9.3 Hz), 128.9, 128.8, 128.4 (d, *J*_{PC} = 9.6 Hz), 126.5 (d, *J*_{PC} = 5.7 Hz), 124.5 (d, *J*_{PC} = 8.9 Hz), 28.0 (d, *J*_{PC} = 66.6 Hz), 15.4, 15.1 (d, *J*_{PC} = 2.4 Hz). ³¹P{¹H} NMR (**121** MHz, **CDCl**₃) δ 57.5. HRMS (**DCI-CH**4): m/z calcd for C₁₇H₁₈OP [M + H]⁺: 269.1095, Found: 269.1093.

1-ethoxy-2-phenylphosphindole 1-oxide (2w)

An oven -dried Schlenk tube under Ar atmosphere was charged with secondary phosphine oxide **1w** (0.25 mmol, 1.0 eq., 67.6 mg), AgSbF₆ (20 mol%, 17.2 mg) and toluene (2 mL). The mixture was stirred at 120°C for 16h. Upon completion, the solvent was evaporated under reduced pressure and the residue was purified by chromatography on silica gel (Pentane/EA = 2/1 to 1/1) to afford the desired light yellow oil benzophosphorous product **2w** (yield 52%, 34.9 mg).

¹H NMR (300 MHz, CDCl₃) δ 7.81 – 7.78 (m, 2H), 7.70 – 7.64 (m, 1H), 7.51 – 7.26 (m, 7H), 4.09 – 3.99 (m, 2H), 1.25 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 139.8 (d, *J*_{PC} = 35.4 Hz), 135.5 (d, *J*_{PC} = 25.8 Hz), 134.4 (d, *J*_{PC} = 122.7 Hz), 133.3 (d, *J*_{PC} = 2.2 Hz), 132.2 (d, *J*_{PC} = 10.0 Hz), 129.0, 129.0 (d, *J*_{PC} = 11.0 Hz), 127.8 (d, *J*_{PC} = 9.5 Hz), 126.5 (d, *J*_{PC} = 6.8 Hz), 124.8 (d, *J*_{PC} = 11.5 Hz), 62.1 (d, *J*_{PC} = 6.3 Hz), 16.4 (d, *J*_{PC} = 6.5 Hz). ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 46.0. HRMS (ESI): m/z calcd for C₁₆H₁₆O₂P [M + H]⁺: 271.0888, Found: 271.0888.

By-product: Phosphaisocoumarin

1,3-diphenylbenzo[c][1,2]oxaphosphinine 1-oxide (3a)

¹H NMR (300 MHz, CDCl₃) δ 7.89 – 7.78 (m, 4H), 7.62 – 7.34 (m, 10H), 6.77 (d, J = 1.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 149.6 (d, $J_{PC} = 10.4$ Hz), 136.4 (d, $J_{PC} = 5.6$ Hz), 133.2 (d, $J_{PC} = 5.6$ Hz), 132.8 (d, $J_{PC} = 3.4$ Hz), 131.8 (d, $J_{PC} = 11.2$ Hz), 131.4, 130.3 (d, $J_{PC} = 12.2$ Hz), 129.5, 128.4 (d, $J_{PC} = 14.0$ Hz), 128.4, 127.7

(d, $J_{PC} = 14.2 \text{ Hz}$), 127.0 (d, $J_{PC} = 9.4 \text{ Hz}$), 125.1, 123.3, 121.6, 103.6 (d, $J_{PC} = 11.5 \text{ Hz}$). ³¹P{¹H} NMR (**121 MHz, CDCl**₃) δ 26.3. **HRMS (DCI-CH**₄): m/z calcd for C₂₀H₁₅O₂P [M + H]⁺: 319.0888, Found: 319.0886.

4. Scale-up experiment

An oven-dried Schlenk tube under Ar atmosphere was charged with secondary phosphine oxide **1a** (10.0 mmol, 1.0 eq., 3.02 g), AgSbF₆ (5 mol%, 171.8 mg) and toluene (12 mL). The mixture was stirred at 80°C for 5h. Upon completion, the solvent was evaporated under reduced pressure and the residue was purified by chromatography on silica gel to afford the BPO **2a** (yield: 90%, 2.72 g).

5. Mechanistic studies

a. Radical quenching experiments:

Figure S3. The effect of adding TEMPO on the reaction.

Control experiment 1: (blue line): An oven-dried Schlenk tube under Ar atmosphere was charged with secondary phosphine oxide 1a (0.25 mmol, 1.0 eq., 75.6 mg), AgSbF₆ (5 mol%, 4.3 mg), TEMPO (5 mol%, 2.0 mg) and toluene (2 mL). The mixture was stirred at 80°C and the progress of the reaction was controlled by ${}^{31}P{H}$ NMR.

Control experiment 2: (orange line): An oven-dried Schlenk tube under Ar atmosphere was charged with secondary phosphine oxide 1a (0.25 mmol, 1.0 eq., 75.6 mg), AgSbF₆ (5 mol%, 4.3 mg) and

toluene (2 mL). The mixture was stirred at 80°C for 4 h. Then, TEMPO (5 mol%, 2.0 mg) was added to the reaction mixture and the progress of the reaction at 80°C was monitoreded by ${}^{31}P{H}$ NMR.

b. Deuterium labeling experiments

Preparation of **1a-D** according to reference.^[9]

(a): A dried flask (25 mL) was rinsed with CD_3OD twice, and then charged with **1a** (75.6 mg, 0.25 mmol). CD_3OD (99.8 % D, 2 mL) was added and the mixture was slowly concentrated using rotatory evaporator. The residual solvent was evaporated with high vacuum, this process was repeated six times, the product was used directly in the next step (b).

(b): An oven-dried Schlenk tube under Ar atmosphere was charged with **D-1a** (0.25 mmol, 1.0 eq., 75.8 mg), AgSbF₆ (5 mol%, 4.3 mg) and toluene (2 mL). The mixture was stirred at 80°C and the progress of the reaction was monitored by ³¹P NMR. Upon completion, the solvent was evaporated under reduced pressure and the residue was purified by filtration to afford the desired light yellow solid product **D-2a**, yield 92%, 69.5 mg, ~72% **D**.

Figure S4. ¹H NMR spectrum of 2a with the identified H3 in the red circle.

(c): An oven-dried Schlenk tube under Ar atmosphere was charged with secondary phosphine oxide **1a** (0.25 mmol, 1.0 eq., 75.6 mg), AgSbF₆ (5 mol%, 4.3 mg) and toluene-D₈ (2 mL). The mixture was stirred at 80°C and the progress of the reaction was monitored by ³¹P NMR. Upon completion, the solvent was evaporated under reduced pressure and the residue was purified by chromatography on silica gel (Pentane/EA = 2/1 to 1/1) to afford the desired light yellow solid product **2a**, yield 93%, 70.1 mg, >96% H.

c. General procedure for the radical trapping experiments:

An oven-dried Schlenk tube under Ar atmosphere was charged with **1a** (0.25 mmol, 1.0 eq., 75.6 mg), AgSbF₆ (15 mol%, 12.9 mg) and ^{*t*}BuPh (2 mL). The mixture was stirred at 80°C for 1h, followed by the addition of DMPO (0.25 mmol, 1.0 eq., 28.3mg) and stirred at RT for 5 min. Then, the reaction was taken out some samples and was analyzed by ESR at RT. This result was shown in Figure 2 in the main text.

Figure S5. Electron spin resonance (ESR) spectra of the adduct between Diphenylphosphine oxide and DMPO.

6. Figures complementary to main text

Figure S6. Comparison of the main synthetic routes developed to access benzophosphole oxides with schematic representation of the key intermediates involved in each case.

Figure S7. Representative examples comparing the intermolecular and intramolecular routes to benzophosphole oxides in terms of regioselectity.

Figure S8. Derivatization of benzophosphole oxide brominated at C-2 by Pd-catalyzed CC coupling.^[13]

7. General procedures for the C-H vinylation reaction^[14]

An oven-dried Schlenk tube under Ar atmosphere was charged with 1-phenylphosphindole 1-oxide **2j** (0.25 mmol, 1.0 eq., 56.6 mg), 4-Methylstyrene (0.5 mmol, 2.0 eq., 66 uL), Pd(OAc)₂ (0.025 mmol, 10 mol%, 5.6 mg), AgTFA (0.5 mmol, 2.0 eq., 110 mg), NaHCO₃ (0.5 mmol, 2.0 eq., 42.0 mg) and 1,4-dioxane (2 mL). The mixture was stirred at 110°C for 7 h, Add Pd(OAc)₂ (0.025 mmol, 10 mol%, 5.6 mg), AgTFA (0.5 mmol, 2.0 eq., 110 mg) again, continue stirring the mixture at 110°C for 13 h. The resulting mixture was cooled to room temperature and then quenched with water and brine, the residue was extracted with EA (15 mL×3) and the combined organic fractions were dried over anhydrous Na₂SO₄, the solvent was evaporated under reduced pressure and the residue was purified by chromatography on silica gel (Pentane/EA = 2/1 to 1/1) to afford the desired product **2ja** as a yellow solid, yield 90%, 77.4 mg.

(E)-2-(4-methylstyryl)-1-phenylphosphindole 1-oxide (2oa)

Yield 90% (77.4 mg), yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 7.83 ^{Me} - 7.76 (m, 2H), 7.64 - 7.59 (m, 1H), 7.52 - 7.43 (m, 4H), 7.36 - 6.92 (m, 2H), 2.22 (-2H), ¹³C NMP (755 MHz, CDCl)) δ 142.2 (1-4), 27.4

9H), 2.33 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 142.2 (d, Jpc = 27.4 Hz), 139.1, 138.4, 138.2, 137.9, 135.2 (d, Jpc = 5.0 Hz), 133.8, 133.1 (d, Jpc = 2.2 Hz), 132.2 (d, Jpc = 2.9 Hz), 131.5 (q, Jpc = 98.2 Hz), 130.6 (d, Jpc = 10.8 Hz), 129.3, 128.9 (d, Jpc = 10.2 Hz), 128.8 (d, Jpc = 12.2 Hz), 128.7 (d, Jpc = 10.7 Hz), 126.7, 124.3 (d, Jpc = 9.5 Hz), 120.9 (d, Jpc = 9.9 Hz), 21.2. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 38.0. HRMS (DCI-CH4): m/z calcd for C₂₃H₂₀OP [M + H]⁺: 343.1252, Found: 343.1247.

(E)-2-(4-methoxystyryl)-1-phenylphosphindole 1-oxide (2ob)

Yield 94% (84.5 mg), yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 7.83 OMe - 7.82 (m, 2H), 7.64 - 7.57 (m, 1H), 7.55 - 7.40 (m, 4H), 7.39 - 6.82 (m, 9H), 3.81 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 159.9, 142.3 (d, Jpc =

27.6 Hz), 138.6 (d, Jpc = 92.6 Hz), 137.6, 137.3, 134.8 (d, Jpc = 5.2 Hz), 133.1 (d, Jpc = 2.0 Hz), 132.2 (d, Jpc = 2.9 Hz), 131.5 (q, Jpc = 97.7 Hz), 130.6 (d, Jpc = 10.7 Hz), 129.4, 128.9 (d, Jpc = 10.2 Hz), 128.8 (d, Jpc = 12.3 Hz), 128.6 (d, Jpc = 10.6 Hz), 128.2, 124.2 (d, Jpc = 9.4 Hz), 119.8 (d, Jpc = 9.9 Hz), 114.0, 55.3. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 38.0. HRMS (DCI-CH4): m/z calcd for C₂₃H₂₀O₂P [M + H]⁺: 359.1201, Found: 359.1216.

ethyl (E)-3-(1-oxido-1-phenylphosphindol-2-yl)acrylate (2oc)

Yield 73% (59.4 mg), light yellow oil.¹H NMR (300 MHz, CDCl₃) δ 7.72 – 7.36 (m, 11H), 6.24 (d, J = 15.9 Hz, 1H), 4.20 – 4.10 (m, 2H), 1.24 (t, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.3, 145.5 (d, $J_{PC} = 20.0$ Hz), 141.0 (d, $J_{PC} = 26.6$ Hz), 136.2 (d, $J_{PC} = 9.5$ Hz), 134.9 (q, $J_{PC} = 107.5$ Hz), 133.3 (d, $J_{PC} = 2.0$ Hz), 132.6 (d, $J_{PC} = 2.9$ Hz), 131.2 (d, $J_{PC} = 10.8$ Hz), 130.6 (d, $J_{PC} = 11.0$ Hz), 130.4 (d, $J_{PC} = 10.7$ Hz), 129.2 (d, $J_{PC} = 10.3$ Hz), 129.0 (d, $J_{PC} = 12.5$ Hz), 128.9 (d, $J_{PC} = 99.2$ Hz), 125.6 (d, $J_{PC} = 9.3$ Hz), 123.6 (d, $J_{PC} = 4.2$ Hz), 60.6, 14.1. ³¹P{¹H} NMR (121 MHz, CDCl₃) δ 41.4. HRMS (DCI-CH4): m/z calcd for C₁₉H₁₈O₃P [M + H]⁺: 325.0994, Found: 325.1002.

8. Crystallographic Data

Crystallographic data were collected at low temperature (193(2) K) on a Bruker D8 VENTURE diffractometer equipped with a PHOTON III detector, using MoK_{α} radiation ($\lambda = 0.71073$ Å). Phi and Omega scans were performed for data collection. An empirical absorption correction was applied^[15] and the structures were solved by intrinsic phasing method (ShelXT).^[16] All non-hydrogen atoms were refined anisotropically by means of least-squares procedures on F² with ShelXL.^[17]

Crystallographic data (excluding structure factors) have been deposited to the Cambridge Crystallographic Data Centre as supplementary publication CCDC 2332940. These data can be obtained free of charge via www.ccdc.cam.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Procedure for preparation of the crystals: The product **2l** (50 mg) was dissolved in DCM and filtered through a pad of filter paper. The filtrate was then transferred into several test-tubes by different volumes. Then to these solutions was added hexane in dropwise. These samples were allowed to be evaporated slowly at room temperature, which would eventually give crystals on the surface of the tubes.

ID	21				
formula	$C_{26}H_{19}OP$				
M_r	378.38				
crystal system	monoclinic				
space group	$P2_{1}/c$				
<i>a</i> (Å)	9.5610(7)				
<i>b</i> (Å)	8.7992(7)				
<i>c</i> (Å)	23.2962(14)				
α (°)	90				
β (°)	90.14(3)				
γ (°)	90				
$V(Å^3)$	1959.9(2)				
Ζ	4				
$ ho_{ m calc}~({ m g~cm^{-3}})$	1.559				
$\mu \ (\mathrm{mm}^{-1})$	3.459				
F(000)	2144				
crystal size (mm ³)	0.34 x 0.22 x 0.20				
T/K	193(2)				
measd reflns	27187				
Unique reflns (Rint)	3910 (0.0308)				
Data/restraints/param eters	3910 / 0 / 253				
GOF on F ²	1.031				
R_1^a [I>2 σ (I)]	0.0376				
wR_2^b [all data]	0.1102				
^a $R_1 = \Sigma F_o - F_c / \Sigma F_o $. ^b $wR_2 = [\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]]^{1/2}$					

Crystal Data, Data Collection, and Structure Refinement for 2l.

9. References

- K. Naveen, P. T. Perumal, D. H. Cho, Domino Palladium-Catalyzed Double Norbornene Insertion/Annulation Reaction: Expeditious Synthesis of Overcrowded Tetrasubstituted Olefins, *Org. Lett.*, 2019, 21, 4350–4354.
- [2] T. Ishida, S. Kikuchi, T. Tsubo, T. Yamada, Silver-Catalyzed Incorporation of Carbon Dioxide into o-Alkynylaniline Derivatives, Org. Lett., 2013, 15, 848-851.
- [3] M. Chen, N. Su, T. Deng, D. J. Wink, Y. Zhao, T. G. Driver, Controlling the Selectivity Patterns of Au-Catalyzed Cyclization–Migration Reactions, *Org. Lett.*, 2019, 21, 1555–1558.
- [4] W. Hu, E. Li, Z. Duan, F. Mathey, Concise Synthesis of Phospholene and Its P-Stereogenic Derivatives, J. Org. Chem. 2020, 85, 14772–14778.
- [5] X. Lin, Z. Gan, J. Lu, Z. Su, C. Hu, Y. Zhang, Y. Wu, L. Gao, Z. Song, Visible light-promoted radical cyclization of silicon-tethered alkyl iodide and phenyl alkyne. An efficient approach to synthesize benzosilolines, *Chem. Commun.*, 2016, 52, 6189–6192.
- [6] T. Sanji, K. Shiraishi, T. Kashiwabara, M. Tanaka, Base-Mediated Cyclization Reaction of 2-Alkynylphenylphosphine Oxides: Synthesis and Photophysical Properties of Benzo[*b*]phosphole Oxides *Org. Lett.*, 2008, 10, 2689–2692.
- [7] C. F. Czauderna, A. M. Slawin, D. B. Cordes, J. I. van der Vlugt, P. C. Kamer, P-stereogenic wide bite angle diphosphine ligands, *Tetrahedron*, 2019, 75, 47–56.
- [8] E. E. Coyle, B. J. Doonan, A. J. Holohan, K. A. Walsh, F. Lavigne, E. H. Krenske, C. J. O'Brien, Catalytic Wittig Reactions of Semi- and Nonstabilized Ylides Enabled by Ylide Tuning, *Angew. Chem. Int. Ed.* 2014, 53, 12907– 12911.
- [9] Y. Liu, X. L. Chen, F. L. Zeng, K. Sun, C. Qu, L. L Fan, Y. F. Zhao, Phosphorus Radical-Initiated Cascade Reaction To Access 2-Phosphoryl-Substituted Quinoxalines, J. Org. Chem. 2018, 83, 11727–11735.
- [10] a) M. Huang, H. Huang, M. You, X. Zhang, L. Sun, C. Chen, Z. Mei, R. Yang and Q. Xiao, Direct air-induced arylphosphinoyl radicals for the synthesis of benzo[b]phosphole oxides, *Green Chem.*, 2024, 26, 295–299; b) W. Q. Liu, T. Lei, S. Zhou, X. L. Yang, J. Li, B. Chen, J. Sivaguru, C. H. Tung and L. Z. Wu, Cobaloxime Catalysis: Selective Synthesis of Alkenylphosphine Oxides under Visible Light, *J. Am. Chem. Soc.*, 2019, *141*, 13941–13947; c) V. Quint, F. Morlet-Savary, J.-F. Lohier, J. Lalevée, A.-C. Gaumont and S. Lakhdar, Metal-Free, Visible Light-Photocatalyzed Synthesis of Benzo[b]phosphole Oxides: Synthetic and Mechanistic Investigations, *J. Am. Chem. Soc.*, 2016, *138*, 7436–7441; d) W. Ma and L. Ackermann, Silver-Mediated Alkyne Annulations by C–H/P–H Functionalizations: Step-Economical Access to Benzophosphole Synthesis, 2014, *46*, 2297–2304; e) Y. Unoh, K. Hirano, T. Satoh and M. Miura, An Approach to Benzophosphole Oxides through Silver- or Manganese-Mediated Dehydrogenative Annulation Involving C–C and C–P Bond Formation, *Angew. Chem. Int. Ed.*, 2013, *52*, 12975–12979; f) Y. R. Chen and W. L. Duan, Silver-Mediated Oxidative C–H/P–H Functionalization: An Efficient Route for the Synthesis of Benzo[b]phosphole Oxides, *J. Am. Chem. Soc.*, 2013, *135*, 16754–16757; g) D. Ma, W. Chen, G. Hu, Y. Zhang, Y. Gao, Y. Yin and Y. Zhao, K₂S₂O₈-mediated metal-free direct P–H/C–H functionalization: a convenient route to benzo[b]phosphole oxides from unactivated alkynes, *Green Chem.*, 2016, *18*, 3522–3526.
- [11] a) B. Wu, R. Chopra and N. Yoshikai, One-Pot Benzo[*b*]phosphole Synthesis through Sequential Alkyne Arylmagnesiation, Electrophilic Trapping, and Intramolecular Phospha-Friedel–Crafts Cyclization, *Org. Lett.*, 2015, 17, 5666–5669; b) B. Wu, M. Santra and N. Yoshikai, A Highly Modular One-Pot Multicomponent Approach to Functionalized Benzo[*b*]phosphole Derivatives, *Angew. Chem. Int. Ed.*, 2014, *53*, 7543–7546.

- [12] K. Nishimura, Y. Unoh, K. Hirano and M. Miura, Phosphenium-Cation-Mediated Formal Cycloaddition Approach to Benzophospholes, *Chem. Eur. J.*, **2018**, *24*, 13089–13092.
- [13] Y. Matano, Y. Hayashi, K. Suda, Y. Kimura and H. Imahori, Synthesis of 2-Alkenyl- and 2-Alkynylbenzo[b]phospholes by Using Palladium-Catalyzed Cross-Coupling Reactions, Org. Lett., 2013, 15, 4458–4461.
- [14] Y. Tokura, S. Xu, Y. Kojima, M. Miura, K. Hirano, Pd-catalysed, Ag-assisted C2–H alkenylation of benzophospholes, *Chem. Commun.*, **2022**, 58, 12208-12211.
- [15] A. Sebastian, M. M. Hansmann, P. Motloch, M. Rudolph, F. Rominger, A. Stephen K. Hashmi, Intramolecular anti-Phosphinoauration of Alkynes: An FLP-Motivated Approach to Stable Aurated Phosphindolium Complexes, *Chem. Eur. J.*, 2017, 23, 2542-2547.
- [16] C. Li, H. Huang, F. Liu, C. Yuan, S. Chen, Y. Hua, R. Song, Q. Xiao, Synthesis of (Thio)Furan-Fused Phospholes via Phosphonation Cyclization and a Base-Promoted Phospha-Friedel–Crafts Reaction, *J. Org. Chem.* 2022, 87, 2632–2639.
- [17] A. K. Verma, R. R. Jha, R. Chaudhary, R. K. Tiwari, K. S. K. Reddy, A. Danodia, Copper-Catalyzed Tandem Synthesis of Indolo-, Pyrrolo[2,1-*a*]isoquinolines, Naphthyridines and Bisindolo/Pyrrolo[2,1-*a*]isoquinolines via Hydroamination of ortho-Haloarylalkynes Followed by C-2 Arylation, *J. Org. Chem.* **2012**, *77*, 8191–8205.
- [18] C. Körner, P. Starkov, T. D. Sheppard, An Alternative Approach to Aldol Reactions: Gold-Catalyzed Formation of Boron Enolates from Alkynes, J. Am. Chem. Soc., 2010, 132, 5968-5969.
- [19] Bruker, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2008.
- [20] G. M. Sheldrick, SHELXT Integrated space-group and crystalstructure determination, Acta Cryst. 2015, A71, 3-8.
- [21] G. M. Sheldrick, Crystal Structure Refinement with SHELXL, Acta Cryst. 2015, C71, 3-8.

5.0 134.0 133.0 132.0 131.0 130.0 129.0 128.0 127.0 126.0 125.0 124.0 123.0 122.0 121.0 120 f1 (ppm)

¹³C NMR spectrum of 1b (75 MHz, CDCl₃)

S36

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

³¹P{¹H} NMR spectrum of 1e (121 MHz, CDCl₃)

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

³¹P NMR spectrum of 1f (121 MHz, CDCl₃)

S46

 $^{31}P\{^{1}H\}$ NMR spectrum of 1h (121 MHz, CDCl_3)

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

³¹P{¹H} NMR spectrum of 1l (121 MHz, CDCl₃)

S67

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

³¹P NMR spectrum of 1p (121 MHz, CDCl₃

S72

90 70 50 10 -10 f1 (ppm) 110 30 -30 -50 -70 -90 -110 -130

³¹P{¹H} NMR spectrum of 1r (121 MHz, CDCl₃)

18 16 f1 (ppm) 14 12 10

8 6 4

2 0 -2 -4 -6

-8 -10

44 42 40 38 36 34 32 30 28 26 24 22 20

0.5 10.0

¹³C NMR spectrum of 1u (75 MHz, CDCl₃)

³¹P{¹H} NMR spectrum of 1u (121 MHz, CDCl₃)

¹H NMR spectrum of 1v (300 MHz, CDCl₃)

S86

³¹P{¹H} NMR spectrum of 1v (121 MHz, CDCl₃)

80 70 fl (ppm)

-

190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

¹³C NMR spectrum of 2a (75 MHz, CDCl₃)

S95

57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 1 f1 (ppm)

¹H NMR spectrum of 2d (300 MHz, CDCl₃)

¹³C NMR spectrum of 2f (75 MHz, CDCl₃)

¹³C NMR spectrum of 2i (75 MHz, CDCl₃)

³¹P{¹H} NMR spectrum of 2i (121 MHz, CDCl₃)

¹⁹F NMR spectrum of 2j (282 MHz, CDCl₃)

S111

¹⁹F NMR spectrum of 2s (282 MHz, CDCl₃)

S128

S129

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -1 F1 (ppm)

³¹P{¹H} NMR spectrum of 2v (121 MHz, CDCl₃)

¹³C NMR spectrum of 20a (75 MHz, CDCl₃)

³¹P{¹H} NMR spectrum of 20a (121 MHz, CDCl₃)

S142

³¹P{¹H} NMR spectrum of 2ob (121 MHz, CDCl₃)

