Supporting Information

Copper-Catalyzed Remote Nucleophilic Substitution of 5-Ethynylthiophene Esters

Xiang Li,^{a§} Hao-Dong Qian,^{a§} Xinying Qiao,^a Chunhui Zhao,^a Yuepeng Lu,^a Cuiju Zhu,^{a*} and Hao Xu^{a*}

^aCCNU-uOttawa Joint Research Centre, National Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, Wuhan 430079, China

[§]*Contributed equally to this work*

Table of Contents

1. General Information	S3
2. Optimization Studies	S4
3. Experimental Procedures	S8
4. Products Date Characterization	S13
5. X-ray Crystallographic Data	S43
6. NMR Spectra	S45

1. General Information

Unless otherwise noted, all commercially available compounds were used without further purification. Dry solvents (MeOH, CH₂Cl₂, THF, toluene) were purified by distillation over the drying agents.

All reactions were monitored by thin-layer chromatography (TLC) on silica gel plates using UV light as visualizing agent. Compounds were visualized by irradiation with UV light or potassium permanganate staining. Flash column chromatography was performed using 200-300 or 300-400 mesh silica gel. All air- and moisture-sensitive reactions were performed under the atmosphere of N_2 in fire dried glasswares.

¹H-NMR spectra were recorded on 400 or 600 MHz spectrophotometers, ¹³C-NMR spectra were recorded on 100 or 150 MHz with complete proton decoupling spectrophotometers using CDCl₃ as solvent. Data were reported in the following order: chemical shift (δ) values are reported in ppm with the solvent resonance as internal standard (CDCl₃: δ = 7.26 ppm for ¹H-NMR, δ = 77.16 ppm for ¹³C-NMR); multiplicities are indicated brs (broadened singlet), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet); coupling constants (*J*) are given in Hertz (Hz).

All air- and moisture-sensitive reactions were performed under the atmosphere of N_2 in fire dried glasswares.

HR-MS was recorded on Agilent technologies 6224 TOF LC/MS instrument or Bruker ultrafleXtreme MALDI-TOF/TOF mass spectrometer.

2. Optimization Studies

5

6

7

8

OBoo		CuBF ₄ (CH ₃ CN) ₄ (10 mol L (12 mol%)	NHPh
	ין די	DIPEA (1.0 equiv.) MeOH, 25 °C, 2 h	
1a (0.2 mmol)	2a (1.2 equiv.)		За
	Ph Ph Ph Ph $L2$		
PPh ₂ PPh ₂	Ph ₂ P ^{PPh} 2		
L5	L6	L7	L8
Entry		L	Yield of 3a (%) ^b
1		L1	11
2		L2	12
3		L3	62
4		L4	66

Table S1. The Effect of the Ligands on the Reaction.^a

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), MeOH (0.1 M), DIPEA (1.0 equiv.), CuBF₄(CH₃CN)₄ (10 mol%), L (12 mol%), 25 °C, 2 h, under air. ^bIsolated yield after purification by column chromatography. DIPEA = N, N-diisopropylethylamine.

L5

L6

L7

L8

69

70

74

79

OBoc S Ph 1a (0.2 mmol)	[Cu] (10 mol%) + PhNH ₂ → DIPEA (1.0 equiv.) MeOH, 25 °C, 2 h 2a (1.2 equiv.)	$ \begin{array}{c} NHPh \\ \hline S \\ \hline Ph \\ 3a \\ \end{array} \begin{array}{c} O \\ N \\ \hline N \\ L8 \\ \end{array} \begin{array}{c} O \\ N \\ \hline N \\ L8 \\ \end{array} \end{array} $
Entry	[Cu]	Yield of 3a (%) ^b
1	CuBF ₄ (CH ₃ CN) ₄	79
2	CuPF ₆ (CH ₃ CN) ₄	39
3	CuCl	69
4	CuBr	62
5	CuI	55
6	Cu(OTf) ₂	66
7	CuSO ₄	52
8	Cu(OAc) ₂ •H ₂ O	60

Table S2. The Effect of the Copper Salts on the Reaction.^a

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), MeOH (0.1 M), DIPEA (1.0 equiv.), [Cu] (10 mol%), **L8** (12 mol%), 25 °C, 2 h, under air. ^bIsolated yield after purification by column chromatography. DIPEA = N, N-diisopropylethylamine.

Table S3. The Effect of Base on the Reaction.^a

 OBoc S Ph 1a (0.2 mmol)	CuBF ₄ (CH ₃ CN) ₄ (10 mol%) + PhNH ₂ <u>L8 (12 mol%)</u> Base (1.0 equiv.) MeOH, 25 °C, 2 h 2a (1.2 equiv.)	$= \underbrace{\begin{pmatrix} S \\ Ph \\ 3a \end{pmatrix}}^{NHPh} \underbrace{\begin{pmatrix} O \\ N \\ N \\ N \end{pmatrix}}_{N}$	N 0 N 1 L8
Entry	Base	Yield of 3a (%) ^b	
1	DIPEA	79	
2	Et ₃ N	45	
3	No Base	trace	

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), MeOH (0.1 M), Base (1.0 equiv.), CuBF₄(CH₃CN)₄ (10 mol%), **L8** (12 mol%), 25 °C, 2 h, under air. ^bIsolated yield after purification by column chromatography. DIPEA = N, N-diisopropylethylamine.

LG Ph 1 (0.2 mmol)	Cu + PhNH ₂ — 2a (1.2 equiv.)	uBF₄(CH₃CN)₄ (10 mol%) L8 (12 mol%) DIPEA (1.0 equiv.) MeOH, 25 °C, 24 h	NHPh S J Aa	
Entry	1	LG	Yield	l of 3a (%) ^b
1	1a	OBoc		79
2	1b	OAc		52
3	1c	OBz		43

Table S4. The Effect of Leaving Groups on the Reaction.^a

^aReaction conditions: **1** (0.2 mmol), **2a** (0.24 mmol), MeOH (0.1 M), DIPEA (1.0 equiv.), CuBF₄(CH₃CN)₄ (10 mol%), **L8** (12 mol%), 25 °C, 24 h, under air. ^bIsolated yield after purification by column chromatography. DIPEA = N, N-diisopropylethylamine.

Table S5. The Effect of Catalytic Loading of Copper Salt on the Reaction.^a

=	OBoc S Ph + Ia (0.2 mmol)	Cr PhNH ₂ — 2a (1.2 equiv.)	uBF₄(CH₃CN)₄ (z mol%) L8 (1.2z mol%) DIPEA (1.0 equiv.) MeOH, 25 °C, 2 h	NHPh S J 3a	
	Entry		[Cu] (z mol%)	Yield	of 3a (%) ^b
	1		5		56
	2°		5		68
	3		10		79

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), MeOH (0.1 M), DIPEA (1.0 equiv.), CuBF₄(CH₃CN)₄ (z mol%), **L8** (1.2z mol%), 25 °C, 2 h, under air. ^bIsolated yield after purification by column chromatography. ^cMeOH (0.2 M). DIPEA = N, N-diisopropylethylamine.

Table S6. The Effect of Concentration on the Reaction.^a

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), MeOH (x M), DIPEA (1.0 equiv.), CuBF₄(CH₃CN)₄ (10 mol%), **L8** (12 mol%), 25 °C, 2 h, under air. ^bIsolated yield after purification by column chromatography. DIPEA = N, N-diisopropylethylamine.

	OBoc Ph + PhNH ₂ 1a (0.2 mmol) 2a (1.2 equiv	L* (12 mol%) NHPh DIPEA (1.0 equiv) S MeOH, 25 °C, 24 h 3a	
	Aco L9	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 10 \end{array}$	Ph Ph Ph
$ \begin{array}{c} $	$ \begin{array}{c} $	$ \begin{array}{c} $	Ph L17
Entry	L*	Yield of 3a (%) ^b	ee of 3a (%) ^c
•	—		()
1	L8	82	-
1 2	L8 L9	82 98	- -6
1 2 3	L8 L9 L10	82 98 98	- -6 -3
1 2 3 4	L8 L9 L10 L11	82 98 98 98	- -6 -3 2
1 2 3 4 5	L8 L9 L10 L11 L12	82 98 98 98 98 99	- -6 -3 2 16
1 2 3 4 5 6	L8 L9 L10 L11 L12 L13	82 98 98 98 98 99 99 97	- -6 -3 2 16 3
1 2 3 4 5 6 7	L8 L9 L10 L11 L12 L13 L14	82 98 98 99 99 97 92	- -6 -3 2 16 3 3
1 2 3 4 5 6 7 8	L8 L9 L10 L11 L12 L13 L14 L15	82 98 98 99 99 97 92 99	- -6 -3 2 16 3 3 6
1 2 3 4 5 6 7 8 9	L8 L9 L10 L11 L12 L13 L14 L15 L16	82 98 98 99 99 97 92 99 48	- -6 -3 2 16 3 3 6 5

Table S7. The Effect of the Chiral Ligands on the Reaction.^a

^aReaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), MeOH (0.2 M), DIPEA (1.0 equiv.), CuBF₄(CH₃CN)₄ (10 mol%), L* (12 mol%), 25 °C, 24 h, under air. ^bIsolated yield after purification by column chromatography. ^cEnantiomeric excess of **3** was determined by HPLC analysis using a chiral stationary phase. DIPEA = *N*, *N*-diisopropylethylamine.

3. Experimental Procedures

Procedure A: Procedures for the synthesis of 5-ethynylthiophene esters 1.

Figure S1. The summary of 5-ethynylthiophene esters.

Synthesis of 5-ethynylthiophene esters 1

Step 1: A flame-dried 200 mL Schlenk flask was charged with $Pd(PPh_3)_4$ (2 mol%), CuI (2 mol%), S1 (1.0 equiv.) and Et₃N (4 mL/mmol) under nitrogen atmosphere. After stirring at 50 °C for 30 minutes, trimethylsilylacetylene (1.2 equiv.) was added dropwise and then the mixture was stirred at 50 °C for 24 h. After the starting material S1 was consumed, the mixture was passed through a short pad of diatomite with *n*-hexane as eluent. The solution was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (EtOAc/Petroleum ether = 1:100) to give the corresponding product S2.

Step 2: A dry 100 mL Schlenk flask equipped with a magnetic stir bar was added aldehyde **S2** (1.0 equiv.) and anhydrous THF (0.1 M) under nitrogen atmosphere. Then aryl metal reagent (1.2 equiv.) was added dropwise at -78 or 0 °C and the mixture was warmed to room temperature and stirred until **S2** was consumed. The reaction was quenched with saturated NH₄Cl solution and the aqueous phase was extracted with EtOAc (15 mL×3). The combined organic layer was dried with anhydrous Na₂SO₄, filtered, the solvent was concentrated *in vacuo* and the residue in THF (0.1 M) was added TBAF (1.0 M in THF, 1.0 equiv.) at 0 °C. After stirring for 30 min, the reaction was quenched with water, and the aqueous layer was extracted with ethyl acetate (15 mL×3). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (EtOAc/Petroleum ether = 1:20) to give the corresponding alcohol **S3**. **Step 3**: In a 100 mL round bottom flask, the alcohol **S4** (1.0 equiv.), DMAP (10 or 20 mol%) in DCM was cooled to 0 °C, then Et₃N (1.4 equiv.) and di-tert-butyl dicarbonate (1.2 equiv.) or pentafluorobenzoic acid (1.2 equiv.) and DCC (1.2 equiv.) were added to the mixture. After stirring for 1 h at 0 °C, the reaction mixture was allowed to warm to room temperature and stirred for 4–24

h. The resulting suspension was quenched with water and extracted with CH_2Cl_2 (15 mL×3). The combined organic phase was dried over anhydrous Na_2SO_4 , filtered, and evaporated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel (EtOAc/Petroleum ether/Et₃N = 1:100:1) to give the substrates **1**.

Procedure B: General procedure for copper-catalyzed nucleophilic substitution of 5-ethynylthiophene carbonates.

In a flame-dried 10.0 mL Schlenk tube equipped with a magnetic stir bar was charged sequentially with $CuBF_4(CH_3CN)_4$ (10 mol%), **L8** (12 mol%) in MeOH (0.2 mL). Then the mixture was stirred at 25 °C for 1 h. To the resulting mixture was added yne-thiophene carbonates **1** (0.2 mmol, 1.0 equiv.), nucleophiles **2** (1.2 equiv.) and DIPEA (1.0 equiv.) in MeOH (0.8 mL). After the mixture was stirred at 25 °C for 12–48 h, and then transferred into a round bottom flask with CH_2Cl_2 (5.0 mL) and concentrated *in vacuo*. The obtained residue was then purified by column chromatography on silica gel with petroleum ether/ethyl acetate as eluent, affording the desired products **3** or **4**.

Procedure C: General procedure for the transformation of product.

A dry 25 mL Schlenk tube equipped with a magnetic stir bar was charged sequentially with CuI (10 mol%), **3f** (0.2 mmol, 1.0 equiv.), benzyl azide (1.5 equiv.), DIPEA (2.0 equiv.) in anhydrous THF (2 mL) under nitrogen atmosphere. After the reaction was stirred at 45 °C for 24 h and then transferred into a round bottom flask with CH_2Cl_2 (5.0 mL) and concentrated *in vacuo*. The obtained residue was purified by flash column chromatography on silica gel (EtOAc/Petroleum ether = 1:5) to give the target product **5** in 96% yield.

A dry 25 mL Schlenk tube equipped with a magnetic stir bar was added CuI (10 mol%), **3f** (0.2 mmol, 1.0 equiv.), TMEDA (1.2 equiv.) in anhydrous THF (1 mL) was stirred at 25 °C for 48 h under nitrogen atmosphere. Then, the solvent was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (EtOAc/Petroleum ether = 1:20) to give the target product **6** in 81% yield.

A dry 25 mL Schlenk tube equipped with a magnetic stir bar was added **3f** (0.2 mmol, 1.0 equiv.) in anhydrous THF (1 mL). Then *n*-BuLi (2.5 M in hexane, 1.5 equiv.) was added at -78 °C under nitrogen atmosphere. After stirring for 30 min, methyl iodide (3.0 equiv.) was added at -78 °C and then the reaction mixture was warmed to room temperature and stirred for 21 h. When the reaction was completed as monitored by TLC, the solution was quenched with saturated NH₄Cl solution and then extracted with ethyl acetate (5 mL×3). The combined organic layer was dried over anhydrous Na₂SO₄. After filtration and evaporation under reduced pressure, the residue was purified by flash chromatography on silica gel (EtOAc/Petroleum ether = 1:100) to give the target product **7** in 78% yield.

A dry 25 mL Schlenk tube equipped with a magnetic stir bar was added **3f** (0.2 mmol, 1.0 equiv.) in anhydrous THF (1 mL). Then *n*-BuLi (2.5 M in hexane, 1.5 equiv.) was added at -78 °C under nitrogen atmosphere. After stirring for 30 min, then cyclobutanone (2.0 equiv.) was added at -78 °C and the reaction mixture was warmed to room temperature. When the reaction was completed as monitored by TLC, the solution was quenched with saturated NH₄Cl solution and then extracted with ethyl acetate (5 mL×3). The combined organic layer was dried over anhydrous Na₂SO₄. After filtration and evaporation under reduced pressure, the residue was purified by flash chromatography on silica gel (EtOAc/Petroleum ether = 1:5) to give the target product **8** in 86% yield.

A dry 25 mL Schlenk tube equipped with a magnetic stir bar was added **3f** (0.2 mmol, 1.0 equiv.), Pd(PPh₃)₂Cl₂(5 mol%), CuI (10 mol%), ArI (1.2 equiv.) and Et₃N (2 ml) under nitrogen atmosphere. Then the mixture was stirred at 80 °C for 40 h. After the reaction was cooled to room temperature, the reaction mixture was passed through a short pad of diatomite with *n*-hexane as eluent. The solvent was concentrated *in vacuo* and the residue was purified by flash column chromatography on silica gel (EtOAc/Petroleum ether = 1:10) to give the target product **9** in 92% yield.

4. Products Date Characterization

tert-butyl ((5-ethynylthiophen-2-yl)(phenyl)methyl) carbonate

(5-ethynylthiophen-2-yl)(phenyl)methyl acetate

b: yellow solid; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃) δ **b**: yellow solid; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃) δ **c**: \int_{Ph}^{Ph} 7.44–7.35 (m, 5H), 7.11 (d, J = 3.8 Hz, 1H), 7.02 (s, 1H), 6.78 (dd, J = 3.8, 1.0 Hz, 1H), 3.33 (s, 1H), 2.16 (s, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 169.9, 145.8, 139.0, 132.8, 128.8, 128.7, 126.9, 126.4, 122.8, 81.9, 76.8, 72.7, 21.3; **HR-MS** (ESI) m/z calcd for C₁₅H₁₃O₂S⁺ [M+H]⁺ 257.0631, found: 257.0629.

(5-ethynylthiophen-2-yl)(phenyl)methyl benzoate

1c: yellow oil; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃) δ 8.20– **S** Ph 8.18 (m, 2H), 7.60–7.57 (m, 3H), 7.51–7.41 (m, 5H), 7.33 (s, 1H), 7.17 (d, J = 3.8 Hz, 1H), 6.91 (d, J = 3.8 Hz, 1H), 3.39 (s, 1H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 165.3, 145.7, 139.1, 133.4, 132.8, 129.9, 129.7, 128.8, 128.7, 128.5, 126.9, 126.4, 122.8, 82.1, 76.7, 73.3; **HR-MS** (ESI) m/z calcd for C₂₀H₁₄O₂SNa⁺ [M+Na]⁺ 341.0607, found: 341.0607.

tert-butyl ((5-ethynylthiophen-2-yl)(*o*-tolyl)methyl) carbonate

1d: yellow solid; According to procedure A; ¹H-NMR (400 MHz, CDCl₃) δ 7.56–7.54 (m, 1H), 7.26–7.24 (m, 2H), 7.16 (d, J = 5.6 Hz, 1H), 7.08 (d, J = 3.8 Hz, 1H), 6.92 (s, 1H), 6.74 (d, *J* = 3.8 Hz, 1H), 3.31 (s, 1H), 2.30 (s, 3H), 1.47 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 152.8, 144.7, 137.3, 135.2, 132.8, 130.7, 128.5, 127.0, 126.5, 126.0, 123.1, 83.0, 81.9, 76.8, 72.4, 27.9, 19.3; HR-MS (ESI) m/z calcd for C₁₉H₂₀O₃SNa⁺

[M+Na]⁺ 351.1025, found: 351.1023.

351.1025, found: 351.1021.

tert-butyl ((5-ethynylthiophen-2-yl)(m-tolyl)methyl) carbonate

1e: yellow solid; According to procedure A; ¹H-NMR (400 MHz, CDCl₃)
$$\delta$$

 $= \sqrt{3}$
 M_{e} $J = 3.8$ Hz, 1H), 7.14 (d, $J = 7.0$ Hz, 1H), 7.09 (d, $J = 3.8$ Hz, 1H), 6.79 (d,
 $J = 3.8$ Hz, 1H), 6.73 (s, 1H), 3.31 (s, 1H), 2.35 (s, 3H), 1.48 (s, 9H); ¹³C-
NMR (100 MHz, CDCl₃) δ 152.7, 145.7, 138.8, 138.5, 132.8, 129.5, 128.7, 127.4, 126.3, 123.8,
122.8, 83.1, 81.9, 76.8, 75.5, 27.9, 21.6; HR-MS (ESI) m/z calcd for C₁₉H₂₀O₃SNa⁺ [M+Na]⁺

tert-butyl ((5-ethynylthiophen-2-yl)(3-methoxyphenyl)methyl) carbonate

1f: yellow oil; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃)
$$\delta$$
 7.29
(t, J = 8.0 Hz, 1H), 7.09 (d, J = 3.8 Hz, 1H), 7.01 (d, J = 8.0 Hz, 1H), 6.97 (t, J = 2.0 Hz, 1H), 6.87 (dd, J = 8.2, 2.0 Hz, 1H), 6.81 (dd, J = 3.8, 0.8 Hz, 1H),

6.74 (s, 1H), 3.80 (s, 3H), 3.32 (s, 1H), 1.48 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 159.9, 152.7, 145.3, 140.4, 132.8, 129.9, 126.5, 123.0, 119.0, 114.2, 112.2, 83.2, 81.9, 76.8, 75.3, 55.4, 27.9; HR-**MS** (ESI) *m/z* calcd for C₁₉H₂₀O₄SNa⁺ [M+Na]⁺ 367.0975, found: 367.0977.

tert-butyl ((5-ethynylthiophen-2-yl)(p-tolyl)methyl) carbonate

1g: yellow oil; According to procedure A; **¹H-NMR** (400 MHz, CDCl₃) δ **1g**: yellow oil; According to procedure A; **¹H-NMR** (400 MHz, CDCl₃) δ **7.32** (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 3.8 Hz, 1H), 6.79 (dd, J = 3.8, 1.0 Hz, 1H), 6.75 (s, 1H), 3.32 (s, 1H), 2.36 (s, 3H), 1.48 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 152.7, 145.8, 138.6, 136.0, 132.8, 129.4, 126.8, 126.3, 121.1, 83.0, 81.8, 76.8, 75.5, 27.9, 21.3; **HR-MS** (ESI) m/z calcd for C₁₉H₂₀O₃SNa⁺ [M+Na]⁺ 351.1025, found: 351.1022.

tert-butyl ((5-ethynylthiophen-2-yl)(4-methoxyphenyl)methyl) carbonate

h: brown oil; According to procedure A; **¹H-NMR** (400 MHz, CDCl₃) δ 7.36 (d, J = 8.8 Hz, 2H), 7.10 (d, J = 3.8 Hz, 1H), 6.90 (d, J = 8.8 Hz, 2H), 6.78 (dd, J = 3.8, 1.0 Hz, 1H), 6.73 (s, 1H), 3.81 (s, 3H), 3.32 (s, 1H), 1.48 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 159.9, 152.7, 146.0, 132.8, 131.1, 128.4, 126.1, 122.7, 114.1, 83.0, 81.8, 76.8, 75.4, 55.4, 27.9; **HR-MS** (ESI) m/z calcd for C₁₉H₂₀O₄SNa⁺ [M+Na]⁺ 367.0975, found: 367.0972.

[1,1'-biphenyl]-4-yl(5-ethynylthiophen-2-yl)methyl tert-butyl carbonate

1i: brown oil; According to procedure A; ¹H-NMR (400 MHz, CDCl₃) δ
7.62 (t, J = 8.0 Hz, 4H), 7.53 (d, J = 8.4 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H),
7.37 (t, J = 7.4 Hz, 1H), 7.14 (d, J = 3.8 Hz, 1H), 6.87 (dd, J = 3.8, 0.8 Hz,

1H), 6.85 (s, 1H), 3.35 (s, 1H), 1.52 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 152.7, 145.4, 141.6, 140.6, 137.9, 132.9, 128.9, 127.6, 127.5, 127.3, 127.2, 126.5, 123.0, 83.2, 82.0, 76.8, 75.3, 27.9;
HR-MS (ESI) *m*/*z* calcd for C₂₄H₂₂O₃SNa⁺ [M+Na]⁺ 413.1182, found: 413.1183.

tert-butyl ((5-ethynylthiophen-2-yl)(4-fluorophenyl)methyl) carbonate

1*j*: brown oil; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃)
$$\delta$$

1*j*: brown oil; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃) δ
7.43–7.39 (m, 2H), **7.10** (d, $J = 3.8$ Hz, 1H), **7.06** (t, $J = 8.8$ Hz, 2H), **6.78**
(d, $J = 3.8$, 1H), **6.75** (s, 1H), **3.33** (s, 1H), **1.48** (s, 9H); ¹³**C-NMR** (100

MHz, CDCl₃) δ 162.8 (d, J = 247.8 Hz), 152.6, 145.2, 134.8 (d, J = 3.2 Hz), 132.8, 128.8 (d, J = 8.4 Hz), 126.4, 123.0, 115.7 (d, J = 21.8 Hz), 83.3, 82.1, 76.7, 74.9, 27.9; ¹⁹**F-NMR** (376 MHz, CDCl₃) δ -112.9; **HR-MS** (ESI) m/z calcd for C₁₈H₁₇FO₃SNa⁺ [M+Na]⁺ 355.0775, found: 355.0775.

tert-butyl ((4-chlorophenyl)(5-ethynylthiophen-2-yl)methyl) carbonate

1k: brown oil; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.39–7.34 (m, 4H), 7.10 (d, *J* = 3.8 Hz, 1H), 6.78 (d, *J* = 3.8 Hz, 1H), 6.74 (s, 1H), 3.34 (s, 1H), 1.48 (s, 9H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 152.4,

144.7, 137.4, 134.4, 132.7, 128.8, 128.1, 126.4, 123.1, 83.1, 82.3, 76.6, 74.6, 27.7; **HR-MS** (ESI) *m/z* calcd for C₁₈H₁₇ClO₃SNa⁺ [M+Na]⁺ 371.0479, found: 371.0476.

(4-bromophenyl)(5-ethynylthiophen-2-yl)methyl tert-butyl carbonate

11: brown oil; According to procedure A; ¹H-NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 7.10 (d, J = 3.8 Hz, 1H), 6.78 (d, J = 3.8 Hz, 1H), 6.72 (s, 1H), 3.33 (s, 1H), 1.48 (s, 9H); ¹³C-NMR

(100 MHz, CDCl₃) δ 152.5, 144.7, 138.0, 132.8, 131.9, 128.5, 126.5, 123.2, 122.7, 83.3, 82.2, 76.6,
74.8, 27.8; **HR-MS** (ESI) *m/z* calcd for C₁₈H₁₇BrO₃SNa⁺ [M+Na]⁺ 414.9974, found: 414.9975.

tert-butyl ((3,5-dimethylphenyl)(5-ethynylthiophen-2-yl)methyl) carbonate

$$\begin{array}{c} \text{OBoc} \\ & \text{Im: yellow solid; According to procedure A; }^{1}\text{H-NMR} (400 \text{ MHz, CDCl}_3) \\ & \delta \ 7.11 \ (d, J = 3.8 \text{ Hz}, 1\text{H}), \ 7.07 \ (s, 2\text{H}), \ 6.99 \ (s, 1\text{H}), \ 6.83 \ (dd, J = 3.8, 0.8 \text{Hz}, 1\text{H}), \ 6.74 \ (s, 1\text{H}), \ 3.34 \ (s, 1\text{H}), \ 2.33 \ (s, 6\text{H}), \ 1.51 \ (s, 9\text{H}); \ ^{13}\text{C-NMR} \end{array}$$

(100 MHz, CDCl₃) δ 152.7, 145.8, 138.7, 138.3, 132.7, 130.3, 126.2, 124.5, 122.7, 82.9, 81.9, 76.8, 75.6, 27.8, 21.4; **HR-MS** (ESI) *m*/*z* calcd for C₁₅H₁₅OS⁺ [M+H]⁺ 243.0838, found: 243.0835.

tert-butyl ((5-ethynylthiophen-2-yl)(naphthalen-2-yl)methyl) carbonate

benzo[b]thiophen-2-yl(5-ethynylthiophen-2-yl)methyl tert-butyl carbonate

10: brown solid; According to procedure A; ¹H-NMR (400 MHz, CDCl₃)
δ 7.79 (d, J = 7.2 Hz, 1H), 7.73 (d, J = 7.2 Hz, 1H), 7.33 (d, J = 7.2 Hz, 3H), 7.14 (d, J = 3.4 Hz, 1H), 7.10 (s, 1H), 6.99 (d, J = 3.4 Hz, 1H), 3.34

(s, 1H), 1.49 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 152.4, 143.6, 142.3, 140.0, 139.0, 132.8, 126.6, 124.9, 124.6, 124.1, 123.3, 123.2, 122.5, 83.5, 82.2, 76.7, 71.9, 27.8; **HR-MS** (ESI) *m/z* calcd for C₂₀H₁₈O₃S₂Na⁺ [M+Na]⁺ 393.0590, found: 393.0591.

1-(5-ethynylthiophen-2-yl)ethyl 2,3,4,5,6-pentafluorobenzoate

1p: white solid; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃)
$$\delta$$

1p: white solid; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃) δ
7.10 (d, $J = 3.8$ Hz, 1H), 6.99 (d, $J = 3.8$ Hz, 1H), 6.34 (q, $J = 6.6$ Hz, 1H),
3.34 (s, 1H), 1.76 (d, $J = 6.6$ Hz, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 158.1,

145.5 (dm, J = 258.6 Hz), 144.8, 143.4 (dm, J = 259.6 Hz), 137.7 (dm, J = 255.8 Hz), 132.7, 125.9, 122.6, 108.0 (m), 81.9, 76.4, 70.3, 21.7; ¹⁹**F-NMR** (376 MHz, CDCl₃) δ -137.8 (m, 2F), -148.1 (m, 1F), -160.2 (m, 2F); **HR-MS** (ESI) *m/z* calcd for C₁₅H₈F₅O₂S⁺ [M+H]⁺ 347.0160, found: 347.0161.

1-(5-ethynylthiophen-2-yl)propyl 2,3,4,5,6-pentafluorobenzoate

 $\begin{array}{c} \text{OCOC}_{6}\text{F}_{5} & \text{1q: yellow solid; According to procedure A; }^{1}\text{H-NMR} (400 \text{ MHz, CDC}\text{I}_{3}) \\ \text{Hermitian} & \text{Hermitian} \\ \text{Hermitian} \\ \text{Hermitian} & \text{Hermitian} \\ \text{Hermitian} \\ \text{Hermitian} & \text{Hermitian} \\ \text{Hermi$

1-(5-ethynylthiophen-2-yl)-2-methylpropyl 2,3,4,5,6-pentafluorobenzoate

 $COCC_6F_5$ **1r**: yellow oil; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.14 (d, J = 3.8 Hz, 1H), 6.95 (d, J = 3.8 Hz, 1H), 5.94 (d, J = 7.8 Hz, 1H), 3.34 (s, 1H), 2.28–2.19 (m, 1H), 1.07 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H); ¹³**C-NMR** $(100 MHz, CDCl₃) <math>\delta$ 158.2, 145.7 (dm, J = 258.6 \text{ Hz}), 143.4 (dm, J = 259.6 \text{ Hz}), 143.0, 137.6 (dm, J = 252.8 \text{ Hz}), 132.6, 126.7, 122.4, 107.9 (m), 81.9, 79.2, 76.5, 34.2, 18.5; ¹⁹**F-NMR** (376 MHz, CDCl₃) δ - 137.6 (m, 2F), -148.2 (m, 1F), -160.2 (m, 2F); **HR-MS** (ESI) *m/z* calcd for C₁₇H₁₁F₅O₂SNa⁺ [M+Na]⁺ 397.0292, found: 397.0294.

1-(5-ethynylthiophen-2-yl)-2-phenylethyl 2,3,4,5,6-pentafluorobenzoate

 $\int_{Ph} \int_{Ph} Is: yellow solid; According to procedure A; ¹H-NMR (400 MHz, CDCl₃) \delta 7.29-7.23 (m, 3H), 7.18 (d, <math>J = 6.6$ Hz, 2H), 7.10 (d, J = 3.8 Hz, 1H), 6.88 (d, J = 3.8 Hz, 1H), 6.42 (t, J = 7.2 Hz, 1H), 3.41-3.35 (m, 1H), 3.35 (s, 1H), 3.29-3.21 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃) \delta 158.1, 145.6 (dm, J = 259.6 Hz), 143.5 (dm, J = 260.2 Hz), 143.1, 137.8 (dm, J = 256.4 Hz), 135.5, 132.8, 129.5, 128.7, 127.3, 126.7, 122.8, 107.7 (m), 82.2, 76.6, 74.7, 42.8; ¹⁹F-NMR -137.3 (m, 2F), -147.8 (m, 1F), -160.2 (m, 2F); HR-MS (ESI) *m/z* calcd for C₂₁H₁₁F₅O₂SNa⁺ [M+Na]⁺ 445.0292, found: 445.0295.

1-(5-ethynylthiophen-2-yl)pentyl 2,3,4,5,6-pentafluorobenzoate

1t: yellow oil; According to procedure A; ¹H-NMR (400 MHz, CDCl₃) δ
7.14 (d, J = 3.8 Hz, 1H), 6.99 (d, J = 3.8 Hz, 1H), 6.20 (t, J = 7.2 Hz, 1H),
3.34 (s, 1H), 2.15–1.93 (m, 2H), 1.45–1.32 (m, 4H), 0.91 (t, J = 7.0 Hz,

3H); ¹³C-NMR (100 MHz, CDCl₃) δ 158.3, 145.5 (dm, *J* = 258.6 Hz), 144.0, 143.4 (dm, *J* = 259.8 Hz), 137.6 (dm, *J* = 253.4 Hz), 132.8, 126.5, 122.6, 108.2 (m), 81.9, 76.6, 74.1, 35.9, 27.6, 22.3, 13.9; ¹⁹F-NMR (376 MHz, CDCl₃) δ -137.8 (m, 2F), -148.4 (m, 1F), -160.3 (m, 2F); **HR-MS** (ESI) *m*/*z* calcd for C₁₈H₁₄F₅O₂S⁺ [M+H]⁺ 389.0629, found: 389.0627.

1-(5-ethynylthiophen-2-yl)-3-methylbutyl 2,3,4,5,6-pentafluorobenzoate

1u: yellow solid; According to procedure A; **¹H-NMR** (400 MHz, CDCl₃) δ 7.14 (d, J = 3.8 Hz, 1H), 7.01 (d, J = 3.8 Hz, 1H), 6.29 (dd, J = 8.2, 6.4 Hz, 1H), 3.35 (s, 1H), 2.10–2.00 (m, 1H), 1.86–1.76 (m, 1H), 1.72–1.66 (m, 1H), 0.99 (d, J = 4.8 Hz, 3H), 0.97 (d, J = 4.8 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 158.4, 145.5 (dm, J = 253.6 Hz), 144.1, 143.4 (dm, J = 259.8 Hz), 137.6 (dm, J = 253.0 Hz), 132.8, 126.7, 122.8, 108.2 (m), 82.0, 76.7, 72.5, 45.0, 24.8, 22.6; ¹⁹F-NMR (376 MHz, CDCl₃) δ -137.8 (m, 2F), -148.2 (m, 1F), -160.2 (m, 2F); **HR-MS** (ESI) *m/z* calcd for C₁₈H₁₄F₅O₂S⁺ [M+H]⁺ 389.0629, found: 389.0628.

cyclohexyl(5-ethynylthiophen-2-yl)methyl 2,3,4,5,6-pentafluorobenzoate

tert-butyl ((5-ethynyl-4-methylthiophen-2-yl)(phenyl)methyl) carbonate

OBoc
 1w: yellow oil; According to procedure A; ¹H-NMR (400 MHz, CDCl₃)
$$\delta$$
 7.44

 (d, J = 7.2 Hz, 2H), 7.40–7.34 (m, 3H), 6.74 (s, 1H), 6.68 (s, 1H), 3.44 (s, 1H), 2.24 (s, 3H), 1.49 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 152.7, 143.7, 143.6, 143.6

138.9, 128.7, 128.6, 128.5, 126.8, 118.2, 84.0, 83.0, 76.5, 75.5, 27.9, 15.1; **HR-MS** (ESI) *m/z* calcd for C₁₉H₂₀O₃SNa⁺ [M+Na]⁺ 351.1025, found: 351.1026.

tert-butyl ((7-ethynyl-2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)(phenyl)methyl) carbonate

1x: yellow solid; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃)
$$\delta$$
 7.43–
Ph 7.41 (m, 2H), 7.34 (d, *J* = 7.6 Hz, 2H), 7.32–7.30 (m, 1H), 6.87 (s, 1H), 4.28–
4.25 (m, 2H), 4.23–4.20 (m, 2H), 3.46 (s, 1H), 1.47 (s, 9H); ¹³**C-NMR** (100 MHz,

CDCl₃) δ 152.5, 145.1, 138.6, 138.1, 128.7, 128.5, 126.4, 118.0, 97.2, 84.7, 82.9, 74.3, 72.2, 65.2, 64.6, 27.9; **HR-MS** (ESI) *m*/*z* calcd for C₂₀H₂₀O₅SNa⁺ [M+Na]⁺ 395.0924, found: 395.0925.

tert-butyl (1-(5-ethynylthiophen-2-yl)-1-phenylethyl) carbonate

1y: yellow solid; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.39– **1y**: yellow solid; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.39– **1**(4) **7**(28 (m, 5H), 7.08 (d, *J* = 3.8 Hz, 1H), 6.76 (d, *J* = 3.8 Hz, 1H), 3.31 (s, 1H), 2.25 (s, 3H), 1.42 (s, 9H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 151.4, 151.2, 144.3, 132.6, 128.4, 127.8, 125.3, 125.1, 122.0, 83.1, 82.3, 81.8, 76.9, 28.0, 27.8; **HR-MS** (ESI) *m/z* calcd for C₁₉H₂₀O₃SNa⁺ [M+Na]⁺ 351.1025, found: 351.1024.

tert-butyl ((5-ethynylfuran-2-yl)(phenyl)methyl) carbonate

1z: brown oil; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.45 (d, J = 7.0 Hz, 2H), 7.37 (q, J = 8.6, 7.6 Hz, 3H), 6.59 (s, 1H), 6.55 (d, J = 3.4 Hz, 1H), 6.15 (d, J = 3.4 Hz, 1H), 3.38 (s, 1H), 1.47 (s, 9H); ¹³**C-NMR** (100

MHz, CDCl₃) δ 153.4, 152.6, 136.8, 136.7, 128.8, 128.7, 127.2, 116.9, 110.5, 83.1, 82.4, 73.8, 73.3, 27.8; **HR-MS** (ESI) *m/z* calcd for C₁₈H₁₈O₄Na⁺ [M+Na]⁺ 321.1097, found: 321.1095.

tert-butyl ((5-ethynylfuran-2-yl)(*p*-tolyl)methyl) carbonate

1za: yellow solid; According to procedure A; ¹H-NMR (400 MHz, CDCl₃)
δ 7.34 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 6.54 (d, J = 3.6 Hz, 2H), 6.15 (s, 1H), 3.37 (s, 1H), 2.35 (s, 3H), 1.47 (s, 9H); ¹³C-NMR (100

MHz, CDCl₃) δ 153.6, 152.5, 138.5, 136.6, 133.8, 129.3, 127.1, 116.8, 110.3, 82.8, 82.3, 73.8, 73.2, 27.7, 21.2; **HR-MS** (ESI) *m*/*z* calcd for C₁₉H₂₀O₄Na⁺ [M+Na]⁺ 335.1254, found: 335.1255.

1-(5-ethynylfuran-2-yl)propyl 2,3,4,5,6-pentafluorobenzoate

12b: yellow oil; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃) δ **12b**: yellow oil; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃) δ **6.58** (d, J = 3.4 Hz, 1H), 6.40 (d, J = 3.4 Hz, 1H), 5.97 (t, J = 7.0 Hz, 1H), **7.10** 3.38 (s, 1H), 2.13–2.06 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 158.3, 152.5, 145.5 (dm, J = 258.0 Hz), 143.3 (dm, J = 259.4 Hz), 137.9 (dm, J = 253.2Hz), 136.4, 116.8, 110.3, 108.1 (m), 82.2, 73.5, 72.6, 25.7, 9.5; ¹⁹**F-NMR** (376 MHz, CDCl₃) δ -137.9 (m, 2F), -148.5 (m, 1F), -160.4 (m, 2F); **HR-MS** (ESI) *m/z* calcd for C₁₆H₉F₅O₃Na⁺ [M+Na]⁺ 367.0364, found: 367.0366.

tert-butyl (phenyl(5-((trimethylsilyl)ethynyl)thiophen-2-yl)methyl) carbonate

tert-butyl (phenyl(5-(phenylethynyl)thiophen-2-yl)methyl) carbonate

OBoc11: yellow solid; According to procedure A; ¹H-NMR (400 MHz, CDCl₃) δPh $^{\circ}$ Ph7.51-7.48 (m, 4H), 7.43-7.38 (m, 3H), 7.36-7.34 (m, 3H), 7.13 (d, J = 3.8 Hz, 1H), 6.87 (d, J = 3.8 Hz, 1H), 6.84 (s, 1H), 1.52 (s, 9H); ¹³C-NMR (100 MHz, CDCl₃) δ 152.7, 145.1, 139.0, 131.6, 131.5, 128.7, 128.6(3), 128.5(7), 128.5, 126.8, 126.7, 126.7, 128.7, 128.6(3), 128.5(7), 128.5, 126.8, 126.7, 126.7, 128.7, 128.6(3), 128.5(7), 128.5, 126.8, 126.7, 126.7, 128.7, 128.6(3), 128.5(7), 128.5, 126.8, 126.7, 128.7, 128.7, 128.6(3), 128.5(7), 128.5, 126.8, 126.7, 128.7, 128.7, 128.6(3), 128.5(7), 128.5, 126.8, 126.7, 128.7, 128.7, 128.6(3), 128.5(7), 128.5, 126.8, 126.7, 128.7, 128.7, 128.6(3), 128.5(7), 128.5, 126.8, 126.7, 128.7, 128.7, 128.6(3), 128.5(7), 128.5, 126.8, 126.7, 128.7, 128.7, 128.6(3), 128.5(7), 128.5, 126.8, 126.7, 128.7, 128.7, 128.7, 128.6(3), 128.5(7), 128.5, 126.8, 126.7, 128.7,

124.3, 122.8, 93.7, 83.0, 82.5, 75.6, 27.9; **HR-MS** (ESI) *m*/*z* calcd for C₂₄H₂₂O₃SNa⁺ [M+Na]⁺ 413.1182, found: 413.1181.

tert-butyl (phenyl(thiophen-2-yl)methyl) carbonate

12: yellow oil; According to procedure A; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.48–7.46 (m, 2H), 7.40–7.37 (m, 2H), 7.35–7.33 (m, 1H), 7.28 (dd, J = 4.8, 1.6 Hz, 1H), 6.95– 6.93 (m, 2H), 6.88 (s, 1H), 1.49 (s, 9H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 152.8, 143.4, 139.5, 128.6, 128.4, 126.9, 126.7(3), 126.6(6), 126.4, 82.8, 75.7, 27.9; **HR-MS** (ESI) m/z calcd for C₁₆H₁₈O₃SNa⁺ [M+Na]⁺ 313.0869, found: 313.0868.

N-((5-ethynylthiophen-2-yl)(phenyl)methyl)aniline

3a: 82% yield; white solid; According to procedure B; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.44–7.33 (m, 5H), 7.19–7.14 (m, 3H), 6.79–6.75 (m, 2H), 6.63 (d, J =8.0 Hz, 2H), 5.72 (s, 1H), 4.35 (brs, 1H), 3.32 (s, 1H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 150.2, 146.7, 142.0, 133.3, 129.3, 129.1, 128.2, 127.2, 124.8, 121.5, 118.5, 113.8, 81.5, 77.2, 59.0; **HR-MS** (ESI) m/z calcd for C₁₉H₁₅NSNa⁺ [M+Na]⁺ 312.0817, found: 312.0819.

N-((5-ethynylthiophen-2-yl)(phenyl)methyl)-2-methylaniline

$$\begin{array}{c} \text{Me} \\ \text{HN} \\$$

N-((5-ethynylthiophen-2-yl)(phenyl)methyl)-2-methoxyaniline

3bb: 75% yield; yellow oil; According to procedure B; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.47 (d, J = 7.2 Hz, 2H), 7.40 (t, J = 7.4 Hz, 2H), 7.34 (t, J = 7.4 Hz, HN, 7.17 (d, J = 3.8 Hz, 1H), 6.85–6.80 (m, 3H), 6.77–6.73 (m, 1H), 6.56 (d, J = 7.6 Hz, 1H), 5.74 (s, 1H), 5.02 (brs, 1H), 3.88 (s, 3H), 3.34 (s, 1H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 150.4, 146.9, 142.1, 136.7, 133.2, 129.0, 128.0, 127.2, 124.8, 121.4, 121.2, 117.7, 111.4, 109.6, 81.5, 71.2, 58.8, 55.5; **HR-MS** (ESI) *m/z* calcd for C₂₀H₁₈NOS⁺ [M+H]⁺ 320.1104, found: 320.1106.

N-((5-ethynylthiophen-2-yl)(phenyl)methyl)-4-methoxyaniline

3ca: 79% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 7.43–7.40 (m, 2H), 7.38–7.35 (m, 2H), 7.33–7.29 (m, 1H), 7.12 (d, *J* = 3.8 Hz, 1H), 6.77–6.73 (m, 3H), 6.58 (d, *J* = 8.8 Hz, 2H), 5.62

(s, 1H), 4.11 (brs, 1H), 3.73 (s, 3H), 3.31 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 152.8, 150.7, 142.2, 140.9, 133.3, 129.0, 128.1, 127.2, 124.6, 121.4, 115.1, 114.8, 81.5, 77.2, 59.9, 55.8; HR-MS
(ESI) *m/z* calcd for C₂₀H₁₇NOSNa⁺ [M+Na]⁺ 342.0923, found: 342.0922.

N-((5-ethynylthiophen-2-yl)(phenyl)methyl)-4-isopropylaniline

3cb: 99% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz, CDCl₃)
$$\delta$$
 7.46 (d, $J = 6.8$ Hz, 2H), 7.40 (t, $J = 7.2$ Hz, 2H), 7.37–7.32 (m, 1H), 7.16 (d, $J = 3.8$ Hz, 1H), 7.07 (d, $J = 8.6$ Hz, 2H), 6.81 (d, $J = 3.8$ Hz, 1H), 6.61 (d, $J = 8.6$ Hz, 2H), 5.71 (s, 1H), 4.29 (brs, 1H), 3.33 (s, 1H), 2.84 (q, $J = 7.0$ Hz, 1H), 1.25 (d, $J = 7.0$ Hz, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 150.6, 144.8, 142.2, 139.0, 133.3, 129.0, 128.1, 127.2(0), 127.1(7), 124.7, 121.4, 113.8, 81.5, 77.2, 59.3, 33.3, 24.3; HR-MS (ESI) *m/z* calcd for C₂₂H₂₂NS⁺ [M+H]⁺ 332.1467, found: 332.1469.

4-benzyl-N-((5-ethynylthiophen-2-yl)(phenyl)methyl)aniline

3cc: 85% yield; yellow solid; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 7.37–7.29 (m, 4H), 7.27–7.23 (m, 2H), 7.16–7.12 (m, 4H), 7.07 (d, J = 3.8 Hz, 1H), 6.93 (d, J = 8.2 Hz, 2H), 6.71 (d, J = 3.8 Hz, 1H), 6.50 (d, J = 8.2 Hz, 2H), 5.62 (s, 1H), 4.22 (brs, 1H), 3.82 (s, 2H), 3.25 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 150.4, 145.0, 142.1, 141.8, 133.3, 131.2, 129.7, 129.0, 128.9, 128.5, 128.1, 127.2, 126.0, 124.7, 121.5, 113.9, 81.6, 77.2, 59.2, 41.1; **HR-MS** (ESI) m/z calcd for C₂₆H₂₁NSNa⁺ [M+Na]⁺ 402.1287, found: 402.1288.

N-((5-ethynylthiophen-2-yl)(phenyl)methyl)-4-fluoroaniline

for C₁₉H₁₄FNSNa⁺ [M+Na]⁺ 330.0723, found: 330.0722.

4-bromo-N-((5-ethynylthiophen-2-yl)(phenyl)methyl)aniline

3ce: 94% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz, CDCl3) & 7.33-7.30 (m, 4H), 7.30-7.28 (m, 1H), 7.19-7.16 (m, 2H), 7.07 (d, J = 3.8 Hz, 1H), 6.71 (d, J = 3.8 Hz, 1H), 6.43 (d, J = 8.8 Hz, 2H), 5.61 (s, 1H), 4.32 (brs, 1H), 3.27 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 149.4, 145.6, 141.4, 133.3, 132.0, 129.1, 128.3, 127.1, 125.0, 121.7, 115.4, 110.3, 81.7, 77.0, 58.9; HR-MS (ESI) m/z calcd for

C₁₉H₁₄BrNSNa⁺ [M+Na]⁺ 389.9923, found: 389.9925.

N-((5-ethynylthiophen-2-yl)(phenyl)methyl)-4-iodoaniline

3cf: 97% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 7.41–7.38 (m, 6H), 7.35–7.32 (m, 1H), 7.13 (d, *J* = 2.4 Hz, 1H), 6.77 (d, J = 3.8 Hz, 1H), 6.40 (d, J = 7.2 Hz, 2H), 5.67 (s, 1H), 4.39 (brs, 1H), 3.33 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 149.4, 146.2, 141.4, 137.9,

133.3, 129.1, 128.3, 127.1, 125.0, 121.8, 116.0, 81.8, 77.0, 79.6, 58.7; HR-MS (ESI) m/z calcd for C₁₉H₁₅INS⁺ [M+H]⁺ 415.9964, found: 415.9966.

N-((5-ethynylthiophen-2-yl)(phenyl)methyl)-4-nitroaniline

3cg: 96% yield; yellow solid; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 9.2 Hz, 2H), 7.40–7.34 (m, 5H), 7.13 (d, J =3.8 Hz, 1H), 6.78 (d, J = 3.8 Hz, 1H), 6.57 (d, J = 9.2 Hz, 2H), 5.82 (s, 1H), 5.18 (brs, 1H), 3.33 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 151.5,

147.5, 140.2, 139.0, 133.3, 129.3, 128.7, 127.1, 126.2, 125.7, 122.4, 112.4, 82.1, 76.7, 58.1; HR-**MS** (ESI) *m/z* calcd for C₁₉H₁₄N₂O₂SNa⁺ [M+Na]⁺ 357.0668, found: 357.0669.

N-((5-ethynylthiophen-2-yl)(phenyl)methyl)-2,6-dimethylaniline

130.1, 129.0, 128.7, 128.0, 127.4, 124.9, 122.6, 121.0, 81.3, 77.4, 62.6, 18.6; **HR-MS** (ESI) *m*/*z* calcd for C₂₁H₁₉NSNa⁺ [M+Na]⁺ 340.1130, found: 340.1132.

N-((5-ethynylthiophen-2-yl)(phenyl)methyl)-2,6-dimethoxyaniline

3db: 93% yield; white solid; According to procedure B; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.31 (d, *J* = 7.0 Hz, 2H), 7.26 (t, *J* = 7.4 Hz, 2H), 7.21 (d, *J* = 2.6 Hz, 1H), 7.04 (d, *J* = 3.8 Hz, 1H), 6.73 (t, *J* = 8.4 Hz, 1H), 6.54 (d, *J* = 3.8 Hz, 1H), 6.45 (d, *J* = 8.4 Hz, 2H), 6.21 (s, 1H), 4.75 (brs, 1H), 3.74 (s, 6H),

3.26 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 151.6, 150.8, 142.8, 132.9, 128.4, 127.5, 127.4, 125.2, 124.7, 120.9, 120.6, 104.9, 81.1, 77.4, 59.4, 56.1; **HR-MS** (ESI) *m*/*z* calcd for C₂₁H₁₉NO₂SNa⁺ [M+Na]⁺ 372.1029, found: 372.1027.

N-((5-ethynylthiophen-2-yl)(phenyl)methyl)-2,6-diisopropylaniline

3dc: 91% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 7.29–7.26 (m, 3H), 7.22–7.20 (m, 2H), 7.13 (d, *J* = 3.8 Hz, 1H), 7.02 (s, 3H), 6.56 (d, *J* = 3.8 Hz, 1H), 5.14 (s, 1H), 3.74 (brs, 1H), 3.29 (s, 1H), 2.85 (q, *J* = 6.8 Hz, 2H), 1.10 (d, *J* = 6.8 Hz, 6H), 0.94 (d, *J* = 6.8 Hz, 6H); ¹³C-

NMR (100 MHz, CDCl₃) δ 151.1, 142.5, 142.4, 140.7, 133.4, 128.7, 128.0, 127.7, 125.0, 124.0, 123.6, 121.0, 81.2, 77.5, 65.7, 27.8, 24.2; **HR-MS** (ESI) *m*/*z* calcd for C₂₅H₂₇NSNa⁺ [M+Na]⁺ 396.1756, found: 396.1755.

N-((5-ethynylthiophen-2-yl)(phenyl)methyl)benzo[*d*][1,3]dioxol-5-amine

MHz, CDCl₃) δ 7.41–7.33 (m, 5H), 7.13 (d, *J* = 3.8 Hz, 1H), 6.76 (d, *J* = 3.8 Hz, 1H, 6.62 (d, J = 8.4 Hz, 1H), 6.25 (d, J = 2.4 Hz, 1H), 6.05 (dd, J= 8.4, 2.4 Hz, 1H), 5.83 (s, 2H), 5.61 (s, 1H), 4.16 (brs, 1H), 3.32 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) & 150.3, 148.3, 142.4, 142.0, 140.4, 133.3, 129.0, 128.1, 127.2, 124.7, 121.5, 108.6, 105.8, 100.8, 96.9, 81.6, 77.2, 59.9; **HR-MS** (ESI) m/z calcd for C₂₀H₁₆NO₂S⁺ [M+H]⁺ 334.0896, found: 334.0896.

3e: 95% yield; yellow solid; According to procedure B; ¹H-NMR (400

N-((5-ethynylthiophen-2-yl)(phenyl)methyl)-N-methylaniline

3f: 96% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 7.34–7.23 (m, 7H), 7.14 (d, J = 3.8 Hz, 1H), 6.83 (d, J = 8.2 Hz, 2H), 6.78 (t, J = 7.4 Hz, 1H), 6.67 (d, J = 3.8 Hz, 1H), 6.28 (s, 1H), 3.30 (s, 1H), 2.75 (s, 3H);

¹³C-NMR (100 MHz, CDCl₃) δ 149.7, 147.6, 139.3, 133.1, 129.3, 128.6, 128.3, 128.0, 126.4, 121.5, 118.1, 114.0, 81.6, 77.2, 63.8, 34.2; **HR-MS** (ESI) m/z calcd for C₂₀H₁₈NS⁺ [M+H]⁺ 304.1154, found: 304.1151.

N-((5-ethynylthiophen-2-yl)(phenyl)methyl)-N-phenylaniline

3g: 68% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz, NPh₂ CDCl₃) δ 7.29 (d, J = 8.2 Hz, 2H), 7.22 (t, J = 7.8 Hz, 3H), 7.13 (t, J = 7.8 Hz, 3H), 7.06–7.04 (m, 2H), 6.92–6.85 (m, 6H), 6.73 (d, J = 3.8 Hz, 1H), 6.48 (s,

1H), 3.26 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 147.9, 146.9, 140.2, 132.9, 129.5, 129.1, 128.4, 127.7, 127.0, 123.3(4), 122.3(2), 121.8, 121.1, 117.9, 81.6, 77.2, 65.0; HR-MS (ESI) m/z calcd for C₂₅H₂₀NS⁺ [M+H]⁺ 366.1311, found: 366.1312.

N-allyl-*N*-((5-ethynylthiophen-2-yl)(phenyl)methyl)aniline

3h: 83% yield; colorless oil; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 7.27–7.24 (m, 4H), 7.20–7.15 (m, 3H), 7.10 (d, *J* = 3.8 Hz, 1H), 6.81 (d, J = 8.2 Hz, 2H), 6.76 (t, J = 7.4 Hz, 1H), 6.67 (d, J = 3.8 Hz, 1H), 6.23 (s, J = 3.8 Hz, 1Hz), 6.23 (s, J = 3.8 Hz), 6.23 (s, J = 3.8 Hz),1H), 5.63–5.57 (m, 1H), 5.05–4.95 (m, 2H), 3.92–3.79 (m, 2H), 3.28 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) & 148.7, 147.8, 139.5, 135.4, 133.1, 129.1, 128.7, 128.6, 128.0, 126.7, 121.6, 118.7, 116.4,

115.8, 81.5, 77.2, 64.2, 50.6; **HR-MS** (ESI) *m/z* calcd for C₂₂H₁₉NSNa⁺ [M+Na]⁺ 352.1130, found: 352.1132.

N-ethyl-N-((5-ethynylthiophen-2-yl)(phenyl)methyl)ethanamine

3i: 91% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 7.42–7.39 (m, 2H), 7.36–7.32 (m, 2H), 7.30–7.28 (m, 1H), 7.11 (d, *J* = 3.8 Hz, 1H), 6.69 (d, *J* = 3.8 Hz, 1H), 5.09 (s, 1H), 3.33 (s, 1H), 2.63 (q, *J* = 6.8 Hz, 2H),

2.43 (q, J = 6.8 Hz, 2H), 1.07 (t, J = 7.2 Hz, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 151.2, 140.0, 132.8, 128.9, 128.3, 127.5, 125.2, 121.0, 81.1, 77.7, 65.7, 43.5, 12.5; HR-MS (ESI) m/z calcd for C₁₇H₁₉NSNa⁺ [M+Na]⁺ 292.1130, found: 292.1133.

N,N-dibenzyl-1-(5-ethynylthiophen-2-yl)-1-phenylmethanamine

3j: 93% yield; yellow solid; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.6 Hz, 4H), 7.49–7.46 (m, 2H), 7.43–7.36 (m, 7H), 7.30 (t, *J* = 7.4 Hz, 2H), 7.17 (d, *J* = 3.8 Hz, 1H), 6.60 (d, *J* = 3.2 Hz, 1H), 5.17 (s, 1H), 3.92 (s, 2H), 3.40 (s, 1H), 3.31 (s, 2H); ¹³C-NMR (100 MHz, CDCl₃) & 149.5, 139.4, 136.0, 133.0, 130.1, 128.7, 128.6, 128.3, 128.1, 127.2, 126.4, 121.3, 81.3, 77.6, 63.3, 54.0; HR-MS (ESI) m/z calcd for C₂₇H₂₃NSNa⁺ [M+Na]⁺ 416.1443, found: 416.1441.

1-((5-ethynylthiophen-2-yl)(phenyl)methyl)pyrrolidine

3k: 80% yield; white solid; According to procedure B; ¹H-NMR (400 MHz,
CDCl₃)
$$\delta$$
 7.45 (d, $J = 7.2$ Hz, 2H), 7.30 (t, $J = 7.6$ Hz, 2H), 7.26–7.23 (m, 1H),
7.04 (d, $J = 3.8$ Hz, 1H), 6.81 (d, $J = 3.8$ Hz, 1H), 4.46 (s, 1H), 3.29 (s, 1H), 2.47
(d, $J = 9.4$ Hz, 4H), 1.78 (d, $J = 6.6$ Hz, 4H); ¹³C-NMR (100 MHz, CDCl₃) δ 151.5, 142.8, 132.6,
128.6, 127.7, 127.5, 123.8, 121.1, 81.1, 77.5, 71.3, 53.5, 23.6; HR-MS (ESI) *m/z* calcd for
C₁₇H₁₈NS⁺ [M+H]⁺ 268.1154, found: 268.1154.

4-((5-ethynylthiophen-2-yl)(phenyl)methyl)morpholine

31: 73% yield; yellow oil; According to procedure B; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.39 (d, J = 6.8 Hz, 2H), 7.31 (t, J = 7.2 Hz, 2H), 7.24–7.22 (m, 1H), **CDCl**₃) δ 7.39 (d, J = 6.8 Hz, 2H), 7.31 (t, J = 7.2 Hz, 2H), 7.24–7.22 (m, 1H), **CDCl**₃) δ 7.39 (d, J = 3.6 Hz, 1H), 6.76 (d, J = 3.6 Hz, 1H), 4.52 (s, 1H), 3.69 (t, J = 4.6Hz, 4H), 3.30 (s, 1H), 2.42 (t, J = 4.6 Hz, 4H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 149.4, 140.0, 132.8, 128.7, 128.3, 127.9, 125.2, 121.8, 81.5, 77.3, 71.7, 67.2, 52.2; **HR-MS** (ESI) *m/z* calcd for C₁₇H₁₈NOS⁺ [M+H]⁺ 284.1104, found: 284.1105.

2-((5-ethynylthiophen-2-yl)(phenyl)methyl)-2-methylcyclohexane-1,3-dione

3m: 87% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz, $CDCl_3$) δ 7.34–7.32 (m, 2H), 7.30–7.28 (m, 3H), 7.12 (d, J = 3.8 Hz, 1H), 6.89 (d, J = 3.8 Hz, 1H), 5.12 (s, 1H), 3.34 (s, 1H), 2.69–2.62 (m, 2H), 2.58–2.51 (m, 2H), 1.84–1.81 (m, 1H), 1.72–1.69 (m, 1H), 1.29 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 210.1, 144.7, 138.7, 132.7, 129.8, 128.6, 127.9, 127.6, 121.8, 81.5, 77.0, 68.8, 52.2, 39.3, 21.2, 16.9; **HR-MS** (ESI) m/z calcd for C₂₀H₁₈O₂SNa⁺ [M+Na]⁺ 345.0920, found: 345.0922.

5'-((5-ethynylthiophen-2-yl)(phenyl)methyl)-[1,1':3',1"-terphenyl]-2'-ol

CDCl₃) δ 150.9, 148.4, 143.3, 137.5, 135.5, 133.1, 130.3, 129.5, 129.0, 128.8(5), 128.8(3), 128.7, 127.9, 127.1, 126.3, 121.2, 81.3, 77.3, 51.9; **HR-MS** (ESI) *m*/*z* calcd for C₃₁H₂₂OSNa⁺ [M+Na]⁺ 465.1284, found: 465.1282.

3-((5-ethynylthiophen-2-yl)(phenyl)methyl)-1H-indole

30: 83% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 7.98 (brs, 1H), 7.37–7.33 (m, 6H), 7.31–7.27 (m, 1H), 7.21 (t, J =7.8 Hz, 1H), 7.14 (d, J = 3.8 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 6.78 (s, 1H), 6.69 (d, J = 3.8 Hz, 1H), 5.85 (s, 1H), 3.30 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 151.0, 143.2, 136.6, 133.1, 128.6, 128.5, 127.0, 126.6, 125.7, 123.7, 122.4, 120.6, 119.8, 119.7, 119.2, 111.3, 81.1, 77.5, 44.3; **HR-MS** (ESI) *m/z* calcd for C₂₁H₁₅NSNa⁺ [M+Na]⁺ 336.0817, found: 336.0818.

2-ethynyl-5-(phenoxy(phenyl)methyl)thiophene

3p: 86% yield; yellow solid; According to procedure B; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.44 (d, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 2H), 7.29 (d, *J* = 7.2 Hz, 1H), 7.20 (t, *J* = 7.8 Hz, 2H), 7.06 (d, *J* = 3.8 Hz, 1H), 6.93–6.89 (m, 3H), 6.71

 $(d, J = 3.8 \text{ Hz}, 1\text{H}), 6.32 (s, 1\text{H}), 3.27 (s, 1\text{H}); {}^{13}\text{C-NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 157.6, 147.5, 140.2, 132.9, 129.6, 128.9, 128.5, 126.7, 125.4, 122.5, 121.7, 116.3, 81.8, 77.0, 78.0;$ **HR-MS**(ESI)*m*/*z*calcd for C₁₉H₁₄OSNa⁺ [M+Na]⁺ 313.0658, found: 313.0656.

2-ethynyl-5-((4-methoxyphenoxy)(phenyl)methyl)thiophene

¹³**C-NMR** (100 MHz, CDCl₃) δ 154.6, 151.7, 147.8, 140.4, 132.9, 128.8, 128.4, 126.8, 125.3, 122.4, 117.8, 114.6, 81.8, 79.2, 77.0, 55.7; **HR-MS** (ESI) *m*/*z* calcd for C₂₀H₁₇O₂S⁺ [M+H]⁺ 321.0944, found: 321.0943.

2-(([1,1'-biphenyl]-4-yloxy)(phenyl)methyl)-5-ethynylthiophene

3r: 84% yield; white solid; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 7.54–7.48 (m, 6H), 7.42 (t, *J* = 7.4 Hz, 4H), 7.38–7.30 (m, 2H), 7.14 (d, *J* = 3.4 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 2H), 6.80 (d, *J* = 3.4 Hz, 1H), 6.41 (s, 1H), 3.35 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ

157.2, 147.4, 140.7, 140.1, 134.8, 132.9, 129.0, 128.8, 128.6, 128.3, 126.9(0), 126.8(6), 126.7, 125.4, 122.6, 116.6, 81.9, 78.2, 77.0; **HR-MS** (ESI) *m*/*z* calcd for C₂₅H₁₉OS⁺ [M+H]⁺ 367.1151, found: 367.1153.

2-ethynyl-5-(phenyl(tosyl)methyl)thiophene

3s: 92% yield; yellow solid; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 7.50–7.46 (m, 4H), 7.35–7.32 (m, 3H), 7.17 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 3.4 Hz, 1H), 7.06 (d, J = 3.8 Hz, 1H), 5.47 (s, 1H), 3.36 (s, 1H), 2.37 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 145.0, 136.1, 134.2,

132.8, 132.2, 130.0, 129.5(0), 129.4(7), 129.3(0), 129.2(6), 128.8, 123.8, 82.4, 76.5, 72.3, 21.8; **HR-MS** (ESI) *m/z* calcd for C₂₀H₁₆O₂S₂Na⁺ [M+Na]⁺ 375.0484, found: 375.0486.

N-((5-ethynylthiophen-2-yl)(o-tolyl)methyl)aniline

4a: 93% yield; white solid; According to procedure B; ¹H-NMR (400 MHz, $CDCl_3$) δ 7.38 (d, J = 7.0 Hz, 1H), 7.22–7.13 (m, 6H), 6.76–6.73 (m, 2H), 6.56 (d, J = 8.0 Hz, 2H), 5.86 (s, 1H), 4.28 (brs, 1H), 3.32 (s, 1H), 2.38 (s, 3H); ¹³C-NMR (100 MHz, $CDCl_3$) δ 149.3, 146.7, 139.8, 135.8, 133.3, 130.9, 129.4, 128.0, 126.7, 126.6, 125.2, 121.6, 118.4, 113.4, 81.5, 77.2, 55.3, 19.4; **HR-MS** (ESI) *m/z* calcd for C₂₀H₁₇N_SNa⁺ [M+Na]⁺ 326.0974, found: 326.0975.

N-((5-ethynylthiophen-2-yl)(m-tolyl)methyl)aniline

N-((5-ethynylthiophen-2-yl)(3-methoxyphenyl)methyl)aniline

4c: 81% yield; white solid; According to procedure B; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.30 (t, J = 8.0 Hz, 1H), 7.19–7.15 (m, 2H), 7.14 (d, J = 3.8 Hz, 1H), 7.02 (d, J = 7.8 Hz, 1H), 6.98 (s, 1H), 6.87 (dd, J = 8.2, 2.4 Hz, 1H), 6.80 (d, J = 3.8 Hz, 1H), 6.77 (t, J = 7.4 Hz, 1H), 6.63 (d, J = 7.4 Hz, 2H), 5.68 (s, 1H), 4.37 (brs, 1H), 3.81 (s, 3H), 3.32 (s, 1H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 160.1, 150.0, 146.7, 143.6, 133.3, 130.1, 129.3, 124.8, 121.5, 119.5, 118.5, 113.8, 113.4, 112.9, 81.5, 77.2, 59.0, 55.4; **HR-MS** (ESI) *m/z* calcd for C₂₀H₁₈NOS⁺ [M+H]⁺ 320.1104, found: 320.1101.

N-((5-ethynylthiophen-2-yl)(p-tolyl)methyl)aniline

 $C_{20}H_{18}NS^+$ [M+H]⁺ 304.1154, found: 304.1155.

N-((5-ethynylthiophen-2-yl)(4-methoxyphenyl)methyl) aniline

4e: 62% yield; yellow solid; According to procedure B; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.6 Hz, 2H), 7.19–7.14 (m, 3H), 6.91 (d, *J* = 8.6 Hz, 2H), 6.79–6.74 (m, 2H), 6.62 (d, *J* = 8.0 Hz, 2H), 5.67 (s, 1H),

4.32 (brs, 1H), 3.82 (s, 3H), 3.32 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 159.4, 150.7, 146.7, 134.2, 133.3, 129.3, 128.4, 124.6, 121.3, 118.4, 114.3, 113.7, 81.5, 77.2, 58.4, 55.4; **HR-MS** (ESI) *m*/*z* calcd for C₂₀H₁₈NOS⁺ [M+H]⁺ 320.1104, found: 320.1101.

N-([1,1'-biphenyl]-4-yl(5-ethynylthiophen-2-yl)methyl)aniline

4f: 83% yield; white solid; According to procedure B; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.2 Hz, 4H), 7.52–7.46 (m, 4H), 7.39 (t, *J* = 7.2 Hz, 1H), 7.25–7.16 (m, 3H), 6.85 (d, *J* = 3.8 Hz, 1H), 6.81 (t, *J* = 7.4 Hz, 1H),

6.68 (d, *J* = 8.0 Hz, 2H), 5.79 (s, 1H), 4.41 (brs, 1H), 3.35 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 150.1, 146.7, 141.0, 140.9, 140.6, 133.3, 129.3, 128.9, 127.8, 127.6(3), 127.5(5), 127.2, 124.9, 121.6, 118.6, 113.8, 81.6, 77.1, 58.7; **HR-MS** (ESI) *m/z* calcd for C₂₅H₁₉NSNa⁺ [M+Na]⁺ 388.1130, found: 388.1133.

N-((5-ethynylthiophen-2-yl)(4-fluorophenyl)methyl)aniline

$$\begin{array}{c} \text{HPh} & \text{4g: 89\% yield; yellow oil; According to procedure B; }^{1}\text{H-NMR} (400 \text{ MHz}, \\ \text{CDCl}_3) \ \delta \ 7.41-7.37 \ (\text{m}, 2\text{H}), \ 7.19-7.13 \ (\text{m}, 3\text{H}), \ 7.06 \ (\text{t}, J = 8.6 \ \text{Hz}, 2\text{H}), \\ 6.79-6.75 \ (\text{m}, 2\text{H}), \ 6.60 \ (\text{d}, J = 8.0 \ \text{Hz}, 2\text{H}), \ 5.70 \ (\text{s}, 1\text{H}), \ 4.30 \ (\text{brs}, 1\text{H}), \\ \end{array}$$

3.2 Hz), 133.3, 129.4, 128.9 (d, *J* = 8.2 Hz), 124.9, 121.8, 118.7, 116.0 (d, *J* = 21.6 Hz), 113.8, 81.7, 77.0, 58.2; ¹⁹**F-NMR** (376 MHz, CDCl₃) δ -114.0; **HR-MS** (ESI) *m*/*z* calcd for C₁₉H₁₄FNSNa⁺ [M+Na]⁺ 330.0723, found: 330.0720.

N-((4-chlorophenyl)(5-ethynylthiophen-2-yl)methyl)aniline

4h: 69% yield; yellow oil; According to procedure B; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.38–7.33 (m, 4H), 7.19–7.13 (m, 3H), 6.80–6.76 (m, 2H), 6.60 (d, *J* = 7.6 Hz, 2H), 5.69 (s, 1H), 4.32 (brs, 1H), 3.34 (s, 1H); ¹³**C-NMR**

(100 MHz, CDCl₃) δ 149.3, 146.4, 140.4, 133.9, 133.3, 129.4, 129.2, 128.5, 125.1, 121.9, 118.8, 113.8, 81.8, 76.9, 58.2; **HR-MS** (ESI) *m*/*z* calcd for C₁₉H₁₅ClNS⁺ [M+H]⁺ 324.0608, found: 324.0606.

N-((4-bromophenyl)(5-ethynylthiophen-2-yl)methyl)aniline

4i: 77% yield; brown oil; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.6 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 7.19–7.13 (m, 3H), 6.80–6.75 (m, 2H), 6.60 (d, J = 7.6 Hz, 2H), 5.67 (s, 1H), 4.32 (brs,

1H), 3.34 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 149.2, 146.3, 140.9, 133.3, 132.2, 129.4, 128.9,
125.1, 122.0, 121.9, 118.8, 113.8, 81.8, 76.9, 58.3; HR-MS (ESI) *m/z* calcd for C₁₉H₁₄BrNSNa⁺ [M+Na]⁺ 389.9923, found: 389.9924.

N-((3,5-dimethylphenyl)(5-ethynylthiophen-2-yl)methyl)aniline

4j: 72% yield; yellow oil; According to procedure B; ¹**H-NMR** (400 MHz,

$$M_{Me}$$
 CDCl₃) δ 7.20–7.14 (m, 3H), 7.03 (s, 2H), 6.97 (s, 1H), 6.81 (d, *J* = 3.8 Hz,
1H), 6.77 (t, *J* = 7.4 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 2H), 5.63 (s, 1H), 4.33
(brs, 1H), 3.32 (s, 1H), 2.33 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 150.7, 146.9, 142.1, 138.7,
133.4, 129.8, 129.3, 124.9, 124.5, 121.3, 118.4, 113.7, 81.4, 77.3, 59.2, 21.5; **HR-MS** (ESI) *m/z*
calcd for C₂₁H₁₉NSNa⁺ [M+Na]⁺ 340.1130, found: 340.1131.

N-((5-ethynylthiophen-2-yl)(naphthalen-2-yl)methyl)aniline

4k: 72% yield; brown solid; According to procedure B; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.90–7.83 (m, 4H), 7.55–7.50 (m, 3H), 7.20–7.16 (m, 3H), 6.82–6.76 (m, 2H), 6.67 (d, *J* = 8.6 Hz, 2H), 5.89 (s, 1H), 4.45 (brs, 1H), 3.33 (s,

1H); ¹³C-NMR (100 MHz, CDCl₃) δ 149.9, 146.7, 139.3, 133.5, 133.3, 133.2, 129.4, 129.0, 128.2, 127.8, 126.5, 126.4, 126.0, 125.1, 121.7, 118.6, 113.9, 81.7, 77.2, 59.1; HR-MS (ESI) *m/z* calcd for C₂₃H₁₇NSNa⁺ [M+Na]⁺ 362.0974, found: 362.0971.

N-(benzo[b]thiophen-2-yl(5-ethynylthiophen-2-yl)methyl)aniline

4I: 68% yield; white solid; According to procedure B; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.36–7.29 (m, 3H), 7.20–7.15 (m, 3H), 6.94 (d, J = 3.8 Hz, 1H), 6.79 (t, *J* = 7.4 Hz, 1H),

6.70 (d, *J* = 8.0 Hz, 2H), 6.05 (s, 1H), 4.47 (brs, 1H), 3.33 (s, 1H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 148.4, 146.8, 146.1, 139.7, 139.5, 133.3, 129.4, 125.3, 124.6(4), 124.6(1), 123.8, 122.6, 122.2, 122.0, 119.2, 114.0, 81.8, 77.0, 55.1; **HR-MS** (ESI) *m*/*z* calcd for C₂₁H₁₅NS₂Na⁺ [M+Na]⁺ 368.0538, found: 368.0536.
N-(1-(5-ethynylthiophen-2-yl)ethyl)aniline

4m: 93% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz, CDCl₃)
$$\delta$$
 7.19–7.13 (m, 3H), 6.84 (d, $J = 3.8$ Hz, 1H), 6.74 (t, $J = 7.4$ Hz, 1H), 6.61 (d, $J = 7.6$ Hz, 2H), 4.75 (q, $J = 6.4$ Hz, 1H), 3.99 (brs, 1H), 3.30 (s, 1H), 1.62 (d, $J = 6.8$ Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 153.1, 146.7, 133.3, 129.3, 122.8, 120.2, 118.2, 113.6, 81.1, 77.2, 49.9, 24.8; **HR-MS** (ESI) *m/z* calcd for C₁₄H₁₄NS⁺ [M+H]⁺ 228.0841, found: 228.0839.

N-(1-(5-ethynylthiophen-2-yl)propyl)aniline

4n: 97% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz, $= \sqrt{5}$ = 1 CDCl₃) δ 7.19–7.14 (m, 3H), 6.85 (d, J = 3.8 Hz, 1H), 6.74 (t, J = 7.4 Hz, 1H), 6.62 (d, J = 7.4 Hz, 2H), 4.51 (t, J = 6.6 Hz, 1H), 4.02 (brs, 1H), 3.31 (s, 1H), 1.96–1.88 (m, 2H), 1.03 (t, J = 7.4 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 152.0, 147.0, 133.2, 129.3, 123.5, 120.2, 118.1, 113.5, 81.1, 77.4, 56.0, 31.8, 10.7; **HR-MS** (ESI) m/z calcd for C₁₅H₁₆NS⁺ [M+H]⁺ 242.0998, found: 242.0996.

N-(1-(5-ethynylthiophen-2-yl)-2-methylpropyl)aniline

40: 98% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz, $= \sqrt{5} + \sqrt{10}$ CDCl₃) δ 7.18–7.14 (m, 3H), 6.82 (d, J = 3.6 Hz, 1H), 6.73 (t, J = 7.4 Hz, 1H), 6.61 (d, J = 7.4 Hz, 2H), 4.40 (d, J = 5.8 Hz, 1H), 4.06 (brs, 1H), 3.31 (s, 1H), 2.17–2.05 (m, 1H), 1.07 (d, J = 6.8 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 50.8, 147.2, 133.1, 129.3, 124.1, 120.2, 118.0, 113.5, 81.1, 77.4, 60.2, 35.3, 19.4; **HR-MS** (ESI) m/z calcd for C₁₆H₁₈NS⁺ [M+H]⁺ 256.1154, found: 256.1152.

N-(1-(5-ethynylthiophen-2-yl)-2-phenylethyl)aniline

4p: 75% yield; yellow solid; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 7.45–7.41 (m, 1H), 7.33–7.28 (m, 3H), 7.16–7.13 (m, 3H), 7.11 (s, 1H), 6.77–6.69 (m, 2H), 6.57 (d, *J* = 8.0 Hz, 2H), 4.85 (t, *J* = 7.0 Hz, 1H), 4.13 (brs, 1H), 3.31 (s, 1H), 3.18 (d, *J* = 7.0 Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 151.3, 146.7, 136.8, 133.3, 129.4, 129.3, 128.7, 127.1, 123.6, 120.4, 118.5, 113.9, 81.2, 68.6, 55.7, 45.1; **HR-MS** (ESI) *m/z* calcd for C₂₀H₁₇NSNa⁺ [M+Na]⁺ 326.0974, found: 326.0976.

N-(1-(5-ethynylthiophen-2-yl)pentyl)aniline

4q: 90% yield; yellow oil; According to procedure B; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.19–7.14 (m, 3H), 6.84 (d, J = 3.6 Hz, 1H), 6.74 (t, J = 7.4 Hz, 1H), 6.61 (d, J = 7.4 Hz, 2H), 4.57 (t, J = 6.8 Hz, 1H), 4.02 (brs, 1H), 3.31 (s, 1H), 1.96–1.82 (m, 2H), 1.46–1.35 (m, 4H), 0.93 (t, J = 7.0 Hz, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 152.4, 147.0, 133.2, 129.3, 123.3, 120.1, 118.1, 113.5, 81.1, 77.4, 54.5, 38.7, 28.3, 22.6, 14.1; **HR-MS** (ESI) m/zcalcd for C₁₇H₁₉NSNa⁺ [M+Na]⁺ 292.1130, found: 292.1131.

N-(1-(5-ethynylthiophen-2-yl)-3-methylbutyl)aniline

4r: 77% yield; yellow oil; According to procedure B;¹H-NMR (400 MHz, CDCl₃) δ 7.17–7.12 (m, 3H), 6.84 (d, J = 3.8 Hz, 1H), 6.72 (t, J = 7.4 Hz, 1H), 6.61 (d, J = 8.0 Hz, 2H), 4.64 (t, J = 6.6 Hz, 1H), 3.97 (brs, 1H), 3.30 (s, 1H), 1.84–1.74 (m, 2H), 1.73–1.69 (m, 1H), 1.01 (d, J = 5.8 Hz, 3H), 0.96 (d, J = 5.8 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 152.8, 146.9, 133.2, 129.3, 123.2, 120.1, 118.1, 113.5, 81.1, 77.4, 52.6, 48.5, 25.1, 22.8; **HR-MS** (ESI) m/z calcd for C₁₇H₂₀NS⁺ [M+H]⁺ 270.1311, found: 270.1311.

N-(cyclohexyl(5-ethynylthiophen-2-yl)methyl)aniline

4s: 86% yield; yellow oil; According to procedure B; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.17–7.13 (m, 3H), 6.81 (d, *J* = 3.8 Hz, 1H), 6.72 (t, *J* = 7.4 Hz, 1H), 6.60 (d, *J* = 8.0 Hz, 2H), 4.39 (d, *J* = 6.0 Hz, 1H), 4.10 (brs, 1H), 3.31 (s, 1H), 1.95–1.92 (m, 1H), 1.83–1.77 (m, 2H), 1.72–1.67 (m, 3H), 1.30–1.26 (m, 2H), 1.18–1.12 (m, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 151.0, 147.3, 133.1, 129.2, 124.1, 120.1, 117.9, 113.4, 81.1, 77.4, 59.7, 45.3, 30.0, 29.5, 26.4; **HR-MS** (ESI) *m/z* calcd for C₁₉H₂₁NSNa⁺ [M+Na]⁺ 318.1287, found: 318.1288.

N-((5-ethynyl-4-methylthiophen-2-yl)(phenyl)methyl)aniline

83.6, 76.8, 59.0, 15.3; **HR-MS** (ESI) m/z calcd for $C_{20}H_{17}NSNa^+$ [M+Na]⁺ 326.0974, found: 326.0974.

N-((7-ethynyl-2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)(phenyl)methyl)aniline

4u: 80% yield; white solid; According to procedure B;¹**H**-NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 7.4 Hz, 2H), 7.37 (t, J = 7.4 Hz, 2H), 7.32 (d, J = 7.2 Hz, 1H), 7.16 (t, J = 7.8 Hz, 2H), 6.76 (t, J = 7.4 Hz, 1H), 6.63 (d, J = 8.0 Hz, 2H), 5.75 (s, 1H), 4.30–4.27 (m, 2H), 4.24 (brs, 1H), 4.21–4.14 (m, 2H), 3.46 (s, 1H); ¹³**C**-NMR (100 MHz, CDCl₃) δ 146.9, 145.5, 141.4, 136.8, 129.2, 129.0, 128.0, 127.1, 122.6, 118.5, 113.8, 95.7, 84.4, 74.6, 65.3, 64.6, 55.5; **HR-MS** (ESI) m/z calcd for C₂₁H₁₇NO₂SNa⁺ [M+Na]⁺ 370.0872, found:

370.0874.

N-(1-(5-ethynylthiophen-2-yl)-1-phenylethyl)aniline

4v: 51% yield; yellow solid; According to procedure B; ¹H-NMR (400 MHz,

$$\longrightarrow MPPh$$
 CDCl₃) δ 7.55 (d, $J = 7.6$ Hz, 2H), 7.37 (t, $J = 7.6$ Hz, 2H), 7.31 (t, $J = 7.2$ Hz,
1H), 7.12 (d, $J = 3.6$ Hz, 1H), 7.08 (t, $J = 7.8$ Hz, 2H), 6.84 (d, $J = 3.6$ Hz, 1H),
6.73 (t, $J = 7.4$ Hz, 1H), 6.50 (d, $J = 7.8$ Hz, 2H), 4.44 (brs, 1H), 3.31 (s, 1H), 2.14 (s, 3H); ¹³C-
NMR (100 MHz, CDCl₃) δ 155.4, 146.1, 145.3, 133.0, 128.9, 128.7, 127.5, 126.4, 124.5, 121.5,
118.5, 116.5, 81.5, 61.2, 28.4; HR-MS (ESI) m/z calcd for C₂₀H₁₇NSNa⁺ [M+Na]⁺ 326.0974, found:
326.0976.

N-((5-ethynylfuran-2-yl)(phenyl)methyl)aniline

4w: 89% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz,
CDCl₃)
$$\delta$$
 7.44–7.41 (m, 3H), 7.39–7.34 (m, 2H), 7.20–7.16 (m, 2H), 6.77 (t, J
= 7.4 Hz, 1H), 6.63–6.60 (m, 3H), 6.17 (d, J = 2.6 Hz, 1H), 5.59 (s, 1H), 4.36

(brs, 1H), 3.42 (s, 1H); ¹³C-NMR (100 MHz, CDCl₃) δ 156.8, 146.8, 140.0, 135.9, 129.3, 129.0, 128.1, 127.4, 118.3, 117.3, 113.6, 108.7, 82.3, 74.0, 57.1; **HR-MS** (ESI) *m/z* calcd for C₁₉H₁₆NO⁺ [M+H]⁺ 274.1226, found: 274.1227.

N-((5-ethynylfuran-2-yl)(*p*-tolyl)methyl)aniline

4x: 90% yield; yellow oil; According to procedure B; ¹H-NMR (400 MHz, CDCl₃) δ 7.31 (d, J = 8.0 Hz, 2H), 7.21–7.16 (m, 4H), 6.76 (t, J = 7.4 Hz, 1H), 6.63–6.60 (m, 3H), 6.18 (d, J = 3.4 Hz, 1H), 5.55 (s, 1H), 4.33 (brs, 1H), 6.63–6.60 (m, 2H), 6.18 (d, J = 3.4 Hz, 1H), 5.55 (s, 1H), 4.33 (brs, 1H), 6.63–6.60 (m, 2H), 6.18 (d, J = 3.4 Hz, 1H), 5.55 (s, 1H), 4.33 (brs, 1H), 6.63–6.60 (m, 2H), 6.18 (d, J = 3.4 Hz, 1H), 5.55 (s, 1H), 4.33 (brs, 1H), 6.63–6.60 (m, 2H), 6.18 (d, J = 3.4 Hz, 1H), 5.55 (s, 1H), 4.33 (brs, 1H), 6.63–6.60 (m, 2H), 6.18 (d, J = 3.4 Hz, 1H), 5.55 (s, 1H), 4.33 (brs, 1H), 6.63–6.60 (m, 2H), 6.18 (d, J = 3.4 Hz, 1H), 5.55 (s, 1H), 4.33 (brs, 1H), 6.63–6.60 (m, 2H), 6.18 (d, J = 3.4 Hz, 1H), 5.55 (s, 1H), 4.33 (brs, 1H), 5.55 (s, 1H), 5.55 (s,

1H), 3.41 (s, 1H), 2.38 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 157.0, 146.8, 137.9, 137.0, 135.8, 129.6, 129.3, 127.3, 118.2, 117.3, 113.6, 108.5, 82.2, 74.1, 56.9, 21.3; **HR-MS** (ESI) *m/z* calcd for C₂₀H₁₇NONa⁺ [M+Na]⁺ 310.1202, found: 310.1203.

N-(1-(5-ethynylfuran-2-yl)propyl)aniline

4y: 77% yield; colorless oil; According to procedure B; ¹**H-NMR** (400 MHz, CDCl₃) δ 7.17 (t, *J* = 7.8 Hz, 2H), 6.72 (t, *J* = 7.4 Hz, 1H), 6.61 (d, *J* = 8.0 Hz, 2H), 6.57 (d, *J* = 3.4 Hz, 1H), 6.16 (d, *J* = 3.4 Hz, 1H), 4.38 (brs, 1H), 3.93 (s, 1H), 3.43 (s, 1H), 2.01–1.86 (m, 2H), 0.99 (t, *J* = 7.4 Hz, 3H); ¹³**C-NMR** (100 MHz, CDCl₃) δ 158.0, 147.0, 135.2, 129.3, 117.9, 117.2, 113.4, 107.4, 82.0, 74.3, 53.6, 28.3, 10.5; **HR-MS** (ESI) *m/z* calcd for C₁₅H₁₅NONa⁺ [M+Na]⁺ 248.1046, found: 248.1043.

N-((5-(1-benzyl-1H-1,2,3-triazol-4-yl)thiophen-2-yl)(phenyl)methyl)-N-methylaniline

5: 96% yield; yellow solid; According to procedure C; ¹H-NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 7.33–7.29 (m, 7H), 7.24–7.18 (m, 6H), 6.82 (d, *J* = 8.2 Hz, 2H), 6.75–6.72 (m, 2H), 6.30 (s, 1H), 5.46 (s, 2H), 2.76 (s, 3H); ¹³C-

NMR (100 MHz, CDCl₃) δ 149.7, 144.8, 143.2, 139.7, 134.5, 132.4, 129.2, 128.8, 128.5, 128.2, 128.1, 127.7, 127.2, 123.9, 119.0, 117.7, 113.7, 63.4, 54.2, 34.2; HR-MS (ESI) *m/z* calcd for C₂₇H₂₄N₄SNa⁺ [M+Na]⁺ 459.1614, found: 459.1616.

N,*N*'-((buta-1,3-diyne-1,4-diylbis(thiophene-5,2-diyl))bis(phenylmethylene))bis(*N*-methylaniline)

6: 81% yield; yellow solid; According to procedure C; ¹HNMR (400 MHz, CDCl₃) δ 7.30–7.28 (m, 5H), 7.23–7.20 (m,
8H), 7.18–7.16 (m, 3H), 6.80–6.73 (m, 6H), 6.66 (d, *J* = 3.8 Hz,

2H), 6.24 (s, 2H), 2.70 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃) δ 149.7, 149.3, 139.2, 134.6, 129.3, 128.7, 128.4, 128.0, 126.8, 121.5, 118.2, 114.1, 78.2, 77.1, 64.1, 34.3; **HR-MS** (ESI) *m/z* calcd for C₄₀H₃₂N₂S₂Na⁺ [M+Na]⁺ 627.1899, found: 627.1898.

N-methyl-*N*-(phenyl(5-(prop-1-yn-1-yl)thiophen-2-yl)methyl)aniline

Me N^{Ph} 7: 78% yield; yellow oil; According to procedure C; ¹H-NMR (400 MHz, Me CDCl₃) δ 7.40–7.34 (m, 5H), 7.32–7.28 (m, 2H), 7.04 (d, *J* = 3.8 Hz, 1H), 6.89 (d, *J* = 8.2 Hz, 2H), 6.84 (t, *J* = 7.4 Hz, 1H), 6.70 (d, *J* = 3.4 Hz, 1H), 6.33 (s, 1H), 2.83 (s, 3H), 2.11 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃) δ 149.8, 145.6, 139.7, 130.8, 129.3, 128.6, 128.3, 127.8, 126.5, 123.9, 117.8, 113.9, 90.4, 73.1, 63.6, 34.2, 4.8; **HR-MS** (ESI) *m/z* calcd for C₂₁H₁₉NSNa⁺ [M+Na]⁺ 340.1130, found: 340.1132.

1-((5-((methyl(phenyl)amino)(phenyl)methyl)thiophen-2-yl)ethynyl)cyclobutan-1-ol

1H), 6.27 (s, 1H), 2.75 (s, 3H), 2.52–2.48 (m, 2H), 2.44 (brs, 1H), 2.35–2.27 (m, 2H), 1.87–1.81 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃) δ 149.7, 147.2, 139.5, 132.2, 129.3, 128.6, 128.3, 127.9, 126.5, 122.2, 118.0, 113.9, 96.6, 77.0, 68.4, 63.7, 38.6, 34.2, 13.1; HR-MS (ESI) *m*/*z* calcd for C₂₄H₂₃NOSNa⁺ [M+Na]⁺ 396.1393, found: 396.1395.

N-methyl-N-(phenyl(5-(1-tosyl-1H-indol-2-yl)thiophen-2-yl)methyl)aniline

9: 92% yield; yellow solid; According to procedure C; ¹H-NMR (400

$$H_{T_{s}}$$
, Ph
MHz, CDCl₃) δ 8.31 (d, $J = 8.4$ Hz, 1H), 7.43 (d, $J = 7.8$ Hz, 1H), 7.38–
7.33 (m, 6H), 7.30 (d, $J = 2.2$ Hz, 1H), 7.28 (d, $J = 2.6$ Hz, 2H), 7.26 (s,
2H), 7.23 (d, $J = 3.8$ Hz, 1H), 6.97 (d, $J = 8.0$ Hz, 2H), 6.90 (d, $J = 7.8$ Hz, 2H), 6.86 (d, $J = 3.8$ Hz,
1H), 6.81 (t, $J = 7.4$ Hz, 1H), 6.62 (s, 1H), 6.38 (s, 1H), 2.83 (s, 3H), 2.26 (s, 3H); ¹³C-NMR (100
MHz, CDCl₃) δ 149.7, 146.6, 144.7, 139.7, 138.4, 134.9, 134.1, 131.6, 130.5, 130.0, 129.4, 129.3,
128.6, 128.3, 127.8, 126.8, 125.2, 124.3, 120.8, 117.8, 116.5, 114.3, 113.8, 63.5, 34.3, 21.6; HR-
MS (ESI) m/z calcd for C₃₃H₂₉N₂O₂S₂⁺ [M+H]⁺ 549.1665, found: 549.1666.

5. X-ray Crystallographic Data

Figure S2. Single-crystal X-ray Structure of 4f

Method for single crystals cultivation: **4f** (20.0 mg) was dissolved in *n*-hexane/ dichloromethane (v/v =90:10, 2.0 mL) in a vial at room temperature. The vial was properly sealed with parafilm and kept at 25 °C to allow the slow evaporation of the solvents until a single crystal was obtained. The absolute configuration of compound **4f** is determined by anomalous dispersion with Ga K α radiation (λ =0.71073 Å) as X-ray source for X-ray diffraction experiment, and a Flack parameter of 0.05(3) is obtained as result. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as CCDC 2339912.

Identification code	4 f	
Empirical formula	C ₂₅ H ₁₉ NS	
Formula weight	365.47	
Temperature	296(1) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 1 21 1	
Unit cell dimensions	a = 8.9563(16) Å	$\alpha = 90^{\circ}.$
	b = 5.8840(10) Å	$\beta = 91.049(3)^{\circ}.$
	c = 18.577(3) Å	$\gamma = 90^{\circ}.$
Volume	978.8(3) Å ³	
Z	2	
Density (calculated)	1.240 Mg/m ³	
Absorption coefficient	0.174 mm ⁻¹	
F(000)	384	
Crystal size	0.3 x 0.2 x 0.2 mm ³	
Theta range for data collection	2.507 to 32.039°.	
Index ranges	-12<=h<=12, -8<=k<=7, -26<=l<=26	
Reflections collected	10573	
Independent reflections	5811 [R(int) = 0.0282]	
Completeness to theta = 25.242°	99.5 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7463 and 0.6001	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	5811 / 1 / 244	
Goodness-of-fit on F ²	1.046	
Final R indices [I>2sigma(I)]	R1 = 0.0427, wR2 = 0.1168	
R indices (all data)	R1 = 0.0499, wR2 = 0.1245	
Absolute structure parameter	0.05(3)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.268 and -0.214 e.Å ⁻³	

Table S8. Crystal data and structure refinement for 4f

6. NMR Spectra

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

¹³C NMR spectrum of **1a**

¹³ C NMR	spectrum	of 1g
---------------------	----------	--------------

S53

 ^{19}F NMR spectrum of 1j

¹³ C NMR	spectrum of 10
---------------------	----------------

¹⁹F NMR spectrum of **1p**

¹⁹F NMR spectrum of 1q

 $^{19}\mathrm{F}\ \mathrm{NMR}$ spectrum of $1\mathrm{r}$

¹³ C NMR sp	ectrum of 1s
------------------------	--------------

 $^{19}\mathrm{F}\,\mathrm{NMR}$ spectrum of $1\mathrm{s}$

 $^{19}\mathrm{F}\,\mathrm{NMR}$ spectrum of 1t

¹⁹F NMR spectrum of **1u**

¹⁹F NMR spectrum of 1v

¹³ C NMR s	pectrum	of	1x	
-----------------------	---------	----	----	--

¹⁹F NMR spectrum of **1zb**

¹³ C NMR	spectrum	of	3bb
---------------------	----------	----	-----

¹³ C NMR	spectrum	of 3da
---------------------	----------	---------------

S110

¹³ C NMR s	spectrum	of 4a
-----------------------	----------	--------------

¹⁹F NMR spectrum of 4g

^{13}C NMR	spectrum	of 4w
--------------	----------	--------------

¹³ C NMR	spectrum	of 5
---------------------	----------	-------------

¹³ C NMR	spectrum	of 6
---------------------	----------	-------------

¹³ C NMR s	spectrum	of 7
-----------------------	----------	------

