Supporting Information

Dynamic kinetic resolution of atropisomeric *N*-arylindoles *via* chiral *N*-triflyl phosphoramide catalyzed asymmetric reductive amination

You-Dong Shao,*^a Dan-Dan Han,*^a Hong-Xin Jiang,^b Xin-Yu Zhou,^b Wei-Kang Wang,^a Jia-Xi Zhang,^a Ya-Fei Liu,^a and Dao-Juan Cheng*^b

^{*a*}School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China ^{*b*}School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China

Table of Contents

General Information	S2
Screening of Catalysts and Condition Optimization	S2
Preparation and Analytic Data of 1	S4
General Procedure for the Synthesis of Atropisomeric N-Arylindoles via Catalytic As	symmetric
Reductive Amination	S6
Procedure for the Scale-up Experiment	S6
Procedure for the Transformation of Product 4aa	
Procedure for the Kinetic Resolution	S7
References	S7
Analytic Data for the Products	
The Absolute Stereochemistry Discussion	S22
Investigation on the Enantiomerization Barrier	S34
NMR Spectra of 1	S36
NMR Spectra of Products	S41
HPLC Traces	

General Information

¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker AC-400 FT (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR and 376 MHz for ¹⁹F NMR respectively) or a Bruker AVANCE NEO 600 (600 MHz for ¹H NMR, 150 MHz for ¹³C NMR and 565 MHz for ¹⁹F NMR respectively) using tetramethylsilane as an internal reference. Chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz, respectively. High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer (Micromass). ESI-HRMS data were acquired using a Thermo LTQ Orbitrap XL Instrument equipped with an ESI source and controlled by Xcalibur software. High pressure liquid chromatography (HPLC) analyses were performed on a Thermo Scientific UltiMate 3000 instrument equipped with an isostatic pump, using a chiral stationary phase column (Daicel Co. CHIRALPAK). The chiral HPLC methods were calibrated with the corresponding racemic mixtures. Optical Rotation was measured on an Anton Paar MCP 100/150 polarimeter.

Chemicals were purchased from the Sinopharm Chemical Reagent Co., Adamas, Acros, Alfa Aesar, and TCI, and used as received. Catalysts **C1-C3**, **C14** and **C17** were prepared according to the literatures.¹ Other Catalysts were purchased from Daicel Chiral Technologies (China) CO., LTD. and used directly. Hantzsch esters **3** were prepared in accordance with the previously described procedure.²

Screening of Catalysts and Condition Optimization

entry	СВА	solvent	yield ^b [%]	ee ^c [%]
1	C1	DCM	90	34
2	C2	DCM	90	37
3	C3	DCM	92	25
4	C4	DCM	85	40
5	C5	DCM	87	5
6	C6	DCM	90	32
7	C7	DCM	81	-4
8	C8	DCM	89	55
9	С9	DCM	85	52
10	C10	DCM	86	35
11	C11	DCM	88	2
12	C12	DCM	92	71
13	C13	DCM	90	60
14	C14	DCM	92	7
15	C15	DCM	86	12
16	C16	DCM	88	0
17	C17	DCM	91	4
18	C18	DCM	87	4
19	C19	DCM	92	4
20	C20	DCM	92	55
21	C12	<i>n</i> -hexane	76	48
22	C12	EtOH	84	51
23	C12	CH ₃ CN	88	42
24	C12	THF	78	68
25	C12	EtOAc	80	60
26	C12	toluene	82	48
27	C12	CH ₃ NO ₂	85	66
28	C12	PhCl	85	55
29	C12	CHCl ₃	90	65
30	C12	DCE	91	73
31	C12	CF ₃ CH ₂ OH	88	56
32	C12	Cl ₂ CHCHCl ₂	94	80

^aUnless out with otherwise stated, all reactions were carried 1-(2-(dimethylamino)phenyl)-1H-indole-2-carbaldehyde 1a (13.2 mg, 0.05 mmol), 4-methoxyaniline 2a (7.3 mg, 0.06 mmol), Hantzsch ester 3a (0.06 mmol), CBA (10 mol%) and solvent (1.0 mL) at 20 °C in a sealed tube for 4 h. ^bIsolated yield. ^cDetermined by chiral stationary phase HPLC analysis.

Table S2. Screening of Hantzsch esters 3, additive, temperatures et al.^a

^{*a*}Unless otherwise stated, all reactions were carried out with **1a** (13.2 mg, 0.05 mmol), 4-methoxyaniline **2a** (7.3 mg, 0.06 mmol), Hantzsch ester **3** (0.06 mmol), **C12** (10 mol%) and Cl₂CHCHCl₂ (1.0 mL) at 20 °C in a sealed tube for 4 h. ^{*b*}Isolated yield. ^{*c*}Determined by chiral stationary phase HPLC analysis. ^{*d*} The reaction was run at 0 °C for 8 h.

Preparation and Analytic Data of 1

1-(2-(Dimethylamino)phenyl)-1H-indole-2-carbaldehydes **1** were prepared in accordance with literature methods.³ The new compounds were characterized in this report.

1-(2-(Dimethylamino)-3-methylphenyl)-1*H*-indole-2-carbaldehyde **1i** was obtained as a brown solid. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1); m.p. 83-84 °C; ¹H NMR (600 MHz, CDCl₃): δ 9.72 (s, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.44 (d, *J* = 1.2 Hz, 1H), 7.34-7.29 (m, 1H), 7.29-7.25 (m, 1H), 7.21-7.17 (m, 1H), 7.14-7.08 (m, 2H), 7.08-7.04 (m, 1H), 2.37 (s, 3H), 2.31 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 182.1, 148.6, 141.0, 136.7, 132.8, 132.8,

132.0, 127.3, 126.7, 126.6, 123.9, 123.1, 121.5, 113.4, 111.8, 42.1, 19.6; HRMS (ESI) calcd for C₁₈H₁₉N₂O (M+H)⁺ 279.1492, found 279.1486.

1-(2-(Dimethylamino)-4-methylphenyl)-1*H*-indole-2-carbaldehyde **1j** was obtained as a brown solid. $R_f = 0.30$ (petroleum ether/ethyl acetate = 12:1); m.p. 75-76 °C; ¹H NMR (600 MHz, CDCl₃): δ 9.55 (s, 1H), 7.75 (d, *J* = 8.4 Hz, 1H), 7.44 (s, 1H), 7.36-7.26 (m, 2H), 7.25-7.22 (m, 1H), 7.21-7.16 (m, 1H), 6.96-6.88 (m, 2H), 2.42 (s, 3H), 2.28 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 182.6, 149.0, 139.2, 138.9, 135.7, 128.8, 126.9, 126.4, 125.7, 123.1, 122.6, 121.6, 119.8, 111.3, 110.7, 42.0, 21.7; HRMS (ESI) calcd for C₁₈H₁₉N₂O (M+H)⁺ 279.1492, found 279.1488.

1-(4-Butyl-2-(dimethylamino)phenyl)-1*H*-indole-2-carbaldehyde **1k** was obtained as a brown solid. $R_f = 0.30$ (petroleum ether/ethyl acetate = 12:1); m.p. 93-94 °C; ¹H NMR (600 MHz, CDCl₃): δ 9.54 (s, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.44 (s, 1H), 7.37-7.29 (m, 2H), 7.26 (d, *J* = 7.8 Hz, 1H), 7.22-7.16 (m, 1H), 6.99-6.86 (m, 2H), 2.68 (t, *J* = 7.8 Hz, 2H), 2.28 (s, 6H), 1.72-1.64 (m, 2H), 1.48-1.38 (m, 2H), 0.98 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 181.7, 147.9, 143.2, 137.7, 134.6, 127.7, 125.9, 125.2, 124.7, 122.0, 120.9, 120.5, 118.0, 110.3, 109.1, 40.9, 34.8, 32.5, 21.5, 13.0; HRMS (ESI) calcd for C₂₁H₂₅N₂O (M+H)⁺ 321.1961, found 321.1953.

1-(2-(Dimethylamino)-4-methoxyphenyl)-1*H*-indole-2-carbaldehyde **11** was obtained as a brown solid. $R_f = 0.30$ (petroleum ether/ethyl acetate = 12:1); m.p. 70-71 °C; ¹H NMR (600

MHz, CDCl₃): δ 9.58 (s, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.44 (s, 1H), 7.37-7.30 (m, 1H), 7.29-7.23 (m, 2H), 7.22-7.16 (m, 1H), 6.69-6.56 (m, 2H), 3.88 (s, 3H), 2.29 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 182.7, 160.2, 150.6, 139.2, 135.7, 130.1, 126.8, 126.4, 123.1, 121.5, 121.1, 111.4, 110.9, 105.8, 105.5, 55.5, 41.9; HRMS (ESI) calcd for C₁₈H₁₉N₂O₂ (M+H)⁺ 295.1441, found 295.1433.

1-(2-(Dimethylamino)-5-methylphenyl)-1*H*-indole-2-carbaldehyde **1m** was obtained as a brown solid. $R_f = 0.30$ (petroleum ether/ethyl acetate = 12:1); m.p. 85-86 °C; ¹H NMR (600 MHz, CDCl₃): δ 9.54 (s, 1H), 7.79-7.70 (m, 1H), 7.44 (s, 1H), 7.37-7.28 (m, 2H), 7.23-7.13 (m, 3H), 7.06-6.99 (m, 1H), 2.36 (s, 3H), 2.25 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 182.5, 146.8, 138.7, 135.7, 131.9, 129.8, 129.3, 128.4, 127.0, 126.3, 123.1, 121.6, 119.2, 111.3, 110.5, 42.2, 20.6; HRMS (ESI) calcd for C₁₈H₁₉N₂O (M+H)⁺ 279.1492, found 279.1485.

General Procedure for the Synthesis of Atropisomeric *N*-Arylindoles *via* Catalytic Asymmetric Reductive Amination

To a flame dried sealed tube equipped with a magnetic stirring bar were added *N*-arylindole aldehydes **1** (0.10 mmol), chiral *N*-triflyl phosphoramide **C12** (8.4 mg, 0.010 mmol), Hantzsch ester **3d** (37.1 mg, 0.12 mmol), 4 Å MS (100 mg), Cl₂CHCHCl₂ (2.0 mL) and aromatic amines **2** (0.12 mmol) successively. The resulting mixture was stirred at 20 °C for 4 h, and directly charged onto silica gel. Products **4** were isolated using petroleum ether/ethyl acetate (20:1 to 10:1) as eluent.

Procedure for the Scale-up Experiment

To a flame dried sealed tube equipped with a magnetic stirring bar were added 1-(2-(dimethylamino)phenyl)-1H-indole-2-carbaldehyde **1a** (1.0 mmol), chiral *N*-triflyl phosphoramide **C12** (83.9 mg, 0.10 mmol), Hantzsch ester **3d** (371.0 mg, 1.2 mmol), 4 Å MS (1.0 g), Cl₂CHCHCl₂ (20 mL) and 4-methoxyaniline **2a** (147.7 mg, 1.2 mmol) successively. The resulting mixture was stirred at 20 °C for 4 h, and directly charged onto silica gel. Product **4aa** was isolated using petroleum ether/ethyl acetate (20:1 to 10:1) as eluent.

Procedure for the Transformation of Product 4aa

To a solution of **4aa** (37.1 mg, 0.10 mmol, 89% ee) and NEt₃ (20.2 mg, 27.8 uL, 0.20 mmol) in DCM (1.0 mL) was added 4-toluene sulfonyl chloride (28.6 mg, 0.15 mmol) at 0 °C. The resulting mixture was stirred at room temperature for 2 h, and directly charged onto silica gel, eluting with petroleum ether/ethyl acetate (10:1) to afford product **5** (48.8 mg, 93%, 88% ee).

Procedure for the Kinetic Resolution

To a flame dried sealed tube equipped with a magnetic stirring bar were added chiral *N*-triflyl phosphoramide C12 (8.4 mg, 0.01 mmol), **1o** (27.8 mg, 0.10 mmol), Hantzsch ester **3d** (21.6 mg, 0.07 mmol), 4 Å MS (100 mg), Cl₂CHCHCl₂ (2.0 mL) and 4-(trifluoromethoxy)aniline **2d** (10.6 mg, 0.06 mmol). The resulting mixture was stirred at 20 °C for 2 h, and directly charged onto silica gel. Product **4od** (17.6 mg, 40%, 4% ee) and recovered **1o** (14.5 mg, 52%, 2% ee) were isolated using petroleum ether/ethyl acetate (10:1 to 5:1) as eluent respectively.

References

1 (a) Wipf, P.; Jung, J.-K. Formal Total Synthesis of (+)-Diepoxin σ. J. Org. Chem. 2000, 65, 6319.
(b) Yu, H.-B.; Hu, Q.-S.; Pu, L. The First Optically Active BINOL-BINAP Copolymer Catalyst: Highly Stereoselective Tandem Asymmetric Reactions. J. Am. Chem. Soc. 2000, 122, 6500. (c) Uraguchi, D.; Terada, M. Chiral Brønsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation. J. Am. Chem. Soc. 2004, 126, 5356.

2 Larraufie, M.-H.; Pellet, R.; Fensterbank, L.; Goddard, J.-P.; Lacôte, E.; Malacria, M.; Ollivier,

C. Visible-Light-Induced Photoreductive Generation of Radicals from Epoxides and Aziridines. *Angew. Chem., Int. Ed.* **2011**, *50*, 4463.

3 (a) Rodríguez-Salamanca, P.; de Gonzalo, G.; Carmona, J. A.; López-Serrano, J.; Iglesias-Sigüenza, J.; Fernández, R.; Lassaletta, J. M.; Hornillos, V. Biocatalytic Atroposelective Synthesis of Axially Chiral N-Arylindoles via Dynamic Kinetic Resolution. *ACS Catal.* 2023, *13*, 659. (b) Wang, L.; Yuan, W.-K.; Wang, Z.-K.; Luo, J.; Zhou, T.; Shi, B.-F. Synthesis of C–N Axial Chirality *N*-Arylindoles via Pd(II)-Catalyzed Free Amine-Directed Atroposelective C–H Olefination. *Chin. J. Chem.* 2023, *41*, 2788.

Analytic Data for the Products

2-(2-(((4-Methoxyphenyl)amino)methyl)-1*H*-indol-1-yl)-*N*,*N*-dimethylaniline **4aa** was obtained as a yellowish oil in 94% yield (34.9 mg) and 89% ee. $R_f = 0.20$ (petroleum ether/dichloromethane = 1:2). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AS, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, tr (major) = 8.00 min, tr (minor) = 8.86 min]. [α]_D²⁰ = -30.0 (c = 0.60, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.58-7.52 (m, 1H), 7.38-7.32 (m, 1H), 7.20-7.16 (m, 1H), 7.12-7.05 (m, 4H), 7.04-6.99 (m, 1H), 6.74-6.68 (m, 2H), 6.57 (s, 1H), 6.54-6.49 (m, 2H), 4.23 (dd, *J* = 22.4, 10.4 Hz, 2H), 4.02 (s, br., 1H), 3.68 (s, 3H), 2.41 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 152.3, 150.3, 142.2, 139.5, 138.2, 130.8, 129.4, 128.7, 128.3, 121.8, 121.6, 120.2, 120.1, 118.7, 114.9, 114.7, 110.4, 101.8, 55.8, 42.5, 41.9; HRMS (ESI) calcd for C₂₄H₂₄N₃O (M-H)⁻ 370.1925, found 370.1971.

N,N-Dimethyl-2-(2-((phenylamino)methyl)-1*H*-indol-1-yl)aniline **4ab** was obtained as a yellowish oil in 92% yield (31.4 mg) and 87% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 7.70 min, t_r (minor) = 9.14 min]. [α] $_D^{20} = -33.3$ (c = 0.60, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.42 (m, 1H), 7.32-7.20 (m, 1H), 7.13-7.08 (m, 1H), 7.07-6.96 (m, 6H), 6.96-6.90 (m,

1H), 6.62-6.54 (m, 1H), 6.53-6.42 (m, 3H), 4.37-3.96 (m, 3H, CH₂NH), 2.33 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 148.0, 139.2, 138.3, 130.8, 129.4, 129.2, 128.7, 128.3, 121.8, 121.6, 120.3, 120.2, 118.7, 117.6, 113.2, 110.4, 101.8, 42.5, 40.9; HRMS (ESI) calcd for C₂₃H₂₂N₃ (M-H)⁻ 340.1819, found 340.1853.

4-(((1-(2-(Dimethylamino)phenyl)-1*H*-indol-2-yl)methyl)amino)phenol **4ac** was obtained as a brown oil in 95% yield (33.9 mg) and 86% ee. $R_f = 0.20$ (petroleum ether/ethyl acetate = 1:2). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AS, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 26.37 min, t_r (minor) = 32.07 min]. [α]_D²⁰ = -37.0 (c = 0.60, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.59-7.51 (m, 1H), 7.40-7.32 (m, 1H), 7.20-7.15 (m, 1H), 7.14-7.05 (m, 4H), 7.05-7.00 (m, 1H), 6.57 (d, *J* = 8.4 Hz, 2H), 6.55 (s, 1H), 6.47 (d, *J* = 8.4 Hz, 2H), 4.20 (s, 2H), 2.40 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 150.2, 148.5, 141.4, 139.1, 138.2, 130.8, 129.4, 128.6, 128.2, 121.8, 121.6, 120.2, 120.1, 118.7, 116.2, 115.5, 110.4, 102.1, 42.4, 42.2; HRMS (ESI) calcd for C₂₃H₂₂N₃O (M-H)⁻ 356.1768, found 356.1753.

N,*N*-Dimethyl-2-(2-(((4-(trifluoromethoxy)phenyl)amino)methyl)-1*H*-indol-1-yl)aniline **4ad** was obtained as a yellowish oil in 94% yield (40.0 mg) and 89% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (20:80), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 5.10 min, t_r (minor) = 6.76 min]. $[\alpha]_D^{20} = -38.5$ (c = 0.60, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.64-7.50 (m, 1H), 7.42-7.32 (m, 1H), 7.19 (d, J = 7.2 Hz, 1H), 7.16-7.06 (m, 4H), 7.04 (t, J = 7.2 Hz, 1H), 6.96 (d, J = 8.4 Hz, 2H), 6.58 (s, 1H), 6.49 (d, J = 8.8 Hz, 2H), 4.40 (s, br., 1H), 4.29 (d, J = 15.6 Hz, 1H), 4.23 (d, J = 15.6 Hz, 1H), 2.42 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 146.7, 140.5 (q, J = 2.0 Hz), 138.6, 138.3, 130.8, 129.5, 128.7, 128.2, 122.3, 122.0, 121.7, 120.8 (q, J = 253.5 Hz), 120.3, 120.2, 118.8, 113.4, 110.4, 102.0, 42.5, 41.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -58.36; HRMS (ESI) calcd for C₂₄H₂₁F₃N₃O (M-H)⁻ 424.1642, found 424.1632.

*N*¹-((1-(2-(Dimethylamino)phenyl)-1*H*-indol-2-yl)methyl)-*N*⁴,*N*⁴-dimethylbenzene-1,4-diamine **4ae** was obtained as a yellowish oil in 93% yield (35.7 mg) and 86% ee. R_f = 0.40 (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (20:80), 1.0 mL/min, λ = 254 nm, t_r (major) = 8.00 min, t_r (minor) = 9.25 min]. [α]_D²⁰ = -40.7 (c = 0.60, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.60-7.52 (m, 1H), 7.39-7.34 (m, 1H), 7.22-7.18 (m, 1H), 7.13-7.06 (m, 4H), 7.05-7.00 (m, 1H), 6.69 (d, *J* = 8.4 Hz, 2H), 6.59 (s, 1H), 6.56 (d, *J* = 8.4 Hz, 2H), 4.26 (d, *J* = 15.0 Hz, 1H), 4.20 (d, *J* = 15.0 Hz, 1H), 2.79 (s, 6H), 2.42 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 150.3, 144.1, 140.5, 139.7, 138.2, 130.8, 129.3, 128.6, 128.3, 121.6, 121.5, 120.2, 120.0, 118.6, 115.8, 114.8, 110.3, 101.8, 42.4, 42.3, 41.9; HRMS (ESI) calcd for C₂₅H₂₇N₄ (M-H)⁻ 383.2241, found 383.2229.

N,*N*-Dimethyl-2-(2-((*p*-tolylamino)methyl)-1*H*-indol-1-yl)aniline **4af** was obtained as a yellowish oil in 92% yield (32.7 mg) and 85% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (20:80), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 5.48 min, t_r (minor) = 6.54 min]. [α]_D²⁰ = -31.0 (c = 0.60, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.59-7.52 (m, 1H), 7.39-7.32 (m, 1H), 7.22-7.17 (m, 1H), 7.12-7.05 (m, 4H), 7.05-6.99 (m, 1H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.58 (s, 1H), 6.53-6.45 (m, 2H), 4.34-4.19 (m, 2H), 4.15 (s, br., 1H), 2.42 (s, 6H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 145.7, 139.4, 138.2, 130.8, 129.7, 129.4, 128.7, 128.3, 126.8, 121.7, 121.5, 120.2, 120.1, 118.7, 113.4, 110.3, 101.8, 42.4, 41.2, 20.5; HRMS (ESI) calcd for C₂₄H₂₄N₃ (M-H)⁻ 354.1976, found 354.1961.

2-(2-(((4-Isopropylphenyl)amino)methyl)-1*H*-indol-1-yl)-*N*,*N*-dimethylaniline **4ag** was obtained as a yellowish oil in 93% yield (35.6 mg) and 87% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 5.58 min, t_r (minor) = 6.95 min]. [α]_D²⁰ = -29.7 (c = 0.60, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.52 (m, 1H), 7.39-7.31 (m, 1H), 7.22-7.17 (m, 1H), 7.13-7.05 (m, 4H), 7.04-7.01 (m, 1H), 7.00-6.97 (m, 2H), 6.60 (s, 1H), 6.55-6.49 (m, 2H), 4.32-4.18 (m, 2H), 2.83-2.70 (m, 1H), 2.42 (s, 6H), 1.18 (d, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 146.0, 139.5, 138.3, 138.1, 130.8, 129.4, 128.7, 128.3, 127.1, 121.7, 121.5, 120.2, 120.1, 118.7, 113.3, 110.4, 101.8, 42.4, 41.2, 33.2, 24.3; HRMS (ESI) calcd for C₂₆H₂₈N₃ (M-H)⁻ 382.2289, found 382.2275.

2-(2-(((4-(*Tert*-Butyl)phenyl)amino)methyl)-1*H*-indol-1-yl)-*N*,*N*-dimethylaniline **4ah** was obtained as a colourless oil in 94% yield (37.3 mg) and 89% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, tr (major) = 5.43 min, tr (minor) = 6.72 min]. [α]_D²⁰ = -39.0 (c = 0.60, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.51 (m, 1H), 7.39-7.31 (m, 1H), 7.22-7.17 (m, 1H), 7.17-7.05 (m, 6H), 7.05-6.98 (m, 1H), 6.62-6.57 (m, 1H), 6.56-6.48 (m, 2H), 4.44-4.04 (m, 3H, CH₂NH), 2.42 (s, 6H), 1.25 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 145.6, 140.3, 139.5, 138.3, 130.8, 129.4, 128.7, 128.3, 126.0, 121.7, 121.5, 120.2, 120.1, 118.7, 112.9, 110.4, 101.8, 42.4, 41.1, 33.9, 31.6; HRMS (ESI) calcd for C₂₇H₃₀N₃ (M-H)⁻ 396.2445, found 396.2431.

2-(2-(((4-Fluorophenyl)amino)methyl)-1*H*-indol-1-yl)-*N*,*N*-dimethylaniline **4ai** was obtained as a yellowish oil in 90% yield (32.3 mg) and 89% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 7.45 min, t_r (minor) = 9.55 min]. [α]_D²⁰ = -40.2 (c = 0.60, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ

7.60-7.52 (m, 1H), 7.41-7.33 (m, 1H), 7.22-7.16 (m, 1H), 7.15-7.06 (m, 4H), 7.04 (t, J = 7.6 Hz, 1H), 6.86-6.77 (m, 2H), 6.57 (s, 1H), 6.52-6.43 (m, 2H), 4.41-3.96 (m, 3H, CH₂NH), 2.42 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 155.9 (d, ¹ $J_{C-F} = 233.7$ Hz), 150.2, 144.2 (d, ⁴ $J_{C-F} = 1.9$ Hz), 139.0, 138.2, 130.8, 129.4, 128.6, 128.2, 121.9, 121.6, 120.2, 120.1, 118.7, 115.6 (d, ² $J_{C-F} = 22.2$ Hz), 114.1 (d, ³ $J_{C-F} = 7.4$ Hz), 110.3, 101.9, 42.4, 41.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -127.83; HRMS (ESI) calcd for C₂₃H₂1FN₃ (M-H)⁻ 358.1725, found 358.1713.

2-(2-(((4-Chlorophenyl)amino)methyl)-1*H*-indol-1-yl)-*N*, *N*-dimethylaniline **4aj** was obtained as a yellowish oil in 88% yield (33.0 mg) and 86% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (20:80), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 6.27 min, t_r (minor) = 8.09 min]. [α]_D²⁰ = -37.2 (c = 0.60, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.50 (m, 1H), 7.42-7.31 (m, 1H), 7.21-7.16 (m, 1H), 7.15-6.96 (m, 7H), 6.56 (s, 1H), 6.46 (d, *J* = 8.8 Hz, 2H), 4.31 (s, br., 1H), 4.27 (d, *J* = 15.6 Hz, 1H), 4.21 (d, *J* = 15.6 Hz, 1H), 2.41 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 146.5, 138.7, 138.3, 130.8, 129.5, 129.0, 128.6, 128.2, 122.1, 121.9, 121.7, 120.3, 120.2, 118.7, 114.3, 110.3, 101.9, 42.5, 41.1; HRMS (ESI) calcd for C₂₃H₂₁ClN₃ (M-H)⁻ 374.1429, found 374.1463.

2-(2-(((4-Bromophenyl)amino)methyl)-1*H*-indol-1-yl)-*N*,*N*-dimethylaniline **4ak** was obtained as a yellow solid in 88% yield (36.9 mg) and 84% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1); m.p. 76-77 °C. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AS-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 6.66 min, t_r (minor) = 7.46 min]. [α]_D²⁰ = -38.3 (c = 0.60, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.62-7.50 (m, 1H), 7.43-7.32 (m, 1H), 7.24-7.15 (m, 3H), 7.14-7.06 (m, 4H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.56 (s, 1H), 6.42 (d, *J* = 8.4 Hz, 2H), 4.53-3.94 (m, 3H, CH₂NH), 2.41 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 146.9, 138.6, 138.3, 131.8, 130.8, 129.5, 128.6, 128.2, 121.9, 121.7, 120.3, 120.2, 118.7, 114.8, 110.3, 109.1, 101.9, 42.5, 40.9; HRMS (ESI) calcd for C₂₃H₂₁BrN₃ (M-H)⁻ 418.0924, found 418.0914.

N,*N*-Dimethyl-2-(2-(((4-(trifluoromethyl)phenyl)amino)methyl)-1*H*-indol-1-yl)aniline **4al** was obtained as a yellow solid in 86% yield (35.2 mg) and 83% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1); m.p. 53-54 °C. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (20:80), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 8.65 min, t_r (minor) = 14.18 min]. [α]_D²⁰ = -37.7 (c = 0.60, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.63-7.51 (m, 1H), 7.44-7.28 (m, 3H), 7.19 (d, *J* = 8.4 Hz, 1H), 7.17-6.96 (m, 5H), 6.58 (s, 1H), 6.54 (d, *J* = 8.0 Hz, 2H), 4.66 (s, br., 1H), 4.44-4.13 (m, 2H), 2.43 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 150.4, 150.2, 138.4, 138.2, 130.8, 129.5, 128.6, 128.1, 126.5 (q, *J* = 3.8 Hz), 125.0 (q, *J* = 268.4 Hz), 122.1, 121.8, 120.3, 118.9 (q, *J* = 32.4 Hz), 118.8, 112.2, 111.8, 110.3, 102.0, 42.5, 40.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -60.91; HRMS (ESI) calcd for C₂₄H₂₁F₃N₃ (M-H)⁻ 408.1693, found 408.1649.

2-(2-(((3-Methoxyphenyl)amino)methyl)-1*H*-indol-1-yl)-*N*,*N*-dimethylaniline **4am** was obtained as a yellowish oil in 90% yield (33.4 mg) and 80% ee. $R_f = 0.30$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (20:80), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 9.13 min, t_r (minor) = 10.92 min]. [α]_D²⁰ = -40.2 (c = 0.60, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.59-7.51 (m, 1H), 7.39-7.33 (m, 1H), 7.19 (d, *J* = 7.8 Hz, 1H), 7.14-7.05 (m, 4H), 7.05-6.96 (m, 2H), 6.59 (s, 1H), 6.24 (d, *J* = 8.4 Hz, 1H), 6.19 (d, *J* = 8.4 Hz, 1H), 6.15 (d, *J* = 2.4 Hz, 1H), 4.38 (s, br., 1H), 4.28 (d, *J* = 15.6 Hz, 1H), 4.23 (d, *J* = 15.6 Hz, 1H), 3.71 (s, 3H), 2.42 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 160.8, 150.3, 149.3, 139.1, 138.3, 130.8, 129.9, 129.4, 128.6, 128.2, 121.8, 121.6, 120.2, 120.1, 118.7, 110.3, 106.5, 102.5, 101.8, 99.4, 55.1, 42.4, 40.9; HRMS (ESI) calcd for C₂₄H₂₄N₃O (M-H)⁻ 370.1925, found 370.2021.

2-(2-(((3-Bromophenyl)amino)methyl)-1*H*-indol-1-yl)-*N*,*N*-dimethylaniline **4an** was obtained as a yellowish oil in 86% yield (36.0 mg) and 79% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 8.71 min, t_r (minor) = 11.45 min]. [α]_D²⁰ = -59.5 (c = 0.60, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.60-7.52 (m, 1H), 7.42-7.32 (m, 1H), 7.20 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.16-7.01 (m, 5H), 6.94 (t, *J* = 7.8 Hz, 1H), 6.76 (d, *J* = 7.8 Hz, 1H), 6.69 (t, *J* = 1.8 Hz, 1H), 6.56 (s, 1H), 6.47 (dd, *J* = 8.4, 2.4 Hz, 1H), 4.43 (s, br., 1H), 4.29 (d, *J* = 15.6 Hz, 1H), 4.21 (d, *J* = 15.6 Hz, 1H), 2.44 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 150.2, 149.2, 138.5, 138.3, 130.8, 130.4, 129.5, 128.7, 128.2, 123.3, 121.9, 121.8, 120.3, 120.2, 120.2, 118.8, 115.5, 112.0, 110.3, 101.8, 42.5, 40.8; HRMS (ESI) calcd for C₂₃H₂₁BrN₃ (M-H)⁻ 418.0924, found 417.0880.

2-(2-(((2-Methoxyphenyl)amino)methyl)-1*H*-indol-1-yl)-*N*,*N*-dimethylaniline **4ao** was obtained as a yellowish oil in 88% yield (32.7 mg) and 65% ee. R_f = 0.30 (petroleum ether/ethyl acetate = 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (20:80), 1.0 mL/min, λ = 254 nm, t_r (major) = 6.63 min, t_r (minor) = 7.51 min]. [α]_D²⁰ = -24.8 (c = 0.60, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.59-7.52 (m, 1H), 7.39-7.32 (m, 1H), 7.25-7.20 (m, 1H), 7.14-7.05 (m, 4H), 7.04-6.98 (m, 1H), 6.82-6.76 (m, 1H), 6.74 (d, *J* = 7.8 Hz, 1H), 6.68-6.56 (m, 3H), 4.71 (s, br., 1H), 4.40 (d, *J* = 15.6 Hz, 1H), 4.26 (d, *J* = 15.6 Hz, 1H), 3.80 (s, 3H), 2.41 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 150.3, 147.1, 139.4, 138.0, 137.8, 130.7, 129.2, 128.5, 128.3, 121.6, 121.3, 121.2, 120.1, 120.0, 118.6, 116.8, 110.5, 110.3, 109.5, 101.4, 55.4, 42.3, 40.6; HRMS (ESI) calcd for C₂₄H₂₄N₃O (M-H)⁻ 370.1925, found 370.1915.

N-((1-(2-(Dimethylamino)phenyl)-1*H*-indol-2-yl)methyl)naphthalen-2-amine **4ap** was obtained as a yellowish oil in 89% yield (34.8 mg) and 72% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (20:80), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 8.16 min, t_r (minor) = 10.39 min]. [α]_D²⁰ = -33.0 (c = 0.60, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.62 (d, J = 8.0 Hz, 1H), 7.59-7.49 (m, 3H), 7.39-7.33 (m, 1H), 7.33-7.27 (m, 1H), 7.24-7.19 (m, 1H), 7.16 (d, J = 8.4 Hz, 1H), 7.14-7.06 (m, 4H), 7.06-7.00 (m, 1H), 6.84-6.74 (m, 2H), 6.63 (s, 1H), 4.53 (s, br., 1H), 4.42-4.30 (m, 2H), 2.45 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 150.3, 145.6, 138.9, 138.3, 135.2, 130.9, 129.5, 128.9, 128.7, 128.3, 127.7, 127.7, 126.3, 126.0, 122.1, 121.9, 121.7, 120.3, 120.2, 118.8, 118.1, 110.4, 105.1, 102.0, 42.6, 41.0; HRMS (ESI) calcd for C₂₇H₂₄N₃ (M-H)⁻ 390.1976, found 390.1964.

N,*N*-Dimethyl-2-((4-methyl-2-(((4-(trifluoromethoxy)phenyl)amino)methyl)-1*H*-indol-1-yl)aniline **4bd** was obtained as a yellowish oil in 92% yield (40.4 mg) and 87% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 6.04 min, t_r (minor) = 8.49 min]. $[\alpha]_D^{20} = -26.8$ (c = 0.60, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.40-7.32 (m, 1H), 7.18 (dd, J = 7.8, 1.8 Hz, 1H), 7.10 (dd, J = 8.4, 1.2 Hz, 1H), 7.07-7.00 (m, 2H), 6.97 (d, J = 7.8 Hz, 1H), 6.94-6.88 (m, 2H), 6.60 (s, 1H), 6.97 (d, J =7.8 Hz, 1H), 6.50 (d, J = 9.0 Hz, 2H), 4.42 (s, br., 1H), 4.27 (d, J = 15.6 Hz, 1H), 4.24 (d, J =15.6 Hz, 1H), 2.55 (s, 3H), 2.43 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 150.2, 146.7, 140.5, 138.1, 138.0, 130.8, 129.7, 129.4, 128.9, 128.0, 122.3, 122.1, 121.7, 120.8 (q, J = 253.7 Hz), 120.5, 118.7, 113.4, 108.0, 100.5, 42.5, 41.2, 18.7; ¹⁹F NMR (565 MHz, CDCl₃) δ -58.37; HRMS (ESI) calcd for C₂₅H₂₃F₃N₃O (M-H)⁻ 438.1799, found 438.1789.

N, *N*-Dimethyl-2-(5-methyl-2-(((4-(trifluoromethoxy)phenyl)amino)methyl)-1*H*-indol-1-yl)aniline **4cd** was obtained as a yellowish oil in 94% yield (41.3 mg) and 85% ee. R_f= 0.40 (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (10:90), 1.0 mL/min, λ = 254 nm, t_r (major) = 5.20 min, t_r (minor) = 6.08 min]. [α]_D²⁰ = -42.8 (c = 0.60, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.42-7.30 (m, 2H), 7.17 (d, *J* = 7.8 Hz, 1H), 7.10 (d, *J* = 7.8 Hz, 1H), 7.03 (t, *J* = 7.8 Hz, 1H), 7.00-6.88 (m, 4H), 6.50 (d, *J* = 3.0 Hz, 2H), 6.48 (s, 1H), 4.43 (s, br., 1H), 4.26 (d, J = 15.6 Hz, 1H), 4.22 (d, J = 15.6 Hz, 1H), 2.43 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 150.2, 146.7, 140.5, 138.6, 136.7, 130.7, 129.5, 129.3, 128.8, 128.4, 123.5, 122.3, 121.7, 120.8 (q, J = 253.9 Hz), 120.0, 118.7, 113.4, 110.0, 101.5, 42.5, 41.2, 21.4; ¹⁹F NMR (565 MHz, CDCl₃) δ -58.38; HRMS (ESI) calcd for C₂₅H₂₃F₃N₃O (M-H)⁻ 438.1799, found 438.1789.

2-(5-Fluoro-2-(((4-(trifluoromethoxy)phenyl)amino)methyl)-1*H*-indol-1-yl)-*N*, *N*-dimethylaniline **4dd** was obtained as a yellowish oil in 95% yield (42.1 mg) and 89% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (05:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 7.33 min, t_r (minor) = 7.95 min]. $[\alpha]_D^{20} = -26.5$ (c = 0.60, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.39 (t, *J* = 7.2 Hz, 1H), 7.24-7.19 (m, 1H), 7.17 (d, *J* = 7.8 Hz, 1H), 7.11 (d, *J* = 8.4 Hz, 1H), 7.05 (t, *J* = 7.2 Hz, 1H), 7.01-6.93 (m, 3H), 6.89-6.82 (m, 1H), 6.54 (s, 1H), 6.50 (d, *J* = 8.4 Hz, 2H), 4.29 (d, *J* = 15.0 Hz, 1H), 4.22 (d, *J* = 15.6 Hz, 1H), 2.42 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 158.3 (d, ¹*J*_{C-F} = 233.1 Hz), 150.1, 146.5, 140.6, 140.3, 134.8, 130.6, 129.6, 128.4, 128.3 (d, ³*J*_{C-F} = 10.2 Hz), 122.3, 121.7, 120.7 (q, *J* = 256.7 Hz), 118.8, 113.4, 110.9 (d, ³*J*_{C-F} = 9.6 Hz), 110.1 (d, ²*J*_{C-F} = 26.0 Hz), 105.1 (d, ²*J*_{C-F} = 23.4 Hz), 101.8 (d, ⁴*J*_{C-F} = 4.5 Hz), 42.4, 41.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -58.40, -124.41; HRMS (ESI) calcd for C₂₄H₂₀F₄N₃O (M-H)⁻ 442.1548, found 442.1536.

2-(5-Chloro-2-(((4-(trifluoromethoxy)phenyl)amino)methyl)-1*H*-indol-1-yl)-*N*, *N*-dimethylaniline **4ed** was obtained as a yellowish oil in 89% yield (40.9 mg) and 83% ee. R_f= 0.40 (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, λ = 254 nm, t_r (major) = 5.86 min, t_r (minor) = 6.58 min]. [α]_D²⁰ = -51.3 (c = 0.60, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.52 (d, *J* = 1.8 Hz, 1H), 7.42-7.34 (m, 1H), 7.16 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.11 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.09-7.02 (m, 2H), 7.01-6.94 (m, 3H), 6.51 (s, 1H), 6.49 (d, *J* = 9.0 Hz, 2H), 4.34 (s, br., 1H), 4.29 (d, *J* = 15.6 Hz, 1H), 4.22 (d, *J* = 15.6 Hz, 1H), 2.41 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 150.1, 146.5, 140.6, 140.1, 136.7, 130.5, 129.7, 129.1, 128.2, 125.9, 122.3, 122.2, 121.8, 120.7 (q, J = 253.8 Hz), 119.7, 118.9, 113.3, 111.3, 101.4, 42.4, 41.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -58.37; HRMS (ESI) calcd for C₂₄H₂₀ClF₃N₃O (M-H)⁻ 458.1252, found 458.1349.

N, *N*-Dimethyl-2-(6-methyl-2-(((4-(trifluoromethoxy)phenyl)amino)methyl)-1*H*-indol-1-yl)aniline **4fd** was obtained as a yellowish oil in 94% yield (41.3 mg) and 89% ee. R_f = 0.40 (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (10:90), 1.0 mL/min, λ = 254 nm, t_r (major) = 5.22 min, t_r (minor) = 6.14 min]. [α]_D²⁰ = -41.3 (c = 0.60, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.45 (d, *J* = 8.4 Hz, 1H), 7.40-7.34 (m, 1H), 7.20-7.16 (m, 1H), 7.10 (d, *J* = 7.8 Hz, 1H), 7.07-7.02 (m, 1H), 6.99-6.91 (m, 3H), 6.88 (s, 1H), 6.52 (s, 1H), 6.48 (d, *J* = 9.0 Hz, 2H), 4.25 (d, *J* = 15.6 Hz, 1H), 4.21 (d, *J* = 15.6 Hz, 1H), 2.43 (s, 6H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 150.2, 146.7, 140.5, 138.7, 137.9, 131.9, 130.8, 129.4, 128.7, 126.0, 122.3, 122.0, 121.6, 119.9 (q, *J* = 253.2 Hz), 119.8, 118.7, 113.4, 110.2, 101.8, 42.5, 41.1, 21.8; ¹⁹F NMR (565 MHz, CDCl₃) δ -58.39; HRMS (ESI) calcd for C₂₅H₂₃F₃N₃O (M-H)⁻ 438.1799, found 438.1788.

2-(6-Chloro-2-(((4-(trifluoromethoxy)phenyl)amino)methyl)-1*H*-indol-1-yl)-*N*, *N*-dimethylaniline **4gd** was obtained as a yellowish oil in 90% yield (41.3 mg) and 83% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 5.87 min, t_r (minor) = 6.44 min]. [α]_D²⁰ = -49.5 (c = 0.60, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.46 (d, *J* = 9.0 Hz, 1H), 7.42-7.35 (m, 1H), 7.16 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.11 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.09-7.01 (m, 3H), 6.97 (d, *J* = 9.0 Hz, 2H), 6.54 (s, 1H), 6.49 (d, *J* = 9.0 Hz, 2H), 4.38 (s, br., 1H), 4.28 (d, *J* = 15.6 Hz, 1H), 4.21 (d, *J* = 15.6 Hz, 1H), 2.42 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 150.1, 146.5, 140.6, 139.5, 138.7, 130.5, 129.8, 128.0, 127.9, 126.7, 122.3, 121.9, 121.1, 120.9, 120.7 (q, *J* = 253.8 Hz), 118.9, 113.4, 110.3, 101.9, 42.5, 41.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -58.37; HRMS (ESI) calcd for C₂₄H₂₀ClF₃N₃O (M-H)⁻ 458.1252, found 458.1349.

2-(6-Methoxy-2-(((4-methoxyphenyl)amino)methyl)-1*H*-indol-1-yl)-*N*,*N*-dimethylaniline **4hd** was obtained as a yellowish oil in 88% yield (35.3 mg) and 81% ee. $R_f = 0.15$ (petroleum ether/dichloromethane = 1:2). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (50:50), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 6.60 min, t_r (major) = 7.72 min]. [α]_D²⁰ = -44.7 (c = 1.00, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.43 (d, *J* = 9.0 Hz, 1H), 7.40-7.35 (m, 1H), 7.20 (dd, *J* = 7.8, 1.8 Hz, 1H), 7.13-7.09 (m, 1H), 7.07-7.02 (m, 1H), 6.77 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.74-6.70 (m, 2H), 6.58-6.51 (m, 3H), 6.50 (s, 1H), 4.23-4.15 (m, 2H), 3.74 (s, 3H), 3.72 (s, 3H), 2.45 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 156.3, 152.3, 150.1, 138.8, 138.0, 130.7, 129.3, 128.6, 122.4, 121.5, 120.7, 118.6, 114.8, 114.8, 114.7, 109.7, 101.8, 94.0, 55.8, 55.7, 42.4; HRMS (ESI) calcd for C₂₅H₂₆N₃O₂ (M-H)⁻ 400.2031, found 400.2025.

N, *N*, 2-Trimethyl-6-(2-(((4-(trifluoromethoxy)phenyl)amino)methyl)-1*H*-indol-1-yl)aniline **4id** was obtained as a yellowish oil in 85% yield (37.3 mg) and 20% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, tr (major) = 5.93 min, tr (minor) = 9.38 min]. ¹H NMR (600 MHz, CDCl₃): δ 7.62-7.54 (m, 1H), 7.28-7.23 (m, 1H), 7.12-7.08 (m, 2H), 7.04 (t, *J* = 7.2 Hz, 1H), 7.01-6.94 (m, 4H), 6.61 (s, 1H), 6.51 (d, *J* = 9.0 Hz, 2H), 4.29 (d, *J* = 15.6 Hz, 1H), 4.19 (d, *J* = 15.6 Hz, 1H), 3.95 (s, br., 1H), 2.40 (s, 6H), 2.37 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 149.4, 146.4, 140.7, 139.2, 138.3, 136.6, 132.2, 132.1, 128.3, 127.8, 123.6, 122.4, 121.7, 120.7 (q, *J* = 253.1 Hz), 120.2, 120.0, 113.3, 110.8, 101.4, 42.3, 41.3, 19.8; ¹⁹F NMR (565 MHz, CDCl₃) δ -58.42; HRMS (ESI) calcd for C₂₅H₂₃F₃N₃O (M-H)⁻ 438.1799, found 438.1790.

N, *N*, 4-Trimethyl-2-(2-(((4-(trifluoromethoxy)phenyl)amino)methyl)-1H-indol-1-yl)aniline **4jd** was obtained as a yellowish oil in 96% yield (42.2 mg) and 91% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 5.78 min, t_r (minor) = 7.00 min]. [α]_D²⁰ = -54.4 (c = 1.00, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.62-7.51 (m, 1H), 7.16-7.02 (m, 4H), 6.97 (d, *J* = 8.4 Hz, 2H), 6.90 (s, 1H), 6.88-6.82 (m, 1H), 6.57 (s, 1H), 6.50 (d, *J* = 9.0 Hz, 2H), 4.46 (s, br., 1H), 4.26 (d, *J* = 15.0 Hz, 1H), 4.23 (d, *J* = 15.6 Hz, 1H), 2.41 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 149.8, 146.7, 140.5, 139.5, 138.7, 138.4, 130.5, 128.1, 126.1, 122.5, 122.3, 121.9, 120.8 (q, *J* = 253.6 Hz), 120.2, 120.1, 119.5, 113.3, 110.4, 101.8, 42.5, 41.1, 21.6; ¹⁹F NMR (565 MHz, CDCl₃) δ -58.37; HRMS (ESI) calcd for C₂₅H₂₃F₃N₃O (M-H)⁻ 438.1799, found 438.1789.

5-Butyl-*N*, *N*-dimethyl-2-(2-(((4-(trifluoromethoxy)phenyl)amino)methyl)-1*H*-indol-1-yl)aniline **4kd** was obtained as a yellowish oil in 93% yield (44.8 mg) and 89% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 4.97 min, t_r (minor) = 5.65 min]. [α]_D²⁰ = -44.0 (c = 0.60, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.63-7.50 (m, 1H), 7.16-7.04 (m, 4H), 6.96 (d, *J* = 8.4 Hz, 2H), 6.90 (s, 1H), 6.89-6.80 (m, 1H), 6.56 (s, 1H), 6.50 (d, *J* = 8.8 Hz, 2H), 4.32-4.19 (m, 2H), 2.66 (t, *J* = 8.0 Hz, 2H), 2.42 (s, 6H), 1.74-1.60 (m, 2H), 1.48-1.36 (m, 2H), 0.97 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.8, 146.7, 144.5, 140.5, 138.7, 138.4, 130.4, 128.1, 126.2, 122.3, 121.8, 121.7, 120.8 (q, *J* = 253.5 Hz), 120.2, 120.1, 118.7, 113.4, 110.4, 101.8, 42.5, 41.1, 35.9, 33.6, 22.6, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -58.38; HRMS (ESI) calcd for C₂₈H₂₉F₃N₃O (M-H)⁻ 480.2268, found 480.2254.

5-Methoxy-*N*,*N*-dimethyl-2-(2-(((4-(trifluoromethoxy)phenyl)amino)methyl)-1*H*-indol-1-yl)aniline **4ld** was obtained as a yellowish oil in 90% yield (41.0 mg) and 80% ee. R_f = 0.30 (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (10:90), 1.0 mL/min, λ = 254 nm, t_r (major) = 8.65 min, t_r (minor) = 9.95 min]. [α]_D²⁰ = -34.0 (c = 0.60, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.57 (d, *J* = 7.2 Hz, 1H), 7.17-7.03 (m, 4H), 6.97 (d, *J* = 8.4 Hz, 2H), 6.63 (d, *J* = 2.4 Hz, 1H), 6.59-6.54 (m, 2H), 6.51 (d, *J* = 9.0 Hz, 2H), 4.29-4.18 (m, 2H), 3.86 (s, 3H), 2.41 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 160.3, 151.3, 146.6, 140.5, 138.8, 138.6, 131.6, 128.0, 122.3, 121.9, 121.5, 120.7 (q, *J* = 253.5 Hz), 120.2, 120.1, 113.4, 110.4, 105.6, 105.3, 101.7, 55.5, 42.4, 41.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -58.39; HRMS (ESI) calcd for C₂₅H₂₃F₃N₃O₂ (M-H)⁻ 454.1748, found 454.1735.

N, *N*, 4-Trimethyl-2-(2-(((4-(trifluoromethoxy)phenyl)amino)methyl)-1*H*-indol-1-yl)aniline **4md** was obtained as a yellow solid in 94% yield (41.3 mg) and 91% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1); m.p. 73-74 °C. The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 6.18 min, t_r (minor) = 7.23 min]. [α]_D²⁰ = -25.0 (c = 0.60, EtOAc); ¹H NMR (600 MHz, CDCl₃): δ 7.62-7.51 (m, 1H), 7.18 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.15-7.06 (m, 3H), 7.04-6.98 (m, 2H), 6.96 (d, *J* = 7.8 Hz, 2H), 6.57 (d, *J* = 1.2 Hz, 1H), 6.52-6.44 (m, 2H), 4.30-4.21 (m, 2H), 2.40 (s, 6H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 147.8, 146.8, 140.5, 138.7, 138.4, 131.7, 131.2, 130.0, 128.9, 128.2, 122.3, 121.9, 120.8 (q, *J* = 253.5 Hz), 120.3, 120.2, 118.8, 113.4, 110.4, 101.9, 42.8, 41.1, 20.3; ¹⁹F NMR (565 MHz, CDCl₃) δ -58.34; HRMS (ESI) calcd for C₂₅H₂₃F₃N₃O (M-H)⁻ 438.1799, found 438.1784.

N,N-Dimethyl-2-(3-methyl-2-(((4-(trifluoromethoxy)phenyl)amino)methyl)-1*H*-indol-1-yl)aniline **4nd** was obtained as a yellowish oil in 87% yield (38.2 mg) and 2% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 4.33 min, t_r (minor) = 4.95 min]. ¹H NMR (600 MHz, CDCl₃): δ 7.62-7.55 (m, 1H), 7.39-7.31 (m, 1H), 7.18-7.11 (m, 3H), 7.08 (d, J = 8.4 Hz, 1H), 7.06-7.00 (m, 2H), 6.95 (d, J= 8.4 Hz, 2H), 6.44 (d, J = 8.4 Hz, 2H), 4.44 (s, br., 1H), 4.32 (d, J = 13.8 Hz, 1H), 4.04 (d, J= 13.8 Hz, 1H), 2.41 (s, 6H), 2.40 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 150.4, 146.9, 140.4, 137.6, 133.8, 131.1, 129.4, 129.2, 128.8, 122.3, 122.3, 121.9, 120.7 (q, J = 253.7 Hz), 119.6, 118.7, 118.6, 113.3, 110.6, 110.3, 42.7, 39.0, 9.1; ¹⁹F NMR (565 MHz, CDCl₃) δ -58.41; HRMS (ESI) calcd for C₂₅H₂₃F₃N₃O (M-H)⁻ 438.1799, found 438.1795.

N, *N*, 3-Trimethyl-2-(2-(((4-(trifluoromethoxy)phenyl)amino)methyl)-1*H*-indol-1-yl)aniline **4od** was obtained as a yellowish oil in 52% yield (22.8 mg) and 2% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate = 12:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (02:98), 1.0 mL/min, $\lambda = 254$ nm]. ¹H NMR (600 MHz, CDCl₃): δ 7.54-7.48 (m, 1H), 7.21 (t, *J* = 8.4 Hz, 1H), 7.07-6.99 (m, 2H), 6.91-6.85 (m, 4H), 6.84-6.78 (m, 1H), 6.52 (s, 1H), 6.45-6.35 (m, 2H), 4.40 (s, br., 1H), 4.12 (d, *J* = 15.6 Hz, 1H), 4.02 (d, *J* = 15.0 Hz, 1H), 2.35 (s, 6H), 1.64 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 151.2, 146.7, 140.4, 139.3, 137.8, 137.7, 129.3, 128.2, 128.1, 124.0, 122.3, 122.1, 120.5, 120.0, 120.7 (q, *J* = 253.6 Hz), 116.5, 113.2, 110.4, 102.0, 43.3, 41.0, 17.8; ¹⁹F NMR (565 MHz, CDCl₃) δ -58.39; HRMS (ESI) calcd for C₂₅H₂₃F₃N₃O (M-H)⁻ 438.1799, found 438.1795.

N-((1-(2-(Dimethylamino)phenyl)-1*H*-indol-2-yl)methyl)-*N*-(4-methoxyphenyl)-4-methylbenzen sulfonamide **5** was obtained as a yellowish oil in 93% yield (48.8 mg) and 88% ee. $R_f = 0.30$ (petroleum ether/ethyl acetate = 5:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak OD-H, isopropanol/hexane (20:80), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 7.31 min, t_r (minor) = 8.40 min]. [α]_D²⁰ = 117.0 (c = 1.00, EtOAc); ¹H NMR

(600 MHz, CDCl₃): δ 7.55-7.49 (m, 1H), 7.38 (d, J = 7.8 Hz, 2H), 7.37-7.33 (m, 1H), 7.18 (d, J = 8.4 Hz, 2H), 7.10-7.01 (m, 4H), 7.00-6.93 (m, 2H), 6.80-6.72 (m, 2H), 6.67-6.59 (m, 2H), 6.54 (s, 1H), 4.81 (d, J = 15.6 Hz, 1H), 4.76 (d, J = 15.0 Hz, 1H), 3.72 (s, 3H), 2.39 (s, 3H), 2.29 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 158.7, 149.8, 143.2, 137.8, 135.8, 135.4, 131.7, 130.5, 129.8, 129.3, 129.0, 128.2, 128.1, 127.8, 121.8, 121.1, 120.2, 120.0, 118.6, 113.8, 110.2, 103.8, 55.3, 47.6, 41.9, 21.6; HRMS (ESI) calcd for C₃₁H₃₁N₃O₃S (M-H)⁻ 525.2092, found 525.2054.

The Absolute Stereochemistry Discussion

In order to confirm the absolute configuration (AC) of compounds **4**, the ECD spectra were calculated by the TD-DFT method, which has been proven to be useful in predicting ECD spectra and assigning the AC of organic molecules.^{S1} Gaussian 09 package of programs is applied for theoretical calculation.^{S2} Geometries optimization and the Gibbs energy calculations were performed at the level of b3lyp/6-311+g(2d,p)//b3lyp/6-311++g(3df,2p). Calculations of ECD were performed based on the optimized conformations, and then the ECD spectra was obtained by Multiwfn.^{S3} As shown in Figure S1, the simulated spectra are in good agreement with the experimental spectral data, and the *R*a configuration could be reliably assigned to compound **4aa** (sample concentration: 1.88×10^{-4} mol/L in *i*-PrOH).

Figure S1. Experimental ECD spectra (black line) and simulated spectra (red line) proving R_a -conformer 4aa absolute configuration.

S1. N. Berova, L. D. Bari, G. Pescitelli, Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. *Chem. Soc. Rev.*, **2007**, *36*, 914-931.

S2. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,G. Petersson, *Gaussian*, 09, *Revision A.02*, Gaussian, Inc., Wallingford CT, 2009 (2015).

S3. T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33, 580-592.

In order to obtain accurate ECD spectra, 9 major conformations are identified by configuration analysis and optimization. All cartesian coordinates of Gaussian optimized structures for the 9 conformations and the corresponding gibbs free energies are listed in Table S3. The Boltzmann average spectra of ECD is shown in Fig. S1. In addition, solvent corrections are carried out in the calculations.

Table S3. Optimized geometries labeled with Gibbs free energies (Hartree) and cartesian coordinates for the 9 conformations (named as P1~P9, P1, P3, P7 and P8 are S_a -conformer of **4aa**, P2, P4, P5, P6 and P9 are R_a -conformer of **4aa**).

conformations	cartesian coordinates			
P1	С	-3.0259	-5.1231	-0.5262
	С	-3.9668	-4.2472	0.0023
	С	-3.6434	-2.9093	0.2475
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C	-2.335	-2.4675	-0.0373
	C	-1.388	-3.3335	-0.5895
	C	-1.7363	-4.6778	-0.8294
	N	-1.7443	-1.2028	0.062
	C	-0.2064	-2.5864	-0.7972
	C	-0.4223	-1.293	-0.3579
	C	0.5572	-0.1602	-0.2852
	N	1.9036	-0.6208	0.0595
	C	2.9386	0.2915	0.2636
	C	2.9131	1.6149	-0.1824
-1169.009596	C	4.1367	-0.1784	0.8206
	C	4.0228	2.4541	-0.0171
	C	5.2524	0.6541	0.9825
	C	5.1979	1.98	0.5647
	0	6.207	2.8976	0.6573
	C	7.454	2.4287	1.155
	C	-2.4036	-0.0389	0.5563
	C	-2.9759	-0.1221	1.8392
	C	-2.4429	1.1642	-0.1909
	C	-3.581	0.9935	2.409
	C	-3.0592	2.2709	0.4226
	C	-3.6193	2.1895	1.7028
	N	-1.9498	1.2349	-1.5103
	C	-2.8338	0.5601	-2.4722
	C	-1.4591	2.5324	-1.9779
	Н	-3.2951	-6.159	-0.7158
	Н	-4.9713	-4.6028	0.2195
	Н	-4.3985	-2.2317	0.634
	Н	-1.0091	-5.3632	-1.2551
	Н	0.7282	-2.9542	-1.2022

	Н	0.5868	0.326	-1.2665
	Н	0.243	0.5723	0.466
	Н	1.8808	-1.3424	0.7741
	Η	2.0329	2.0265	-0.6658
	Η	4.2149	-1.2179	1.131
	Н	3.9707	3.4842	-0.3602
	Η	6.1437	0.2278	1.4289
	Η	8.1587	3.2657	1.1334
	Н	7.8609	1.6352	0.5192
	Η	7.3641	2.0961	2.1943
	Н	-2.9181	-1.042	2.4175
	Η	-4.0112	0.9326	3.4051
	Η	-3.1444	3.2196	-0.0992
	Н	-4.092	3.0646	2.1417
	Н	-2.3299	0.4769	-3.4416
	Н	-3.7596	1.1289	-2.6175
	Н	-3.0995	-0.456	-2.1665
	Н	-0.7869	2.9901	-1.2436
	Н	-0.8799	2.3943	-2.8978
	Н	-2.2792	3.2233	-2.2025
P2	С	-3.8765	-4.3201	2.0777
	С	-4.6018	-3.4804	1.2387
	С	-3.9596	-2.5075	0.4676
	С	-2.5581	-2.4032	0.5545
	С	-1.8165	-3.2327	1.3998
	С	-2.4858	-4.206	2.167
	Ν	-1.6666	-1.511	-0.04
	С	-0.4567	-2.8601	1.2672
	С	-0.3756	-1.8269	0.3535
	С	0.8474	-1.1569	-0.1882
	Ν	1.4036	-0.1919	0.7471
	С	2.5258	0.5628	0.3968
	С	3.3742	0.2604	-0.6731
-1169.009957	С	2.9057	1.6126	1.2421
	С	4.5228	1.0232	-0.9359
	С	4.0531	2.3722	0.99
	С	4.8646	2.0875	-0.1061
	Ο	5.9524	2.9035	-0.2457
	С	6.8034	2.6531	-1.3571
	С	-2.0364	-0.4872	-0.9497
	С	-2.5827	-0.9102	-2.1763
	С	-1.7858	0.8785	-0.6669
	С	-2.8599	0.0205	-3.1699
	С	-2.0671	1.7823	-1.7098

	С	-2.594	1.3644	-2.9396
	N	-1.3348	1.3273	0.5937
	С	-2.2452	0.9808	1.6989
	С	-0.7602	2.6714	0.6864
	Н	-4.3932	-5.0674	2.6745
	Н	-5.684	-3.5749	1.1873
	Н	-4.5374	-1.8418	-0.1668
	Н	-1.9264	-4.8601	2.83
	Н	0.3893	-3.3101	1.7722
	Н	1.5877	-1.9443	-0.3824
	Н	0.6403	-0.6802	-1.1532
	Н	0.6495	0.4062	1.0953
	Н	3.1607	-0.5715	-1.337
	Н	2.3088	1.8401	2.1217
	Н	5.1283	0.7473	-1.7923
	Н	4.319	3.183	1.6629
	Н	7.6156	3.386	-1.3281
	Н	7.2528	1.6565	-1.2946
	Н	6.2676	2.7873	-2.3026
	Н	-2.753	-1.9665	-2.3753
	Н	-3.2655	-0.3017	-4.1251
	Н	-1.9113	2.8495	-1.5815
	Н	-2.8026	2.0995	-3.713
	Н	-2.2611	1.7702	2.4596
	Н	-3.2803	0.8436	1.3635
	Н	-1.9043	0.0715	2.2017
	Н	-0.2622	2.793	1.6551
	Н	0.0028	2.8323	-0.0829
	Н	-1.5313	3.4459	0.6089
P3	С	-4.0378	3.9237	2.6986
	С	-4.6913	3.2799	1.653
	С	-3.9915	2.451	0.7716
	С	-2.6053	2.2911	0.9611
	С	-1.9366	2.9235	2.0125
<u> </u>	С	-2.6632	3.7528	2.8891
	Ν	-1.672	1.5026	0.2883
	C	-0.5746	2.5453	1.9323
	С	-0.4192	1.7059	0.8459
·	C	0.8449	1.1294	0.291
- 0	N	1.3384	0.0168	1.0881
	C	2.4973	-0.6625	0.7035
	C	2.813	-1.8577	1.3613
-1169.009994	C	3.4379	-0.1604	-0.2019
	C	3.9898	-2.5583	1.0747

С	4.6172	-0.8613	-0.4985
С	4.8954	-2.0687	0.1358
0	6.003	-2.8462	-0.0579
С	6.9471	-2.3892	-1.0181
С	-1.9692	0.6739	-0.8247
С	-2.4213	1.3254	-1.9877
С	-1.7454	-0.7249	-0.7838
С	-2.6291	0.599	-3.1538
С	-1.9534	-1.4159	-1.9931
С	-2.3875	-0.7691	-3.1582
Ν	-1.3906	-1.406	0.3994
С	-2.3708	-1.2536	1.4879
С	-0.8141	-2.7469	0.2864
Н	-4.599	4.5602	3.378
Н	-5.7625	3.4153	1.523
Н	-4.5159	1.935	-0.0273
Н	-2.1605	4.2529	3.7122
Η	0.2262	2.8685	2.5862
Η	0.7159	0.8235	-0.7533
Η	1.5899	1.9361	0.2894
Н	0.568	-0.6327	1.2636
Η	2.1411	-2.2502	2.1203
Η	3.2764	0.7868	-0.707
Η	4.2038	-3.486	1.5986
Η	5.2963	-0.425	-1.2228
Η	6.4994	-2.3315	-2.0159
Н	7.761	-3.1194	-1.0608
Н	7.3786	-1.4274	-0.7216
Н	-2.5726	2.4031	-1.9994
Н	-2.9628	1.099	-4.0589
Н	-1.813	-2.4913	-2.0526
Н	-2.5436	-1.3452	-4.0669
Н	-2.5105	-2.1972	2.0285
Н	-3.3608	-0.9483	1.1281
Н	-2.0116	-0.5214	2.2169
Н	-1.5708	-3.489	0.0088
Н	0.0058	-2.7676	-0.4399
Н	-0.3901	-3.0481	1.251

P4	C	-3.1297	-4.3048	2.7522
	C	-4.0446	-3.7631	1.8555
v. 6 . 2 . 3 . 4 . 4 .	C	-3.681	-2.7154	1.0049
<b>/ ~ ~ ~</b> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	C	-2.3624	-2.2252	1.0715
	C	-1.4366	-2.7495	1.9769
	C	-1.8252	-3.807	2.8226
	N	-1.7402	-1.1716	0.4024
l a the second sec	C	-0.2316	-2.0238	1.8145
945 J	C	-0.417	-1.0838	0.8178
	C	0.5608	-0.12	0.2134
	N	1.9539	-0.5219	0.4066
-1169.009597	C	2.9927	0.1956	-0.1875
	C	2.8405	1.4509	-0.7812
	C	4.2961	-0.3086	-0.0705
	C	3.9432	2.1441	-1.2974
	C	5.4049	0.3867	-0.5726
	C	5.2307	1.6189	-1.1944
	0	6.2168	2.4009	-1.7282
	C	7.5555	1.9593	-1.5409
	C	-2.369	-0.3513	-0.573
	C	-2.8107	-0.9867	-1.7474
	C	-2.4748	1.0496	-0.3938
	C	-3.3371	-0.2299	-2.7881
	C	-2.9971	1.7774	-1.4782
	C	-3.4224	1.1513	-2.6567
	N	-2.1359	1.682	0.8107
	C	-2.8845	1.218	1.9873
	C	-1.8035	3.103	0.8111
	Н	-3.4315	-5.1157	3.4102
	Н	-5.0596	-4.152	1.8209
	Н	-4.4108	-2.2836	0.3263
	Н	-1.1187	-4.2281	3.5325
	Н	0.6913	-2.1797	2.3595
	Н	0.3666	-0.0392	-0.8631
	Н	0.4127	0.8619	0.6743
	Н	2.0807	-1.5248	0.3089
	Н	1.8639	1.9169	-0.8677
	Н	4.4622	-1.2579	0.4339
	Н	3.7932	3.1098	-1.7733
	Н	6.3841	-0.063	-0.4517
	Н	8.2193	2.7053	-1.9887
	Н	7.7328	1.0072	-2.0518
	Н	7.8035	1.8897	-0.4764
	Н	-2.7081	-2.0628	-1.8715

	Н	-3.6657	-0.7131	-3.7044
	Н	-3.1204	2.8549	-1.4149
	Η	-3.8307	1.7499	-3.4672
	Η	-3.769	0.6257	1.7245
	Η	-3.242	2.0646	2.5852
	Н	-2.2334	0.6189	2.6311
	Н	-1.097	3.3458	0.0098
	Н	-1.3159	3.3692	1.7558
	Η	-2.6996	3.7248	0.7088
P5	С	-3.2068	4.7169	-2.0255
	С	-4.074	3.9779	-1.2288
	С	-3.6541	2.7906	-0.6228
	С	-2.3268	2.3634	-0.8279
	С	-1.452	3.0845	-1.6429
ျမားကြားကြားကြားကြားကြားကြားကြားကြားကြားကြ	С	-1.8962	4.2801	-2.242
Ja	Ν	-1.6486	1.2258	-0.3817
	С	-0.2269	2.3781	-1.6694
	С	-0.3527	1.25	-0.8783
	С	0.7036	0.2423	-0.5423
	Ν	1.8701	0.8799	0.0724
	С	2.9123	0.0739	0.5435
-1169.009918	С	3.7357	0.5667	1.5635
	С	3.274	-1.1412	-0.0473
	С	4.8376	-0.1623	2.0231
	С	4.3828	-1.8729	0.4045
	С	5.1683	-1.3867	1.4463
	0	6.2715	-1.9942	1.9776
	С	6.7061	-3.1938	1.3504
	С	-2.2023	0.2589	0.5024
	С	-2.6289	0.7378	1.7574
	С	-2.2566	-1.1174	0.1695
	C	-3.0928	-0.1468	2.7228
	C	-2.7195	-1.9771	1.1856
	C	-3.1319	-1.5047	2.4388
	N	-1.8992	-1.6149	-1.0942
	C	-1.6013	-3.0372	-1.2467
	С	-2.58/2	-1.0046	-2.24
	H	-3.5501	5.6376	-2.4904
	H	-5.0942	4.3231	-1.0782
	H	-4.34/2	2.212	-0.0192
	H	-1.2268	4.8578	-2.8/3
	H	0.6768	2.6696	-2.1905
	H	0.9939	-0.2488	-1.4791
	Н	0.3372	-0.5284	0.1396

	Н	1.5764	1.5564	0.7722
	Н	3.524	1.5309	2.0185
	Н	2.7091	-1.5417	-0.8835
	Н	5.4485	0.2384	2.8277
	Н	4.6056	-2.8117	-0.0905
	Н	6.9652	-3.0201	0.3006
	Н	5.9544	-3.984	1.4471
	Н	7.6112	-3.531	1.8647
	Н	-2.5596	1.796	2.0026
	Н	-3.4057	0.2199	3.6966
	Н	-2.7988	-3.0471	1.016
	Н	-3.4876	-2.2063	3.1893
	Н	-2.5153	-3.6412	-1.2198
	Н	-0.9096	-3.3862	-0.4721
	Н	-1.111	-3.2147	-2.2106
	Н	-1.8854	-0.3848	-2.8065
	Н	-3.4508	-0.396	-1.9492
	Н	-2.9645	-1.7726	-2.9256
P6	C	-0.8222	-5.0227	-0.0828
	С	-2.0615	-4.5168	0.2957
	C	-2.377	-3.1701	0.0971
P 🖉 🔍 🔔 👝	С	-1.4088	-2.3376	-0.4964
	C	-0.1567	-2.8268	-0.8708
	C	0.1369	-4.1895	-0.6675
	N	-1.426	-0.9705	-0.7744
	C	0.5726	-1.74	-1.4111
	C	-0.2195	-0.6072	-1.3561
	С	0.0794	0.7697	-1.8585
	Ν	0.5545	1.7046	-0.8482
<u> </u>	C	1.8305	1.6098	-0.2916
	С	2.085	2.312	0.8935
	C	2.9159	0.9794	-0.904
-1169.007495	C	3.3444	2.2967	1.4985
	C	4.1832	0.9532	-0.3003
	C	4.397	1.5983	0.9151
	0	5.5717	1.642	1.6119
	C	6.6208	0.805	1.1438
	C	-2.5634	-0.1393	-0.6004
	C	-3.6481	-0.4253	-1.457
	C	-2.5907	0.9405	0.3181
	C	-4.7774	0.3816	-1.4517
	C	-3.7521	1.7422	0.2645
	C	-4.8248	1.4716	-0.5969
	N	-1.5602	1.2243	1.2415

	C	-1.6495	2.4542	2.0379
	С	-1.0575	0.0691	2.0085
	Н	-0.5931	-6.0725	0.0818
	Н	-2.7934	-5.1746	0.7586
	Н	-3.3404	-2.779	0.4117
	Н	1.1045	-4.5909	-0.9549
	Н	1.5775	-1.782	-1.8101
	Н	-0.8287	1.1965	-2.3024
	Н	0.7832	0.717	-2.6983
	Н	-0.1535	1.779	-0.1072
	Н	1.29	2.8839	1.362
	Н	2.8034	0.4846	-1.8626
	Н	3.5002	2.8355	2.4289
	Н	4.9794	0.4282	-0.8162
	Н	6.3086	-0.2443	1.1117
	Н	7.4509	0.8831	1.8524
	Н	6.9832	1.1404	0.1668
	Н	-3.5979	-1.2585	-2.1561
	Н	-5.6065	0.1715	-2.1214
	Н	-3.8725	2.6011	0.9183
	Н	-5.6983	2.1189	-0.588
	Н	-1.7634	3.3351	1.3969
	Н	-2.4741	2.4046	2.7579
	Η	-0.7258	2.6066	2.6071
	Η	-0.2187	-0.4062	1.4947
	Η	-1.8441	-0.6676	2.2066
	Н	-0.6671	0.3818	2.9845
P7	C	-0.5004	-0.5136	-5.1091
2 <b>9</b>	C	-1.7974	-0.1891	-4.7233
	C	-2.2185	-0.3653	-3.4025
	C	-1.2949	-0.8776	-2.4724
	C	0.0108	-1.2064	-2.842
	C	0.4107	-1.026	-4.1802
	N	-1.4035	-1.0897	-1.1002
	C	0.6703	-1.6775	-1.6799
	C	-0.2153	-1.6164	-0.6203
	C	-0.017	-2.034	0.8012
	N C	0.5091	-0.9809	1.6591
•	C	1.8572	-0.6193	1.6232
		2.8894	-1.4728	1.2262
11 (0.007200		2.2248	0.6217	2.161
-1169.007308		4.228	-1.0634	1.2754
	C	3.5622	1.0355	2.2214
	C	4.5719	0.1953	1.7639

0	5.9105	0.4716	1.7536
С	6.3015	1.754	2.2265
С	-2.583	-0.8676	-0.3469
С	-3.631	-1.7817	-0.5675
С	-2.6646	0.1595	0.6261
С	-4.7851	-1.7114	0.2019
С	-3.8508	0.1831	1.3861
С	-4.8927	-0.7322	1.1807
Ν	-1.6497	1.1226	0.8202
С	-1.3182	1.8886	-0.3954
С	-1.6852	1.9386	2.0369
Н	-0.1884	-0.363	-6.1395
Н	-2.4914	0.2163	-5.4558
Н	-3.2255	-0.0894	-3.1035
Н	1.4235	-1.2714	-4.4871
Η	1.6939	-2.0245	-1.6207
Η	0.6036	-2.9366	0.844
Η	-0.973	-2.3581	1.2299
Η	-0.0988	-0.1593	1.574
Η	2.6848	-2.4741	0.8639
Η	1.4566	1.2878	2.5444
Η	5.0074	-1.741	0.9363
Η	3.7726	2.0135	2.6386
Η	6.0567	1.8728	3.2871
Η	5.8541	2.5524	1.625
Η	7.3882	1.8309	2.1245
Η	-3.533	-2.5702	-1.3112
Η	-5.5902	-2.425	0.0497
Η	-4.011	0.9381	2.1503
Η	-5.7909	-0.67	1.7902
Η	-1.0229	2.9152	-0.1477
Η	-0.464	1.4415	-0.9102
Η	-2.1679	1.9651	-1.0846
Η	-1.7779	1.3139	2.9319
Η	-2.5004	2.6702	2.0082
 Η	-0.7452	2.4929	2.1384
С	-3.6363	-3.3257	-3.5057
С	-4.442	-2.7026	-2.5584
С	-3.8931	-1.8382	-1.6071
С	-2.5025	-1.6173	-1.6261
С	-1.6817	-2.2274	-2.5781
С	-2.257	-3.0972	-3.5251
Ν	-1.6961	-0.7824	-0.8526
С	-0.3588	-1.7844	-2.3375

P8	С	-0.3772	-0.9152	-1.2627
	C	0.7815	-0.2458	-0.5891
	Ν	1.7411	-1.2235	-0.0727
O O O O O O O O O	C	2.7746	-0.7886	0.764
	C	3.3222	0.4975	0.7119
	C	3.3984	-1.722	1.6013
	C	4.4122	0.8624	1.5173
	C	4.4831	-1.363	2.4089
	C	4.9959	-0.068	2.3732
	0	6.0591	0.1534	3.2034
•	C	6.6698	1.4355	3.1346
-1169.009919	C	-2.1684	0.035	0.2081
	C	-2.7297	-0.6235	1.3161
	C	-2.0001	1.441	0.1752
	C	-3.1049	0.1083	2.4367
	C	-2.381	2.14	1.3338
	С	-2.924	1.487	2.4481
	Ν	-1.5159	2.1085	-0.9607
	C	-2.3482	1.951	-2.162
	С	-0.8965	3.4207	-0.8072
	Н	-4.081	-3.9909	-4.2415
	Н	-5.5144	-2.8828	-2.5613
	Н	-4.5344	-1.3399	-0.886
	Н	-1.6348	-3.5817	-4.2724
	Н	0.5316	-2.0821	-2.8781
	Н	0.4575	0.3922	0.2368
	Н	1.2729	0.3958	-1.331
	Н	1.2622	-2.0324	0.314
	Н	2.9167	1.246	0.0379
	Н	3.0416	-2.7482	1.6359
	Н	4.7814	1.8789	1.4396
	Н	4.9369	-2.1058	3.0598
	Н	7.0585	1.6356	2.1305
	Н	5.9762	2.2201	3.4542
	Н	7.5181	1.4393	3.8258
	Н	-2.8335	-1.7065	1.3275
	Н	-3.5204	-0.3958	3.3051
	Н	-2.2901	3.2211	1.3851
	Н	-3.2104	2.0643	3.3237
	Н	-3.3123	1.4698	-1.9589
	Н	-1.8097	1.3596	-2.9091
	Н	-2.5742	2.924	-2.6138
	Н	-1.6438	4.1998	-0.6208
	Н	-0.3582	3.6849	-1.7245

	Н	-0.1605	3.4192	0.0043
Р9	C	-1.3565	4.6184	0.5765
	C	-2.23	3.9507	1.4274
	C	-2.3071	2.555	1.4244
	C	-1.4696	1.8365	0.5476
<b>T</b>	C	-0.6083	2.496	-0.3311
	C	-0.5443	3.9033	-0.3083
	N	-1.3435	0.465	0.3108
	C	0.0513	1.505	-1.0951
	C	-0.3823	0.2607	-0.6734
	C	0.0882	-1.1028	-1.0847
	Ν	1.3919	-1.1447	-1.7543
	C	2.5686	-0.807	-1.0848
	C	2.7106	-0.8241	0.3046
	C	3.7181	-0.5528	-1.8467
	C	3.9352	-0.5125	0.9093
	C	4.9464	-0.242	-1.248
	C	5.0556	-0.206	0.1384
	0	6.1839	0.092	0.8505
	C	7.3097	0.5379	0.1049
-1169.010165	C	-2.0448	-0.5434	1.0309
	C	-1.8693	-0.5532	2.4288
	C	-2.8233	-1.5275	0.3745
	C	-2.4424	-1.5578	3.2002
	C	-3.3723	-2.5348	1.1935
	C	-3.1873	-2.5524	2.5815
	N	-3.0981	-1.4828	-1.0083
	C	-3.4983	-2.724	-1.6721
	C	-3.8875	-0.3064	-1.4043
	Н	-1.3075	5.7041	0.5928
	Н	-2.8651	4.5199	2.1022
	Н	-3.0072	2.0472	2.0812
	Н	0.1306	4.4308	-0.9763
	Н	0.8075	1.6801	-1.8492
	Н	0.0959	-1.7979	-0.2376
	Н	-0.6287	-1.5078	-1.8062
	Н	1.3431	-0.7286	-2.6784
	Н	1.8722	-1.0637	0.9509
	Н	3.6652	-0.5903	-2.9321
	Н	4.0101	-0.5094	1.9936
	Н	5.7923	-0.0432	-1.8963
	Н	7.0718	1.4352	-0.4764
	Н	7.6953	-0.2595	-0.5387
	Н	8.0984	0.8025	0.8158

	Н	-1.2505	0.1969	2.918
	Н	-2.2955	-1.5724	4.2768
	Н	-3.9919	-3.3206	0.7711
	Н	-3.6365	-3.3443	3.1756
	Н	-2.8335	-3.5526	-1.4034
	Н	-4.5342	-2.9926	-1.4366
	Н	-3.4237	-2.6018	-2.7586
	Н	-4.3605	-0.4658	-2.3805
	Н	-3.2563	0.5786	-1.5154
	Н	-4.6863	-0.0914	-0.685

### **Investigation on the Enantiomerization Barrier**

The reaction was conducted at 1 mg/mL concentration in a sealed tube and heated at the specified temperature. The change in ee over time was determined by HPLC. The barrier to rotation for **4aa** was obtained by kinetic of racemization of an enantiomer.

This data was plotted as (In[ee₀/ee_t]) versus time (seconds). The gradient of this graph gives the racemization constant ( $k_{\text{racemization}} = 2 \times k_{\text{enantiomerization}}$ ) at the specified temperature. The barrier to rotation,  $\Delta G^{\neq}_{\text{enantiomerization}}$ , was calculated using the following Eyring equation, R =Gas constant = 8.3145 J·K⁻¹·mol⁻¹, h = Planck constant = 6.62608 x 10⁻³⁴ J·s,  $k_{\text{B}}$  = Boltzmann constant = 1.38066 x 10⁻²³ J·K⁻¹, and T₁ = temperature racemization study was conducted at, in Kelvin.

$$\Delta G^{\neq}_{\text{enantiomerization}} = RT_1 \ln \frac{k_B T_1}{h k_{\text{enantiomerization}}}$$

Racemization of 4aa in i-PrOH at 80 °C



Table S4. Investigation on the enantiomerization barrier of 4aa

Time (seconds)	Enantiomeric Excess (ee)	First Order Racemization (ln[ee ₀ /ee _t ])	
0	91.50	0.00000	
1800	91.40	0.00109	
3600	88.48	0.03356	

7200	86.02	0.06176
14400	81.72	0.11304
21600	76.13	0.18390
28800	72.36	0.23469
36000	68.60	0.28805
43200	63.62	0.36341



 $k_{\text{racemization}} (80 \text{ }^{\circ}\text{C}) = 8.32943 \times 10^{-6} \text{ s}^{-1}$ 

 $k_{\text{enantiomerization}} (80 \text{ °C}) = 4.16472 \times 10^{-6} \text{ s}^{-1}$ 

 $\Delta G^{\neq}_{enantiomerization} = 123.369 \text{ kJ/mol} = 29.486 \text{ kcal/mol}$ 

 $k_{\text{racemization}} (25 \text{ °C}) = 3.02746 \times 10^{-9} \text{ s}^{-1}$ 

 $t_{1/2} (25^{\circ} \text{ C}) = 7.26 \text{ years}$ 

NMR Spectra of 1



100 90 f1 (ppm)


^{200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0} f1 (ppm)



## 







S40

## **NMR Spectra of Products**











































## 



























10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)
























## 7.5.781 7.5.665 7.7.565 7.7.565 7.7.565 7.7.565 7.7.1870 7.7.1870 7.7.1870 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.11282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.1282 7.7.128











S85





## **HPLC Traces**






















































































































