Supporting Information

VisibleLight-InducedPhotoredox-CatalyzedAssembly-PointDi/Trifunctionalization of Diazomethyl Radicals

Xue-Cen Xu, Yuan Sang, Ming Yang, Bo-Wen He, Yi-Chong Zhang, Hai-Yan Yuan* and Yu-Long Zhao*

Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China; E-mail: yuanhy034@nenu.edu.cn; zhaoyl351@nenu.edu.cn

Table of contents

I. General Information	S2
II. Synthetic Procedures and Analytical Data of Compounds 3	
III. Synthetic Procedures and Analytical Data of Compounds 4	S14-S16
IV. Synthetic Procedures and Analytical Data of Compounds 6	S17-S19
V. Synthetic Procedures and Analytical Data of Compounds 8	S20-S26
VI. Synthetic Procedures and Analytical Data of Compounds 9	S27-S29
VII. Synthetic Procedures and Analytical Data of Compounds 10	S30-S31
VIII. The Crystal Structure of Compounds 6a and 9e	
IX. Stern Volmer Analysis	
X. References	S34
XI. Computational Details (Cartesian Coordinates of	Optimized
Structures)	S35-S38
XII. Copies of ¹ H NMR and ¹³ C NMR Spectra	S39-S100

I. General Information

All reagents were commercial and were used without further purification. The substrates were prepared according to the previous method reported. Chromatography was carried on flash silica gel (300-400 mesh). All reactions were monitored by TLC, which was performed on percolated aluminum sheets of silica gel 60 (F254). Unless noted, the ¹H NMR spectra were recorded at 500 MHz, 600 MHz in CDCl₃, the ¹³C NMR spectra were recorded at 151 MHz in CDCl₃ with TMS as internal standard, and the ¹⁹F NMR spectra were recorded at 565MHz in CDCl₃. All coupling constants (Jvalues) were reported in Hertz (Hz). High-resolution mass spectra (HRMS) were obtained using a Bruker micro TOF II focus spectrometer (ESI). The α-diazosulfonium triflates 1^1 and ethene-1,1-dividibenzene 7^2 were prepared according to the reported literature procedures. All of α-diazosulfonium triflates the and ethene-1,1-divldibenzene are known compounds. Compounds 2 and 5 are commercially available drugs from Energy Chemistry. The compound 6a and 9e were glued on glass fiber, respectively. Data were collected at 293 K on a Bruker SMART APEX II CCD diffractometer using graphite-monochromated Mo Kradiation (λ = 0.71073Å) and IP technique in the range $2.19^{\circ} < \theta < 27.48^{\circ}$. Empirical absorption correction was applied. The structures were solved by the direct method and refined by the full-matrix least-squares method on F2 using the SHELXS 97 crystallographic software package. Anisotropic thermal parameters were used to refine all non-hydrogen atoms. Hydrogen atoms were located from difference Fourier maps. Blue LEDs (15 W, $\lambda = 465$ nm) was purchased from Sigma-Aldrich (SynLED parallel photoreactor Z742680). Quartz tube (10 mL) was used as the irradiation vessel. Density functional theory (DFT) calculations were performed using the Gaussian 09 package³ to calculate the structures and energies of complexes. All of the molecular structures were optimized at a theoretical level of $(U)B3LYP-D3^4/6-3lg(d,p)^5$. The calculations were carried out with the implicit universal solvation model based on Solute Electron Density (SMD)⁶. Frequency calculations were carried out at the same level to confirm all the optimized structures as minima (no imaginary frequency) or transition states (only one imaginary frequency), and provided the thermal relative Gibbs free energy correction. Marcus theory has been used to investigate the kinetics for the SET reaction pathway for radical and non-radical bimolecular reactions.⁷

II. Synthetic Procedures and Analytical Data of Compounds 3

Substituted arenes **2a-r** (0.6 mmol, 3.0 equiv), α -diazosulfonium triflates **1** (0.2 mmol, 1.0 equiv), 4CzIPN (0.006 mmol, 3.0 mol%) and THF (2.0 mL) were added to a 10 mL Schlenk tube. The mixture was then stirred at room temperature under N₂ atmosphere and irradiated with 15 W blue LEDs for 24 h. After **1** were consumed (monitored by TLC), the reaction mixture was concentrated, and the residue was purified by silica gel column chromatography to give the desired product **3**.

A gram-scale synthesis of compound 3aa:

Substituted aniline **2a** (1.61 g, 15.0 mmol), α -diazosulfonium triflates **1a** (2.23 g, 5.0 mmol), 4CzIPN (0.12 g, 0.15 mmol) and THF (50 mL) were added to a round-bottomed flask. The mixture was then stirred at room temperature under N₂ atmosphere and irradiated with 15 W blue LEDs for 36 h. After **1** were consumed (monitored by TLC), the reaction mixture was concentrated, and the residue was purified by silica gel column chromatography (EA/PE = 3/10) to give the desired product **3aa** (0.97 g, 65%) as yellow oil.

Ethyl 2,2-bis(4-(methylamino)phenyl)acetate (3aa):

Following the general procedure, **3aa** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (45.4 mg, 76% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.02 (d, *J* = 8.3 Hz, 4H), 6.45 (d, *J* = 8.6 Hz, 4H), 4.70 (s, 1H), 4.07 (q, *J* = 7.1 Hz, 2H), 2.71 (s, 6H), 1.14 (t, *J* = 7.2 Hz, 3H) ; ¹³C NMR (151 MHz, CDCl₃) δ 173.60, 148.24, 129.30, 128.21, 112.41, 60.79, 55.53, 30.80, 14.20; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₃N₂O₂⁺ 299.1754; Found 299.1756. The NMR data are consistent with the reported values.⁸

Ethyl 2,2-bis(3-methoxy-4-(methylamino)phenyl)acetate (3ab):

Following the general procedure, **3ab** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (53.8 mg, 75% yield);¹H NMR (500 MHz, CDCl₃) δ 6.82 (dd, *J* = 8.1, 1.9 Hz, 2H), 6.74 (d, *J* = 1.9 Hz, 2H), 6.51 (d, *J* = 8.1 Hz, 2H), 4.83 (s, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 6H), 2.83 (s, 6H), 1.25 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.58, 146.83, 138.37, 127.32, 121.23, 109.76, 108.96, 60.78, 56.22, 55.43, 30.40, 14.24; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₇N₂O₄⁺ 359.1965; Found 359.1974.

Ethyl 2,2-bis(2-methyl-4-(methylamino)phenyl)acetate (3ac):

Following the general procedure, **3ac** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (46.4 mg, 71% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.89 (d, *J* = 8.3 Hz, 2H), 6.43 (d, *J* = 1.8 Hz, 2H), 6.39 (dd, *J* = 8.3, 2.7 Hz, 2H), 5.06 (s, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 2.80 (s, 6H), 2.17 (s, 6H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.88, 148.17, 137.13, 129.10, 126.12, 114.59, 109.99, 60.77, 49.62, 30.77, 19.80, 14.28; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₇N₂O₂⁺ 327.2067; Found 327.2070.

Ethyl 2,2-bis(3-methyl-4-(methylamino)phenyl)acetate (3ad):

Following the general procedure, **3ad** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (42.4 mg, 65% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.08 (d, *J* = 8.4 Hz, 2H), 7.00 (s, 2H), 6.54 (d, *J* = 8.3 Hz, 2H), 4.78 (s, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.54 (s, 2H), 2.86 (s, 6H), 2.08 (s, 6H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.75, 146.14, 130.13, 127.85, 127.08, 121.99, 109.12,

60.73, 55.60, 30.87, 17.50, 14.22; HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{20}H_{27}N_2O_2^+$ 327.2067; Found 327.2070.

Ethyl 2,2-bis(3-fluoro-4-(methylamino)phenyl)acetate (3ae):

Following the general procedure, **3ae** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (40.1 mg, 60% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.94 (s, 2H), 6.93 – 6.91 (m, 2H), 6.60 (t, J = 8.6 Hz, 2H), 4.76 (s, 1H), 4.18 (q, J = 7.1 Hz, 2H), 3.90 (s, 2H), 2.85 (s, 6H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.80, 151.36 (d, J = 239.1 Hz), 136.85 (d, J = 11.6 Hz), 127.30 (d, J = 6.3 Hz), 124.47 (d, J = 3.2 Hz), 114.45 (d, J = 19.6 Hz), 111.24 (d, J = 3.8 Hz), 61.09, 55.05, 30.26, 14.16. ¹⁹F NMR (565 MHz, CDCl₃) δ -136.48; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₁F₂N₂O₂⁺ 335.1566; Found 335.1565.

Ethyl 2,2-bis(3-chloro-4-(methylamino)phenyl)acetate (3af):

Following the general procedure, **3af** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (42.6 mg, 58% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, *J* = 2.1 Hz, 2H), 7.08 (dd, *J* = 8.4, 2.1 Hz, 2H), 6.58 (d, *J* = 8.4 Hz, 2H), 4.73 (s, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 2.87 (s, 6H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.73, 144.07, 128.92, 127.86, 127.68, 119.03, 110.56, 61.12, 54.81, 30.44, 14.16; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₁Cl₂N₂O₂⁺ 367.0975; Found 367.0964.

Ethyl 2,2-bis(3-bromo-4-(methylamino)phenyl)acetate (3ag):

Following the general procedure, **3ag** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (48.4 mg, 53% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.35 (d, *J* = 2.1 Hz, 2H), 7.13 (dd, *J* = 8.4, 2.1 Hz, 2H), 6.56 (d, *J* = 8.4 Hz, 2H), 4.72 (s, 1H), 4.31 (s, 2H), 4.19 (q, *J* = 7.1 Hz, 2H), 2.87 (s, 6H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.70, 145.05, 132.11, 128.54, 128.14, 110.57, 109.51, 61.13, 54.63, 30.63, 14.17; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₁Br₂N₂O₂⁺ 454.9964; Found 454.9963.

Ethyl 2,2-bis(2-chloro-4-(methylamino)phenyl)acetate (3ah):

Following the general procedure, **3ah** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (36.7 mg, 50% yield); ¹H NMR (600 MHz, CDCl₃) δ 6.83 (d, *J* = 8.5 Hz, 2H), 6.58 (d, *J* = 2.4 Hz, 2H), 6.39 (dd, *J* = 8.5, 2.5 Hz, 2H), 5.49 (s, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 2.74 (s, 6H), 1.18 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.69, 149.32, 135.15, 130.10, 123.98, 112.76, 111.17, 61.16, 50.03, 30.55, 14.19; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₁Cl₂N₂O₂⁺ 367.0975; Found 367.0966.

Ethyl 2,2-bis(2-bromo-4-(methylamino)phenyl)acetate (3ai):

Following the general procedure, **3ai** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (43.8 mg, 48% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.85 (d, *J* = 8.5 Hz, 2H), 6.82 (d, *J* = 2.5 Hz, 2H), 6.47 (dd, *J* = 8.5, 2.5 Hz, 2H), 5.50 (s, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.77 (s, 2H), 2.79 (s, 6H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.64, 149.35, 130.11, 126.02, 125.77, 116.08, 111.70, 61.19, 55.20, 30.54, 14.22; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₁Br₂N₂O₂⁺ 454.9964; Found 454.9965.

Ethyl 2,2-bis(4-(ethylamino)phenyl)acetate (3aj):

Following the general procedure, **3aj** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (49.0 mg, 75% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.09 (d, J = 8.6 Hz, 4H), 6.53 (d, J = 8.5 Hz, 4H), 4.78 (s, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.52 (s, 2H), 3.12 (q, J = 7.1 Hz, 4H), 1.24 – 1.21 (m, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 173.62, 147.36, 129.32, 128.10, 112.66, 60.78, 55.51, 38.53, 14.93, 14.21; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₂₆N₂NaO₂⁺ 349.1886; Found 349.1893. The NMR data are consistent with the reported values.⁸

Ethyl 2,2-bis(4-(phenylamino)phenyl)acetate (3ak):

Following the general procedure, **3ak** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (44.8 mg, 53% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.25 – 7.23 (m, 4H), 7.21 (d, *J* = 8.5 Hz, 4H), 7.05 (d, *J* = 7.5 Hz, 4H), 7.02 (d, *J* = 8.5 Hz, 4H), 6.91 (t, *J* = 7.4 Hz, 2H), 5.68 (s, 2H), 4.88 (s, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 1.31 – 1.18 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.07, 142.99, 142.20, 131.52, 129.45, 129.34, 121.04, 117.89, 117.70, 61.10, 55.80, 14.22; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₈H₂₇N₂O₂⁺ 423.2067; Found 423.2059. The NMR data are consistent with the reported values.⁸

Ethyl 2,2-bis(4-((4-methoxyphenyl)amino)phenyl)acetate (3al):

Following the general procedure, **3al** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (51.2 mg, 53% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.07 (d, J = 8.6 Hz, 4H), 6.97 (d, J = 8.9 Hz, 4H), 6.78 (d, J = 2.1 Hz, 4H), 6.76 (d, J = 2.3 Hz, 4H), 5.40 (s, 2H), 4.76 (s, 1H), 4.11 (q, J = 7.1 Hz, 2H), 3.71 (s, 6H), 1.18 (t,

J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.24, 155.27, 144.14, 135.68, 130.27, 129.39, 122.14, 115.62, 114.67, 60.97, 55.67, 55.59, 14.20; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₀H₃₀N₂NaO₄⁺ 505.2098; Found 505.2090.

Ethyl 2,2-bis(4-(dimethylamino)phenyl)acetate (3am-I):

Following the general procedure, **3am-I** was isolated by flash chromatography on silica (EA/PE = 1/5) as yellow oil (25.5 mg, 39% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.17 (d, *J* = 8.5 Hz, 4H), 6.68 (d, *J* = 8.6 Hz, 4H), 4.83 (s, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 2.91 (s, 12H), 1.24 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.58, 149.60, 129.13, 127.50, 112.63, 60.77, 55.35, 40.64, 14.22; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₇N₂O₂⁺ 327.2067; Found 327.2076. The NMR data are consistent with the reported values.⁸

Ethyl 2-(2-(dimethylamino)phenyl)-2-(4-(dimethylamino)phenyl)acetate (3am-II):

Following the general procedure, **3am-II** was isolated by flash chromatography on silica (EA/PE = 1/5) as yellow oil (22.9 mg, 35% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.23 – 7.20 (m, 4H), 7.11 (d, *J* = 7.7 Hz, 1H), 7.03 (t, *J* = 6.5 Hz, 1H), 6.71 (d, *J* = 8.7 Hz, 2H), 5.36 (s, 1H), 4.27 – 4.16 (m, 1H), 4.13 – 4.07 (m, 1H), 2.93 (s, 6H), 2.63 (s, 6H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.78, 152.70, 149.62, 136.33, 129.76, 129.49, 127.76, 126.31, 124.25, 120.82, 112.63, 60.54, 50.94, 45.18, 40.60, 14.32; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₂₇N₂O₂⁺ 327.2067; Found 327.2076.

Ethyl 2,2-bis(4-amino-3-methylphenyl)acetate (3an):

Following the general procedure, **3an** was isolated by flash chromatography on silica (EA/PE = 1/5) as yellow oil (43.6 mg, 73% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.09 – 6.87 (m, 4H), 6.60 (d, *J* = 7.9 Hz, 2H), 4.76 (s, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.54 (s, 4H), 2.12 (s, 6H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.57, 143.50, 130.54, 129.48, 126.96, 122.37, 114.96, 60.84, 55.61, 17.49, 14.21; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₃N₂O₂⁺ 299.1754; Found 299.1754. The NMR data are consistent with the reported values.⁸

Ethyl 2,2-bis(4-amino-3-methoxyphenyl)acetate (3ao):

Following the general procedure, **3ao** was isolated by flash chromatography on silica (EA/PE = 1/5) as yellow oil (50.2 mg, 76% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.76 (d, *J* = 1.8 Hz, 2H), 6.71 (d, *J* = 8.2 Hz, 2H), 6.64 (d, *J* = 8.0 Hz, 2H), 4.81 (s, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.79 (s, 6H), 3.74 (s, 4H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.37, 147.24, 135.13, 129.39, 121.04, 114.70, 110.81, 60.90, 56.24, 55.46, 14.23; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₃N₂O₄⁺ 331.1652; Found 331.1652. The NMR data are consistent with the reported values.⁸

Ethyl 2,2-bis(4-(methylthio)phenyl)acetate (3ap):

Following the general procedure, **3ap** was isolated by flash chromatography on silica (EA/PE = 1/10) as yellow oil (34.6 mg, 52% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.11 (d, *J* = 2.3 Hz, 8H), 4.81 (s, 1H), 4.10 (q, *J* = 7.1 Hz, 2H), 2.36 (s, 6H), 1.15 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.31, 137.51, 135.54, 128.98, 126.77,

61.28, 56.05, 15.83, 14.15; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{20}NaO_2S_2^+$ 355.0797; Found 355.0790.

Ethyl 2,2,2-tris(4-methoxyphenyl)acetate (3aq):

Following the general procedure, **3aq** was isolated by flash chromatography on silica (EA/PE = 1/10) as yellow oil (66.7 mg, 82% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.97 (d, *J* = 8.9 Hz, 6H), 6.71 (d, *J* = 8.9 Hz, 6H), 4.17 (q, *J* = 7.1 Hz, 2H), 3.70 (s, 9H), 1.12 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 174.16, 158.21, 135.68, 131.28, 112.91, 65.44, 61.56, 55.20, 14.02; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₅H₂₆NaO₅⁺ 429.1672; Found 429.1673.

Ethyl 2,2,2-tris(4-ethoxyphenyl)acetate (3ar):

Following the general procedure, **3ar** was isolated by flash chromatography on silica (EA/PE = 1/10) as yellow oil (69.1 mg, 77% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.04 (d, *J* = 8.9 Hz, 6H), 6.77 (d, *J* = 8.9 Hz, 6H), 4.26 (q, *J* = 7.1 Hz, 2H), 4.01 (q, *J* = 7.0 Hz, 6H), 1.39 (t, *J* = 7.0 Hz, 9H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.70, 143.47, 142.28, 138.84, 129.66, 128.11, 128.07, 127.68, 127.48, 127.14, 124.93, 61.00, 47.06, 14.22; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₈H₃₂NaO₅⁺ 471.2142; Found 471.2131.

Benzyl 2,2-bis(4-(methylamino)phenyl)acetate (3ba):

Following the general procedure, **3ba** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (50.5 mg, 70% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.27 (m, 5H), 7.10 (d, J = 8.5 Hz, 4H), 6.53 (d, J = 8.5 Hz, 4H), 5.15 (s, 2H), 4.87 (s, 1H), 3.66 (s, 2H), 2.80 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 173.44, 148.30, 136.07, 129.34, 128.44, 128.10, 128.02, 127.97, 112.39, 66.54, 55.44, 30.80; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₃H₂₄N₂NaO₂⁺ 383.1730; Found 383.1733.

4-Methylbenzyl 2,2-bis(4-(methylamino)phenyl)acetate (3ca)

Following the general procedure, **3ca** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (50.9 mg, 68% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, *J* = 7.8 Hz, 2H), 7.13 – 7.09 (m, 6H), 6.53 (d, *J* = 8.6 Hz, 4H), 5.11 (s, 2H), 4.85 (s, 1H), 3.65 (s, 2H), 2.80 (s, 6H), 2.33 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.48, 148.27, 137.83, 133.04, 129.34, 129.12, 128.26, 128.04, 112.38, 66.53, 55.43, 30.81, 21.21; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₄H₂₆N₂NaO₂⁺ 397.1886; Found 397.1893.

4-Chlorobenzyl 2,2-bis(4-(methylamino)phenyl)acetate (3da):

С

Following the general procedure, **3da** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (53.7 mg, 68% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.27 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 7.08 (d, J = 8.3 Hz, 4H), 6.53 (d, J = 8.5 Hz, 4H), 5.10 (s, 2H), 4.85 (s, 1H), 3.67 (s, 2H), 2.80 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 172.29, 147.31, 133.57, 132.84, 128.43, 128.28, 127.57, 126.71,

111.35, 64.62, 54.39, 29.75; HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{23}H_{23}ClN_2NaO_2^+$ 417.1340; Found 417.1330.

4-Bromobenzyl 2,2-bis(4-(methylamino)phenyl)acetate (3ea):

Following the general procedure, **3ea** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (58.9 mg, 67% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 8.4 Hz, 2H), 7.13 (d, *J* = 8.2 Hz, 2H), 7.08 (d, *J* = 8.6 Hz, 4H), 6.53 (d, *J* = 8.5 Hz, 4H), 5.09 (s, 2H), 4.85 (s, 1H), 3.70 (s, 2H), 2.80 (s, 6H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.28, 147.31, 134.09, 130.53, 128.71, 128.28, 126.69, 120.99, 111.35, 64.64, 54.38, 29.75; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₄BrN₂O₂⁺ 439.1016; Found 439.1011.

4-(Trifluoromethyl)benzyl 2,2-bis(4-(methylamino)phenyl)acetate (3fa):

Following the general procedure, **3fa** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (53.1 mg, 62% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, *J* = 8.0 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.4 Hz, 4H), 6.54 (d, *J* = 8.5 Hz, 4H), 5.19 (s, 2H), 4.88 (s, 1H), 3.68 (s, 2H), 2.80 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 173.25, 148.39, 140.10, 129.31, 127.95, 127.58, 125.39 (q, *J* = 3.5 Hz), 112.39, 65.47, 55.42, 30.76. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.59; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₄H₂₄F₃N₂O₂⁺ 429.1784; Found 429.1789.

Prop-2-yn-1-yl 2,2-bis(4-(methylamino)phenyl)acetate (3ga):

Following the general procedure, **3ga** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (46.3 mg, 75% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.05 (d, *J* = 8.5 Hz, 4H), 6.48 (d, *J* = 8.6 Hz, 4H), 4.79 (s, 1H), 4.64 (d, *J* = 2.4 Hz, 2H), 3.62 (s, 2H), 2.74 (s, 6H), 2.37 (t, *J* = 2.5 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 171.75, 147.35, 128.27, 126.49, 111.37, 76.69, 73.86, 54.04, 51.27, 29.74; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₉H₂₁N₂O₂⁺ 309.1598; Found 309.1589.

1-(4-Methoxyphenyl)-2,2-bis(4-(methylamino)phenyl)ethan-1-one (3ha):

Following the general procedure, **3ha** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (46.9 mg, 65% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.9 Hz, 2H), 7.06 (d, *J* = 8.5 Hz, 4H), 6.85 (d, *J* = 8.9 Hz, 2H), 6.54 (d, *J* = 8.5 Hz, 4H), 5.77 (s, 1H), 3.81 (s, 3H), 3.67 (s, 2H), 2.79 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 197.92, 163.04, 148.11, 131.22, 130.23, 129.83, 128.76, 113.61, 112.58, 57.56, 55.41, 30.80; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₃H₂₅N₂O₂⁺ 361.1911; Found 361.1913.

1-(4-Chlorophenyl)-2,2-bis(4-(methylamino)phenyl)ethan-1-one (3ia):

Following the general procedure, **3ia** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow oil (43.1 mg, 59% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, *J* = 8.6 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.04 (d, *J* = 8.5 Hz, 4H), 6.55 (d, *J* = 8.5 Hz, 4H), 5.74 (s, 1H), 2.80 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 198.17, 148.27, 138.93, 135.53, 130.36, 129.81, 128.74, 127.97, 112.63, 58.05, 30.74; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₂ClN₂O⁺ 365.1415; Found 365.1415.

III. Synthetic Procedures and Analytical Data of Compounds 4

Substituted anilines **2s-w** (0.6 mmol, 3.0 equiv), α -diazosulfonium triflates **1a** (0.2 mmol, 1.0 equiv), 4CzIPN (0.006 mmol, 3.0 mol%) and THF (2.0 mL) were added to a 10 mL Schlenk tube. The mixture was then stirred at room temperature under N₂ atmosphere and irradiated with 15 W blue LEDs for 18 h. After **1** were consumed (monitored by TLC), the reaction mixture was concentrated, and the residue was purified by silica gel column chromatography to give the desired product **4**.

Ethyl 2-(4-aminophenyl)-2-(phenylamino)acetate (4a):

Following the general procedure, **4a** was isolated by flash chromatography on silica (EA/PE = 1/5) as yellow oil (41.1 mg, 76% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, *J* = 8.3 Hz, 2H), 7.12 (t, *J* = 7.7 Hz, 2H), 6.68 (t, *J* = 7.3 Hz, 1H), 6.64 (d, *J* = 8.2 Hz, 2H), 6.56 (d, *J* = 7.9 Hz, 2H), 4.94 (s, 1H), 4.83 (s, 1H), 4.27 – 4.16 (m, 1H), 4.15 – 4.09 (m, 1H), 3.67 (s, 2H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.34, 146.40, 146.22, 129.18, 128.26, 127.35, 117.87, 115.30, 113.38, 61.59, 60.28, 14.11; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₉N₂O₂⁺ 271.1441; Found 271.1441. The NMR data are consistent with the reported values.⁸

Ethyl 2-(4-amino-3-fluorophenyl)-2-((2-fluorophenyl)amino)acetate (4b):

Following the general procedure, **4b** was isolated by flash chromatography on silica (EA/PE = 1/5) as yellow oil (31.9 mg, 52% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.12 (d, *J* = 11.7 Hz, 1H), 7.06 (d, *J* = 8.2 Hz, 1H), 7.02 – 6.93 (m, 1H), 6.85 (t, *J* = 7.7 Hz, 1H), 6.73 (t, *J* = 8.6 Hz, 1H), 6.66 – 6.56 (m, 1H), 6.42 (t, *J* = 8.2 Hz, 1H), 5.13 (s, 1H), 4.93 (d, *J* = 5.9 Hz, 1H), 4.26 – 4.21 (m, 1H), 4.18 – 4.13 (m, 1H), 3.73 (s, 2H), 1.22 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.35, 152.39 (d, *J* = 239.8 Hz), 150.81 (d, *J* = 240.1 Hz), 134.60 (d, *J* = 13.0 Hz), 134.42 (d, *J* = 11.5 Hz), 127.69 (d, *J* = 5.7 Hz), 124.41 (d, *J* = 3.6 Hz), 123.22 (d, *J* = 3.3 Hz), 117.56 (d, *J* = 6.9 Hz), 116.92 (d, *J* = 3.9 Hz), 114.62 (d, *J* = 18.3 Hz), 114.08 (d, *J* = 19.7 Hz), 112.98 (d, *J* = 3.0 Hz), 61.90, 59.69, 14.06. ¹⁹F NMR (565 MHz, CDCl₃) δ -134.27, -135.46; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇F₂N₂O₂⁺ 307.1253; Found 307.1251.

Ethyl 2-(4-amino-3-bromophenyl)-2-((2-bromophenyl)amino)acetate (4c):

Following the general procedure, **4c** was isolated by flash chromatography on silica (EA/PE = 1/5) as yellow oil (49.7 mg, 58% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.53 (s, 1H), 7.42 (d, *J* = 7.9 Hz, 1H), 7.20 (d, *J* = 8.3 Hz, 1H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 8.3 Hz, 1H), 6.56 (t, *J* = 7.5 Hz, 1H), 6.35 (d, *J* = 8.0 Hz, 1H), 5.65 (d, *J* = 5.6 Hz, 1H), 4.91 (d, *J* = 5.5 Hz, 1H), 4.27 – 4.21 (m, 1H), 4.19 – 4.13 (m, 1H), 4.11 (s, 2H), 1.23 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.13, 144.16, 142.85, 132.50, 131.22, 128.34, 127.96, 127.07, 118.56, 115.84, 112.23, 110.11, 109.38, 62.04, 59.71, 14.07; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₆Br₂N₂NaO₂⁺ 448.9471; Found 448.9467.

Ethyl 2-(4-amino-2-chlorophenyl)-2-((3-chlorophenyl)amino)acetate (4d):

Following the general procedure, **4d** was isolated by flash chromatography on silica (EA/PE = 1/5) as yellow oil (46.8 mg, 69% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.15 (d, *J* = 8.4 Hz, 1H), 7.01 (t, *J* = 8.0 Hz, 1H), 6.71 (d, *J* = 2.4 Hz, 1H), 6.64 (d, *J* = 7.7 Hz, 1H), 6.55 (s, 1H), 6.51 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.41 (d, *J* = 8.0 Hz, 1H), 5.40 (d, *J* = 5.5 Hz, 1H), 5.02 (d, *J* = 6.0 Hz, 1H), 4.26 – 4.19 (m, 1H), 4.16 – 4.10 (m, 1H), 3.75 (s, 2H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.55, 147.38, 146.97, 134.88, 134.70, 130.18, 128.75, 124.39, 117.93, 115.65, 114.20, 113.32, 111.50, 61.94, 56.34, 14.02; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₆H₁₇Cl₂N₂O₂⁺ 339.0662; Found 339.0667.

Following the general procedure, **4e** was isolated by flash chromatography on silica (EA/PE = 1/5) as yellow oil (53.9 mg, 63% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.13 (d, *J* = 8.4 Hz, 1H), 6.95 (t, *J* = 8.0 Hz, 1H), 6.90 (d, *J* = 2.4 Hz, 1H), 6.78 (d, *J* = 7.8 Hz, 1H), 6.73 (s, 1H), 6.55 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.44 (d, *J* = 8.2 Hz, 1H), 5.38 (d, *J* = 5.6 Hz, 1H), 5.03 (d, *J* = 5.9 Hz, 1H), 4.26 – 4.19 (m, 1H), 4.1– 4.10 (m, 1H), 3.73 (s, 2H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.51, 147.49, 147.08, 130.48, 128.71, 125.94, 124.99, 123.10, 120.83, 118.88, 116.35, 114.79, 111.95, 61.96, 58.65, 14.02; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₆H₁₆Br₂N₂NaO₂⁺ 448.9471; Found 448.9475.

IV. Synthetic Procedures and Analytical Data of Compounds 6

Substituted heteroarenes **5a-f** (0.6 mmol, 3.0 equiv), α -diazosulfonium triflates **1a** (0.2 mmol, 1.0 equiv), PC (0.006 mmol, 3.0 mol%) and DCM (2.0 mL) were added to a 10 mL Schlenk tube. The mixture was then stirred at room temperature under N₂ atmosphere and irradiated with 15 W blue LEDs for 24 h. After **1** were consumed (monitored by TLC), the reaction mixture was concentrated, and the residue was purified by silica gel column chromatography to give the desired product **6**.

Ethyl 2,2-bis(3-methyl-1*H*-indol-2-yl)acetate (6a):

Following the general procedure, **6a** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow solid (47.8 mg, 69% yield); mp 150.5-151.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.55 (s, 2H), 7.51 (d, *J* = 7.7 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.15 (t, *J* = 7.5 Hz, 2H), 7.09 (t, *J* = 7.4 Hz, 2H), 5.53 (s, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 2.29 (s, 6H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.54, 135.50, 128.94, 128.45, 122.20, 119.54, 118.67, 111.05, 109.23, 62.16, 40.50, 14.13, 8.51; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₂₃N₂O₂⁺ 347.1754; Found 347.1761.

Ethyl 2,2-bis(2-methyl-1*H*-indol-3-yl)acetate (6b):

Following the general procedure, **6b** was isolated by flash chromatography on silica (EA/PE = 3/10) as yellow solid (41.6 mg, 60% yield); mp 178.0-178.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.76 (s, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.07 (t, *J* = 7.5 Hz, 2H), 6.97 (t, *J* = 7.5 Hz, 2H), 5.45 (s, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 2.18 (s, 6H), 1.24 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.51, 133.83, 131.13, 127.32, 119.86, 118.38, 117.74, 109.10, 107.73, 59.98, 39.12, 13.24, 11.34; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₂H₂₂N₂NaO₂⁺ 369.1573; Found 369.1564.

Ethyl 2,2-di(benzofuran-2-yl)acetate (6c):

Following the general procedure, **6c** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (43.6 mg, 68% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 8.2 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.28 (t, *J* = 7.2 Hz, 2H), 7.22 (t, *J* = 7.4 Hz, 2H), 6.76 (s, 2H), 5.39 (s, 1H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 167.68, 155.00, 151.40, 128.17, 124.40, 122.95, 121.10, 111.30, 105.65, 62.32, 46.41, 14.08; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₀H₁₇O₄⁺ 321.1121; Found 321.1116.

Ethyl 2,2-bis(benzo[b]thiophen-2(3)-yl)acetate (6d):

Following the general procedure, **6d** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (41.6 mg, 59% yield, 1:0.6 (2:3)); ¹H NMR (600 MHz, CDCl₃) δ 7.91 – 7.72 (m, 4H), 7.71 – 7.56 (m, 1H), 7.39 – 7.32 (m, 4H), 7.29 (dt, *J* = 18.5, 7.3 Hz, 1H), 5.66 (d, *J* = 34.7 Hz, 1H), 4.33 – 4.17 (m, 2H), 1.28 (dt, *J* = 11.7, 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 171.12, 170.55, 140.64, 140.50, 140.35, 139.90, 139.41, 137.93, 137.69, 131.76, 131.58, 125.16, 125.13, 124.63, 124.58, 124.35, 124.32, 123.52, 123.27, 122.99, 122.97, 122.18, 121.65, 121.61, 61.95, 61.69, 47.14, 45.43, 14.22, 14.15; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₂₀H₁₆NaO₂S₂⁺ 375.0484; Found 375.0481.

Ethyl 2,2-di(thiophen-2-yl)acetate (6e):

Following the general procedure, **6e** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (21.7 mg, 43% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.17 (dd, *J* = 5.2, 1.2 Hz, 2H), 6.97 (dd, *J* = 2.7, 1.8 Hz, 2H), 6.88 (dd, *J* = 5.1, 3.5 Hz, 2H), 5.38 (s, 1H), 4.17 (q, *J* = 7.1 Hz, 2H), 1.22 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151

MHz, CDCl₃) δ 170.69, 140.77, 126.62, 126.27, 125.42, 61.90, 47.70, 14.06; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₂H₁₂NaO₂S₂⁺ 275.0171; Found 275.0169.

Ethyl 2,2-bis(3-methylthiophen-2-yl)acetate (6f):

Following the general procedure, **6f** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (22.4 mg, 40% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.14 (d, *J* = 5.1 Hz, 2H), 6.79 (d, *J* = 5.2 Hz, 2H), 5.43 (s, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 2.20 (s, 6H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 170.97, 134.63, 134.41, 129.66, 123.77, 61.76, 44.47, 14.12, 13.99; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₄H₁₆NaO₂S₂⁺ 303.0484; Found 303.0484.

V. Synthetic Procedures and Analytical Data of Compounds 8

Substituted alkenes **7** (0.6 mmol, 3.0 equiv), α -diazosulfonium triflates **1** (0.2 mmol, 1.0 equiv), Mes-Acr⁺ClO₄⁻ (0.006 mmol, 3.0 mol%), Cs₂CO₃ (0.2 mmol, 1.0 equiv) and DCM (2.0 mL) were added to a 10 mL Schlenk tube. The mixture was then stirred at room temperature under N₂ atmosphere and irradiated with 15 W blue LEDs for 18 h. After **1** were consumed (monitored by TLC), the reaction mixture was concentrated, and the residue was purified by silica gel column chromatography to give the desired product **8**.

A gram-scale synthesis of compound 8a:

Substituted ethene-1,1-diyldibenzene **7a** (2.70 g, 15.0 mmol), α -diazosulfonium triflates **1a** (2.23 g, 5.0 mmol), Mes-Acr⁺ClO₄⁻ (0.09 g, 0.15 mmol), Cs₂CO₃ (1.63 g, 5.0 mmol) and DCM (50 mL) were added to a round-bottomed flask. The mixture was then stirred at room temperature under N₂ atmosphere and irradiated with 15 W blue LEDs for 36 h. After **1** were consumed (monitored by TLC), the reaction mixture was concentrated, and the residue was purified by silica gel column chromatography (EA/PE = 1/10) to give the desired product **8a** (1.56 g, 70%) as colorless oil.

Ethyl 2-(2,2-diphenylvinyl)-4,4-diphenylbut-3-enoate (8a):

Following the general procedure, **8a** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (64.0 mg, 72% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.23 (m, 9H), 7.23 – 7.18 (m, 3H), 7.15 (t, *J* = 7.4 Hz, 4H), 6.97 (d, *J* = 7.1 Hz, 4H), 6.20 (d, *J* = 10.1 Hz, 2H), 4.20 (t, *J* = 10.0 Hz, 1H), 4.16 (q, *J* = 7.0 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.70, 143.46, 142.27, 138.82, 129.65, 128.10, 128.05, 127.67, 127.46, 127.12, 124.91, 60.99, 47.05, 14.20; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₂H₂₈NaO₂⁺ 467.1982; Found 467.1981. The NMR data are consistent with the reported values.⁹

Ethyl 2-(2,2-bis(4-chlorophenyl)vinyl)-4,4-bis(4-chlorophenyl)but-3-enoate (8b):

Following the general procedure, **8b** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (96.7 mg, 83% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.23 (d, *J* = 8.5 Hz, 4H), 7.16 (d, *J* = 8.4 Hz, 4H), 7.10 (d, *J* = 8.6 Hz, 4H), 6.84 (d, *J* = 8.4 Hz, 4H), 6.14 (d, *J* = 10.1 Hz, 2H), 4.19 (q, *J* = 7.1 Hz, 2H), 4.07 (t, *J* = 10.2 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.03, 141.69, 139.86, 136.60, 133.80, 133.76, 130.79, 128.79, 128.50, 128.43, 125.07, 61.41, 47.05, 14.22; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₂H₂₄Cl₄NaO₂⁺ 603.0423; Found 603.0429.

Following the general procedure, **8c** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (90.9 mg, 88% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.15 (dd, J = 8.8, 5.4 Hz, 4H), 6.95 (t, J = 8.7 Hz, 4H), 6.91 (dd, J = 8.5, 5.8 Hz, 4H), 6.87 (t, J = 8.7 Hz, 4H), 6.11 (d, J = 10.2 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 4.09 (t, J = 10.2 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.36, 163.12 (d, J = 247.8 Hz), 161.48 (d, J = 247.3 Hz), 141.69, 137.93 (d, J = 3.4 Hz), 134.48 (d, J = 3.4 Hz), 131.21 (d, J = 7.9 Hz), 129.19 (d, J = 8.1 Hz), 124.65, 115.19 (d, J = 7.5 Hz), 115.05 (d, J = 7.6 Hz), 61.26, 47.09, 14.21. ¹⁹F NMR (565 MHz, CDCl₃) δ -114.34, -114.49; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₂H₂₄F₄NaO₂⁺ 539.1605; Found 539.1596.

Ethyl 2-(2,2-di-*p*-tolylvinyl)-4,4-di-p-tolylbut-3-enoate (8d):

Following the general procedure, **8d** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (68.1 mg, 68% yield); ¹H NMR (600 MHz, CDCl₃) δ 7.11 (d, *J* = 8.1 Hz, 4H), 7.06 (d, *J* = 8.0 Hz, 4H), 6.93 (d, *J* = 7.7 Hz, 4H), 6.83 (d, *J* = 7.7 Hz, 4H), 6.10 (d, *J* = 10.1 Hz, 2H), 4.17 (t, *J* = 10.0 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 2.32 (d, *J* = 6.6 Hz, 12H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 173.03, 143.03, 139.74, 137.17, 136.45, 136.11, 129.60, 128.77, 128.61, 127.60, 124.10, 60.88, 47.11, 21.25, 21.10, 14.23; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₆H₃₆NaO₂⁺ 523.2608; Found 523.2615.

Ethyl 4-(4-fluorophenyl)-2-(2-(4-fluorophenyl)-2-phenylvinyl)-4-phenylbut-3-en oate (8e):

Following the general procedure, **8e** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (75.0 mg, 78% yield, E/Z:E/E:Z/Z = 22:60:18 (determined by ¹H NMR)); ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.23 (m, 3H), 7.21 – 7.12 (m, 7H), 6.96 – 6.90 (m, 6H), 6.89 – 6.85 (m, 1H), 6.80 (t, J = 8.7 Hz, 1H), 6.14 (ddd, J = 10.5, 10.5, 10.0 Hz, 2H), 4.22 – 4.07 (m, 3H), 1.29 – 1.25 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.61, 172.53, 172.45, 163.21 (d, J = 247.3 Hz), 162.87 (d, J = 246.7 Hz), 162.78 (d, J = 246.3 Hz), 142.57, 142.55, 141.89 (d, J = 11.7 Hz), 138.63, 138.62, 138.34 (d, J = 3.3 Hz), 138.24 (d, J = 3.1 Hz), 134.67, 134.65, 131.32, 131.29, 131.27, 131.23, 129.54, 129.29, 129.23, 128.21, 128.19, 128.16, 127.70, 127.67, 127.58, 127.42, 127.31, 125.06, 124.93, 124.63, 124.44, 115.09 (d, J = 21.4 Hz), 115.07 (d, J = 21.3 Hz), 115.05 (d, J = 21.4 Hz), 115.03 (d, J = 21.3 Hz), 61.18, 61.13, 61.07, 47.16, 47.08, 46.98, 14.21, 14.20. ¹⁹F NMR (565 MHz, CDCl₃) δ -114.75, -114.97, -115.12; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₂H₂₆F₂NaO₂⁺ 503.1793; Found 503.1793.

Ethyl 4-(4-chlorophenyl)-2-(2-(4-chlorophenyl)-2-phenylvinyl)-4-phenylbut-3-en oate (8f):

Following the general procedure, **8f** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (75.0 mg, 73% yield, E/Z:E/E:Z/Z = 23:62:15 (determined by ¹H NMR)); ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.24 (m, 4H), 7.24 – 7.20 (m, 3H), 7.20 – 7.17 (m, 2H), 7.16 – 7.15 (m, 1H), 7.13 (d, J = 8.5 Hz, 3H), 7.08 (d, J = 8.4 Hz, 1H), 6.92 (d, J = 7.9 Hz, 2H), 6.86 (t, J = 8.6 Hz, 2H), 6.16 (ddd, J = 10.0, 10.5, 10.0 Hz, 2H), 4.25 – 4.01 (m, 3H), 1.38 – 1.17 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.41, 172.38, 172.33, 142.61, 142.56, 142.54, 141.55, 141.50, 140.65, 140.52, 138.29, 138.26, 137.16, 133.46, 133.44, 133.16, 130.91, 129.53, 129.51, 128.92, 128.90, 128.34, 128.33, 128.28, 128.26, 128.24, 128.20, 127.79, 127.77, 127.55, 127.49, 127.41, 125.04, 124.93, 124.84, 61.25, 61.20, 61.15, 47.11, 47.07, 46.99, 14.22, 14.19; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₂H₂₆Cl₂NaO₂⁺ 535.1202; Found 535.1202.

Ethyl 4-phenyl-2-(2-phenyl-2-(*p*-tolyl)vinyl)-4-(*p*-tolyl)but-3-enoate (8g):

Following the general procedure, **8g** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (61.4 mg, 65% yield, *E/Z:E/E:Z/Z* = 25:55:20 (determined by ¹H NMR)); ¹H NMR (500 MHz, CDCl₃) δ 7.27 – 7.21 (m, 5H), 7.15 – 7.11 (m, 3H), 7.10 – 7.04 (m, 4H), 6.94 (d, *J* = 8.0 Hz, 4H), 6.84 (dd, *J* = 8.0, 8.0 Hz, 2H), 6.14 (dt, *J* = 10.5, 10.0 Hz, 2H), 4.27 – 4.06 (m, 3H), 2.33 (d, *J* = 6.8 Hz, 6H), 1.28 – 1.24 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.86, 143.34, 143.31, 143.17, 142.49, 142.45, 139.52, 139.01, 137.26, 136.64, 136.56, 135.92, 135.87, 129.69, 129.65, 129.58, 129.52, 129.12, 128.80, 128.75, 128.65, 128.05, 128.00, 127.93, 127.71, 127.67, 127.55, 127.37, 127.02, 126.86, 124.80, 124.76, 124.24, 124.18, 60.94, 60.92, 47.16, 47.06, 46.98, 21.24, 21.22, 21.09, 14.21; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₃₂NaO₂⁺ 495.2295; Found 495.2287.

Ethyl 4-(4-methoxyphenyl)-2-(2-(4-methoxyphenyl)-2-phenylvinyl)-4-phenylbut-3-enoate (8h):

Following the general procedure, **8h** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (53.5 mg, 53% yield, *E/Z:E/E:Z/Z* = 31:53:16 (determined by ¹H NMR)); ¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.26 (m, 2H), 7.25 – 7.24 (m, 2H), 7.23 – 7.22 (m, 3H), 7.20 – 7.17 (m, 1H), 7.16 – 7.13 (m, 2H), 6.99 – 6.84 (m, 4H), 6.82 – 6.61 (m, 4H), 6.27 – 6.00 (m, 2H), 4.35 – 4.03 (m, 3H), 3.79 (d, *J* = 7.1 Hz, 6H), 1.35 – 1.19 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.93, 172.90, 159.16, 158.67, 158.65, 142.94, 142.91, 142.74, 142.65, 139.16, 134.96, 131.23, 130.90, 130.83, 129.71, 128.80, 128.05, 127.99, 127.78, 127.75, 127.40, 127.38, 126.98, 124.77, 124.62, 123.36, 113.48, 113.44, 113.38, 60.97, 60.92, 55.29, 55.18, 55.05, 47.22, 47.09, 14.24, 14.22, 14.12; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₃₂NaO₄⁺ 527.2193; Found 527.2192.

Ethyl 4-(3-bromophenyl)-2-(2-(3-bromophenyl)-2-phenylvinyl)-4-phenylbut-3-en oate (8i):

Following the general procedure, **8i** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (87.9 mg, 73% yield, E/Z:E/E:Z/Z = 23:56:21 (determined by ¹H NMR)); ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.31 (m, 3H), 7.27 (d, J = 7.0 Hz, 3H), 7.23 – 7.16 (m, 4H), 7.16 – 7.08 (m, 4H), 7.06 – 6.96 (m, 1H), 6.93 – 6.85 (m, 3H), 6.17 (ddd, J = 10.0, 10.0, 10.0 Hz, 2H), 4.23 – 4.15 (m, 2H), 4.15 – 4.02 (m, 1H), 1.33 – 1.25 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.32, 172.28, 172.25, 144.34, 144.14, 142.61, 142.54, 142.49, 142.42, 141.31, 141.20, 140.89, 140.84, 137.99, 137.95, 132.47, 132.34, 130.53, 130.49, 130.42, 130.38, 129.64, 129.62, 129.51, 129.35, 128.31, 128.29, 128.27, 128.19, 127.84, 127.61, 127.56, 127.51, 126.43, 126.34, 125.75, 125.69, 125.29, 125.24, 122.43, 122.42, 142.3, 14.21, 14.15; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₂H₂₆Br₂NaO₂⁺ 623.0192; Found 623.0191.

Ethyl 4-phenyl-2-(2-phenyl-2-(*m*-tolyl)vinyl)-4-(*m*-tolyl)but-3-enoate (8j):

Following the general procedure, **8j** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (59.6 mg, 63% yield, E/Z:E/E:Z/Z = 30:48:22 (determined by ¹H NMR)); ¹H NMR (600 MHz, CDCl₃) δ 7.26 – 7.20 (m, 5H), 7.19 – 7.16 (m, 1H), 7.15 – 7.10 (m, 3H), 7.07 – 7.04 (m, 2H), 7.04 – 6.97 (m, 3H), 6.95 (d, J = 7.0 Hz, 1H), 6.92 (d, J = 6.9 Hz, 1H), 6.80 (d, J = 13.8 Hz, 1H), 6.75 (dd, J = 16.8, 16.8 Hz, 1H), 6.16 (dd, J = 10.2, 10.2 Hz, 2H), 4.24 – 4.09 (m, 3H), 2.29 (s, 3H), 2.23 (d, J = 7.2 Hz, 3H), 1.28 – 1.25 (m, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 172.92, 172.85, 172.78, 143.64, 143.59, 143.52, 143.48, 142.35, 142.33, 142.26, 138.93, 138.80, 138.78, 137.67, 137.66, 137.46, 137.38, 130.26, 130.18, 129.65, 129.58, 128.27, 128.24, 128.23, 128.21, 128.07, 128.01, 127.98, 127.96, 127.94, 127.90, 127.82, 127.64, 127.61, 127.39, 127.37, 127.06, 126.99, 126.79, 126.73, 124.96, 124.91, 124.88, 60.96, 60.93, 60.91, 47.02 (2C), 47.00, 21.43, 21.42, 21.40, 14.21; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₃₄H₃₂NaO₂⁺ 495.2295; Found 495.2296.

4-Chlorobenzyl 2-(2,2-bis(4-chlorophenyl)vinyl)-4,4-bis(4-chlorophenyl)but-3-en oate (8k):

Following the general procedure, **8k** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (81.5 mg, 60% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, *J* = 8.4 Hz, 2H), 7.23 (dd, *J* = 8.4, 6.2 Hz, 6H), 7.12 (d, *J* = 8.3 Hz, 4H), 7.07 (d, *J* = 8.5 Hz, 4H), 6.78 (d, *J* = 8.3 Hz, 4H), 6.11 (d, *J* = 10.1 Hz, 2H), 5.11 (s, 2H), 4.11 (t, *J* = 10.1 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 171.72, 142.10, 139.67, 136.49, 134.39, 134.05, 133.92, 133.83, 130.71, 129.49, 128.86, 128.76, 128.54, 128.47, 124.59, 66.16, 47.00; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₇H₂₆Cl₅O₂⁺ 677.0370; Found 677.0363.

4-Bromobenzyl 2-(2,2-bis(4-chlorophenyl)vinyl)-4,4-bis(4-chlorophenyl)but-3-en oate (81):

Following the general procedure, **81** was isolated by flash chromatography on silica (EA/PE = 1/10) as colorless oil (96.9 mg, 67% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.6 Hz, 4H), 7.17 (d, *J* = 8.2 Hz, 2H), 7.12 (d, *J* = 8.4 Hz, 4H), 7.07 (d, *J* = 8.6 Hz, 4H), 6.78 (d, *J* = 8.4 Hz, 4H), 6.11 (d, *J* = 10.1 Hz, 2H), 5.09 (s, 2H), 4.11 (t, *J* = 10.2 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 171.70, 142.11, 139.66, 136.49, 134.56, 133.92, 133.84, 131.82, 130.71, 129.76, 128.76, 128.54, 128.47, 124.57, 122.52, 66.19, 46.99; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₇H₂₆BrCl₄Q₂⁺ 720.9865; Found 720.9863.

VI. Synthetic Procedures and Analytical Data of Compounds 9

Substituted 2-(1-arylvinyl)pyridines **7** (0.3mmol, 1.5 equiv), α -diazosulfonium triflates **1** (0.2 mmol, 1.0 equiv), Mes-Acr⁺ClO₄⁻ (0.006 mmol, 3.0 mol%), Cs₂CO₃ (0.2 mmol, 1.0 equiv) and DCM (2.0 mL) were added to a 10 mL Schlenk tube. The mixture was then stirred at room temperature under N₂ atmosphere and irradiated with 15 W blue LEDs for 18 h. After **1** were consumed (monitored by TLC), the reaction mixture was concentrated, and the residue was purified by silica gel column chromatography to give the desired product **9**.

Ethyl-1-phenylindolizine-3-carboxylate (9a):

Following the general procedure, **9a** was isolated by flash chromatography on silica (EA/PE = 1/10) as white solid (37.7 mg, 71% yield); mp 89.0-89.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.48 (d, *J* = 7.2 Hz, 1H), 7.82 (d, *J* = 9.1 Hz, 1H), 7.67 (s, 1H), 7.58 (d, *J* = 7.7 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.29 (t, *J* = 7.3 Hz, 1H), 7.11 – 7.03 (m, 1H), 6.83 (t, *J* = 6.9 Hz, 1H), 4.39 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 161.43, 135.15, 134.78, 128.82, 127.89, 127.59, 126.23, 122.30, 120.68, 117.79, 116.31, 113.98, 113.05, 59.88, 14.61; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₇H₁₆NO₂⁺ 266.1176; Found 266.1177. The NMR data are consistent with the reported values.¹⁰

Ethyl 1-(4-chlorophenyl)indolizine-3-carboxylate (9b):

Following the general procedure, **9b** was isolated by flash chromatography on silica (EA/PE = 1/10) as white solid (43.8 mg, 73% yield); mp 93.4-94.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.41 (d, *J* = 7.1 Hz, 1H), 7.68 (d, *J* = 9.0 Hz, 1H), 7.56 (s, 1H), 7.43

(d, J = 8.5 Hz, 2H), 7.33 (d, J = 8.5 Hz, 2H), 7.01 (ddd, J = 9.0, 6.6, 1.1 Hz, 1H), 6.77 (t, J = 6.9 Hz, 1H), 4.32 (q, J = 7.1 Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 161.33, 134.65, 133.64, 131.95, 129.00, 128.97, 127.66, 122.61, 120.57, 117.50, 114.97, 114.14, 113.18, 59.97, 14.61; HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₄ClNNaO₂⁺ 322.0605; Found 322.0610. The NMR data are consistent with the reported values.¹⁰

Benzyl-1-phenylindolizine-3-carboxylate (9c):

Following the general procedure, **9c** was isolated by flash chromatography on silica (EA/PE = 1/10) as white solid (21.0 mg, 32% yield); mp 90.0-90.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.43 (d, *J* = 7.1 Hz, 1H), 7.76 (d, *J* = 9.0 Hz, 1H), 7.64 (s, 1H), 7.51 (d, *J* = 7.1 Hz, 2H), 7.41 (d, *J* = 7.0 Hz, 2H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 1H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.02 (d, *J* = 15.4 Hz, 1H), 6.79 (t, *J* = 6.9 Hz, 1H), 5.33 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 161.09, 136.64, 135.02, 128.83, 128.58, 128.08, 128.00, 127.90, 127.65, 126.31, 122.56, 120.97, 117.83, 116.52, 113.58, 113.20, 65.52; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₁₈NO₂⁺ 328.1332; Found 328.1332.

4-Chlorobenzyl 1-phenylindolizine-3-carboxylate (9d):

Following the general procedure, **9d** was isolated by flash chromatography on silica (EA/PE = 1/10) as white solid (49.2 mg, 68% yield); mp 92.3-92.9 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.40 (d, *J* = 7.1 Hz, 1H), 7.76 (d, *J* = 9.0 Hz, 1H), 7.62 (s, 1H), 7.50 (d, *J* = 6.8 Hz, 2H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.5 Hz, 2H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.02 (ddd, *J* = 9.0, 6.6, 1.2 Hz, 1H), 6.79 (t, *J* = 6.9 Hz, 1H), 5.28 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 160.91, 135.17, 134.94, 133.95, 129.40, 128.86, 128.77, 127.90, 127.63, 126.38, 122.72, 120.97, 117.86, 116.62,

113.32, 64.70; HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{22}H_{17}CINO_2^+$ 362.0942; Found 362.0938.

4-Bromobenzyl 1-phenylindolizine-3-carboxylate (9e):

Following the general procedure, **9e** was isolated by flash chromatography on silica (EA/PE = 1/10) as white solid (52.8 mg, 65% yield); mp 98.2-98.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.40 (d, *J* = 7.2 Hz, 1H), 7.76 (d, *J* = 9.0 Hz, 1H), 7.62 (s, 1H), 7.50 (d, *J* = 7.1 Hz, 2H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.37 (t, *J* = 7.8 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.05 – 6.97 (m, 1H), 6.79 (t, *J* = 6.8 Hz, 1H), 5.26 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 171.70, 142.11, 139.66, 136.49, 134.56, 133.92, 133.84, 131.82, 130.71, 129.76, 128.76, 128.54, 128.47, 124.57, 122.52, 66.19, 46.99; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₂₂H₁₇BrNO₂⁺ 406.0437; Found 406.0435.

VII. Synthetic Procedures and Analytical Data of Compounds 10

A 10 mL Schlenk tube was charged with **8** (0.2 mmol, 1.0 equiv), THF (1.0 mL) and a stir bar under N₂, then a solution of LiAlH₄ (0.4 mmol, 2.0 equiv) was added at 0 °C. The mixture was stirred for 1 h. Then the resulting mixture was quenched by H₂O, extracted with DCM (20 mL \times 3), dried with anhydrous Na₂SO₄, concentrated in vacuo, and purified by silica column chromatography (EA/PE = 1/5) to give **10**.

2-(2,2-Diphenylvinyl)-4,4-diphenylbut-3-en-1-ol (10a):

Following the general procedure, **10a** was isolated by flash chromatography on silica (EA/PE = 1/5) as colorless oil (76.5 mg, 95% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.20 (m, 12H), 7.16 (t, *J* = 7.4 Hz, 4H), 6.96 (d, *J* = 7.3 Hz, 4H), 5.97 (d, *J* = 9.8 Hz, 2H), 3.62 (d, *J* = 6.9 Hz, 2H), 3.60 – 3.52 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 143.86, 142.46, 139.33, 129.61, 128.17, 128.13, 127.61, 127.42, 127.34, 127.00, 66.46, 43.05; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₀H₂₇O⁺ 403.2056; Found 403.2055.

2-(2,2-Bis(4-fluorophenyl)vinyl)-4,4-bis(4-fluorophenyl)but-3-en-1-ol (10c):

Following the general procedure, **10c** was isolated by flash chromatography on silica (EA/PE = 1/5) as colorless oil (88.3 mg, 93% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.14 (dd, *J* = 8.7, 5.5 Hz, 4H), 6.94 (t, *J* = 8.7 Hz, 4H), 6.91 – 6.84 (m, 8H), 5.87 (d, *J*

= 10.1 Hz, 2H), 3.64 (d, J = 5.6 Hz, 2H), 3.49 – 3.42 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 162.35 (d, J = 247.187 Hz), 162.01 (d, J = 247.187 Hz), 141.90, 138.23 (d, J = 3.0 Hz), 134.98 (d, J = 3.5 Hz), 131.14 (d, J = 8.0 Hz), 128.95 (d, J = 7.8 Hz), 127.44, 115.19 (d, J = 14.3 Hz), 115.05 (d, J = 14.5 Hz), 66.27, 43.02. ¹⁹F NMR (565 MHz, CDCl₃) δ -114.65, -114.80; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₀H₂₃F₄O⁺ 475.1680; Found 475.1688.

2-(2,2-Di-*p*-tolylvinyl)-4,4-di-*p*-tolylbut-3-en-1-ol (10d):

Following the general procedure, **10d** was isolated by flash chromatography on silica (EA/PE = 1/5) as colorless oil (85.3 mg, 93% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.11 (d, *J* = 8.1 Hz, 4H), 7.06 (d, *J* = 8.0 Hz, 4H), 6.95 (d, *J* = 7.7 Hz, 4H), 6.83 (d, *J* = 7.7 Hz, 4H), 5.87 (d, *J* = 9.7 Hz, 2H), 3.59 (d, *J* = 7.0 Hz, 2H), 3.57 – 3.48 (m, 1H), 2.33 (d, *J* = 14.4 Hz, 12H); ¹³C NMR (151 MHz, CDCl₃) δ 143.56, 139.86, 137.04, 136.58, 136.34, 129.51, 128.79, 128.73, 127.32, 126.68, 66.51, 43.06, 21.24, 21.09; HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₄H₃₅O⁺ 459.2682; Found 459.2678.

VIII. The Crystal Structure of Compounds 6a and 9e

Figure 1. The ORTEP drawing of crystal. Method of Crystallization: The **6a** was recrystallized from mixed solvents of ethyl acetate and petroleum ether at 25 $^{\circ}$ C.

Figure 2. The ORTEP drawing of crystal. Method of Crystallization: The **9e** was recrystallized from mixed solvents of ethyl acetate and petroleum ether at 25 °C.

IX. Stern Volmer Analysis

Fluorescence quenching experiments were performed on Fluorescence quenching experiments were performed on Edinburgh FLS920P010404 Fluorescence Spectrometer. All solutions were irradiated at 400 nm and the emission intensity at 552 nm was observed. Stern-Volmer analysis on the quenching of fluorescence lifetime was carried out in MeCN (5 mL) with detection at 552 nm, where the concentration of 4CzIPN was 0.00005 M. The emission spectrums of 4CzIPN with varying the quencher of α -diazosulfonium triflate **1a** and *N*-methylaniline **2a** were determined with quencher concentrations in the range of 0 mM to 50 mM, respectively. Stern-Volmer plots were constructed according to the Stern-Volmer equation.

entry	4CzIPN concentration (M)	1a concentration (M)	I (cd)	I ₀ /I
1	0.000050	0	845.008	1.000
2	0.000050	0.01	357.410	2.364
3	0.000050	0.02	187.633	4.504
4	0.000050	0.03	132.887	6.359
5	0.000050	0.04	85.097	9.930
6	0.000050	0.05	58.739	14.386
entry	4CzIPN concentration (M)	2a concentration (M)	I (cd)	I_0/I
1	0.000050	0	845.008	1.000
2	0.000050	0.01	537.590	1.572
3	0.000050	0.02	427.358	1.977
4	0.000050	0.03	371.325	2.275
5	0.000050	0.04	325.387	2.597
6	0.000050	0.05	267.575	3.158
	16			
	14 - 1a		•	

 Table 1. Stern-Volmer raw data.

Figure 3. Stern-Volmer plots of 4CzIPN quenching with varying the quencher concentrations of **1a** and **2a** in the range of 10 mM to 50 mM.

X. References

1. X.-C. Xu, D. N. Wu, Y. X. Liang, M. Yang, H. Y. Yuan, Y.-L. Zhao, *J. Org. Chem.* **2022**, 87, 16604–16616.

2. (a) C. Wan, R.-J. Song, J.-H. Li, Org. Lett. 2019, 21, 8, 2800–2803; (b) B. Qian, G.
Zhang, Y. Ding, H, Huang, Chem. Commun., 2013, 49, 6c9839–9841.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 (Revision D.01), Gaussian, Inc., Wallingford CT, 2013.

4. A. D. Becke, The Journal of chemical physics, 1992, 96, 2155–2160.

5. (a) W. J. Hehre, R. Ditchfield, J. A. Pople, *The Journal of Chemical Physics*, 1972,
56, 2257–2261. (b) W. Sang-Aroon, V. Ruangpornvisuti, *International Journal of Quantum Chemistry*, 2008, 108, 1181–1188.

6. A. V. Marenich, C. J. Cramer, D. G. Truhlar, *The Journal of Physical Chemistry B*, **2009**, *113*, 6378–6396.

7. R. A, Marcus, N. Sutin, *Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics*, **1985**, 811, 265–322.

8. W. Li, D. Wang, X. Liang, Z. Jin, S. Zhou, G. Chen, Y. J. Pan, *Org. Lett.* **2022**, *24*, 3086–3091.

9. H. E. Zimmerman, V. Cirkva, L. Jiang, *Tetrahedron Lett.* 2000, 41, 9585–9587.

10. X. Chen, X. Hu, Y. Deng, H. Jiang, W. Zeng, Org. Lett. 2016, 18, 4742-4745.

XI. Computational Details (Cartesian Coordinates of Optimized Structures)

1a			
S	-0.14093000	0.00668300	-1.14181000
С	-1.32870800	-1.22436900	-0.57573600
С	-2.42507300	-0.61313300	0.05482900
С	-2.31726700	0.84792900	0.12115600
С	-1.13851700	1.34426600	-0.45963700
С	-3.21491100	1.76755200	0.66533100
С	-2.90662400	3.12948900	0.61988100
С	-1.72191100	3.58969600	0.03390400
С	-0.81183000	2.69009800	-0.52971700
С	-1.19763500	-2.59311600	-0.75654700
С	-2.23103100	-3.39566500	-0.26378300
С	-3.34056600	-2.81967000	0.36528300
С	-3.44834600	-1.43643200	0.52711700
С	1.24856300	-0.19194400	-0.07164900
С	2.60472100	0.03155400	-0.61189000
Ν	1.02923500	-0.46476700	1.19374900
Ν	0.80315900	-0.71608500	2.27213000
0	2.79222600	0.34817500	-1.77000200
0	3.52599400	-0.15772100	0.32950200
С	4.92227100	0.04267600	-0.07352200
С	5.77453300	-0.17795700	1.15488800
Н	-4.13939800	1.42238100	1.11601200
Н	-3.60324700	3.84483200	1.04493500
Н	-1.50520100	4.65224200	0.00849400
Н	0.10695900	3.03200800	-0.99408200
Н	-0.33232600	-3.02402600	-1.24840600
Н	-2.16901500	-4.47249500	-0.37811700
Н	-4.13480200	-3.46011400	0.73501700
Н	-4.31368000	-1.00039600	1.01519900
Н	5.01918200	1.05666400	-0.47061600
Н	5.15023300	-0.66814100	-0.87218200
Н	6.82622700	-0.03195600	0.88993200
Н	5.65439100	-1.19441800	1.54091700
Н	5.51703000	0.53298900	1.94525100

Α			
С	1.42762700	-0.14689300	0.72072100
С	0.21535700	0.50170400	0.18993900
Ν	2.44526000	-0.40477100	0.02077700
Ν	3.44688000	-0.70432900	-0.48740200
0	0.20926300	1.67271400	-0.13918800
0	-0.83198400	-0.31859400	0.22262400
С	-2.10847200	0.24799400	-0.21685600
С	-3.14755200	-0.84283400	-0.09061700
Н	-1.99731700	0.59437900	-1.24840800
Н	-2.33542800	1.11143200	0.41492500
Н	-4.11865700	-0.45130200	-0.40948800
Н	-3.23606700	-1.18343500	0.94525600
Н	-2.89750600	-1.70017000	-0.72251900
2a			
С	-0.00458200	-1.05991400	-0.05330700
С	-0.44402100	0.27682400	-0.05739300
С	0.52541600	1.29946000	-0.00702800
С	1.88014000	0.99337000	0.04084800
С	2.31310100	-0.33645200	0.03806500
С	1.35949500	-1.35201400	-0.01053900
Н	-0.72208700	-1.87199400	-0.08445000
Н	0.20189200	2.33809700	-0.01158500
Н	2.60519000	1.80175700	0.08080800
Н	3.37172700	-0.57255300	0.07497800
Н	1.67438300	-2.39213800	-0.00957500
Ν	-1.79166300	0.61382300	-0.14282500
Н	-2.00376500	1.54302300	0.19009800
С	-2.83238500	-0.36596600	0.10015300
Н	-2.73163300	-0.88150500	1.06882700
Н	-3.80270600	0.13494700	0.07284300
Н	-2.83434000	-1.12823600	-0.68695400
CC.	1		
-----	---		
D	T		

С	0.90938000	1.18517800	0.38459300
С	2.15327800	0.91755200	-0.30553700
Ν	0.03096500	2.00381800	-0.02352500
Ν	-0.91308300	2.65073700	-0.23091100
0	2.69557600	1.65973700	-1.11407400
0	2.69197600	-0.26161100	0.09884900
С	3.96238900	-0.61498200	-0.49544900
С	4.36287500	-1.95967500	0.07491100
Н	4.69659100	0.16252800	-0.25981100
Н	3.85294500	-0.65074300	-1.58443600
Н	5.32666600	-2.26671600	-0.34369100
Н	3.62070800	-2.72541900	-0.17175400
Н	4.46060200	-1.90886900	1.16377100
С	-1.67184400	-1.11563400	-0.55198300
С	-2.70426000	-0.47948900	0.18905400
С	-2.39279500	0.05032200	1.47920800
С	-1.11824700	-0.02506200	1.98128600
С	-0.05239100	-0.56160200	1.19716200
С	-0.39333700	-1.18706100	-0.03879700
Н	-1.89164100	-1.55515800	-1.51808600
Н	-3.19086500	0.50071500	2.06382600
Н	-0.90107300	0.37532500	2.96673200
Н	0.88098100	-0.82543600	1.67909800
Н	0.39085100	-1.67688900	-0.60651700
Ν	-3.96943100	-0.37257800	-0.28455900
Н	-4.64343500	0.10979000	0.29290800
С	-4.41033600	-0.84362100	-1.58332700
Н	-4.29564400	-1.93045000	-1.67691200
Н	-5.46622100	-0.59728400	-1.70190700
Н	-3.84830500	-0.36580100	-2.39519400

B

С	0.91063400	0.98068200	0.08962900
С	2.28955400	0.70355400	-0.29104100

Ν	0.39579400	2.09275700	-0.34218400
Ν	-0.19309500	3.02909500	-0.63605700
0	3.02219500	1.46083100	-0.91134600
0	2.66083200	-0.52651300	0.13695500
С	4.01375800	-0.93118500	-0.18596200
С	4.18259500	-2.35428100	0.30197400
Н	4.71574500	-0.24595000	0.30061500
Н	4.16090700	-0.84910500	-1.26742700
Н	5.19520300	-2.70290300	0.07566600
Н	3.46907100	-3.02226600	-0.19040600
Н	4.02945000	-2.41894600	1.38365500
С	-1.89609300	-1.12217200	-0.45772000
С	-2.87231800	-0.31694200	0.19615500
С	-2.43492700	0.55121300	1.24983400
С	-1.12499100	0.67080100	1.59267600
С	-0.03264700	-0.02861200	0.83797700
С	-0.56932600	-1.03833500	-0.13516400
Н	-2.21268500	-1.83713900	-1.21113000
Н	-3.18929900	1.10762700	1.80346300
Н	-0.83145000	1.32219800	2.41080300
Н	0.66189200	-0.50928500	1.54021800
Н	0.15661300	-1.67460300	-0.63179500
Ν	-4.20409200	-0.34748400	-0.14005500
Н	-4.83582900	0.09706700	0.51181000
С	-4.78636000	-1.34222700	-1.01923100
Н	-4.64493000	-2.36882800	-0.65002800
Н	-5.85737700	-1.14922200	-1.10415200
Н	-4.35105400	-1.27873400	-2.02286100

XII. Copies of ¹H NMR and ¹³C NMR Spectra

Figure 4. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3aa

Figure 5. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3aa

Figure 6. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3ab

Figure 7. ¹³C NMR (151 MHz, CDCl₃) spectra of compound **3ab**

Figure 8. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3ac

Figure 9. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3ac

Figure 10. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3ad

Figure 11. ¹³C NMR (151 MHz, CDCl₃) spectra of compound **3ad**

Figure 12. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3ae

Figure 13. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3ae

Figure 14. ¹⁹F NMR (565 MHz, CDCl₃) spectra of compound 3ae

Figure 15. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3af

Figure 16. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3af

Figure 17. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3ag

Figure 18. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3ag

Figure 19. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3ah

Figure 20. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3ah

Figure 21. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3ai

Figure 22. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3ai

Figure 23. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3aj

Figure 24. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3aj

Figure 25. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3ak

Figure 26. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3ak

Figure 27. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3al

Figure 28. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3al

Figure 29. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3am-I

Figure 30. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3am-I

Figure 31. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3am-II

Figure 32. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3am-II

Figure 33. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3an

Figure 34. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3an

Figure 35. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3ao

Figure 36. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3ao

Figure 37. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3ap

Figure 38. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3ap

Figure 39. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3aq

Figure 40. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3aq

Figure 41. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3ar

Figure 42. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3ar

Figure 43. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3ba

Figure 44. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3ba

Figure 45. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3ca

Figure 46. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3ca

Figure 47. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3da

Figure 48. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3da

Figure 49. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3ea

Figure 50. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3ea

Figure 51. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3fa

Figure 52. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3fa

Figure 53. ¹⁹F NMR (565 MHz, CDCl₃) spectra of compound 3fa

Figure 54. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3ga

Figure 55. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3ga

Figure 56. ¹H NMR (500 MHz, CDCl₃) spectra of compound 3ha

Figure 57. ¹³C NMR (151 MHz, CDCl₃) spectra of compound **3ha**

Figure 58. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3ia

Figure 59. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 3ia

Figure 60. ¹H NMR (500 MHz, CDCl₃) spectra of compound 4a

Figure 61. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 4a

Figure 62. ¹H NMR (500 MHz, CDCl₃) spectra of compound 4b

Figure 63. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 4b

Figure 64. ¹⁹F NMR (565 MHz, CDCl₃) spectra of compound 4b

Figure 65. ¹H NMR (500 MHz, CDCl₃) spectra of compound 4c

Figure 66. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 4c

Figure 67. ¹H NMR (500 MHz, CDCl₃) spectra of compound 4d

Figure 68. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 4d

Figure 69. ¹H NMR (500 MHz, CDCl₃) spectra of compound 4e

Figure 70. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 4e

Figure 71. ¹H NMR (500 MHz, CDCl₃) spectra of compound 6a

Figure 72. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 6a

Figure 73. ¹H NMR (600 MHz, CDCl₃) spectra of compound 6b

Figure 74. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 6b

Figure 75. ¹H NMR (500 MHz, CDCl₃) spectra of compound 6c

Figure 76. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 6c

Sep04-2023.6812.ser —

Figure 77. NOESY spectra of compound 6c

Figure 78. ¹H NMR (600 MHz, CDCl₃) spectra of compound 6d

Figure 79. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 6d

Figure 80. ¹H NMR (600 MHz, CDCl₃) spectra of compound 6e

Figure 81. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 6e

Figure 82. ¹H NMR (500 MHz, CDCl₃) spectra of compound 6f

Figure 83. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 6f

Figure 84. ¹H NMR (500 MHz, CDCl₃) spectra of compound 8a

Figure 85. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 8a

Figure 86. ¹H NMR (500 MHz, CDCl₃) spectra of compound 8b

Figure 87. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 8b

Figure 88. ¹H NMR (500 MHz, CDCl₃) spectra of compound 8c

Figure 89. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 8c

Figure 90. ¹⁹F NMR (565 MHz, CDCl₃) spectra of compound 8c

Figure 91. ¹H NMR (600 MHz, CDCl₃) spectra of compound 8d

Figure 92. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 8d

Figure 93. ¹H NMR (500 MHz, CDCl₃) spectra of compound 8e

Figure 94. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 8e

Figure 95. ¹⁹F NMR (565 MHz, CDCl₃) spectra of compound 8e

Figure 96. ¹H NMR (500 MHz, CDCl₃) spectra of compound 8f

Figure 97. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 8f

Figure 98. ¹H NMR (500 MHz, CDCl₃) spectra of compound 8g

Figure 99. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 8g

Figure 100. ¹H NMR (600 MHz, CDCl₃) spectra of compound 8h

Figure 101. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 8h

Figure 102. ¹H NMR (500 MHz, CDCl₃) spectra of compound 8i

Figure 103. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 8i

Figure 104. ¹H NMR (600 MHz, CDCl₃) spectra of compound 8j

Figure 105. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 8j

Figure 106. ¹H NMR (500 MHz, CDCl₃) spectra of compound 8k

Figure 107. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 8k

Figure 108. ¹H NMR (500 MHz, CDCl₃) spectra of compound 81

Figure 109. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 8l

Figure 110. ¹H NMR (500 MHz, CDCl₃) spectra of compound 9a

Figure 111. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 9a

Figure 112. ¹H NMR (600 MHz, CDCl₃) spectra of compound 9b

Figure 113. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 9b

Figure 114. ¹H NMR (600 MHz, CDCl₃) spectra of compound 9c

Figure 115. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 9c

Figure 116. ¹H NMR (600 MHz, CDCl₃) spectra of compound 9d

Figure 117. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 9d

Figure 118. ¹H NMR (600 MHz, CDCl₃) spectra of compound 9e

Figure 119. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 9e

Figure 120. ¹H NMR (500 MHz, CDCl₃) spectra of compound 10a

Figure 121. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 10a

Figure 122. ¹H NMR (500 MHz, CDCl₃) spectra of compound 10c

Figure 123. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 10c

Figure 124. ^{19}F NMR (565 MHz, CDCl₃) spectra of compound 10c

Figure 125. ¹H NMR (500 MHz, CDCl₃) spectra of compound 10d

Figure 126. ¹³C NMR (151 MHz, CDCl₃) spectra of compound 10d