Supporting Information

YlideFluor-CF₂Cl: A Shelf-Stable, Versatile electrophilic or Radical

Chlorodifluoromethylating Reagent

Tian Zhang,^a Yuhan Zhang,^a Zimeng Li,^b Botao Wu ^b and Qilong Shen^{a,b,*} ^aHenan Institute of Advanced Technology, Zhengzhou University, 97 Wenhua Lu, Zhengzhou, Henan Province, 450003, PR China ^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, PR China

Email: shenql@sioc.ac.cn

Table of Contents

General Information
Optimization of reactions conditions
General procedures
General Procedure for Preparation of (Difluoromethyl)(4-nitrophenyl)thioether
General Procedure for Preparation of (Chlorodifluoromethyl)(4-nitrophenyl)
bis(carbomethoxy)methylide (YlideFluor-CF2Cl)
General Procedure for Chlorodifluoromethylation of Acetoxystyrene Derivatives
General Procedure for Visible-light-promoted Chlorodifluoromethylative
Difunctionalization of Styrene Derivatives
General procedure for Visible-light-promoted Chlorodifluoromethylation of (Hetero)cycles
General Procedure for Chlorodifluoromethylation of β -Ketoesters
Electroanalysis
UV–Vis Spectrum of YlideFluor-CF ₂ Cl
¹ H, ¹³ C, and ¹⁹ F NMR Spectra
X-Ray Diffraction Data of YlideFluor-CF2Cl

General Information

All reagents were received from commercial sources. Solvents were freshly dried and degassed according to the purification handbook Purification of Laboratory Chemicals before using.

¹H, ¹³C and ¹⁹F NMR spectra were acquired on 400 MHz, 125 MHz, 100 MHz, 375 MHz spectrometer (400 MHz for ¹ H; 100 MHz or 125 MHz for ¹³C; 375 MHz for ¹⁹F). ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 ppm and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as internal standard. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. All reactions were monitored by TLC or ¹⁹F NMR. Flash column chromatograph was carried out using 300–400 mesh silica gel at medium pressure.

Optimization

Ph	+ 0 ₂ N X	- CO ₂ Me .S + CF ₂ CI equiv	H ₂ O (y Ir(<i>p</i> - ^t Bu-ppy CH ₃ blue L rt, t	equiv)) ₃ (z mol%) CN .EDs ime	O Ph 1a	CF2CI
entry	solvent	x	у	z	t (h)	yield (%)
1	CH ₃ CN	1.0	1.0	1.5	4	66
2	toluene	1.0	1.0	1.5	4	20
3	CH ₂ Cl ₂	1.0	1.0	1.5	4	15
4	THF	1.0	0.0	1.5	4	16
5	DMF	1.0	2.0	1.5	4	53
6	DMSO	1.0	3.0	1.5	4	44
7	CH ₃ CN	1.0	4.0	1.0	4	57
8	CH ₃ CN	1.0	1.0	2.0	4	76
9	CH ₃ CN	1.0	1.0	3.0	4	75
10	CH ₃ CN	1.2	1.0	2.0	4	77
11	CH ₃ CN	1.5	1.0	2.0	4	76
12	CH ₃ CN	1.8	1.0	2.0	4	74
13	CH ₃ CN	2.0	1.0	2.0	4	77
14	CH₃CN	1.0	0	2.0	4	42
15	CH ₃ CN	1.0	1.0	2.0	6	90
16	CH ₃ CN	1.0	1.0	2.0	8	89
17	CH₃CN	1.0	1.0	2.0	12	78
18	CH₃CN	1.0	1.0	2.0	24	72

Table S1. Optimization of the reaction conditions for chlorodifluoromethylation of acetoxystyrene derivatives with YlideFluor- $CF_2Cl^{a,b}$

^{*a*}Reaction conditions: acetoxystyrene (0.1 mmol), **YlideFluor-CF₂Cl** (x equiv.), H₂O (y equiv), catalyst (z mol%), blue LEDs, in solvent (1.0 mL) at room temperature for t h; ^{*b*}Yields were determined by ¹⁹F NMR spectroscopy with 1-fluoronaphthalene as an internal standard.

Table S2. Optimization of the reaction conditions for visible-light-promoted chlorodifluoromethylative difunctionalization of styrene derivatives with **YlideFluor**-**CF₂Cl**.^{*a,b*}

MeO	MeO ₂ H ₂ C.	$\sum_{+}^{CO_2Me} Ir(p)$	^t Bu-ppy) ₃ (x mol%) c(OTf) ₃ 10 mol% WeOH/solvent blue LEDs rt, 12 h	OMe CF ₂ CI 2a
	I	.z equiv		
entry	solvent	x	variation	yield (%)
1	DMSO	1	_	34
2	DMF	1	-	65
3	THF	1	-	69
4	CH ₂ Cl ₂	1	-	99
5	CH₃CN	1	-	72
6	CH ₂ Cl ₂	1	6 h	80
7	CH ₂ Cl ₂	0.5	-	79
8	CH ₂ Cl ₂	1	in air	ND
9	CH ₂ Cl ₂	1	no BLEDs	ND
10	CH ₂ Cl ₂	1	no Sc(OTf) ₃	46

^{*a*}Reaction conditions: 4-methoxystyrene (0.1 mmol), **YlideFluor-CF₂Cl** (0.12 mmol), Ir(*p*-^{*i*}Buppy)₃ (x mol%), Sc(OTf)₃ (10 mol%) and methanol (0.2 mL) in solvent (2.0 mL) at room temperature react for 12 h; ^{*b*}Yields were determined by ¹⁹F NMR spectroscopy with benzotrifluoride as an internal standard.

Table S3. Optimization of the reaction conditions for chlorodifluoromethylation of (hetero)cycles with **YlideFluor-CF₂Cl**.^{*a,b*}

H ₃ C _N O N C H ₃ C _N N N N N N	H_3 + CF_2CI O_2N I.5 equiv.	blue LEDs solvent rt, 24 h	$\begin{array}{c} 0 \\ H_3C \\ N \\ O \\ H_3C \\ N \\ O \\ H_3 \\ CH_3 \\ CF_2CI \\ CF_2CI \\ CH_3 \\ CF_2CI \\ CF_2CI \\ CH_3 \\ CH_3 \\ CF_2CI \\ CH_3 \\ CH_3 \\ CF_2CI \\ CH_3 \\ CF_2CI \\ CH_3 \\ CH_3 \\ CF_2CI \\ CH_3 \\ CH_$
entry	solvent	cat.(2 mol%)	yield (%)
1	CH ₃ CN	lr(ppy) ₃	55
2	CH ₂ Cl ₂	lr(ppy) ₃	29
3	CH₃CN	-	40
4	DMSO	lr(ppy) ₃	68
5	DMF	lr(ppy) ₃	23
6	DMSO	Ir(p- ^t Bu-ppy) ₃	72

^{*a*}Reaction conditions: caffeine (0.1 mmol), **YlideFluor-CF₂Cl** (0.15 mmol) and [Ir] catalyst (2 mol%) in solvent (1.0 mL) at room temperature react for 24 h under blue LEDs; ^{*b*}Yields were determined by ¹⁹F NMR spectroscopy with benzotrifluoride as an internal standard.

H ₃ C	O CO ₂ Me	$\begin{array}{c} MeO_2C - CO_2Me \\ + C_2N & CF_2CI \\ O_2N & x \text{ equiv.} \end{array}$	Na ₂ CO ₃ (y equiv.) DMSO rt, t h	O CO ₂ Me CF ₂ CI 5a
entry	х	У	t (h)	yield (%)
1	1.0	2.0	10	70
2	1.2	2.0	10	79
3	1.5	2.0	10	74
4	2.0	2.0	10	74
5	1.2	0.5	10	62
6	1.2	1.5	10	63
7	1.2	1.5	10	85
8	1.2	1.5	4	36
9	1.2	1.5	6	65
10	1.2	1.5	8	80
11	1.2	1.5	12	92

Table S4. Optimization of the reaction conditions for chlorodifluoromethylation of β -ketoesters.^{*a,b*}

^{*a*}Reaction conditoins: β -ketoesters (0.1 mmol), **YlideFluor-CF₂Cl** (x equiv.) and Na₂CO₃ (y equiv.) in DMSO (1.0 mL) react for t h; ^{*b*}Yields were determined by ¹⁹F NMR spectroscopy with 1-fluoronaphthalene as an internal standard.

General procedures

General Procedure for Preparation of (Difluoromethyl)(4-nitrophenyl)thioether

A mixture of (difluoromethyl)(4-nitrophenyl)thioether (10.3 g, 50.0 mmol) and 'BuOK (28.1 g, 250 mmol) in CCl₄ (200 mL) was stirred at 0 °C for 0.5 h and then was allowed to warm to room temperature for 12 h. Upon completion, Water (100 mL) was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (100 mL × 3). The combined organic layer was washed with brine (100 mL × 3) and dried over Na₂SO₄. The solvent was removed under vacuum and the residue was purified by chromatography to give the pure desired product (chlorodifluoromethyl)(4-nitrophenyl)thioether (8.6 g, 72%).

General Procedure for Preparation of (Chlorodifluoromethyl)(4-nitrophenyl) bis(carbomethoxy)methylide (YlideFluor-CF₂Cl)

To an oven-dried 350-mL Schlenk tube was added $Rh_2(esp)_2$ (152 mg, 1.0 mol%), dichloromethane (50 mL) and (chlorodifluoromethyl)(4-nitrophenyl)thioether (4.78 g, 20.0 mmol) under an atmosphere of argon. The mixture was cooled to 0 °C and dimethyl 2-diazomalonate (4.74 g, 30.0 mmol) was added dropwise. The mixture was stirred at 0 °C for 12 h and then was allowed to warm to room temperature. The solvent was removed under vacuum. The residue was purified by chromatography to give YlideFluor-CF₂Cl (5.8 g, 78%).

(Chlorodifluoromethyl)(4-nitrophenyl)bis(carbomethoxy)methylide (YlideFluor-CF₂Cl)

Yellow solid(5.8 g, 78%). m.p.: 77-79 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.40 (d, *J* = 9.0 Hz, 2 H), 7.97 (d, *J* = 8.6 Hz, 2 H), 3.76 (s, 6 H);

¹³C NMR (126 MHz, CDCl₃) δ 165.3, 150.0, 131.1, 131.0 (t, J = 352.7 Hz), 130.0, 124.9, 57.23 (d, J = 2.0 Hz), 51.9;

¹⁹**F NMR** (471 MHz, CDCl₃) δ -33.27 (d, J = 110.9 Hz), -35.80 (d, J = 110.8 Hz) ppm. **HRMS** (DART POS) for C₁₂H₁₁ClF₂NO₆S (M+H⁺) Calcd: 369.9958; Found: 369.9958. **IR** (KBr) ν_{max} = 3101, 2952, 1702, 1659, 1530, 1310, 1240, 1107, 855, 772 cm⁻¹. General Procedure for Visible-light-promoted Chlorodifluoromethylation of Acetoxystyrene Derivatives

To a 25 mL Schlenk tube equipped with a magnetic stirring bar was added reagent YlideFluor-CF₂Cl (180 mg, 0.500 mmol), $Ir(p-tBu-ppy)_3$ (8.2 mg, 2.0 mol%), 1-phenylvinyl acetate (81 mg, 0.50 mmol), H₂O (10 mg, 0.50 mmol) and MeCN (5.0 mL) under argon atmosphere. The mixture was stirred at room temperature under blue LEDs irradiation for 6 h. Water was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (10 mL × 3). The combined organic layer were washed with brine (10 mL × 3) and dried over Na₂SO₄. The solvent was removed under vacuum and the residue was purified by chromatography to give 3-chloro-3,3-difluoro-1-phenylpropan-1-one **1a**.

3-Chloro-3,3-difluoro-1-phenylpropan-1-one 1a

Yellow oil (86 mg, 84%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.93 (d, J = 7.2 Hz, 2 H), 7.62 (t, J = 7.5 Hz, 1 H), 7.50 (t, J = 7.8 Hz, 2 H), 4.00 (t, J = 12.3 Hz, 2 H);

¹³C NMR (151 MHz, CDCl₃) δ 190.0, 135.9, 134.2, 128.9, 128.4, 125.8 (t, *J* = 292.9 Hz), 48.9 (t, *J* = 24.0 Hz);

¹⁹**F NMR** (565 MHz, CDCl₃) δ -48.35 (t, J = 12.1 Hz, 2 F) ppm.

HRMS (EI) for C₉H₇ClF₂O (M⁺) Calcd: 204.0148; Found: 204.0147.

IR (KBr): $v_{max} = 3065, 2930, 1701, 1598, 1361, 1252, 1022, 758, 687, 571 cm⁻¹.$

1-([1,1'-Biphenyl]-4-yl)-3-chloro-3,3-difluoropropan-1-one 1b

White solid (118 mg, 84%), **m.p.**: 106-108 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.5 Hz, 2 H), 7.73 (d, *J* = 8.5 Hz, 2 H), 7.64 (d, *J* = 7.0 Hz, 2 H), 7.49 (t, *J* = 7.5 Hz, 2 H), 7.43 (t, *J* = 7.3 Hz, 1 H), 4.03 (t, *J* = 12.3 Hz, 2 H);

¹³**C NMR** (126 MHz, CDCl₃) δ 189.5, 146.8, 139.4, 134.5, 129.1, 129.0, 128.5, 127.5, 127.3, 125.7 (t, *J* = 293.5 Hz), 48.9 (t, *J* = 23.8 Hz);

¹⁹**F NMR** (471 MHz, CDCl₃) δ -48.17 (t, J = 12.2 Hz, 2 F) ppm.

HRMS (EI) for C₁₅H₁₁ClF₂O (M⁺) Calcd: 280.0461; Found: 280.0463.

IR (KBr): $v_{max} = 3354, 2961, 1936, 1686, 1360, 1192, 952, 766, 695, 571 cm⁻¹.$

3-Chloro-3,3-difluoro-1-(4-iodophenyl)propan-1-one 1c

White solid (113 mg, 69%), m.p.: 74-76 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.88 (d, *J* = 10.0 Hz, 2 H), 7.64 (d, *J* = 10.0 Hz, 2 H),

3.95 (t, *J* = 12.5 Hz, 2 H);

¹³C NMR (126 MHz, CDCl₃) δ 189.1, 138.0, 134.8, 127.5, 125.2 (t, J = 293.6 Hz),

102.3, 48.5 (t, J = 23.9 Hz);

¹⁹**F NMR** (471 MHz, CDCl₃) δ -48.32 (t, J = 14.1 Hz, 2 F) ppm.

HRMS (EI) for C₉H₆OClF₂I (M⁺) Calcd: 329.9114; Found: 229.9118.

IR (KBr): $v_{max} = 3083, 2929, 1694, 1581, 1364, 1186, 1098, 1020, 959, 812 cm⁻¹.$

1-(4-Bromophenyl)-3-chloro-3,3-difluoropropan-1-one 1d

Yellow oil (76 mg, 54%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.0 Hz, 2 H), 7.66 (d, *J* = 12.0 Hz, 2 H), 3.96 (t, *J* = 12.0 Hz, 2 H);

¹³C NMR (126 MHz, CDCl₃) δ 188.8, 140.9, 134.2, 129.8, 129.3, 125.5 (t, *J* = 242.6 Hz), 48.9 (t, *J* = 20.2 Hz);

¹⁹**F NMR** (471 MHz, CDCl₃) δ -48.31 (t, *J* = 11.8 Hz, 2 F) ppm.

HRMS (EI) for C₉H₆BrClF₂O (M⁺) Calcd: 281.9253; Found: 281.9256.

IR (KBr): $v_{max} = 3377, 2933, 1695, 1585, 1409, 1367, 1249, 1186, 1099, 1021 \text{ cm}^{-1}$.

3-Chloro-3,3-difluoro-1-(4-fluorophenyl)propan-1-one 1e

Yellow oil (79 mg, 71%).

¹**H** NMR (500 MHz, CDCl₃) δ 8.04 – 7.98 (m, 2 H), 7.18 (t, *J* = 7.5 Hz, 2 H), 3.97 (t, *J* = 12.5 Hz, 2 H);

¹³C NMR (126 MHz, CDCl₃) δ 188.40, 166.3 (d, J = 258.3 Hz), 132.3, 131.2 (d, J =

8.8 Hz), 125.54 (t, *J* = 293.6 Hz), 116.2 (d, *J* = 22.7 Hz), 48.9 (t, *J* = 23.9 Hz);

¹⁹**F NMR** (471 MHz, CDCl₃) δ -48.32 (t, J = 11.8 Hz, 2 F), -102.87 (m, 1 F) ppm.

HRMS (EI) for C₉H₆ClF₃O (M⁺) Calcd: 222.0054; Found: 222.0048.

IR (KBr): $v_{max} = 3079, 2933, 1701, 1600, 1508, 1414, 1362, 1230, 1160, 1089 \text{ cm}^{-1}$.

3-Chloro-3,3-difluoro-1-(o-tolyl)propan-1-one 1f

Yellow oil (84 mg, 77%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.61 (d, J = 10.0 Hz, 1 H), 7.44 (t, J = 7.5 Hz, 1 H), 7.31

(t, *J* = 7.5 Hz, 2 H), 3.95 (t, *J* = 12.5 Hz, 2 H), 2.54 (s, 3 H);

¹³C NMR (126 MHz, CDCl₃) δ 193.1, 139.5, 136.1, 132.5, 132.4, 128.8, 125.9, 125.7

(t, *J* = 293.9 Hz), 51.2 (t, *J* = 23.3 Hz), 21.5;

¹⁹**F NMR** (471 MHz, CDCl₃) δ -48.22 (t, J = 11.8 Hz, 2 F) ppm.

HRMS (EI) for C₁₀H₉ClF₂O (M⁺) Calcd: 218.0309; Found: 218.0307.

IR (KBr): $v_{max} = 3367, 2973, 1699, 1602, 1354, 1222, 1088, 955, 757, 582 cm⁻¹.$

3-Chloro-3,3-difluoro-1-(4-(methylthio)phenyl)propan-1-one 1g.

White solid (66 mg, 53%), m.p.: 68-70 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.84 (d, *J* = 10.0 Hz, 2 H), 7.29 (d, *J* = 10.0 Hz, 2 H), 3.95 (t, *J* = 12.5 Hz, 2 H), 2.53 (s, 3 H);

¹³C NMR (126 MHz, CDCl₃) δ 188.9, 147.7, 132.1, 128.8, 125.7 (t, *J* = 291.9 Hz),

125.0, 48.7 (t, *J* = 23.8 Hz), 14.6;

¹⁹**F NMR** (471 MHz, CDCl₃) δ -48.14 (t, *J* = 11.8 Hz, 2 F) ppm.

HRMS (ESI) for C₁₀H₉ClF₂SO (M+H⁺) Calcd: 250.0025; Found: 250.0023.

IR (KBr): $v_{max} = 3067, 2921, 1921, 1683, 1588, 1356, 1190, 1081, 986 cm⁻¹.$

General Procedure for Visible-light-promoted Chlorodifluoromethylative Difunctionalization of Styrene Derivatives

To a 25 mL Schlenk tube equipped with a magnetic stirring bar was added reagent YlideFluor-CF₂Cl (222 mg, 0.600 mmol), $Ir(ppy)_3$ (3.3 mg, 1.0 mol%), $Sc(OTf)_3(25 mg, 10 mol%)$, 4-methoxystyrene (67 mg, 0.50 mmol), MeOH (1.0 mL) and dichloromethane (10 mL) under argon atmosphere. The mixture was stirred at room temperature under blue LEDs irradiation for 12 h. The solvent was removed under vacuum and the residue was purified by chromatography to give 3-chloro-3,3-difluoro-1-(4-methoxyphenyl)propan-1-ol **2a**.

1-(3-Chloro-3,3-difluoro-1-methoxypropyl)-4-methoxybenzene2a

Yellow oil (120 mg, 90%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.24 (d, *J* = 8.7 Hz, 2 H), 6.91 (d, *J* = 8.7 Hz, 2 H), 4.47 (dd, *J* = 8.2, 3.9 Hz, 1 H), 3.81 (s, 3 H), 3.20 (s, 3 H), 2.94 – 2.78 (m, 1 H), 2.63 – 2.47 (m, 1 H);

¹³C NMR (126 MHz, CDCl₃) δ 159.62, 132.00, 128.22 (t, *J* = 293.58 Hz), 127.85, 114.11, 78.29 (t, *J* = 3.0 Hz), 56.43, 55.30, 49.72 (t, *J* = 22.9 Hz);

¹⁹**F NMR** (376 MHz, CDCl₃) δ -48.01 (ddd, J = 160.8, 14.0, 10.4 Hz, 1 F), -49.27 (dt, J = 161.2, 13.9 Hz, 1 F) ppm.

HRMS (EI): Calcd for C₁₁H₁₃O₂ClF₂: 250.0567 (M⁺), Found: 250.0571.

IR (KBr): $v_{max} = 2937, 2837, 1889, 1613, 1587, 1513, 1465, 1370, 1304, 1251, 1181$ cm⁻¹

1-Chloro-4-(3-chloro-3,3-difluoro-1-methoxypropyl)benzene 2b

Yellow oil (70 mg, 56%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.5 Hz, 2 H), 7.26 (d, J = 8.4 Hz, 2 H), 4.49 (dd, J = 8.1, 4.0 Hz, 1 H), 3.21 (s, 3 H), 2.92 – 2.75 (m, 1 H), 2.62 – 2.45 (m, 1 H); ¹³C NMR (126 MHz, CDCl₃) δ 138.59, 134.16, 129.02, 127.97 (t, J = 293.58 Hz), 127.97, 78.16 (t, J = 2.9 Hz), 56.78, 49.66 (t, J = 23.1 Hz);

¹⁹**F NMR** (376 MHz, CDCl₃) δ -48.16 (ddd, *J* = 161.5, 13.9, 10.6 Hz, 1 F), -49.32 (dt, *J* = 161.2, 13.6 Hz, 1 F) ppm.

HRMS (EI): Calcd for C₁₀H₁₀OCl₂F₂: 254.0071(M⁺), Found: 254.0076.

IR (KBr): $v_{max} = 2936, 2827, 1599, 1490, 1464, 1370, 1210, 1090, 1026, 937 cm⁻¹$

1-(tert-Butyl)-4-(3-chloro-3,3-difluoro-1-methoxypropyl)benzene 2c

Yellow oil (121 mg, 88%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 (d, *J* = 6.5 Hz, 2 H), 7.24 (d, *J* = 6.4 Hz, 2 H), 4.50 (dd, *J* = 8.9, 2.7 Hz, 1 H), 3.23 (s, 3 H), 2.94 – 2.77 (m, 1 H), 2.64 – 2.47 (m, 1 H), 1.32 (s, 9 H);

¹³C NMR (126 MHz, CDCl₃) δ 151.34, 136.99, 128.32 (t, *J* = 293.58 Hz), 126.21, 125.66, 78.52 (t, *J* = 2.9 Hz), 56.73, 49.79 (t, *J* = 22.8 Hz), 34.61, 31.35;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -47.98 (ddd, J = 160.8, 14.4, 10.0 Hz, 1 F), -49.48 (dt, J = 160.8, 14.1 Hz, 1 F) ppm.

HRMS (EI): Calcd for C₁₄H₁₉OClF₂: 276.1087(M⁺), Found: 276.1084.

IR (KBr): $v_{max} = 2964, 2872, 1614, 1511, 1464, 1364, 1316, 1260, 1214, 1108, 1023, 935, 834 \text{ cm}^{-1}$

2-(3-Chloro-3,3-difluoro-1-methoxypropyl)naphthalene 2d

Yellow oil (102 mg, 74%).

¹H NMR (400 MHz, CDCl₃) δ 7.93 – 7.85 (m, 3 H), 7.81 (s, 1 H), 7.57 – 7.49 (m, 2

H), 7.47 (dd, *J* = 8.5, 1.7 Hz, 1 H), 4.72 (dd, *J* = 8.3, 3.9 Hz, 1 H), 3.29 (s, 3 H), 3.06 – 2.92 (m, 1 H), 2.75 – 2.61 (m, 1 H);

¹³C NMR (126 MHz, CDCl₃) δ 137.41, 133.40, 133.24, 128.94, 128.27 (t, *J* = 293.3 Hz), 127.98, 127.83, 126.50, 126.34, 126.09, 123.87, 78.97 (t, *J* = 2.9 Hz), 56.83, 49.72 (t, *J* = 23.0 Hz);

¹⁹**F NMR** (376 MHz, CDCl₃) δ -47.99 (ddd, *J* = 161.4, 14.4, 10.6 Hz, 1 F), -49.27 (dt, *J* = 161.1, 13.8 Hz, 1 F) ppm.

HRMS (EI): Calcd for C₁₄H₁₃OClF₂: 270.0618 (M⁺), Found: 270.0619.

IR (KBr): $v_{max} = 3057, 2934, 1602, 1508, 1464, 1364, 1335, 1254, 1208, 1104, 1025, 938, 858 cm⁻¹$

1-(3-Chloro-1-ethoxy-3,3-difluoropropyl)-4-methoxybenzene 2e

Yellow oil (105 mg, 80%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.24 (d, *J* = 7.1 Hz, 2 H), 6.89 (d, *J* = 7.1 Hz, 2 H), 4.58 (dd, *J* = 8.5, 4.0 Hz, 1 H), 3.81 (s, 3 H), 3.43 – 3.26 (m, 2 H), 2.94 – 2.77 (m, 1 H), 2.61 – 2.47 (m, 1 H), 1.16 (t, *J* = 6.3 Hz, 3 H);

¹³**C NMR** (126 MHz, CDCl₃) δ 159.49, 132.81, 128.30 (t, *J* = 293.3 Hz), 127.70, 114.04, 76.36 (t, *J* = 3.0 Hz), 64.15, 55.29, 49.88 (t, *J* = 22.7 Hz), 15.11;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -47.95 (ddd, *J* = 160.7, 14.4, 10.8 Hz, 1 F), -49.11 (dt, *J* = 160.7, 13.7 Hz, 1 F) ppm.

HRMS (EI): Calcd for C₁₂H₁₅O₂ClF₂: 264.0723 (M⁺), Found: 264.0719.

IR (KBr): $v_{max} = 2976$, 2876, 1612, 1587, 1512, 1464, 1343, 1251, 1101, 1036, 951, 832 cm⁻¹

1-(3-Chloro-3,3-difluoro-1-isopropoxypropyl)-4-methoxybenzene 2f

Yellow oil (105 mg, 76%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.26 (d, J = 8.7 Hz, 2 H), 6.89 (d, J = 8.7 Hz, 2 H), 4.71 (dd, J = 8.5, 3.6 Hz, 1 H), 3.80 (s, 3 H), 3.55 – 3.41 (m, 1 H), 2.88 – 2.74 (m, 1 H), 2.56 – 2.43 (m, 1 H), 1.16 (d, J = 6.1 Hz, 3 H), 1.05 (d, J = 6.2 Hz, 3 H); ¹³**C NMR** (126 MHz, CDCl₃) δ 159.38, 133.63, 128.36 (t, J = 293.58 Hz), 127.63, 113.98, 73.70 (t, J = 2.9 Hz), 69.22, 55.26, 50.26 (t, J = 22.3 Hz), 23.33, 20.95; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -47.67 (ddd, J = 160.1, 14.0, 10.0 Hz, 1 F), -49.19 (dt, J = 160.2, 13.9 Hz, 1 F) ppm.

HRMS (EI): Calcd for C₁₃H₁₇O₂ClF₂: 278.0880 (M⁺), Found: 278.0882.

IR (KBr): $v_{max} = 2973$, 2838, 1612, 1587, 1511, 1465, 1420, 1335, 1251, 1098, 1037, 942, 873 cm⁻¹

1-(1-Azido-3-chloro-3,3-difluoropropyl)-4-methoxybenzene 2g

Yellow oil (68 mg, 52%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.25 (d, J = 8.9 Hz, 2 H), 6.93 (d, J = 8.7 Hz, 2 H), 4.80 (dd, J = 8.1, 5.2 Hz, 1 H), 3.82 (s, 3 H), 2.75 – 2.87 (m, 1 H), 2.61 – 2.73 (m, 1 H); ¹³**C NMR** (126 MHz, CDCl₃) δ 160.01, 129.71, 128.14, 127.70 (t, J = 292.8 Hz), 114.48, 60.48, 55.35, 47.78 (t, J = 23.6 Hz);

¹⁹**F NMR** (376 MHz, CDCl₃) δ -49.24 (ddd, *J* = 165.44, 14.2, 11.3 Hz, 1 F), -49.92 (dt, *J* = 163.3, 13.0 Hz, 1 F) ppm.

HRMS (EI): Calcd for C₁₀H₁₀ON₃ClClF₂: 261.0475 (M⁺), Found: 261.0477.

IR (KBr): $v_{max} = 3335, 2960, 2839, 2486, 2150, 1889, 1612, 1586, 1514, 1442, 1370, 1370, 1251, 1097, 1033, 970 cm⁻¹$

1-(1-Azido-3-chloro-3,3-difluoropropyl)-4-(tert-butyl)benzene 2h

Yellow oil (90 mg, 64%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 (d, J = 8.4 Hz, 2 H), 7.25 (d, J = 8.3 Hz, 2 H), 4.82

(dd, *J* = 8.7, 4.4 Hz, 1 H), 2.91 – 2.74 (m, 1 H), 2.76 – 2.60 (m, 1 H), 1.32 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 152.10, 134.85, 127.78 (t, *J* = 293.58 Hz), 126.41, 126.09, 60.64, 47.76 (t, *J* = 22.68 Hz), 34.69, 31.26;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -49.17 (ddd, J = 162.9, 14.0, 10.3 Hz, 1 F), -50.20 (dt, J = 162.8, 13.2 Hz, 1 F) ppm.

HRMS (EI): Calcd for C₁₃H₁₆N₃ClF₂: 287.0995 (M⁺), Found: 287.1001.

IR (KBr): $v_{max} = 3329, 2965, 2486, 2111, 1910, 1613, 1509, 1465, 1419, 1244, 1205, 1100, 1018, 951, 834 cm⁻¹$

1-(1-Azido-3-chloro-3,3-difluoropropyl)-4-chlorobenzene 2i

Yellow oil (34 mg, 26%).

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 (d, J = 6.4 Hz, 2 H), 7.27 (d, J = 6.5 Hz, 2 H), 4.83 (t, J = 5.7 Hz, 1 H), 2.73 – 2.86 (m, 1 H), 2.59 – 2.72 (m, 1 H);

¹³C NMR (126 MHz, CDCl₃) δ 136.31, 134.98, 129.44, 128.18, 127.45 (t, *J* = 293.58 Hz), 60.32 (t, *J* = 2.9 Hz), 47.86 (t, *J* = 23.9 Hz);

¹⁹**F NMR** (376 MHz, CDCl₃) δ -49.29 (dt, *J* = 163.3, 12.2 Hz, 1 F), -50.00 (dt, *J* = 163.5, 12.9 Hz, 1 F) ppm.

HRMS (EI): Calcd for C₉H₇N₃Cl₂F₂: 264.9980 (M⁺), Found: 264.9982.

IR (KBr): $v_{max} = 3330, 2923, 2481, 2105, 1903, 1654, 1597, 1493, 1364, 1242, 1094, 1015, 973, 830 cm⁻¹$

General procedure for Visible-light-promoted chlorodifluoromethylation of (hetero)cycles

To a 25 mL Schlenk tube equipped with a magnetic stirring bar was added reagent YlideFluor-CF₂Cl (275 mg, 0.750 mmol), $Ir(p-'Bu-ppy)_3$ (8.2 mg, 2.0 mol%), caffeine (85 mg, 0.50 mmol) and DMSO (5.0 mL) under argon atmosphere. The mixture was stirred at room temperature under blue LEDs irradiation for 24 h. Water was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (10 mL × 3). The combined organic layer was washed with brine (10 mL × 3) and dried over Na₂SO₄. The solvent was removed under vacuum and the residue was purified by chromatography to give **3a**.

8-(Chlorodifluoromethyl)-1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione 3a

White solid (88 mg, 63%), m.p.: 91-93 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 4.16 (s, 3 H), 3.58 (s, 3 H), 3.40 (s, 3 H);

¹³C NMR (126 MHz, CDCl₃) δ 155.54, 151.35, 146.33, 142.53 (t, *J* = 32.9 Hz), 119.68

(t, *J* = 288.1 Hz), 109.62, 33.46, 29.92, 28.20;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -51.14 ppm.

This compound has been reported by Org. Lett. 2017, 19, 19, 5126 - 5129

8-(Chlorodifluoromethyl)-1-(3-chloropropyl)-3,7-dimethyl-3,7-dihydro-1*H*purine-2,6-dione 3b

White solid (110 mg, 66%), m.p.: 72-73 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 4.18 (t, *J* = 5.0 Hz, 2 H), 4.16 (s, 3 H), 3.61 (t, *J* = 6.6 Hz, 2 H), 3.59 (s, 3 H), 2.13 – 2.19 (m, 2 H);

¹³**C NMR** (126 MHz, CDCl₃) δ 155.35, 151.10, 146.48, 142.70 (t, *J* = 33.0 Hz), 119.64 (t, *J* = 288.3 Hz), 109.60, 42.43, 39.53, 33.50 (t, *J* = 2.6 Hz), 31.02, 29.89;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -51.05 ppm.

HRMS (EI): Calcd for C₁₁H₁₂O₂N₄Cl₂F₂: 341.0378 (M⁺+H⁺), Found: 341.0380.

IR (KBr): $v_{max} = 2961, 2928, 1708, 1666, 1607, 1544, 1503, 1446, 1334, 1366, 1334, 1288, 1231, 1136, 1087, 1000, 870 cm⁻¹$

8-(Chlorodifluoromethyl)-7-(2-chloroethyl)-1,3-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione 3c

Yellow solid (61 mg, 37%), m.p.: 77-78 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 4.81 (t, *J* = 6.8 Hz, 2 H), 3.95 (t, *J* = 6.8 Hz, 2 H), 3.63 (s, 3 H), 3.45 (s, 3 H);

¹³**C NMR** (126 MHz, CDCl₃) δ 155.17, 151.23, 146.86, 142.78 (t, *J* = 33.0 Hz), 119.77

(t, *J* = 288.3 Hz), 108.98, 47.84 (t, *J* = 2.8 Hz), 41.37, 30.02, 28.34;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -49.43 ppm.

This compound has been reported by Eur. J. Org. Chem. 2022, e202200607.

8-(Chlorodifluoromethyl)-1-hexyl-3,7-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione 3d

Yellow solid (68 mg, 39%), m.p.: 70-72 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 4.17 (s, 3 H), 4.02 – 3.98 (m, 2 H), 3.58 (s, 3 H), 1.68 – 1.60 (m, 2 H), 1.29 – 1.40 (m, 6 H), 0.87 – 0.90 (m, 3 H);

¹³C NMR (126 MHz, CDCl₃) δ 155.43, 151.11, 146.33, 142.45 (t, *J* = 33.0 Hz), 119.71 (t, *J* = 288.2 Hz), 109.70, 41.79, 33.45, 31.51, 29.83, 27.92, 26.63, 22.56, 14.05;
¹⁹F NMR (376 MHz, CDCl₃) δ -51.10 ppm.

HRMS (EI): Calcd for C₁₄H₂₀O₂N₄Cl₂F₂: 349.1237 (M⁺+H⁺), Found: 349.1237.

IR (KBr): $v_{max} = 2958, 2856, 1712, 1663, 1607, 1544, 1451, 1383, 1332, 1286, 1230, 1132, 1091, 1002, 916 cm⁻¹$

4-(tert-Butyl)-2-(chlorodifluoromethyl)-1-methoxybenzene 3e

Colorless oil (66 mg, 53%).

¹**H** NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 2.5 Hz, 1 H), 7.47 (dd, *J* = 8.7, 2.5 Hz, 1

H), 6.94 (d, *J* = 8.7 Hz, 1 H), 3.91 (s, 3 H), 1.31 (s, 9 H);

¹³C NMR (126 MHz, CDCl₃) δ 154.44 (t, *J* = 2.8 Hz), 142.89, 129.62, 125.32 (t, *J* = 289.9 Hz), 123.57 (t, *J* = 24.6 Hz), 122.46, 112.02, 56.05, 34.27, 31.37;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -49.01 ppm.

This compound has been reported by Org. Lett. 2018, 20, 12, 3491-3495

2-(Chlorodifluoromethyl)-1-methyl-1H-indole-3-carbaldehyde 3f

Yellow solid (67 mg, 55%), m.p.: 72-74 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 10.43 (s, 1 H), 8.55 (d, J = 8.1 Hz, 1 H), 7.51 – 7.44 (m,

2 H), 7.41 (ddd, *J* = 8.1, 6.6, 1.5 Hz, 1 H), 4.00 (s, 3 H);

¹³C NMR (126 MHz, CDCl₃) δ 185.93 (t, J = 7.8 Hz), 137.64, 136.36 (t, J = 33.5 Hz),

126.11, 124.35, 124.21, 124.01, 122.28 (t, *J* = 288.8 Hz), 115.70, 109.93, 31.81;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -44.56 ppm.

HRMS (EI): Calcd for C₁₁H₈ONClF₂: 243.0257 (M⁺), Found: 243.0255.

IR (KBr): $v_{max} = 3060, 2879, 1654, 1577, 1524, 1474, 1400, 1366, 1351, 1223, 1169, 1088, 1029, 946, 810 cm⁻¹$

Yellow solid (79 mg, 58%), m.p.: 88-90 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 8.09 (d, J = 8.1 Hz, 1 H), 7.43 (d, J = 3.3 Hz, 2 H), 7.33

(dt, *J* = 8.1, 4.0 Hz, 1 H), 4.00 (s, 3 H), 3.97 (t, *J* = 1.9 Hz, 3 H);

¹³C NMR (126 MHz, CDCl₃) δ 164.03, 136.94, 132.99 (t, J = 30.9 Hz), 125.29, 125.25,

122.73, 122.51, 121.80 (t, *J* = 288.9 Hz), 110.08, 108.01, 51.90, 32.19;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -44.50 ppm.

HRMS (EI): Calcd for C₁₂H₁₀O₂NClF₂: 273.0363 (M⁺), Found:273.0358.

IR (KBr): vmax = 3077, 2950, 1716, 1576, 1543, 1471, 1436, 1404, 1335, 1274, 1236, 1201, 1112, 1076, 1019, 922 cm⁻¹

5-Bromo-2-(chlorodifluoromethyl)-1-methyl-1*H*-indole-3-carbaldehyde 3h

Yellow solid (60 mg, 37%), m.p.: 134-136 °C.

¹**H** NMR (500 MHz, CDCl₃) δ 10.34 (s, 1 H), 8.69 (d, J = 1.9 Hz, 1 H), 7.54 (dd, J =

8.9, 2.0 Hz, 1 H), 7.30 (d, *J* = 8.8 Hz, 1 H), 3.96 (s, 3 H);

¹³C NMR (126 MHz, CDCl₃) δ 185.52 (t, J = 7.9 Hz), 136.92 (t, J = 33.7 Hz), 136.29,

129.29, 126.50, 125.58, 121.92 (t, *J* = 289.0 Hz), 117.93, 114.98, 111.44, 32.03;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -45.13 ppm.

HRMS (EI): Calcd for C₁₁H₇ONBrClF₂: 320.9362 (M⁺), Found: 320.9359.

IR (KBr): $v_{max} = 3069, 2901, 1654, 1606, 1572, 1522, 1471, 1397, 1342, 1224, 1141, 1087, 1051, 953 cm⁻¹$

tert-Butyl 2-(chlorodifluoromethyl)-6-fluoro-1H-indole-1-carboxylate 3i

Yellow oil (100 mg, 66%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.92 (dd, J = 10.6, 2.4 Hz, 1 H), 7.48 (dd, J = 8.6, 5.5 Hz, 1 H), 7.01 (d, J = 0.8 Hz, 1 H), 6.99 (td, J = 8.9, 2.4 Hz, 1 H), 1.63 (s, 9 H); ¹³**C NMR** (126 MHz, CDCl₃) δ 162.33 (d, J = 243.3 Hz), 148.44, 138.26, 132.17 (t, J = 34.0 Hz), 123.05 (d, J = 10.2 Hz), 122.60, 121.62 (t, J = 285.3 Hz), 112.43 (d, J = 24.8 Hz), 112.22 (t, J = 6.1 Hz), 103.40 (d, J = 29.4 Hz), 86.22, 27.92; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -44.53, -112.93 ppm.

HRMS (EI): Calcd for C₉H₅NClF₃: 319.0057 (M⁺), Found: 319.0060.

IR (KBr): $v_{max} = 3130, 2986, 1745, 1632, 1556, 1488, 1435, 1373, 1329, 1297, 1260, 1175, 1141, 1047, 1000, 857 cm⁻¹$

Ethyl 5-(chlorodifluoromethyl)-1-methyl-1*H*-pyrrole-2-carboxylate 3j

Yellow oil (94 mg, 79%).

¹**H NMR** (600 MHz, CDCl₃) δ 6.90 (d, J = 4.2 Hz, 1 H), 6.53 (d, J = 4.2 Hz, 1 H), 4.34 (q, J = 7.1 Hz, 2 H), 4.09 (s, 3 H), 1.39 (t, J = 7.1 Hz, 3H);

¹³C NMR (151 MHz, CDCl₃) δ 160.88, 131.59 (t, J = 32.3 Hz), 126.78, 121.80 (t,J =

285.39 Hz), 115.79, 109.72 (t, *J* = 4.2 Hz), 60.50, 33.81, 14.32;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -46.44 ppm.

HRMS (EI): Calcd for C₉H₁₀O2NClF₂: 237.0363 (M⁺), Found: 237.0364

IR (KBr): $v_{max} = 2984$, 1803, 1717, 1539, 1488, 1397, 1247, 1107, 1035 cm⁻¹

1-(5-(Chlorodifluoromethyl)-1-methyl-1*H*-pyrrol-2-yl)ethan-1-one 3k

Yellow oil (80 mg, 79%).

¹**H NMR** (600 MHz, CDCl₃) δ 6.88 (d, J = 4.3 Hz, 1 H), 6.52 (d, J = 4.3 Hz, 1 H), 4.06

(s, 3 H), 2.48 (s, 3 H);

¹³**C NMR** (151 MHz, CDCl₃) δ 189.83, 133.75, 132.59 (t, *J* = 32.2 Hz), 121.77 (t, *J* = 285.39 Hz), 117.40, 109.58 (t, *J* = 4.2 Hz), 34.46, 27.95;

¹⁹**F NMR** (376 MHz, CDCl₃) δ -46.46 ppm.

HRMS (EI): Calcd for C₈H₈ClF₂NO: 207.0257 (M⁺), Found: 207.0255

IR (KBr): $v_{max} = 3137, 2965, 1801, 1671, 1535, 1487, 1382, 1341, 1242, 1069 cm⁻¹$

5-(Chlorodifluoromethyl)-1-methyl-1H-pyrrole-2-carbaldehyde 31

Yellow oil(75 mg, 77%).

¹**H NMR** (600 MHz, CDCl₃) δ 9.68 (s, 1 H), 6.87 (d, *J* = 4.2 Hz, 1 H), 6.60 (d, *J* = 4.2 Hz, 1 H), 4.10 (s, 3 H);

¹³C NMR (151 MHz, CDCl₃) δ 181.13, 134.48, 133.93 (t, *J* = 32.2 Hz), 121.90, 121.54 (t, *J* = 285.8 Hz), 110.64 (t, *J* = 4.0 Hz), 33.81;

¹⁹F NMR (376 MHz, CDCl₃) δ -46.95 ppm.

HRMS (EI): Calcd for C₇H₆ClF₂NO: 193.0100 (M⁺), Found: 193.0097

IR (KBr): $v_{max} = 3139, 2960, 2255, 1682, 1534, 1470, 1390, 1337, 1220, 1114, cm⁻¹$

General procedure for preparation of 8-(difluoro(trimethylsilyl)methyl)-1-hexyl-3,7-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione 4

To anhydous DMF (0.2 mL) were added magnesium powder (4.8 mg, 0.2 mmol) and chlorotrimethylsilane (25 μ L, 0.4 mmol) under an atmosphere of argon. Then **3d** (35 mg, 0.10 mmol) was added dropwise. The reaction was exothermic and the mixture was stirred until it turned brown. The mixture was extracted with Et₂O (2.0 mL × 3). The organic layer washed with H₂O (2.0 mL × 3), dried over MgSO₄ and then purified by flash chromatography to afford compound **4** (23 mg, 60%) as a colourless liquid.

8-(Difluoro(trimethylsilyl)methyl)-1-hexyl-3,7-dimethyl-3,7-dihydro-1*H*-purine-

2,6-dione 4

Yellow solid (23 mg, 60%), m.p.: 78-80 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 4.17 (s, 3 H), 4.05 – 3.97 (m, 2 H), 3.55 (s, 3 H), 1.70 – 1.60 (m, 2 H), 1.42 – 1.31 (m, 6 H), 0.94 – 0.87 (m, 3 H), 0.37 (s, 9 H);

¹³C NMR (126 MHz, CDCl₃) δ 155.59, 151.32, 146.59, 146.13 (t, *J* = 26.3 Hz), 124.14 (t, *J* = 254.9 Hz), 109.01, 41.58, 33.16, 31.54, 29.57, 28.00, 26.66, 22.58, 14.07, -3.95;
¹⁹F NMR (376 MHz, CDCl₃) δ -111.42 ppm.

HRMS (EI): Calcd for C₁₇H₂₈O₂N₄F₂Si: 386.1944 (M⁺), Found: 386.1942.

IR (KBr): $v_{max} = 2959, 2857, 1718, 1655, 1607, 1547, 1442, 1290, 1086, 966 cm⁻¹$

General Procedure for Chlorodifluoromethylation of β-Ketoesters

To a 25 mL Schlenk tube equipped with a magnetic stirring bar was added reagent YlideFluor-CF₂Cl (221 mg, 0.600 mmol), β -ketoesters (102 mg, 0.500 mmol), Na₂CO₃ (79 mg, 0.75 mmol) and DMSO (5.0 mL) under argon atmosphere. The mixture was stirred at room temperature for 12 h. Water was added to the reaction mixture. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (10 mL × 3). The combined organic layer were washed with brine (10 mL × 3) and dried over Na₂SO₄. The solvent was removed under vacuum and the residue was purified by chromatography to give **5a**.

Methyl 2-(chlorodifluoromethyl)-6-methyl-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate 5a

Yellow oil (129 mg, 90%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.60 (s, 1 H), 7.49 (d, *J* = 7.8 Hz, 1 H), 7.41 (d, *J* = 8.0 Hz, 1 H), 3.76 (s, 3 H), 3.75 (d, *J* = 18.4 Hz, 1 H), 3.58 (d, *J* = 17.7 Hz, 1 H), 2.40 (s, 3 H);

¹³**C NMR** (126 MHz, CDCl₃) δ 192.9, 165.7, 148.9, 138.6, 137.5, 134.7, 126.8 (t, *J* = 299.9 Hz), 125.9, 125.2, 67.5 (t, *J* = 21.4 Hz), 53.4, 35.4, 20.9;

¹⁹F NMR (470 MHz, CDCl₃) δ -55.25 (d, J = 166.4 Hz, 1 F), δ -56.67 (d, J = 166.4 Hz, 1 F) ppm.

HRMS (EI) for C₁₃H₁₁ClF₂O₃ (M⁺) Calcd: 288.0359; Found: 288.0358.

IR (KBr): $v_{max} = 2958$, 1759, 1618, 1587, 1497, 1283, 1222, 1154, 970 cm⁻¹.

Methyl 2-(chlorodifluoromethyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate 5b

Yellow oil (129 mg, 94%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.84 (d, *J* = 6.0 Hz, 1 H), 7.70 (t, *J* = 6.0 Hz, 1 H), 7.55 (d, *J* = 6.0 Hz, 1 H), 7.46 (t, *J* = 9.0 Hz, 1 H), 3.82 (d, *J* = 18.0 Hz, 1 H), 3.77 (s, 3 H), 3.67 (d, *J* = 18.0 Hz, 1 H);

¹³**C NMR** (126 MHz, CDCl₃) δ 192.9, 165.7, 151.4, 136.2, 134.5, 128.4, 126.7 (t, *J* = 300.1 Hz), 126.2, 125.5, 67.3 (t, *J* = 21.4 Hz), 53.5, 35.7;

¹⁹F NMR (565 MHz, CDCl₃) δ -55.05 (d, J = 166.6 Hz, 1 F), δ -56.34 (d, J = 166.6 Hz, 1 F) ppm.

HRMS (EI) for C₁₂H₉ClF₂O₃ (M⁺) Calcd: 274.0203; Found: 274.0208.

IR (KBr): $v_{max} = 3439, 2958, 2846, 1756, 1607, 1592, 1435, 1275, 1193, 1087 \text{ cm}^{-1}$.

Methyl 2-(chlorodifluoromethyl)-6-fluoro-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate 5c

Yellow liquid (143 mg, 98%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.51 (dd, *J* = 8.3, 4.1 Hz, 1 H), 7.43 – 7.37 (m, 2 H), 3.77 – 3.73 (m, 4 H), 3.60 (d, *J* = 17.7 Hz, 1 H);

¹³C NMR (126 MHz, CDCl₃) δ 192.0, 165.3 (d, J = 3.5 Hz), 162.6 (d, J = 250.1 Hz),

146.9, 136.2, 127.8 (d, *J* = 8.1 Hz), 126.5 (t, *J* = 301.1 Hz), 124.1 (d, *J* = 24.1 Hz),

111.1 (d, *J* = 22.6 Hz), 68.0 (t, *J* = 22.1 Hz), 53.7, 35.5;

¹⁹**F NMR** (470 MHz, CDCl₃) δ -55.50 (d, J = 167.1 Hz, 1 F), δ -56.77 (d, J = 166.9

Hz, 1 F), -112.54 (s, 1 F) ppm.

HRMS (EI) for C₁₂H₈ClF₃O₃ (M⁺) Calcd: 292.0109; Found: 292.0112.

IR (KBr): $v_{max} = 3072, 2960, 1760, 1492, 1437, 1269, 1224, 1190, 1156, 1056 cm⁻¹.$

Methyl 6-bromo-2-(chlorodifluoromethyl)-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate 5d

Yellow solid (151 mg, 86%), m.p.: 72-74 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 7.95 (d, *J* = 1.6 Hz, 1 H), 7.78 (dd, *J* = 8.2, 1.8 Hz, 1 H), 7.42 (d, *J* = 8.2 Hz, 1 H), 3.78 (s, 3 H), 3.75 (d, *J* = 17.9 Hz, 1 H), 3.59 (d, *J* = 17.9 Hz, 1 H);

¹³**C NMR** (126 MHz, CDCl₃) δ 191.5, 165.2 (d, *J* = 4.1 Hz), 149.9, 139.0, 136.3, 128.3, 127.8, 126.5 (t, *J* = 299.9 Hz), 122.6, 67.8 (t, *J* = 22.1 Hz), 53.7, 35.4;

¹⁹F NMR (565 MHz, CDCl₃) δ -55.39 (d, J = 167.1 Hz, 1 F), δ -56.62 (d, J = 167.1 Hz, 1 F) ppm.

HRMS (EI) for C₁₂H₈BrClF₂O₃ (M⁺) Calcd: 351.9313; Found: 351.9308.

IR (KBr): $v_{max} = 3033, 2838, 1763, 1599, 1432, 1292, 1204, 1114, 1040, 974 \text{ cm}^{-1}$.

Methyl 2-(chlorodifluoromethyl)-5-fluoro-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate 5e

Yellow solid (114 mg, 78%), m.p.: 64-96 °C.

¹**H NMR** (500 MHz, CDCl₃) δ 7.84 (dd, *J* = 8.5, 5.2 Hz, 1 H), 7.22 – 7.13 (m, 2 H), 3.79 – 3.82 (m, 4 H), 3.63 (d, *J* = 18.0 Hz, 1 H);

¹³**C NMR** (126 MHz, CDCl₃) δ 190.9, 167.9 (d, *J* = 250.7 Hz), 165.4 (d, *J* = 3.6 Hz), 154.4, 130.9, 128.0 (d, *J* = 11.1 Hz), 126.6 (t, *J* = 300.1 Hz), 117.0 (d, *J* = 24.3 Hz), 113.1 (d, *J* = 22.9 Hz), 67.6 (t, *J* = 22.1 Hz), 53.7, 35.5;

¹⁹F NMR (470 MHz, CDCl₃) δ -55.51 (d, J = 166.8 Hz, 1 F), δ -56.77 (d, J = 166.8 Hz, 1 F), -99.2 (s, 1 F) ppm.

HRMS (EI) for C₁₂H₈ClF₃O₃ (M⁺) Calcd: 292.0109; Found: 292.0106.

IR (KBr): $v_{max} = 3077, 2963, 1754, 1616, 1481, 1341, 1262, 1151, 1066, 937 cm⁻¹.$

Methyl 5-chloro-2-(chlorodifluoromethyl)-1-oxo-2,3-dihydro-1H-indene-2-

carboxylate 5f

Yellow solid (150 mg, 97%), m.p.: 96-98 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 7.77 (d, J = 6.0 Hz, 1 H), 7.53 (s, 1 H), 7.44 (d, J = 6.0

Hz, 1 H), 3.78 (d, *J* = 18.0 Hz, 1 H), 3.78 (s, 3 H), 3.63 (d, *J* = 18.0 Hz, 1 H);

¹³C NMR (126 MHz, CDCl₃) δ 191.4, 165.3, 152.8, 143.0, 133.0, 129.4, 126.6, 126.5, 126.5 (t, *J* = 300.1 Hz), 67.5 (t, *J* = 22.1 Hz), 53.7, 35.4;

¹⁹F NMR (565 MHz, CDCl₃) δ -55.43 (d, J = 163.9 Hz, 1 F), δ -56.65 (d, J = 163.9 Hz, 1 F) ppm.

HRMS (EI) for C₁₂H₈Cl₂F₂O₃ (M⁺) Calcd: 307.9813; Found: 307.9820.

IR (KBr): $v_{max} = 3431, 2963, 1755, 1598, 1445, 1325, 1281, 1146, 1052, 965 \text{ cm}^{-1}$.

Methyl 5-bromo-2-(chlorodifluoromethyl)-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate 5g

Yellow solid (160 mg, 91%), m.p.: 96-98 °C.

¹**H NMR** (600 MHz, CDCl₃) δ 7.71 (s, 1 H), 7.69 (d, *J* = 8.2 Hz, 1 H), 7.60 (d, *J* = 8.2 Hz, 1 H), 7.60 (d, *J* = 8.2 Hz, 1 H), 3.80 – 3.78 (m, 4 H), 3.63 (d, *J* = 17.9 Hz, 1 H);

¹³C NMR (126 MHz, CDCl₃) δ 191.7, 165.3 (d, J = 3.5 Hz), 152.8, 133.4, 132.2, 131.9,

129.6, 126.6, 126.5 (t, *J* = 300.5 Hz), 67.4 (t, *J* = 22.1 Hz), 53.7, 35.3;

¹⁹F NMR (565 MHz, CDCl₃) δ -55.41 (d, J = 167.1 Hz, 1 F), δ -56.64 (d, J = 166.9 Hz, 1 F) ppm.

HRMS (EI) for C₁₂H₈BrClF₂O₃ (M⁺) Calcd: 351.9308; Found: 351.9315.

IR (KBr): $v_{\text{max}} = 2963$, 1755, 1594, 1437, 1323, 1221, 1053, 946, 837, 750 cm⁻¹.

Methyl 2-(chlorodifluoromethyl)-5-methoxy-1-oxo-2,3-dihydro-1*H*-indene-2carboxylate 5h

Yellow oil (123 mg, 81%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.42 (d, *J* = 8.4 Hz, 1 H), 7.28 (dd, *J* = 8.4, 2.5 Hz, 1 H), 7.24 (d, *J* = 2.4 Hz, 1 H), 3.85 (s, 3 H), 3.78 (s, 3 H), 3.71 (d, *J* = 17.5 Hz, 1 H), 3.58 (d, *J* = 17.5 Hz, 1 H);

¹³**C NMR** (126 MHz, CDCl₃) δ 192.8, 165.7, 160.0, 144.4, 135.8, 126.9, 126.7 (t, *J* = 299.9 Hz), 125.8, 106.2, 67.9 (t, *J* = 22.4 Hz), 55.6, 53.5, 35.1;

¹⁹F NMR (565 MHz, CDCl₃) δ -55.23 (d, J = 166.6 Hz, 1 F), δ -56.61 (d, J = 166.6 Hz, 1 F) ppm.

HRMS (EI) for C₁₃H₁₁ClF₂O₄ (M⁺) Calcd: 304.0308; Found: 304.0314.

IR (KBr): $v_{max} = 3010, 2958, 1759, 1618, 1496, 1435, 1281, 1166, 1055, 971 cm⁻¹.$

Methyl 2-(chlorodifluoromethyl)-1-oxo-5-(trifluoromethyl)-2,3-dihydro-1*H*indene-2-carboxylate 5i

Yellow oil (135 mg, 79%).

¹**H NMR** (600 MHz, CDCl₃) δ 8.08 (s, 1 H), 7.93 (d, *J* = 8.1 Hz, 1 H), 7.70 (d, *J* = 8.1 Hz, 1 H), 3.88 (d, *J* = 18.2 Hz, 1 H), 3.78 (s, 3 H), 3.72 (d, *J* = 18.2 Hz, 1 H);

¹³C NMR (126 MHz, CDCl₃) δ 191.82, 165.11, 154.51, 135.02, 132.67 (q, J = 3.4 Hz),
131.42 (q, J = 33.4 Hz), 127.21, 126.46 (t, J = 300.0 Hz), 123.36 (q, J = 272.6 Hz),
122.76 (q, J = 3.9 Hz), 67.64 (t, J = 21.4 Hz), 53.80, 35.83;

¹⁹F NMR (565 MHz, CDCl₃) δ -55.53 (d, J = 167.5 Hz, 1 F), δ -56.70 (d, J = 167.2 Hz, 1 F), -62.74 (s, 3 F) ppm.

HRMS (EI) for C₁₃H₈ClF₅O₃ (M⁺) Calcd: 342.0077; Found: 342.0073.

IR (KBr): $v_{max} = 2961$, 1763, 1627, 1438, 1332, 1256, 1171, 1131, 1058, 972 cm⁻¹.

Ethyl 2-(chlorodifluoromethyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate 5j

Yellow oil (138 mg, 96%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.81 (d, J = 6.0 Hz, 1 H), 7.67 (t, J = 9.0 Hz, 1 H), 7.52 (d, J = 12.0 Hz, 1 H), 7.43 (t, J = 6.0 Hz, 1 H), 4.27 – 4.17 (m, 2 H)., 3.80 (d, J = 18.0 Hz, 1 H), 3.64 (d, J = 18.0 Hz, 1 H), 1.21 (t, J = 6.0 Hz, 3 H);

¹³**C NMR** (126 MHz, CDCl₃) δ 193.0, 165.1, 151.4, 136.1, 134.5, 128.3, 126.8 (t, *J* = 300.0 Hz), 126.2, 125.4, 67.4 (t, *J* = 22.1 Hz), 62.7, 35.7, 13.7;

¹⁹F NMR (565 MHz, CDCl₃) δ -55.17 (d, J = 163.9 Hz, 1 F), δ -56.31 (d, J = 169.5 Hz, 1 F) ppm.

HRMS (EI) for C₁₃H₁₁ClF₂O₃ (M⁺) Calcd: 288.0359; Found: 288.0355.

IR (KBr): $v_{max} = 2985$, 1756, 1608, 1466, 1276, 1215, 1049, 937, 887, cm⁻¹.

(3s,5s,7s)-Adamantan-1-yl 2-(chlorodifluoromethyl)-6-methyl-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate 5k

Yellow oil (114 mg, 56%)

¹**H NMR** (600 MHz, CDCl₃) δ 7.61 (s, 1 H), 7.47 (d, J = 7.8 Hz, 1 H), 7.39 (d, J = 8.0 Hz, 1 H), 3.68 (d, J = 17.6 Hz, 1 H), 3.55 (d, J = 17.6 Hz, 1 H), 2.41 (s, 3 H), 2.15 – 2.12 (m, 3 H), 2.05 (d, J = 3.0 Hz, 6 H), 1.61 (q, J = 4.8, 3.9 Hz, 6 H); ¹³**C NMR** (126 MHz, CDCl₃) δ 193.5, 163.8, 148.9, 138.4, 137.2, 135.1, 127.0 (t, J = 300.5 Hz), 125.8, 125.2, 84.21, 68.5 (t, J = 20.8 Hz), 40.8, 35.9, 35.6, 30.8, 21.0; ¹⁹**F NMR** (470 MHz, CDCl₃) δ -55.07 (d, J = 166.1 Hz, 1 F), δ -56.95 (d, J = 165.9 Hz, 1 F) ppm.

HRMS (EI) for C₂₂H₂₃ClF₂O₃ (M⁺) Calcd: 408.1298; Found: 408.1300.

IR (KBr): $v_{max} = 3431, 2913, 1724, 1618, 1496, 1258, 1104, 1049, 933 \text{ cm}^{-1}$.

2,2-Dimethyl-3,4-dihydronaphthalen-1(2H)-one 5l

Yellow oil (75 mg, 50%).

¹**H NMR** (600 MHz, CDCl₃) δ 8.11 (d, J = 6.0 Hz, 1 H), 7.51 (t, J = 9.0 Hz, 1 H), 7.35 (t, J = 9.0 Hz, 1 H), 7.24 (d, J = 6.0 Hz, 1 H), 4.26 – 4.20 (m, 2 H), 3.03 (s, 2 H), 2.89 (d, J = 18.0 Hz, 1 H), 2.57 – 2.50 (m, 1 H), 1.19 – 1.15 (m, 3 H);

¹³C NMR (126 MHz, CDCl₃) δ 187.6, 165.2, 141.9, 134.1, 131.7, 128.6, 128.4, 127.5 (t, *J* = 300.7 Hz), 127.2, 66.0 (t, *J* = 20.2 Hz), 62.9, 28.7, 25.3, 13.8;

¹⁹F NMR (565 MHz, CDCl₃) δ -53.59 (d, J = 169.5 Hz, 1 F), δ -55.30 (d, J = 169.5 Hz, 1 F) ppm.

HRMS (FI) for C₁₄H₁₃O₃ClF₂ (M⁺) Calcd: 302.0516; Found: 302.0522.

IR (KBr): $v_{max} = 2984$, 1740, 1602, 1456, 1305, 1207, 1105, 1002, 960 cm⁻¹.

Electroanalysis

Alumina powders, polishing pads, glassy carbon working electrodes, and silver wire reference electrodes were procured from CH Instruments Inc., and platinum counter electrodes were purchased from Gaoss Union. Cyclic voltammetric experiments were recorded on a CHI610E workstation at room temperature within a nitrogen-filled glovebox. The reference electrode was composed of a silver wire electrode and AgNO₃ solution in acetonitrile. It was calibrated using 2 mmol/L of Fc⁺/Fc before conducting cyclic voltammetric tests.

Test data were analyzed and graphed using OriginPro learning edition. Anodic peak potentials (E_{pa}) and cathodic peak potentials (E_{pc}) were both identified and marked on the plots. For the quasi-reversible Fc⁺/Fc redox couple, the estimation of the reduction potential (E_{red}) was based on the calculation of the half-wave potential ($E_{1/2}$), which are averages between the E_{pa} and the E_{pc} . For the irreversible **YlideFluor-CF₂Cl/[YlideFluor-CF₂Cl]⁻⁺** redox couple, the inflection-point potential (E_i) was employed to estimate the E_{red} , defined as the potentials where the second derivative of the current with respect to the potential is zero while the first derivative is not ($\partial^2 i/\partial E^2$ = 0 and $\partial i/\partial E \neq 0$)

Reference: E. M. Espinoza, J. A. Clark, J. Soliman, J. B. Derr, M. Morales and V. I. Vullev, *J. Electrochem. Soc.* 2019, *166*, H3175..

Building on our prior studies, we postulated that the first cathodic peak corresponds to the reduction of **YlideFluor-CF₂Cl** to [**YlideFluor-CF₂Cl**]^{-,}, and the second cathodic peak signifies the reduction of CF₂Cl⁻ to CF₂Cl⁻. Additionally, the third cathodic peak along with the neighboring anodic peak is associated with the redox process of the nitro group within [4-NO₂-C₆H₄-S-C(CO₂Me)₂]⁻.

Figure S1. Calibration of the AgNO₃/Ag reference electrode. The scan rate was 20 mV/s. Ferrocene (2 mmol/L), TBAPF₆ (100 mmol/L), and acetonitrile (10 mL). The solution resistance of 53.6 Ω was fully compensated.

Figure S2. Scan rates were 100 mV/s. The red curve: TBAPF₆ (100 mmol/L) and acetonitrile (10 mL). The solution resistance of 52.4 Ω was fully compensated. The black curve: **YlideFluor-CF₂Cl** (20 mmol/L), TBAPF₆ (100 mmol/L), and acetonitrile (10 mL). The solution resistance of 53.6 Ω was fully compensated.

UV-Vis Spectrum of YlideFluor-CF₂Cl

Figure S3. UV–Vis spectrum of YlideFluor-CF₂Cl.

¹H, ¹³C, and ¹⁹F NMR Spectra

25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 fl (ppm)

¹H NMR spectrum of 3-Chloro-3,3-difluoro-1-phenylpropan-1-one 1a

¹⁹F NMR spectrum of 3-Chloro-3,3-difluoro-1-phenylpropan-1-one 1a

-48.26 -48.28 -48.30

-5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -50 -65 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 fl (ppm)

¹³C NMR spectrum of 1-([1,1'-biphenyl]-4-yl) -3-chloro-3,3-difluoropropan-1-one 1b

¹H NMR spectrum of 3-chloro-3,3-difluoro-1-(4-iodophenyl)propan-1-one 1c

¹³C NMR spectrum of 3-chloro-3,3-difluoro-1-(4-iodophenyl)propan-1-one 1c

¹⁹F NMR spectrum of 3-chloro-3,3-difluoro-1-(4-iodophenyl)propan-1-one 1c

¹H NMR spectrum of 1-(4-bromophenyl)-3-chloro-3,3-difluoropropan-1-one 1d

¹³C NMR spectrum of 1-(4-bromophenyl)-3-chloro-3,3-difluoropropan-1-one 1d

¹⁹F NMR spectrum of 1-(4-bromophenyl)-3-chloro-3,3-difluoropropan-1-one 1d

¹H NMR spectrum of 3-chloro-3,3-difluoro-1-(4-fluorophenyl)propan-1-one 1e

¹³C NMR spectrum of 3-chloro-3,3-difluoro-1-(4-fluorophenyl)propan-1-one 1e

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

¹⁹F NMR spectrum of 3-chloro-3,3-difluoro-1-(4-fluorophenyl)propan-1-one 1e

¹³C NMR spectrum of 3-chloro-3,3-difluoro-1-(o-tolyl)propan-1-one 1f

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

¹³C NMR spectrum of 3-chloro-3,3-difluoro-1-(4-methoxyphenyl)propan-1-ol 2a

¹⁹F NMR spectrum of 3-chloro-3,3-difluoro-1-(4-methoxyphenyl)propan-1-ol 2a

¹H NMR spectrum of 1-chloro-4-(3-chloro-3,3-difluoro-1methoxypropyl)benzene 2b

15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 f1 (ppm)

¹H NMR spectrum of 1-(tert-butyl)-4-(3-chloro-3,3-difluoro-1methoxypropyl)benzene 2c

¹³C NMR spectrum of 1-(tert-butyl)-4-(3-chloro-3,3-difluoro-1methoxypropyl)benzene 2c

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR spectrum of 2-(3-chloro-3,3-difluoro-1-methoxypropyl)naphthalene 2d

5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 f1 (ppm)

¹³C NMR spectrum of 1-(3-chloro-1-ethoxy-3,3-difluoropropyl)-4methoxybenzene 2e

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

¹⁹F NMR spectrum of 1-(3-chloro-1-ethoxy-3,3-difluoropropyl)-4methoxybenzene 2e

¹H NMR spectrum of 1-(3-chloro-3,3-difluoro-1-isopropoxypropyl)-4methoxybenzene 2f

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -10 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹H NMR spectrum of 1-(1-azido-3-chloro-3,3-difluoropropyl)-4-(tertbutyl)benzene 2h

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -60 -10 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

150 140 130 fl (ppm) -10 200 190 180 170 160

¹H NMR spectrum of 8-(chlorodifluoromethyl)-1,3,7-trimethyl-3,7-dihydro-1*H*purine-2,6-dione 3a

¹⁹F NMR spectrum of 8-(chlorodifluoromethyl)-1,3,7-trimethyl-3,7-dihydro-1*H*purine-2,6-dione 3a

¹H NMR spectrum of 8-(chlorodifluoromethyl)-1-(3-chloropropyl)-3,7-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione 3b

¹³C NMR spectrum of 8-(chlorodifluoromethyl)-1-(3-chloropropyl)-3,7dimethyl-3,7-dihydro-1*H*-purine-2,6-dione 3b

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

¹H NMR spectrum of 8-(chlorodifluoromethyl)-7-(2-chloroethyl)-1,3-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione 3c

¹⁹F NMR spectrum of 8-(chlorodifluoromethyl)-7-(2-chloroethyl)-1,3-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione 3c

¹³C NMR spectrum of 8-(chlorodifluoromethyl)-1-hexyl-3,7-dimethyl-3,7dihydro-1*H*-purine-2,6-dione 3d

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

S66

6 fl (ppm) 3.07-

9.16--

-1

0.93 0.95 1.00

4

13

12

'n

10

9

¹⁹F NMR spectrum of 4-(tert-butyl)-2-(chlorodifluoromethyl)-1methoxybenzene 3e

240 230 220 210 200 190 190 190 10 100 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

¹⁹F NMR spectrum of methyl 2-(chlorodifluoromethyl)-1-methyl -1*H*-indole-3-carboxylate 3g

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -50 -100 -100 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

¹H NMR spectrum of 5-bromo-2-(chlorodifluoromethyl)-1-methyl -1*H*-indole-3-carbaldehyde 3h

240 230 220 210 200 190 190 190 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

¹⁹F NMR spectrum of *tert*-butyl 2-(chlorodifluoromethyl)-6-fluoro -1*H*-indole-1-carboxylate 3i

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -50 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

S75

¹⁹F NMR spectrum of 1-(5-(chlorodifluoromethyl)-1-methyl -1*H*-pyrrol-2-yl)ethan-1-one 3k

--46.44

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5 fl (ppm)

¹H NMR spectrum of 8-(difluoro(trimethylsilyl)methyl)-1-hexyl-3,7-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione 4

¹⁹F NMR spectrum of 8-(difluoro(trimethylsilyl)methyl)-1-hexyl-3,7-dimethyl-3,7-dihydro-1*H*-purine-2,6-dione 4

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -10 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹H NMR spectrum of methyl 2-(chlorodifluoromethyl)-6-methyl-1-oxo-2,3dihydro-1*H*-indene-2-carboxylate 5a

¹³C NMR spectrum of methyl 2-(chlorodifluoromethyl)-6-methyl-1-oxo-2,3dihydro-1*H*-indene-2-carboxylate 5a

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

¹H NMR spectrum of methyl 2-(chlorodifluoromethyl)-1-oxo-2,3-dihydro-1*H*indene-2-carboxylate 5b

¹³C NMR spectrum of methyl 2-(chlorodifluoromethyl)-1-oxo-2,3-dihydro-1*H*indene-2-carboxylate 5b

¹⁹F NMR spectrum of methyl 2-(chlorodifluoromethyl)-1-oxo-2,3-dihydro-1*H*indene-2-carboxylate 5b

¹ H NMR spectrum of methyl 2-(chlorodifluoromethyl)-6-fluoro-1-oxo-2,3dihydro-1*H*-indene-2-carboxylate 5c

¹³C NMR spectrum of methyl 2-(chlorodifluoromethyl)-6-fluoro-1-oxo-2,3dihydro-1*H*-indene-2-carboxylate 5c

¹H NMR spectrum of methyl 6-bromo-2-(chlorodifluoromethyl)-1-oxo-2,3dihydro-1*H*-indene-2-carboxylate 5d

¹⁹F NMR spectrum of methyl 6-bromo-2-(chlorodifluoromethyl)-1-oxo-2,3dihydro-1*H*-indene-2-carboxylate 5d

¹ H NMR spectrum of methyl 2-(chlorodifluoromethyl)-5-fluoro-1-oxo-2,3dihydro-1*H*-indene-2-carboxylate 5e

¹³C NMR spectrum of methyl 2-(chlorodifluoromethyl)-5-fluoro-1-oxo-2,3dihydro-1*H*-indene-2-carboxylate 5e

¹H NMR spectrum of methyl 5-chloro-2-(chlorodifluoromethyl)-1-oxo-2,3dihydro-1*H*-indene-2-carboxylate 5f

¹⁹F NMR spectrum of methyl 5-chloro-2-(chlorodifluoromethyl)-1-oxo-2,3dihydro-1*H*-indene-2-carboxylate 5f

¹H NMR spectrum of methyl 5-bromo-2-(chlorodifluoromethyl)-1-oxo-2,3dihydro-1*H*-indene-2-carboxylate 5g

¹³C NMR spectrum of methyl 5-bromo-2-(chlorodifluoromethyl)-1-oxo-2,3dihydro-1*H*-indene-2-carboxylate 5g

¹H NMR spectrum of methyl 2-(chlorodifluoromethyl)-5-methoxy-1-oxo-2,3dihydro-1*H*-indene-2-carboxylate 5h

¹⁹F NMR spectrum of methyl 2-(chlorodifluoromethyl)-5-methoxy-1-oxo-2,3dihydro-1*H*-indene-2-carboxylate 5h

¹³C NMR spectrum of methyl 2-(chlorodifluoromethyl)-1-oxo-5-(trifluoromethyl)-2,3-dihydro-1*H*-indene-2-carboxylate 5i

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 fl (ppm)

¹H NMR spectrum of ethyl 2-(chlorodifluoromethyl)-1-oxo-2,3-dihydro-1*H*indene-2-carboxylate 5j

¹³C NMR spectrum of ethyl 2-(chlorodifluoromethyl)-1-oxo-2,3-dihydro-1*H*indene-2-carboxylate 5j

¹⁹F NMR spectrum of ethyl 2-(chlorodifluoromethyl)-1-oxo-2,3-dihydro-1*H*indene-2-carboxylate 5j

¹H NMR spectrum of (3s,5s,7s)-adamantan-1-yl 2-(chlorodifluoromethyl)-6methyl-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate 5k

¹³C NMR spectrum of (3s,5s,7s)-adamantan-1-yl 2-(chlorodifluoromethyl)-6methyl-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate 5k

¹⁹F NMR spectrum of (3s,5s,7s)-adamantan-1-yl 2-(chlorodifluoromethyl)-6methyl-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate 5k

¹H NMR spectrum of 2,2-dimethyl-3,4-dihydronaphthalen-1(2*H*)-one 5l

¹³C NMR spectrum of 2,2-dimethyl-3,4-dihydronaphthalen-1(2*H*)-one 5l

¹⁹F NMR spectrum of 2,2-dimethyl-3,4-dihydronaphthalen-1(2*H*)-one 5l

X-Ray Diffraction Data of YlideFluor-CF₂Cl

Figure S4. ORTEP diagrams of reagent YlideFluor-CF₂Cl. Ellipsoids are shown at the 30% level.

Table 55. Crystal data and structure rennement	lor mo_uav23103_0m.		
Identification code	mo_d8v23103_0m		
Empirical formula	C12 H10 Cl F2 N O6 S		
Formula weight	369.72		
Temperature	213(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	Сc		
Unit cell dimensions	a = 16.5250(5) Å	$\alpha = 90^{\circ}$.	
	b = 12.9543(4) Å	$\beta = 97.0120(10)^{\circ}.$	
	c = 6.9523(2) Å	$\gamma = 90^{\circ}$.	
Volume	1477.15(8) Å ³		
Ζ	4		
Density (calculated)	1.662 Mg/m ³		
Absorption coefficient	0.453 mm ⁻¹		
F(000)	752		
Crystal size	0.200 x 0.160 x 0.120 mm ³		
Theta range for data collection	4.009 to 25.494°.		
Index ranges	-18<=h<=20, -15<=k<=15, -8	<=l<=8	
Reflections collected	10261		
Independent reflections	2503 [R(int) = 0.0573]		
Completeness to theta = 25.242°	98.7 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7456 and 0.5049		
Refinement method	Full-matrix least-squares on F	2	
Data / restraints / parameters	2503 / 2 / 211		
Goodness-of-fit on F ²	1.031		
Final R indices [I>2sigma(I)]	R1 = 0.0301, wR2 = 0.0777		
R indices (all data)	R1 = 0.0309, wR2 = 0.0786		
Absolute structure parameter	0.08(4)		
Extinction coefficient	0.013(3)		
Largest diff. peak and hole	0.248 and -0.163 e.Å ⁻³		

Table S5. Crystal data and structure refinement for mo d8v23103 0m.

	х	у	Z	U(eq)
Cl(1)	4091(1)	8542(1)	-164(2)	50(1)
S(1)	5090(1)	7004(1)	2228(1)	25(1)
F(1)	5549(1)	8865(2)	1280(4)	45(1)
F(2)	4646(1)	8943(2)	3288(3)	45(1)
O(1)	2332(2)	5864(2)	7997(4)	47(1)
O(2)	3400(2)	5801(2)	10147(4)	42(1)
O(3)	7186(2)	7135(2)	5450(4)	38(1)
O(4)	6025(2)	8055(2)	5313(4)	32(1)
O(5)	6089(2)	5791(2)	140(4)	44(1)
O(6)	7279(1)	6184(2)	1887(4)	33(1)
N(1)	3070(2)	5958(2)	8505(4)	33(1)
C(1)	4516(2)	6778(2)	4217(5)	25(1)
C(2)	3685(2)	7017(3)	3950(5)	31(1)
C(3)	3215(2)	6752(3)	5381(6)	32(1)
C(4)	3580(2)	6270(3)	7018(5)	27(1)
C(5)	4403(2)	6028(2)	7304(5)	28(1)
C(6)	4875(2)	6278(2)	5855(5)	27(1)
C(7)	4865(2)	8436(3)	1760(5)	33(1)
C(8)	6095(2)	6844(2)	2916(5)	26(1)
C(9)	6512(2)	7334(2)	4650(5)	26(1)
C(10)	6341(3)	8559(3)	7082(6)	45(1)
C(11)	6464(2)	6224(2)	1520(5)	28(1)
C(12)	7671(2)	5575(3)	520(6)	44(1)

Table S6. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³)for mo_d8v23103_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Cl(1)-C(7)	1.740(4)
S(1)-C(8)	1.684(3)
S(1)-C(1)	1.794(3)
S(1)-C(7)	1.912(3)
F(1)-C(7)	1.337(4)
F(2)-C(7)	1.336(4)
O(1)-N(1)	1.234(4)
O(2)-N(1)	1.221(4)
O(3)-C(9)	1.210(4)
O(4)-C(9)	1.351(4)
O(4)-C(10)	1.434(4)
O(5)-C(11)	1.214(4)
O(6)-C(11)	1.341(4)
O(6)-C(12)	1.448(4)
N(1)-C(4)	1.468(4)
C(1)-C(6)	1.380(5)
C(1)-C(2)	1.399(4)
C(2)-C(3)	1.378(5)
C(2)-H(2)	0.9400
C(3)-C(4)	1.372(5)
C(3)-H(3)	0.9400
C(4)-C(5)	1.387(5)
C(5)-C(6)	1.385(5)
C(5)-H(5)	0.9400
C(6)-H(6)	0.9400
C(8)-C(11)	1.450(5)
C(8)-C(9)	1.459(4)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(10)-H(10C)	0.9700
C(12)-H(12A)	0.9700
C(12)-H(12B)	0.9700
C(12)-H(12C)	0.9700
C(8)-S(1)-C(1)	110.89(16)
C(8)-S(1)-C(7)	109.39(16)
C(1)-S(1)-C(7)	100.33(15)

Table S7. Bond lengths [Å] and angles [°] for mo_d8v23103_0m.

C(9)-O(4)-C(10)	116.0(3)
C(11)-O(6)-C(12)	114.6(3)
O(2)-N(1)-O(1)	124.4(3)
O(2)-N(1)-C(4)	118.4(3)
O(1)-N(1)-C(4)	117.2(3)
C(6)-C(1)-C(2)	122.0(3)
C(6)-C(1)-S(1)	119.9(2)
C(2)-C(1)-S(1)	117.7(3)
C(3)-C(2)-C(1)	118.7(3)
C(3)-C(2)-H(2)	120.7
C(1)-C(2)-H(2)	120.7
C(4)-C(3)-C(2)	118.9(3)
C(4)-C(3)-H(3)	120.6
C(2)-C(3)-H(3)	120.6
C(3)-C(4)-C(5)	123.1(3)
C(3)-C(4)-N(1)	118.5(3)
C(5)-C(4)-N(1)	118.3(3)
C(6)-C(5)-C(4)	118.2(3)
C(6)-C(5)-H(5)	120.9
C(4)-C(5)-H(5)	120.9
C(1)-C(6)-C(5)	119.1(3)
C(1)-C(6)-H(6)	120.4
C(5)-C(6)-H(6)	120.4
F(2)-C(7)-F(1)	108.3(3)
F(2)-C(7)-Cl(1)	109.1(2)
F(1)-C(7)-Cl(1)	109.9(3)
F(2)-C(7)-S(1)	114.0(3)
F(1)-C(7)-S(1)	107.0(2)
Cl(1)-C(7)-S(1)	108.43(19)
C(11)-C(8)-C(9)	126.8(3)
C(11)-C(8)-S(1)	111.0(2)
C(9)-C(8)-S(1)	122.1(2)
O(3)-C(9)-O(4)	122.9(3)
O(3)-C(9)-C(8)	127.1(3)
O(4)-C(9)-C(8)	110.0(3)
O(4)-C(10)-H(10A)	109.5
O(4)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5

O(4)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
O(5)-C(11)-O(6)	122.4(3)
O(5)-C(11)-C(8)	124.7(3)
O(6)-C(11)-C(8)	112.9(3)
O(6)-C(12)-H(12A)	109.5
O(6)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
O(6)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	48(1)	45(1)	53(1)	5(1)	-14(1)	12(1)
S(1)	19(1)	27(1)	27(1)	-3(1)	-3(1)	4(1)
F(1)	36(1)	38(1)	60(2)	6(1)	8(1)	-3(1)
F(2)	50(2)	37(1)	48(1)	-7(1)	4(1)	13(1)
O(1)	29(1)	60(2)	55(2)	-12(1)	9(1)	-6(1)
O(2)	44(2)	43(2)	40(2)	11(1)	6(1)	0(1)
O(3)	25(1)	41(1)	46(2)	-8(1)	-9(1)	4(1)
O(4)	24(1)	35(1)	33(1)	-12(1)	-2(1)	1(1)
O(5)	29(1)	57(2)	42(2)	-19(1)	-4(1)	6(1)
O(6)	23(1)	38(1)	40(1)	-10(1)	7(1)	3(1)
N(1)	27(2)	30(1)	42(2)	-6(1)	8(1)	-3(1)
C(1)	20(2)	28(2)	28(2)	-3(1)	0(1)	0(1)
C(2)	23(2)	39(2)	30(2)	-1(1)	-4(1)	7(1)
C(3)	18(2)	36(2)	39(2)	-7(2)	-2(1)	4(1)
C(4)	23(2)	27(2)	31(2)	-4(1)	1(1)	-2(1)
C(5)	25(2)	25(2)	31(2)	-3(1)	-5(1)	-1(1)
C(6)	17(2)	29(2)	33(2)	-3(1)	-4(1)	3(1)
C(7)	32(2)	30(2)	36(2)	0(1)	-2(1)	6(1)
C(8)	16(2)	29(2)	33(2)	-2(1)	-2(1)	1(1)
C(9)	22(2)	26(2)	30(2)	-2(1)	-2(1)	-1(1)
C(10)	42(2)	50(2)	41(2)	-20(2)	-3(2)	2(2)
C(11)	24(2)	25(2)	34(2)	1(1)	2(1)	2(1)
C(12)	32(2)	46(2)	56(2)	-18(2)	12(2)	6(2)

Table S8. Anisotropic displacement parameters (Å² × 10³) for mo_d8v23103_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	х	у	Z	U(eq)
H(2)	3451	7351	2817	37
H(3)	2653	6899	5238	38
H(5)	4635	5704	8450	33
H(6)	5432	6108	5986	32
H(10A)	6844	8913	6904	67
H(10B)	6447	8050	8105	67
H(10C)	5946	9057	7435	67
H(12A)	7522	5841	-779	66
H(12B)	7497	4862	577	66
H(12C)	8258	5614	847	66

Table S9. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å² × 10³)for mo_d8v23103_0m.

C(8)-S(1)-C(1)-C(6)	-15.7(3)
C(7)-S(1)-C(1)-C(6)	-131.2(3)
C(8)-S(1)-C(1)-C(2)	171.5(3)
C(7)-S(1)-C(1)-C(2)	55.9(3)
C(6)-C(1)-C(2)-C(3)	0.7(5)
S(1)-C(1)-C(2)-C(3)	173.4(3)
C(1)-C(2)-C(3)-C(4)	0.4(5)
C(2)-C(3)-C(4)-C(5)	-0.4(5)
C(2)-C(3)-C(4)-N(1)	-177.9(3)
O(2)-N(1)-C(4)-C(3)	-159.9(3)
O(1)-N(1)-C(4)-C(3)	20.7(4)
O(2)-N(1)-C(4)-C(5)	22.5(4)
O(1)-N(1)-C(4)-C(5)	-156.9(3)
C(3)-C(4)-C(5)-C(6)	-0.6(5)
N(1)-C(4)-C(5)-C(6)	176.8(3)
C(2)-C(1)-C(6)-C(5)	-1.8(5)
S(1)-C(1)-C(6)-C(5)	-174.3(2)
C(4)-C(5)-C(6)-C(1)	1.7(5)
C(1)-S(1)-C(8)-C(11)	133.8(2)
C(7)-S(1)-C(8)-C(11)	-116.5(2)
C(1)-S(1)-C(8)-C(9)	-49.5(3)
C(7)-S(1)-C(8)-C(9)	60.3(3)
C(10)-O(4)-C(9)-O(3)	-2.0(5)
C(10)-O(4)-C(9)-C(8)	176.6(3)
C(11)-C(8)-C(9)-O(3)	-17.5(6)
S(1)-C(8)-C(9)-O(3)	166.3(3)
C(11)-C(8)-C(9)-O(4)	164.0(3)
S(1)-C(8)-C(9)-O(4)	-12.2(4)
C(12)-O(6)-C(11)-O(5)	-0.7(5)
C(12)-O(6)-C(11)-C(8)	-179.8(3)
C(9)-C(8)-C(11)-O(5)	176.5(3)
S(1)-C(8)-C(11)-O(5)	-6.9(4)
C(9)-C(8)-C(11)-O(6)	-4.3(5)
S(1)-C(8)-C(11)-O(6)	172.3(2)

Table S10. Torsion angles [°] for mo_d8v23103_0m.

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(12)-H(12B)O(3)#1	0.97	2.64	3.600(5)	172.2
C(5)-H(5)O(5)#2	0.94	2.55	3.225(4)	129.4
C(2)-H(2)O(3)#3	0.94	2.58	3.433(4)	150.5
C(2)-H(2)Cl(1)	0.94	2.89	3.606(4)	134.4
C(12)-H(12B)O(3)#1	0.97	2.64	3.600(5)	172.2
C(5)-H(5)O(5)#2	0.94	2.55	3.225(4)	129.4
C(2)-H(2)O(3)#3	0.94	2.58	3.433(4)	150.5
C(2)-H(2)Cl(1)	0.94	2.89	3.606(4)	134.4
C(2)-H(2)Cl(1)	0.94	2.89	3.606(4)	134.4
C(2)-H(2)O(3)#3	0.94	2.58	3.433(4)	150.5
C(5)-H(5)O(5)#2	0.94	2.55	3.225(4)	129.4
C(12)-H(12B)O(3)#1	0.97	2.64	3.600(5)	172.2

Table S11. Hydrogen bonds for mo_d8v23103_0m [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1,z-1/2 #2 x,y,z+1 #3 x-1/2,-y+3/2,z-1/2