Supporting Information

Copper-Catalyzed Amine-Mediated Yne-Propargylic Substitution

Chunyun Jiang, ^{§,a} Defu Luo, ^{§,a} Xiangjian Meng,^e Qinqin Cui,^d Lili Zhao,^b Jinggong Liu, ^{*c} Shuang Yang,^b and Xinqiang Fang^{*a,b}

^aCollege of Chemistry, Fuzhou University, Fuzhou 350116, China.

^bState Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China.

^cOrthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China.

^dSchool of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China. ^eFujian Normal University, Fuzhou 350108, China.

[§]C. Jiang and D. Luo contributed equally to this work.

Ι	General information	S 1
II	1. Typical procedure for the preparation of substrates	
	2. Typical procedure for the preparation of products	S2
III	Procedures for the derivatizations of products	S 3
IV	Gram-scale reaction of 3a	S 4
V	Supplement of condition optimization	S 4
VI	Characterizations of new compounds	S 6
VII	¹ H NMR and ¹³ C NMR spectra of substrates and products	S25
VIII	HPLC analysis of 3a	S26

Table of Contents

I. General Information.

Commercially available materials were used as received, unless otherwise noted, all reactions and manipulations involving air- or moisture-sensitive compounds were performed using standard Schlenk technique. All solvents were purified and dried using standard procedures. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker AVANCE III HD400 (400 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm, δ) relative to tetramethylsilane (δ = 0.00 ppm) or chloroform (δ = 7.26 ppm). ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), dd (doublet of doublets); m (multiplet), and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker AVANCE III HD400 (400 MHz) (100 MHz) spectrometer. High resolution mass spectral analysis (HRMS) was performed on Thermo Fisher Scientific LTQ FT Ultra mass spectrometer. X-ray crystallography analysis was

performed on Agilent SuperNova X-ray diffractionmeter. Optical rotations were measured using a 1 mL cell with a 5dm path length on an INESA SGW-1polarimeter and are reported as follows: $[\alpha]^{rt}_{D}$ (c in g per 100 mL solvent). Analytical thin-layer chromatography (TLC) was carried out on WFH-203 F254 pre-coated silica gel plate (0.2 mm thickness). Visualization was performed using a UV lamp or 2,4-Dinitrophenylhydrazine or potassium permanganate stain.

II. 1. Typical procedure for the preparation of substrates

Generally, buta-1,3-diyn-1-yltriisopropylsilane **S2** (4 g, 19.2 mmol) in distilled THF (100 mL) was added to a Schlenk tube at -78 °C under argon atmosphere. Then *n*-BuLi (2.5 M in hexane, 7.8 mL, 19.6 mmol) was added via syringe. After stirring for 30 min, then benzaldehyde **S1** (1.3 mL, 12.8 mmol) was added at -78 °C and the reaction mixture was warmed to room temperature naturally. When the reaction was completed as monitored by TLC, the solution was quenched with saturated NH₄Cl solution. The product was extracted with ethyl acetate (100 ml × 3), and dried over anhydrous Na₂SO₄. After filtration and evaporation in vacuo, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1) to afford the product **S3** (3.6 g, 90% yield).

To a solution of **S3** (3.6 g, 11.5 mmol) in 460 mL of THF was added AcOH (0.72 mL, 12.8 mmol) and TBAF (3.6 g, 13.8 mmol) at 0 °C. When the reaction was completed as monitored by TLC, the solution was quenched with saturated NH₄Cl solution. The product was extracted with ethyl acetate (100 mL \times 3), and dried over anhydrous Na₂SO₄. After filtration and evaporation in vacuo, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1) to afford the product **S4** (1.2 g, 67% yield).

To a solution of S4 (1.2 g, 7.7 mmol) in 39 mL of CH_2Cl_2 was added Et_3N (3.2 mL, 23 mmol), DMAP (125 mg, 0.77 mmol) and Boc₂O (2.5 g, 11.6 mmol) at 0 °C. When the reaction was completed as monitored by TLC, the solution was quenched with saturated NH₄Cl solution. The product was extracted with CH_2Cl_2 (20 mL × 3), and dried over anhydrous Na₂SO₄. After filtration and evaporation in vacuo, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 50:1) to afford the product **1a** (1.7 g, 85% yield).

2. Typical procedure for the preparation of products

Cu(OTf)₂ (36 mg, 0.1 mmol) and *rac*-L5 (46 mg, 0.12 mmol) in distilled toluene (5 mL) were added to a Schlenk tube at room temperature under argon atmosphere, and stirring for 1 h. Then a solution of **1a** (256 mg, 1 mmol), **2a** (140 μ L, 1.2 mmol) and Et₂NMe (145 μ L, 1.2 mmol) in distilled toluene (28 mL) was added via syringe. After stirring for 24 h, when the reaction was completed as monitored by TLC, the solution was quenched carefully with saturated NH₄Cl solution. The product was extracted with ethyl acetate (25 mL × 3), and dried over anhydrous Na₂SO₄. After filtration and evaporation in vacuo, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1) to afford the product **3a** (210 mg, 91% yield).

3x–3z' were synthesized according to reported procedures.^[1]

III. Procedures for the derivatizations of products

In a flask were placed **3a** (231 mg, 1 mmol), 10% Pd/C (42 mg) and 5 mL MeOH. Then the mixture was stirred using a magnetic stirrer at room temperature under a hydrogen atmosphere for 12 h. When the reaction was completed as monitored by TLC, the ethyl acetate was added, and then the mixture was passed through a membrane filter. After filtration and evaporation in vacuo, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1) to afford the product **4a** (190 mg, 80% yield).

4-Iodoanisole (234 mg, 1 mmol) and **3a** (231 mg. 1 mmol) were dissolved in THF (10 mL), and Et₃N (420 μ L, 3 mmol), Pd(PPh₃)₄ (58 mg, 0.05 mmol) and CuI (19 mg, 0.1 mmol) were added. The mixture was stirred at room temperature under argon atmosphere for 8 h. When the reaction was completed as monitored by TLC, the solution was quenched carefully with saturated NH₄Cl solution and then warmed to room temperature. The product was extracted with ethyl acetate (50 mL \times 3), and dried over anhydrous Na₂SO₄. After filtration and evaporation in vacuo, the residue

was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 15:1) to afford the product **4b** (250 mg, 74% yield).

CuI (19 mg, 0.1 mmol) and **3a** (231 mg, 0.1 mmol) in distilled THF (5 mL) were added to a Schlenk tube at room temperature under argon atmosphere, then the solution of Zidovudine (400 mg, 1.5 mmol) in distilled THF (5 mL) was added via syringe. After stirring at 50 °C using an oil bath for 4 h, when the reaction was completed as monitored by TLC, the solution was quenched carefully with saturated NH₄Cl solution and then warmed to room temperature. The product was extracted with ethyl acetate (25 mL \times 3), and dried over anhydrous Na₂SO₄. After filtration and evaporation in vacuo, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 1:2) to afford the product **4c** (414 mg, 83% yield).

IV. Gram-scale Reaction of 3a

Cu(OTf)₂ (140 mg, 0.39 mmol) and *rac*-L5 (179 mg, 0.468 mmol) in distilled toluene (20 mL) were added to a Schlenk tube at room temperature under argon atmosphere. The mixture was stirred for 1 h. Then a solution of **1a** (1 g, 3.9 mmol), **2a** (0.55 mL, 4.68 mmol) and Et₂NMe (0.57 mL, 4.68 mmol) in distilled toluene (110 mL) was added via syringe. After stirring for 24 h, when the reaction was completed as monitored by TLC, the solution was quenched carefully with saturated NH₄Cl solution. The product was extracted with ethyl acetate (50 mL \times 3), and dried over anhydrous Na₂SO₄. After filtration and evaporation in vacuo, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1) to afford the product **3a** (722 mg, 80% yield).

V. Supplementary tables of condition optimization

Table S1. Condition optimization of $3e^{a}$

1	$Cu(OTf)_2$ (10)	L5 (12)	Et ₂ NMe (1.2)	16	toluene (0.03)	0
2	$Cu(CH_3CN)_4PF_6(10)$	L5 (12)	Et ₂ NMe (1.2)	16	toluene (0.03)	64
3	Cu(CH ₃ CN) ₄ BF ₄ (10)	L5 (12)	Et ₂ NMe (1.2)	16	toluene (0.03)	0
4	CuI (10)	L5 (12)	Et ₂ NMe (1.2)	16	toluene (0.03)	0
5	Cu(ClO) ₄ •6H ₂ O (10)	L5 (12)	Et ₂ NMe (1.2)	16	toluene (0.03)	0
6	CuOAc (10)	L5 (12)	Et ₂ NMe (1.2)	16	toluene (0.03)	0
7	$CuOTf(CH_3CN)_4$ (10)	L5 (12)	Et ₂ NMe (1.2)	16	toluene (0.03)	0
8	$Cu(CH_3CN)_4PF_6(20)$	L5 (24)	Et ₂ NMe (1.2)	16	toluene (0.03)	75
9	Cu(CH ₃ CN) ₄ PF ₆ (10)	L5 (12)	Et ₂ NMe (1.2)	16	toluene (0.06)	69
10	Cu(CH ₃ CN) ₄ PF ₆ (10)	L5 (12)	Et ₂ NMe (1.2)	28	CH ₂ Cl ₂ (0.03)	0
11	Cu(CH ₃ CN) ₄ PF ₆ (10)	L5 (12)	Et ₂ NMe (1.2)	28	THF (0.03)	0
12	Cu(CH ₃ CN) ₄ PF ₆ (10)	L5 (12)	Et ₂ NMe (1.2)	4	MeOH (0.03)	92

^aReaction conditions: 1c (0.1 mmol), 1b (0.12 mmol), 24 h, under argon atmosphere. ^bAll isolated yields were based on 1c.

Table S2. Condition optimization of $3l^a$

^cReaction conditions: **1h** (0.1 mmol), **2b** (0.12 mmol), 24 h, under argon atmosphere. ^dAll isolated yields were based on **1h**.

3	$Cu(OTf)_2(10)$	L5 (12)	Et ₂ NMe (1.2)	24	toluene (0.03)	91	22
4	Cu(OTf) ₂ (10)	L6 (12)	Et ₂ NMe (1.2)	24	toluene (0.03)	78	3
5	Cu(OTf) ₂ (10)	L7 (12)	Et ₂ NMe (1.2)	24	toluene (0.03)	69	1
6	Cu(OTf) ₂ (10)	L8 (12)	Et ₂ NMe (1.2)	24	toluene (0.03)	61	3
7	Cu(OTf) ₂ (10)	L9 (12)	Et ₂ NMe (1.2)	24	toluene (0.03)	43	9
8	Cu(OTf) ₂ (10)	L10 (12)	Et ₂ NMe (1.2)	24	toluene (0.03)	61	13
9	Cu(OTf) ₂ (10)	L11 (12)	Et ₂ NMe (1.2)	24	toluene (0.03)	69	0

^aReaction conditions: 1a (0.1 mmol), 2a (0.12 mmol), 24 h, under argon atmosphere. ^bAll isolated yields were based on 1a.

References

[1] Detz, R.; Delville, M.; Hiemstar, H.; Maarseveen, J. Angew. Chem. Int. Ed. 2008, 47, 3777–3780

VI. Characterizations of new compounds

1a

tert-butyl (1-phenylpenta-2,4-diyn-1-yl) carbonate (1a): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 50:1), yellow oil, 1.7 g, 85% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.53–7.49 (m, 2H), 7.42–7.36 (m, 3H), 6.26 (s, 1H), 2.62–2.50 (m, 1H), 1.49 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.4, 135.7, 129.5, 129.0, 127.9, 83.6, 72.3, 71.8, 69.8, 68.6, 67.4, 27.9. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₆H₁₆O₃Na 279.0992; Found 279.0992. IR (KBr thin film, cm⁻¹): v 3290, 2982, 1745, 1611, 1456, 1371, 1143, 1075, 708, 631.

tert-butyl (1-(4-methoxyphenyl)penta-2,4-diyn-1-yl) carbonate (1b): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 50:1), colorless oil, 772 mg, 35% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.6 Hz, 2H), 6.90 (d, *J* = 8.5 Hz, 2H), 6.21 (s, 1H), 3.81 (s, 3H), 2.25 (s, 1H), 1.48 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 152.4, 129.6, 128.0, 114.3, 83.5, 72.5, 71.6, 69.7, 68.3, 67.4, 55.5, 27.9. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₇H₁₈O₄Na 309.1097; Found 309.1103. IR (KBr thin film, cm⁻¹): v 3280, 2980, 2838, 1738, 1611, 1512, 1243, 1139, 831, 767.

1-(4-bromophenyl)penta-2,4-diyn-1-yl *tert*-butyl carbonate (1c): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 50:1), brown oil, 1.4 g, 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 8.4 Hz, 2H), 6.21 (s, 1H), 2.27 (s, 1H), 1.49 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.2, 134.9, 132.1, 129.5, 123.8, 83.9, 72.1, 71.7, 70.1, 67.8, 67.2, 27.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₆H₁₅O₃BrNa 357.0097; Found 357.0100. IR (KBr thin film, cm⁻¹): v 3282, 2986, 1742, 1487, 1262, 1154, 1071, 749, 703.

tert-butyl (1-(4-(methylthio)phenyl)penta-2,4-diyn-1-yl) carbonate (1d): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 30:1), colorless oil, 931 mg, 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.3 Hz, 2H), 7.23 (d, *J* = 8.3 Hz, 2H), 6.22 (s, 1H), 2.46 (s, 3H), 2.27 (s, 1H), 1.48 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 152.2, 140.5, 132.2, 128.3, 126.3, 83.5, 72.1, 71.7, 69.9, 68.1, 67.2, 27.7, 15.4. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₇H₁₈O₃SNa 325.0869; Found 325.0872. IR (KBr thin film, cm⁻¹): v 3280, 2980, 2923, 1739, 1494, 1248, 1156, 1090, 868, 633.

tert-butyl (1-(naphthalen-2-yl)penta-2,4-diyn-1-yl) carbonate (1e): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 30:1), brown solid, mp 72.9–75.3 °C, 944 mg, 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 1.2 Hz, 1H), 7.90–7.83 (m, 3H), 7.61 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.55–7.48 (m, 2H), 6.44 (s, 1H), 2.29–2.27 (m, 1H), 1.50 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.4, 133.7, 133.13, 133.08, 129.0, 128.5, 127.9, 127.5, 127.0, 126.7, 125.0, 83.7, 72.3, 72.1, 69.9, 68.7, 67.4, 27.9. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₀H₁₈O₃Na 329.1148; Found 329.1151. IR (KBr thin film, cm⁻¹): v 3283, 2980, 1739, 1369, 1269, 1248, 1153, 846, 636.

tert-butyl (1-(2,3-dimethylphenyl)penta-2,4-diyn-1-yl) carbonate (1f): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 30:1), white solid, mp 67.9–68.8 °C, 1.2 g, 55% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.42 (m, 1H), 7.21–7.12 (m, 2H), 6.48 (s, 1H), 2.34 (s, 3H), 2.32 (s, 3H), 2.28–2.25 (m, 1H), 1.52 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 152.4, 137.7, 134.8, 133.7, 131.0, 126.0, 125.9, 83.4, 72.3, 71.6, 69.8, 67.4, 66.9, 27.8, 20.6, 15.2. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₈H₂₀O₃Na 307.1305; Found 307.1309. IR (KBr thin film, cm⁻¹): v 3291, 2983, 1742, 1264, 1146, 1076, 735, 636.

tert-butyl (1-(thiophen-3-yl)penta-2,4-diyn-1-yl) carbonate (1g): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), brown oil, 1.5 g, 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 2.3 Hz, 1H), 7.32 (dd, *J* = 4.8, 3.1 Hz, 1H), 7.19 (d, *J* = 5.0 Hz, 1H), 6.34 (s, 1H), 2.26 (s, 1H), 1.49 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.3, 136.3, 126.9, 126.8, 125.4, 83.6, 71.9, 71.1, 69.8, 67.3, 63.9, 27.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₄H₁₄O₃SNa 285.0556; Found 285.0558. IR (KBr thin film, cm⁻¹): v 3288, 2981, 1740, 1457, 1370, 1250, 1156, 1074, 764, 644.

tert-butyl (1-cyclohexylpenta-2,4-diyn-1-yl) carbonate (1h): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 50:1), yellow oil, 1.4 g, 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 5.02 (d, *J* = 6.1 Hz, 1H), 2.18 (s, 1H), 1.87 (d, *J* = 11.4 Hz, 1H), 1.82–1.69 (m, 4H), 1.66 (d, *J* = 13.4 Hz, 1H), 1.48 (s, 9H), 1.29–1.05 (m, 5H); ¹³C NMR (151 MHz, CDCl₃) δ 152.8, 83.1, 72.8, 71.3, 70.7, 68.6, 67.6, 42.0, 28.6, 28.1, 27.9, 26.1, 25.8, 25.7. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₆H₂₂O₃Na 285.1461; Found 285.1467. IR (KBr thin film, cm⁻¹): v 3289, 2983, 2930, 2855, 1742, 1452, 1370, 1253, 1153, 1096, 857, 764.

tert-butyl octa-5,7-diyn-4-yl carbonate (1i): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 50:1), colorless oil, 1.1 g, 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 5.18 (t, J = 6.7 Hz, 1H), 2.19 (s, 1H), 1.85–1.72 (m, 2H), 1.52–1.42 (m, 11H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.6, 83.2, 73.5, 70.0, 68.9, 67.4, 66.8, 36.6, 27.8, 18.3, 13.6. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₃H₁₈O₃Na 245.1148; Found 2245.1147. IR (KBr thin film, cm⁻¹): v 3290, 2964, 1742, 1458, 1370, 1251, 1154, 1081, 764, 631.

tert-butyl (1,1-diphenylpenta-2,4-diyn-1-yl) carbonate (1j): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 30:1), yellow oil, 511 mg, 20% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.53–7.46 (m, 4H), 7.36–7.23 (m, 6H), 2.33 (s, 1H), 1.40 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 150.6, 141.5, 128.5, 128.3, 126.3, 83.3, 80.7, 74.4, 73.8, 70.7, 67.5, 27.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₂H₂₀O₃Na 355.1305; Found 355.1307. IR (KBr thin film, cm⁻¹): v 3282, 2980, 1752, 1450, 1369, 1272, 11133, 696, 636.

tert-butyl (2-phenylhexa-3,5-diyn-2-yl) carbonate (1k): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 30:1), white solid mp 74.7–77.2 °C, 853 mg, 41% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.55 (d, *J* = 7.5 Hz, 2H), 7.40–7.34 (m, 2H), 7.33–7.28 (m, 1H), 2.31 (s, 1H), 1.89 (s, 3H), 1.40 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 150.8, 141.9, 128.6, 128.3, 124.7, 83.2, 77.1, 75.0, 71.7, 69.8, 67.5, 32.3, 27.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₇H₁₈O₃Na 293.1148; Found 293.1156. IR (KBr thin film, cm⁻¹): v 3294, 2985, 1751, 1371, 1263, 1154, 1071, 732, 634.

tert-butyl (1-(3,4-dichlorophenyl)penta-2,4-diyn-1-yl) carbonate (11): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 1.2 g, 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.59 (m, 1H), 7.47 (d, *J* = 8.3 Hz 1H), 7.37–7.32 (m, 1H), 6.20 (s, 1H), 2.31–2.28 (m, 1H), 1.51–1.48 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.0, 135.9, 133.8, 133.1, 130.9, 129.8, 127.0, 84.1, 72.4, 71.1, 70.4, 67.1, 67.0, 27.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺

Calcd for $C_{16}H_{14}Cl_2O_3Na$ 347.0212; Found 347.0209. IR (KBr thin film, cm⁻¹): v 3290, 2981, 1745, 1471, 1271, 1252, 1144, 849, 767.

1m

1-(2-bromo-4,5-dimethoxyphenyl)penta-2,4-diyn-1-yl *tert*-butyl carbonate (1m): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 5:1), brown oil, 2.6 g, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (s, 1H), 7.00 (s, 1H), 6.53 (s, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 2.27 (d, *J* = 1.0 Hz, 1H), 1.49 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 151.9, 150.4, 148.9, 127.1, 115.4, 113.6, 111.7, 83.7, 71.8, 71.7, 70.0, 67.9, 67.3, 56.4, 56.3, 27.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₈H₁₉BrO₅Na 417.0308; Found 417.0313. IR (KBr thin film, cm⁻¹): v 3291, 2982, 1747, 1509, 1249, 1209, 1072, 731, 634.

tert-butyl (1-(5-fluoro-2-methylphenyl)penta-2,4-diyn-1-yl) carbonate (1n): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 1.8 g, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.25 (m, 1H), 7.17–7.10 (m, 1H), 6.96 (td *J* = 8.3, 2.2 Hz, 1H), 6.35 (s, 1H), 2.36 (s, 3H), 2.26 (s, 1H), 1.50 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 161.4 (C-F, ¹*J*_{C-F} = 244.5 Hz), 152.2, 135.7 (C-F, ³*J*_{C-F} = 7.0 Hz), 132.3 (C-F, ³*J*_{C-F} = 7.7 Hz), 131.5 (C-F, ⁴*J*_{C-F} = 2.9 Hz), 116.1 (C-F, ²*J*_{C-F} = 20.8 Hz), 114.7 (C-F, ²*J*_{C-F} = 23.2 Hz), 83.9, 71.8, 71.4, 70.0, 67.2, 65.7, 27.8, 18.4; ¹⁹F NMR (565 MHz, CDCl₃) δ –116.1. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₇H₁₇FO₃Na 311.1054; Found 311.1057. IR (KBr thin film, cm⁻¹): v 3291, 2983, 1746, 1498, 1252, 1155, 1073, 765, 627.

10

1-(benzo[*d*][1,3]dioxol-5-yl)penta-2,4-diyn-1-yl *tert*-butyl carbonate(1o): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), yellow oil, 1.6 g, 69% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.02–6.94 (m, 2H), 6.78 (d, *J* = 7.9 Hz, 1H), 6.16 (s, 1H), 5.97 (s, 2H), 2.27 (d, *J* = 1.0 Hz, 1H), 1.48 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.3, 148.6, 148.1, 129.5, 122.1, 108.4, 101.5, 83.6, 72.2, 71.7, 69.9, 68.4, 67.3, 27.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₇H₁₆O₅Na 323.0890; Found 323.0889. IR (KBr thin film, cm⁻¹): v 3279, 2984, 1743, 1489, 1274, 1258, 1152, 764, 749.

(*E*)-*tert*-butyl (1-phenylhepta-1-en-4,6-diyn-3-yl) carbonate (1p): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), brown oil, 847 mg, 39% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.0 Hz, 2H), 7.37–7.27 (m, 3H), 6.85 (d, *J* = 15.8 Hz, 1H), 6.22 (dd, *J* = 15.8, 6.9 Hz, 1H), 5.87 (d, *J* = 6.9 Hz, 1H), 2.27 (s, 1H), 1.51 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.3, 135.7, 135.5, 128.84, 128.81, 127.2, 122.6, 83.6, 71.7, 71.5, 69.7, 67.4, 67.2, 27.9. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₈H₁₈O₃Na 305.1148; Found 305.1153. IR (KBr thin film, cm⁻¹): v 3289, 3005, 1745, 1275, 1258, 1153, 764, 711.

1q

(*E*)-*tert*-butyl (2-methyl-1-phenylhepta-1-en-4,6-diyn-3-yl) carbonate (1q): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), brown oil, 1.9 g, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.32 (m, 2H), 7.31–7.23 (m, 3H), 6.73 (s, 1H), 5.77 (s, 1H), 2.25 (s, 1H), 2.00 (d, *J* = 0.9 Hz, 3H), 1.52 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.4, 136.4, 132.2, 131.0, 129.2, 128.4, 127.4, 83.5, 72.4, 71.9, 71.3, 69.4, 67.5, 27.9, 14.4. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₉H₂₀O₃Na 319.1305; Found 319.1308. IR (KBr thin film, cm⁻¹): v 3280, 2983, 1742, 1457, 1370, 1249, 1066, 791, 637.

(*E*)-*tert*-butyl (2-phenylocta-2-en-5,7-diyn-4-yl) carbonate (1r): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), brown oil, 1.9 g, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.38 (m, 2H), 7.38–7.28 (m, 3H), 6.07 (d, *J* = 8.7 Hz, 1H), 5.84 (d, *J* = 8.9 Hz, 1H), 2.24 (s, 1H), 2.18 (s, 3H), 1.51 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.4, 141.8, 141.7, 128.5, 128.2, 126.2, 121.5, 83.5, 72.4, 70.4, 69.5, 67.5, 64.1, 27.9, 16.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₉H₂₀O₃Na 319.1305; Found 319.1304. IR (KBr thin film, cm⁻¹): v 3287, 2982, 1742, 1446, 1370, 1253, 1153, 1071, 750, 635.

tert-butyl (1,5-diphenylpenta-2,4-diyn-1-yl) carbonate (1aa): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), colorless oil, 2.4 g, 94% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.54 (m, 2H), 7.53–7.47 (m, 2H), 7.45–7.28 (m, 6H), 6.38 (s, 1H), 1.52 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 152.5, 136.1, 132.7, 129.6, 129.4, 128.9, 128.6, 127.9, 121.3, 83.4, 79.8, 78.3, 73.2, 72.4, 69.0, 27.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₂H₂₀O₃Na 255.1305; Found 355.1307. IR (KBr thin film, cm⁻¹): v 2981, 2246, 1740, 1456, 1274, 1152, 1078, 1071, 735, 687.

N-(1-phenylpenta-2,4-diyn-1-yl)aniline (3a): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 42 mg, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.4 Hz, 2H), 7.44–7.30 (m, 3H), 7.21 (t, *J* = 7.2 Hz, 2H), 6.81 (t, *J* = 7.4 Hz, 1H), 6.72 (d, *J* = 7.9 Hz, 2H), 5.32 (d, *J* = 7.4 Hz, 1H), 4.03 (d, *J* = 7.1 Hz, 1H), 2.13 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 146.1, 138.3, 129.4, 129.1, 128.6, 127.4, 119.2, 114.1, 75.8, 69.2, 68.1, 67.8, 50.4. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₇H₁₄N 232.1121; Found 232.1119. IR (KBr thin film, cm⁻¹): v 3272, 3035, 1721, 1611, 1495, 1457, 1078, 721, 646.

4-methoxy-*N***-**(**1-phenylpenta-2,4-diyn-1-yl)aniline** (**3b**): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 45 mg, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.4 Hz, 2H), 7.44–7.32 (m, 3H), 6.82 (d, *J* = 8.9 Hz, , 2H), 6.72 (d, *J* = 8.8 Hz, 2H), 5.26 (s, 1H), 3.77 (s, 3H), 2.15 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 140.2, 138.6, 129.0, 128.6, 127.4, 116.0, 114.9, 76.2, 69.3, 68.0, 67.9, 55.8, 51.6. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₈H₁₆NO 262.1226; Found 262.1227. IR (KBr thin film, cm⁻¹): v 3281, 3003, 2833, 1510, 1275, 1242, 1032, 764, 634.

4-chloro-*N***-(1-phenylpenta-2,4-diyn-1-yl)aniline** (**3c**): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 43 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.2 Hz, 2H), 7.46–7.32 (m, 3H), 7.17 (d, *J* = 8.7 Hz, 2H), 6.65 (d, *J* = 8.7 Hz, 2H), 5.29 (s, 1H), 4.07 (s, 1H), 2.17 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 144.6, 137.9, 129.3, 129.2, 128.8, 127.4, 123.9, 115.3, 75.3, 69.5, 68.3, 67.7, 50.6. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₇H₁₃ClN 266.0731; Found 266.0732. IR (KBr thin film, cm⁻¹): v 3286, 2985, 1598, 1495, 1275, 1257, 764, 633.

N-(1-(4-methoxyphenyl)penta-2,4-diyn-1-yl)aniline (3d): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 51 mg, 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.6 Hz, 2H), 7.26–7.16 (m, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 6.81 (t, *J* = 7.3 Hz, 1H), 6.72 (d, *J* = 8.1 Hz, 2H), 5.26 (s, 1H), 3.80 (s, 3H), 2.12 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 145.9, 130.3, 129.4, 128.7, 119.2, 114.3, 114.2, 76.0, 69.1, 68.1, 67.8, 55.5, 49.9. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₈H₁₆NO 262.1226; Found 262.1229. IR (KBr thin film, cm⁻¹): v 3394, 3276, 2931, 1600, 1499, 1245, 1029, 748, 691.

N-(1-(4-bromophenyl)penta-2,4-diyn-1-yl)aniline (3e): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 57 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 8.5 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.26–7.17 (m, 2H), 6.82 (t, J = 7.4 Hz, 1H), 6.69 (d, J = 7.8 Hz, 2H), 5.29 (s, 1H), 4.04 (s, 1H), 2.16 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 145.8, 137.4, 132.2, 129.5, 129.0, 122.6, 119.4, 114.2, 75.1, 69.6, 68.5, 67.6, 49.4. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₇H₁₃BrN 310.0226; Found 310.0229. IR (KBr thin film, cm⁻¹): v 3287, 3005, 1601, 1500, 1485, 1275, 1261, 1011, 750, 631.

N-(1-(4-(methylthio)phenyl)penta-2,4-diyn-1-yl)aniline (3f): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), colorless oil, 40 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.2 Hz, 2H), 7.22 (t, J = 7.8 Hz, 2H), 6.81 (t, J = 7.3 Hz, 1H), 6.71 (d, J = 8.1 Hz, 2H), 5.29 (d, J = 7.1 Hz, 1H), 4.02 (d, J = 7.1Hz, 1H), 2.49 (s, 3H), 2.15 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 146.0, 139.2, 135.1, 129.4, 127.8, 126.9, 119.2, 114.1, 75.7, 69.3, 68.2, 67.8, 50.0, 15.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₈H₁₆NS 278.0998; Found 278.0997. IR (KBr thin film, cm⁻¹): v 3278, 2921, 1600, 1500, 1275, 11259, 1093, 764, 692.

N-(1-(naphthalen-2-yl)penta-2,4-diyn-1-yl)aniline (3g): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), brown solid, mp 113.6–115.9 °C, 41 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.92–7.83 (m, 3H), 7.64 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.56–7.49 (m, 2H), 7.27–7.20 (m, 2H), 6.86–6.80 (m, 1H), 6.77 (d, *J* = 7.9 Hz, 2H), 5.51 (s, 1H), 4.16 (s, 1H), 2.18 (d, *J* = 0.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 146.1, 139.5, 135.7, 133.4, 133.3, 129.5, 129.0, 128.3, 127.9, 126.6, 126.3, 125.2, 119.2, 114.2, 75.7, 69.5, 68.3, 67.9, 50.6. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₂₁H₁₆N 282.1277; Found 282.1279. IR (KBr thin film, cm⁻¹): v 3053, 1601, 1501, 1428, 1263, 895, 731, 702, 631.

3-methoxy-*N***-(1-(4-methoxyphenyl)penta-2,4-diyn-1-yl)aniline** (3h): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 15:1), yellow oil, 51 mg, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.6 Hz, 2H), 7.12 (t, *J* = 8.1 Hz, 1H), 6.92 (d, *J* = 8.5 Hz, 2H), 6.35 (dd, *J* = 15.1, 8.1 Hz, 2H), 6.29 (s, 1H), 5.27 (s, 1H), 4.03 (s, 1H), 3.82 (s, 3H), 3.77 (s, 3H), 2.15 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 159.8, 147.5, 130.4, 130.2, 128.6, 114.4, 106.9, 104.3, 100.2,

76.0 69.1, 68.1, 67.9, 55.5, 55.3, 49.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: $[M + Na]^+$ Calcd for $C_{19}H_{17}NO_2Na$ 314.1151; Found 314.1150. IR (KBr thin film, cm⁻¹): v 3374, 3276, 1599, 1507, 1246, 1160, 1030, 736, 632.

4-chloro-*N***-(1-(4-methoxyphenyl)penta-2,4-diyn-1-yl)aniline (3i)**: purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 51 mg, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.42 (m, 2H), 7.20–7.13 (m, 2H), 6.95–6.89 (m, 2H), 6.68–6.62 (m, 2H), 5.23 (s, 1H), 3.82 (s, 3H), 2.16 (d, *J* = 1.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.9, 144.6, 130.0, 129.2, 128.6, 123.8, 115.3, 114.4, 75.6, 69.3, 68.3, 67.7, 55.5, 50.0. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₈H₁₅ClNO 296.0837; Found 296.0836. IR (KBr thin film, cm⁻¹): v 3399, 3281, 2932, 2836, 1597, 1493, 1246, 1174, 1029, 814, 631.

N-(1-(2,3-dimethylphenyl)penta-2,4-diyn-1-yl)-4-methylaniline (3j): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), white solid, mp 107.6–110.0 °C, 45 mg, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, J = 6.4, 2.4 Hz, 1H), 7.21–7.13 (m, 2H), 7.06 (d, J = 8.2 Hz, 2H), 6.66 (d, J = 8.3 Hz, 2H), 5.43 (d, J = 3.9 Hz, 1H), 3.81 (s, 1H), 2.33 (s, 3H), 2.28 (s, 6H), 2.13 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 143.9, 137.8, 136.2, 134.9, 130.4, 129.9, 128.2, 126.1, 125.3, 113.9, 76.4, 69.0, 68.0, 67.7, 48.6, 20.8, 20.6, 14.9. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₂₀H₂₀N 274.1590; Found 274.1593. IR (KBr thin film, cm⁻¹): v 3400, 3269, 2917, 1615, 1516, 1463, 1265, 748, 628.

2,4-dimethoxy-*N***-(1-(thiophen-3-yl)penta-2,4-diyn-1-yl)aniline** (3**k**): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 15:1), brown oil, 48 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.43 (m, 1H), 7.34 (dd, *J* = 4.9, 3.1 Hz, 1H), 7.22 (d, *J* = 5.0 Hz, 1H), 6.72 (d, *J* = 8.5 Hz, 1H), 6.48 (d, *J* = 2.4

Hz, 1H), 6.43 (dd, J = 8.5, 2.5 Hz, 1H), 5.34 (s, 1H), 4.32 (s, 1H), 3.81 (s, 3H), 3.77 (s, 3H), 2.12 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 153.3, 148.9, 139.6, 129.9, 126.9, 126.7, 123.1, 112.9, 103.8, 99.4, 76.3, 68.1, 67.9, 67.8, 55.8, 55.7, 46.9. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₁₇H₁₅NO₂SNa 320.0716; Found 320.0718. IR (KBr thin film, cm⁻¹): v 3273, 3003, 1600, 1514, 1463, 1276, 1207, 1158, 1032, 764, 629.

N-(1-cyclohexylpenta-2,4-diyn-1-yl)-4-methoxyaniline (3l): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), colorless oil, 33 mg, 62% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.80 (d, *J* = 8.8 Hz, 2H), 6.66 (d, *J* = 8.8 Hz, 2H), 3.88 (d, *J* = 5.6 Hz, 1H), 3.76 (s, 3H), 3.46 (s, 1H), 2.06 (s, 1H), 1.90 (d, *J* = 11.2 Hz, 2H), 1.79 (d, *J* = 11.2 Hz, 2H), 1.70 (d, *J* = 10.8 Hz, 2H), 1.34–1.12 (m, 5H); ¹³C NMR (151 MHz, CDCl₃) δ 153.1, 140.7, 115.9, 114.9, 77.5, 68.1, 67.9, 66.8, 55.8, 53.0, 42.6, 30.1, 28.9, 26.4, 26.1, 26.0. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₈H₂₂NO 268.1696; Found 268.1700. IR (KBr thin film, cm⁻¹): v 3299, 2926, 2852, 1742, 1509, 1275, 1036, 764, 624.

2-methoxy-*N***-(octa-5,7-diyn-4-yl)aniline (3m)**: purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 24 mg, 53% yield. ¹H NMR (400 MHz, CDCl₃) δ 6.91 (t, *J* = 7.5 Hz, 1H), 6.83–6.69 (m, 3H), 4.32 (d, *J* = 8.2 Hz, 1H), 4.15 (dd, *J* = 14.8, 7.2 Hz, 1H), 3.85 (s, 3H), 2.05 (s, 1H), 1.84 (dd, *J* = 14.8, 7.5 Hz, 2H), 1.67–1.53 (m, 2H), 0.99 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.2, 136.2, 121.3, 117.9, 111.4, 109.7, 78.2, 68.1, 66.9, 66.8, 55.6, 45.4, 37.7, 19.3, 13.9. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₅H₁₈NO 228.1383; Found 228.1382. IR (KBr thin film, cm⁻¹): v 3294, 2961, 1746, 1601, 1510, 1456, 1275, 1223, 1029, 764, 628.

3n

N-(**1,1-diphenylpenta-2,4-diyn-1-yl)aniline** (**3n**): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 36 mg, 58% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.4 Hz, 4H), 7.34 (t, *J* = 7.4 Hz, 4H), 7.30–7.23 (m, 2H), 7.11 (t, *J* = 7.8 Hz, 2H), 6.77 (t, *J* = 7.3 Hz, 1H), 6.60 (d, *J* = 8.0 Hz, 2H), 4.42 (s, 1H), 2.16 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 143.2, 128.9, 128.7 128.1, 126.8, 119.0, 116.4, 78.1, 70.9, 68.4, 68.0, 63.6. HRMS (ESI-Quadrupole-Orbitrap) m/z: $[M + H]^+$ Calcd for C₂₃H₁₈N 308.1434; Found 308.1432. IR (KBr thin film, cm⁻¹): v 3281, 2981, 1755, 1600, 1497, 1449, 1252, 1135, 1030, 753, 632.

3,5-dimethoxy-*N***-(2-phenylhexa-3,5-diyn-2-yl)aniline** (**30**): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), brown oil, 44 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.6 Hz, 2H), 7.34 (dd, *J* = 7.6 Hz, 2H), 7.30–7.23 (m, 1H), 5.88 (t, *J* = 1.9 Hz, 1H), 5.71 (d, *J* = 2.0 Hz, 2H), 4.31 (s, 1H), 3.60 (s, 6H), 2.16 (s, 1H), 1.81 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 161.0, 146.6, 143.3, 128.9, 127.7, 125.4, 94.5, 91.5, 78.9, 68.8, 68.00, 67.97, 56.0, 55.2, 35.5. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₂₀H₂₀NO₂ 306.1489; Found 306.1490. IR (KBr thin film, cm⁻¹): v 3388, 3278, 2932, 2838, 1595, 1447, 1201, 1149, 1063, 764, 628.

3p

1-(1-(3,4-dichlorophenyl)penta-2,4-diyn-1-yl)indoline (**3p**): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), yellow oil, 53 mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.46 (s, 2H), 7.17–7.06 (m, 2H), 6.79 (t, *J* = 7.4 Hz, 1H), 6.56 (d, *J* = 7.8 Hz, 1H), 5.58 (s, 1H), 3.38–3.28 (m, 1H), 3.21–3.11 (m, 1H), 3.06–2.87 (m, 2H), 2.13 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 149.9, 137.2, 132.9, 132.4, 130.8, 130.7, 129.7, 127.4, 127.1, 125.0, 119.8, 108.6, 72.3, 71.5, 67.9, 67.6, 52.8, 49.6, 28.3. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₉H₁₄Cl₂N 326.0498; Found 326.0503. IR (KBr thin film, cm⁻¹): v 3289, 2962, 2852, 1746, 1484, 1252, 1142, 748, 633.

1-(1-(4-methoxyphenyl)penta-2,4-diyn-1-yl)pyrrolidine (**3q**): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 31 mg, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.7 Hz, 2H), 6.87 (d, *J* = 7.3 Hz, 2H), 4.69 (s, 1H), 3.80 (s, 3H), 2.60 (s, 4H), 2.14 (s, 1H), 1.82–1.72 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 159.3, 130.6, 129.4, 113.8, 75.3, 70.7, 68.1, 67.0, 58.3, 55.4, 50.3, 23.5. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₆H₁₈NO 240.1383; Found 240.1385. IR (KBr thin film, cm⁻¹): v 3283, 2961, 2835, 1610, 1509, 1246, 1173, 1103, 764, 631.

4-(1-(4-methoxyphenyl)penta-2,4-diyn-1-yl)morpholine (3r): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), solid, mp 93.4–96.3 °C, 46 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 4.57 (s, 1H), 3.81 (s, 3H), 3.76–3.61 (m, 4H), 2.61–2.48 (m, 4H), 2.18 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 129.7, 128.7, 113.8, 73.8, 72.1, 67.8, 67.5, 67.2, 61.4, 55.4, 49.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₆H₁₈NO₂ 256.1332; Found 256.1335. IR (KBr thin film, cm⁻¹): v 3287, 2960, 2834, 1611, 1509, 1453, 1249, 1114, 1032, 764, 631.

3s

1-(1-(4-methoxyphenyl)penta-2,4-diyn-1-yl)-4-phenylpiperazine (**3s**): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 47 mg, 71% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.6 Hz, 2H), 7.26–7.18 (m, 2H), 6.92–6.85 (m, 4H), 6.82 (t, J = 7.3 Hz, 1H), 4.65 (s, 1H), 3.78 (s, 3H), 3.22–3.08 (m, 4H), 2.77–2.60 (m, 4H), 2.14 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 151.4, 129.7, 129.2, 128.9, 119.9, 116.3, 113.8, 73.8, 72.2, 67.9, 67.5, 61.0, 55.4, 49.5. HRMS (ESI-Quadrupole-Orbitrap) m/z: $[M + H]^+$ Calcd for

C₂₂H₂₃N₂O 331.1805; Found 331.1808. IR (KBr thin film, cm⁻¹): v 3271, 2951, 2828, 1598, 1507, 1450, 1232, 1171, 757, 691.

N,*N*-dibenzyl-1-(2-bromo-4,5-dimethoxyphenyl)penta-2,4-diyn-1-amine (3t): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 5:1), brown oil, 68 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 7.2 Hz, 4H), 7.27 (t, *J* = 7.1 Hz, 4H), 7.24–7.17 (m, 3H), 6.96 (s, 1H), 4.94 (s, 1H), 3.86 (s, 3H), 3.82 (s, 3H), 3.77 (d, *J* = 13.3 Hz, 2H), 3.48 (d, *J* = 13.3 Hz, 2H), 2.26 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 147.7, 138.5, 129.6, 128.6, 128.1, 127.3, 116.3, 115.0, 114.3, 73.8, 72.7, 67.9, 67.7, 57.0, 56.26, 56.25, 55.1. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₂₇H₂₅BrNO₂ 474.1063; Found 474.1072. IR (KBr thin film, cm⁻¹): v 3281, 3027, 2933, 2837, 1748, 1601, 1504, 1453, 1376, 1259, 1207, 1029, 763, 633.

N-(**benzo**[*d*][1,3]dioxol-5-ylmethyl)-1-(5-fluoro-2-methylphenyl)penta-2,4-diyn-1amine (3u): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 10:1), yellow oil, 32 mg, 50% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (dd, *J* = 9.8, 2.6 Hz, 1H), 7.10 (dd, *J* = 8.2, 6.0 Hz, 1H), 6.93–6.85 (m, 2H), 6.82 (d, *J* = 8.1 Hz, 1H), 6.76 (d, *J* = 7.9 Hz, 1H), 5.94 (s, 2H), 4.64 (s, 1H), 3.90 (d, *J* = 12.7 Hz, 1H), 3.81 (d, *J* = 12.7 Hz, 1H), 2.25 (s, 3H), 2.21 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 161.4 (C-F, ¹*J*_{C-F} = 243.7 Hz), 147.8, 146.9, 138.9 (C-F, ³*J*_{C-F} = 6.4 Hz), 133.0, 132.1 (C-F, ³*J*_{C-F} = 7.5 Hz), 131.8 (C-F, ⁴*J*_{C-F} = 2.5 Hz), 121.9, 114.8 (C-F, ²*J*_{C-F} = 20.8 Hz), 114.3 (C-F, ²*J*_{C-F} = 22.8 Hz), 109.2, 108.2, 101.1, 76.2, 69.9, 67.9, 67.8, 51.4, 50.4, 18.3; ¹⁹F NMR (565 MHz, CDCl₃) δ –116.5. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₂₀H₁₇FNO₂ 322.1238; Found 322.1241. IR (KBr thin film, cm⁻¹): v 3289, 2896, 1746, 1611, 1489, 1443, 1248, 766, 631.

2-(1-(benzo[*d*][**1,3**]**dioxol-5-yl)penta-2,4-diyn-1-yl)-1-(3,4-dimethoxybenzyl)-6,7dimethoxy-1,2,3,4-tetrahydroisoquinoline (3v)**: purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 5:1), yellow oil, 89 mg, 85% yield, 1:1 dr. ¹H NMR (400 MHz, CDCl₃, 1:1 dr) δ 6.95–6.82 (m, 4H), 6.77–6.68 (m, 4H), 6.60–6.46 (m, 6H), 6.30 (s, 1H), 6.10 (s, 1H), 5.96 (s, 2H), 5.95 (s, 2H), 4.81 (s, 1H), 4.64 (s, 1H), 4.18 (t, *J* = 6.8 Hz, 1H), 4.10 (t, *J* = 5.5 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 9H), 3.79 (s, 3H), 3.73 (s, 3H), 3.70 (s, 3H), 3.63 (s, 3H), 3.30–3.20 (m, 1H), 3.14–2.97 (m, 2H), 2.96–2.78 (m, 5H), 2.77–2.59 (m, 2H), 2.53–2.38 (m, 2H), 2.14 (s, 1H), 2.09 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 148.6, 148.5, 148.0, 147.9, 147.5, 147.4, 147.3, 146.8, 146.5, 132.6, 132.4, 132.3, 131.7, 129.6, 129.3, 127.8, 126.5, 122.2, 122.0, 121.62, 121.57, 112.7, 112.6, 111.2, 111.1, 110.9, 110.7, 108.9, 108.6, 107.8, 107.7, 101.32, 101.27, 76.6, 75.3, 71.1, 70.5, 67.9, 67.7, 67.6, 61.0, 60.6, 58.3, 57.4, 56.0, 55.9, 55.83, 55.76, 55.7, 42.5, 42.4, 42.0, 41.9, 27.3, 25.5. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₃₂H₃₂NO₆ 526.2224; Found 526.2226. IR (KBr thin film, cm⁻¹): v 3277, 2934, 2833, 1608, 1512, 1262, 1029, 733, 629.

(3S,4R)-1-(1-(benzo[d][1,3]dioxol-5-yl)penta-2,4-diyn-1-yl)-3-

((benzo[*d*][1,3]dioxol-5-yloxy)methyl)-4-(4-fluorophenyl)piperidine (3w): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 5:1), yellow oil, 72 mg, 70% yield, 1.2:1 dr. ¹H NMR (400 MHz, CDCl₃, 1:0.45 dr) δ 7.20–7.12 (m, 3H), 7.11–7.02 (m, 3H), 7.02–6.92 (m, 3H), 6.79 (d, *J* = 8.0 Hz, 1.43H), 6.64 (d, *J* = 8.5 Hz, 1H), 6.59 (d, *J* = 8.5 Hz, 0.44H), 6.36 (d, *J* = 2.5 Hz, 1H), 6.27 (d, *J* = 2.5 Hz, 0.44H), 6.15 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.06 (dd, *J* = 8.5, 2.5 Hz, 0.44H), 6.00–5.96 (m, 3H), 5.88 (d, *J* = 7.6 Hz, 3H), 4.71 (s, 1H), 4.66 (s, 0.43H), 3.77–3.73 (m, 0.44H), 3.62–3.55 (m, 1H), 3.52–3.45 (m, 1.44H), 3.43–3.36 (m, 0.44H), 3.29 (dd, J = 11.1, 1.9 Hz, 1H), 3.03–2.89 (m, 0.84H), 2.68 (d, J = 11.0 Hz, 1H), 2.63–2.40 (m, 3H), 2.37–2.15 (m, 4H), 2.11–2.02 (m, 0.40H), 1.91–1.83 (m, 1H), 1.78–1.69 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 161.63 (C-F, ¹ $J_{C-F} = 244.3$ Hz), 161.59 (C-F, ¹ $J_{C-F} = 243.9$ Hz), 154.42, 154.35, 148.3, 148.2, 147.9, 147.4, 141.7, 141.6, 139.7, 131.3, 131.0, 128.91, 128.86, 121.8, 121.7, 115.55 (C-F, ² $J_{C-F} = 21.1$ Hz), 115.49 (C-F, ² $J_{C-F} = 21.1$ Hz), 108.82, 108.78, 108.0, 107.91, 107.89, 105.8, 105.6, 101.3, 101.21, 101.16, 98.2, 98.1, 74.0, 73.8, 72.2, 72.0, 69.74, 69.65, 68.1, 67.9, 67.50, 67.46, 61.7, 61.6, 56.8, 53.0, 50.9, 47.1, 44.3, 44.0, 42.6, 42.2, 34.7, 34.4, 25.7; ¹⁹F NMR (376 MHz, CDCl₃) δ –116.5. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₃₁H₂₇FNO₅ 512.1868; Found 512.1871. IR (KBr thin film, cm⁻¹): v 3282, 2896, 1605, 1485, 1181, 1036, 932, 737, 635.

(*E*)-3-methoxy-*N*-(1-phenylhepta-1-en-4,6-diyn-3-yl)aniline (3x): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 23 mg, 40% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.5 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 2H), 7.29 (d, *J* = 7.2 Hz, 1H), 7.14 (t, *J* = 8.1 Hz, 1H), 6.90 (d, *J* = 15.8 Hz, 1H), 6.42–6.33 (m, 2H), 6.33–6.23 (m, 2H), 4.96 (t, *J* = 5.4 Hz, 1H), 3.92 (d, *J* = 7.0 Hz, 1H), 3.79 (s, 3H), 2.16 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 147.3, 136.0, 133.1, 130.3, 128.8, 128.4, 126.9, 125.6, 107.2, 104.4, 100.5, 75.0, 69.2, 68.1, 67.8, 55.3, 48.0. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₂₀H₁₈NO 288.1383; Found 288.1380. IR (KBr thin film, cm⁻¹): v 3272, 3035, 1721, 1611, 1495, 1457, 1078, 721, 646.

3x'

(*E*)-3-methoxy-*N*-(1-phenylhepta-2-en-4,6-diyn-1-yl)aniline (3x'): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 13 mg, 21% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.29 (m, 5H), 7.07 (t, *J* = 8.1 Hz, 1H), 6.54 (dd, *J* = 15.9, 5.3 Hz, 1H), 6.31 (dd, *J* = 8.1, 1.7 Hz, 1H), 6.20 (d, *J* = 8.0 Hz, 1H), 6.14 (s, 1H), 5.80 (d, *J* = 15.9 Hz, 1H), 5.02–4.92 (m, 1H), 3.98 (d, *J* = 4.3 Hz, 1H), 3.74 (s, 3H), 2.41 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 160.8, 148.13, 148.07, 140.3, 130.1, 129.2, 128.3, 127.6, 109.6, 106.7, 103.3, 99.8, 74.8, 73.8, 71.4,

68.2, 60.4, 55.2. HRMS (ESI-Quadrupole-Orbitrap) m/z: $[M + Na]^+$ Calcd for C₂₀H₁₇NONa 310.1202; Found 310.1198. IR (KBr thin film, cm⁻¹): v 3005, 1745, 1275, 1258, 1153, 764, 711.

3y

(*E*)-3-methoxy-*N*-(2-methyl-1-phenylhepta-1-en-4,6-diyn-3-yl)aniline (3y): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 29 mg, 48% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.31 (m, 2H), 7.31–7.20 (m, 3H), 7.12 (t, *J* = 8.1 Hz, 1H), 6.82 (s, 1H), 6.39–6.30 (m, 2H), 6.30–6.24 (m, 1H), 4.76 (d, *J* = 7.3 Hz, 1H), 3.99 (d, *J* = 7.3 Hz, 1H), 3.77 (s, 3H), 2.16 (s, 1H), 2.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 147.7, 137.1, 134.6, 130.2, 129.1, 128.6, 128.3, 127.1, 107.0, 104.2, 100.2, 75.3, 69.1, 68.1, 67.8, 55.3, 54.2, 15.5. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₂₁H₂₀NO 302.1539; Found 302.1540. IR (KBr thin film, cm⁻¹): v 3279, 3004, 1599, 1493, 1275, 1258, 1162, 764, 633.

(*E*)-3-methoxy-*N*-(2-methyl-1-phenylhepta-2-en-4,6-diyn-1-yl)aniline (3y'): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 19 mg, 32% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.28 (m, 5H), 7.08 (t, *J* = 8.1 Hz, 1H), 6.31 (dd, *J* = 8.2, 2.3 Hz, 1H), 6.14 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.07 (t, *J* = 2.1 Hz, 1H), 5.92–5.87 (m, 1H), 4.74 (d, *J* = 3.5 Hz, 1H), 3.98 (d, *J* = 3.4 Hz, 1H), 3.75 (d, *J* = 0.8 Hz, 3H), 2.47 (s, 1H), 1.90 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 156.2, 148.3, 148.1, 130.1, 129.2, 128.4, 127.8, 106.6, 104.9, 103.2, 99.7, 77.9, 73.7, 71.6, 68.5, 65.2, 55.2, 18.0. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₂₁H₂₀NO 302.1539; Found 302.1537. IR (KBr thin film, cm⁻¹): v 3289, 3004, 1598, 1506, 1275, 1209, 1162, 750, 626.

3z and 3z' 2:1

(E)-3-methoxy-N-(2-phenylocta-2-en-5,7-divn-4-vl)aniline and (E)-3-methoxy-N-(2-phenylocta-3-en-5,7-diyn-2-yl)aniline (3z and 3z'): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 30 mg, 50% yield and 15 mg, 25% yield. ¹H NMR (400 MHz, CDCl₃) & 7.47-7.38 (m, 3H), 7.38–7.28 (m, 4H), 7.28–7.22 (m, 1H), 7.13 (t, J = 8.1 Hz, 1H), 6.98–6.88 (m, 1H), 6.41–6.33 (m, 2H), 6.33–6.28 (m, 1H), 6.22 (dd, J = 8.1, 2.0 Hz, 0.5H), 6.00 (dd, J = 8.1, 1.9 Hz, 0.5H), 5.92–5.72 (m, 2H), 5.00 (d, J = 7.8 Hz, 1H), 4.17 (s, 0.5H), 3.93 (s, 1H), 3.79 (s, 3H), 3.60 (s, 1.5H), 2.41 (s, 0.5H), 2.17 (s, 3H), 2.12 (s, 1H), 1.66 (s, 1.5H); ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 160.2, 151.7, 147.4, 146.3, 144.1, 142.1, 140.0, 130.2, 129.6, 128.9, 128.5, 127.9, 127.4, 126.2, 126.1, 124.6, 108.8, 108.3, 107.1, 104.2, 103.3, 101.8, 100.3, 76.1, 74.6, 74.1, 71.3, 68.2, 67.9, 67.8, 67.4, 60.6, 55.3, 55.0, 44.9, 30.6, 16.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H_{1}^{+} Calcd for C₂₁H₂₀NO 302.1539; Found 302.1545. IR (KBr thin film, cm⁻¹): v 3283, 2988, 1682, 1275, 1262, 1153, 764, 701.

N-(1-phenylpentyl)aniline (4a): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), colorless oil, 19 mg, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.28 (m, 4H), 7.25–7.19 (m, 1H), 7.08 (dd, J = 8.4, 7.4 Hz, 2H), 6.63 (t, J = 7.3 Hz, 1H), 6.51 (d, J = 7.7 Hz, 2H), 4.29 (t, J = 6.8 Hz, 1H), 4.07 (s, 1H), 1.87–1.68 (m, 2H), 1.46–1.20 (m, 4H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 144.5, 129.2, 128.7, 127.0, 126.5, 117.2, 113.3, 58.3, 38.9, 28.6, 22.7, 14.1. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₇H₂₂N 240.1747; Found 240.1749. IR (KBr thin film, cm⁻¹): v 2930, 1601, 1503, 1317, 1179, 1077, 764, 711.

N-(5-(4-methoxyphenyl)-1-phenylpenta-2,4-diyn-1-yl)aniline (4b): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 20:1), yellow oil, 25 mg, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.3 Hz, 2H), 7.46–7.38 (m, 4H), 7.38–7.32 (m, 1H), 7.28–7.18 (m, 3H), 6.82 (d, J = 8.8 Hz, 2H), 6.80–6.72 (m, 2H), 5.42 (d, J = 7.2 Hz, 1H), 4.10 (d, J = 7.1 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 146.3, 138.9, 134.3, 129.4, 129.0, 128.5, 127.5, 119.0, 114.2, 114.1, 113.5, 81.3, 78.4, 72.6, 70.0, 55.5, 50.8. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₄H₁₉NONa 360.1359; Found 360.1355. IR (KBr thin film, cm⁻¹): v 2207, 1601, 1508, 1289, 1250, 1173, 1027, 831, 712.

1-((2*R*,4*R*,5*S*)-5-(hydroxymethyl)-4-(4-(3-phenyl-3-(phenylamino)prop-1-yn-1yl)-1*H*-1,2,3-triazol-1-yl)tetrahydrofuran-2-yl)-5-methylpyrimidine-2,4(1*H*,3*H*)dione (4c) : purified by flash chromatography on silica gel (ethyl acetate), yellow oil, 41 mg, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.62 (s, 2H), 7.70 (s, 2H), 7.60 (d, *J* = 7.2 Hz, 4H), 7.44–7.28 (m, 8H), 7.16 (t, *J* = 7.5 Hz, 4H), 6.79–6.68 (m, 6H), 6.14 (t, *J* = 5.9 Hz, 2H), 5.48 (s, 2H), 5.42–5.32 (m, 2H), 4.30 (s, 4H), 3.92 (d, *J* = 10.8 Hz, 4H), 3.70 (d, *J* = 10.6 Hz, 2H), 2.86 (s, 4H), 1.83 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.1, 150.7, 146.4, 138.9, 138.0, 130.8, 129.4, 129.0, 128.9, 128.5, 127.9, 127.4, 126.6, 118.8, 114.1, 111.3, 92.8, 88.5, 85.2, 74.0, 61.5, 59.7, 50.5, 37.5, 27.9, 12.5. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + Na]⁺ Calcd for C₂₇H₂₆N₆O₄Na 521.1908; Found 521.1907. IR (KBr thin film, cm⁻¹): v 3005, 1688, 1472, 1275, 1259, 764, 750.

N,*N*-diethyl-1-phenylpenta-2,4-diyn-1-amine (3aa): purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, v:v = 30:1), colorless oil,

26.6 mg, 63% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.4 Hz, 2H), 7.40–7.31 (m, 2H), 7.31–7.24 (m, 1H), 4.89 (s, 1H), 2.68–2.54 (m, 2H), 2.52–2.40 (m, 2H), 2.14 (s, 1H), 1.04 (t, J = 7.1 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 138.7, 128.3, 128.2, 127.7, 74.9, 71.3, 68.1, 66.7, 57.1, 44.7, 13.7. HRMS (ESI-Quadrupole-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₅H₁₈N 212.1434; Found 212.1433. IR (KBr thin film, cm⁻¹): v 3005, 2120, 1469, 1276, 1259, 750, 721, 646.

VII. ¹H NMR and ¹³C NMR spectra of substrates and products

S28

JCA-531104-CF-b1 7.2603 23.15655 5.79 23.15655 5.79 23.15655 5.79 23.15655 5.79 23.15655 5.579 23.15755 5.579 23.15755 5.579 23.15755 5.579 23.157555 5.579 </tr

JCA-531012-B-L 2.2095 2.2005

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

120 110 f1 (ppm) 220 210 200 170 160

S74

jcy-240 \$2542.9 \$6672.2 \$672.2 \$672 5.4318 5.4139 5.4139 4139 4139 4139 4139 4139 4139 4139 4139 4139 4139 4139 4139 4139 -4.1096 -3.8053

S77

S79

VIII. HPLC analysis of 3a.

<Chromatogram>

<Peak Table> ???A 254nm

Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	9.561	1399737	75876	50.332							
2	11.772	1381265	60799	49.668		SV					
Total		2781002	136675								

<Peak Table>

???A 254nm											
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name				
1	9.548	4666054	245156	60.813							
2	11.732	3006737	125756	39.187							
Total		7672791	370911								