Supporting Information

Contents

1. General methods	
2. Representative procedures	S3
3. Characterization of products 3, 4 and 5'	S10
4. X-ray single crystal data for compounds 3a , 3b , 4b , 5d	S28
5. NMR spectra	S32
6. References	S89

1. General Methods

Unless otherwise specified, all reactions were conducted under an atmospheric atmosphere and anhydrous conditions. All the solvents were purified according to the standard procedures. All chemicals which are commercially available were employed without further purification. Thin-layer chromatography (TLC) was performed on silica gel plates (60F-254) using UV-light (254 nm). Flash chromatography was conducted on silica gel (200-300 mesh). ¹H and ¹³C NMR spectra were recorded at ambient temperature in CDCl3 or DMSO on a 400 MHz NMR spectrometer. Chemical shifts were reported in parts per million (ppm). The data are reported as follows: for ¹H NMR, chemical shift in ppm from tetramethylsilane with the solvent as internal standard (CDCl₃ δ 7.26 ppm), (DMSO δ 2.50 ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or overlap of non-equivalent resonances), integration; for ¹³C NMR, chemical shift in ppm from tetramethylsilane with the solvent as internal indicator (CDCl₃ & 77.1 ppm), (DMSO & 39.5 ppm), multiplicity with respect to protons. All high-resolution mass spectra were obtained on a Q-TOF Micro LC/MS System ESI spectrometer to be given in m/z. 2-Indolylmethanols 1 were either employed directly from commercial sources or prepared according to the literatures¹⁻⁴, 1,3,5-triazinanes 2 were synthesized according to modified literature reported procedure⁵.

2. Representative Procedures

Optimization of the reaction conditions for 3b

1) Effect of Solvents

Me OH N H	+ N +	Ph PA (10 mol%) solvent, r.t.	→ Me N N N N
1b	2a		3b
Entry ^a	Cat.	Solvent	Yield (%) ^b
1	PA	Toluene	37
2	PA	CH_2Cl_2	68
3	PA	CH ₃ CN	82
4	PA	THF	40
5°	PA	CH ₃ CN	30
6 ^d	PA	CH ₃ CN	81
	$ \begin{array}{c} $	$ \begin{array}{c} \stackrel{Me}{\longrightarrow} OH \\ \stackrel{H}{\longrightarrow} OH \\ \stackrel{H}{\longrightarrow} Ph \\ \begin{array}{c} \stackrel{N}{\longrightarrow} Ph \\ \stackrel{N}{\longrightarrow} Ph \\ \begin{array}{c} \stackrel{N}{\longrightarrow} Ph \\ \end{array} \end{array} $	$\begin{array}{c} \stackrel{Me}{\underset{H}{}} & \stackrel{Ph}{\underset{N}{}} & \stackrel{Ph}{\underset{Ph}{}} & \stackrel{Ph}{\underset{Ph}{}} & \stackrel{Ph}{\underset{Ph}{}} \\ \hline \begin{array}{c} PA (10 \text{ mol}\%) \\ \hline solvent, r.t. \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 1b & 2a \\ \hline \end{array} \\ \hline \begin{array}{c} 1 & PA \\ \hline \end{array} \\ \hline \begin{array}{c} 1 & PA \\ \hline \end{array} \\ \hline \begin{array}{c} 2 & PA \\ \hline \end{array} \\ \hline \begin{array}{c} 2 & PA \\ \hline \end{array} \\ \hline \begin{array}{c} 1 & PA \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 1 & PA \\ \hline \end{array} \\ \hline \begin{array}{c} 1 & PA \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 1 & PA \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} 1 & PA \\ \hline \end{array} $ \\ \hline \begin{array}{c} 1 & PA \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \\

^aReaction conditions: **1b** (0.2 mmol), **2a** (0.12 mmol), and the **PA** (10 mol%) in the solvent specified (1 mL) at r.t. for 10 minutes.

^bIsolated yield.

^c2a (0.06 mmol)

^d2a (0.2 mmol)

2) Effect of Catalysts

Me Me M H	$\begin{array}{c} Ph \\ N \\ N \\ N \\ N \\ N \\ Ph \end{array}$	Cat. (10 mol%) CH ₃ CN, r.t.	Me N N Ph
1b	2a		3b
Entry ^a	Cat.	Solvent	Yield (%) ^b
1	РА	CH ₃ CN	82
2	TfOH	CH ₃ CN	n.r.
3	<i>p</i> -TSA	CH ₃ CN	69
4	MsOH	CH ₃ CN	n.r.
5	HNTf ₂	CH ₃ CN	42
6	PhCOOH	CH ₃ CN	58
7	СН3СООН	CH ₃ CN	50

^aReaction conditions: **1b** (0.2 mmol), **2a** (0.12 mmol), and the **Cat.** (10 mol%) in the CH₃CN (1 mL) at r.t. for 10 minutes. n.r.= no reaction. ^bIsolated yield.

3) Effect of Temperatures

Me OH N H	$\begin{array}{c} Ph_{N} & Ph_{N'} \\ \bullet & \bigvee_{N} \\ Ph \\ Ph \end{array}$	PA (10 mol%) ————————————————————————————————————	Me N N Ph
1b	2a		3b
Entry ^a	T (°C)	Solvent	Yield (%) ^b
1	r.t.	CH ₃ CN	82
2	0	CH ₃ CN	78
3	-20	CH ₃ CN	66
4	-40	CH ₃ CN	63
5	50	CH ₃ CN	46

^aReaction conditions: **1b** (0.2 mmol), **2a** (0.12 mmol), and the **PA** (10 mol%) in the CH₃CN (1 mL) at T (°C) for 10 minutes. ^bIsolated yield.

Optimization of the reaction conditions for 4b

1) Effect of Solvents

\bigcirc	OH Ph H Ph	2a PA (10 mol%) solvent, r.t.	Ph N N O H Ph Ph	+ NH NH NH OH H Ph Ph
	1c		4b	Int-4b
	Entry ^a	Solvent	Yield (%) ^b
		-	4b	Int-4b
	1	Toluene	33	21
	2	CH_2Cl_2	37	48
	3	CH ₃ CN	79	-
	4	THF	48	16

^aReaction conditions: **1c** (0.2 mmol), **2a** (0.12 mmol), and the **PA** (10 mol%) in the solvent specified (1 mL) at r.t. for 10 minutes.

^bIsolated yield.

2) Effect of Catalysts

Entry ^a	Cat.	Solvent	Yield (%) ^b
1	TFA	CH ₃ CN	trace
2	TfOH	CH ₃ CN	26
3	p-TSA	CH ₃ CN	39
4	MsOH	CH ₃ CN	trace
5	HNTf ₂	CH ₃ CN	trace
6	PhCOOH	CH ₃ CN	n.r.
7	CH ₃ COOH	CH ₃ CN	trace
8	PA	CH ₃ CN	79
9	Ni(OTf)2	CH ₃ CN	32
10	Sc(OTf)3	CH ₃ CN	trace
11	Fe(OTf)2	CH ₃ CN	n.r.
12	Cu(OTf)2	CH ₃ CN	29
13	Sn(OTf) ₂	CH ₃ CN	n.r.
14	Zn(OTf)2	CH ₃ CN	n.r.
15	In(OTf) ₃	CH ₃ CN	n.r.
16	Co(OTf) ₂	CH ₃ CN	n.r.

^aReaction conditions: **1c** (0.2 mmol), **2a** (0.12 mmol), and the **Cat.** (10 mol%) in the CH₃CN (1 mL) at r.t. for 10 minutes. n.r.= no reaction. ^bIsolated yield.

Optimization of the reaction conditions for Int-4d

^aReaction conditions: **1c** (0.2 mmol), **2** (0.06 mmol), and the **PA** (10 mol%) in the solvent specified (1 mL) at r.t. for 12 hours. R = 4-ClPh. ^bIsolated yield.

2) Effect of Catalysts

OH N Ph H Ph	R	$\begin{array}{c} & & & \\ & & & \\ &$	$\xrightarrow{\text{nol}\%)}$ r.t.	$\begin{pmatrix} R \\ N \\ N \\ H \\ Ph \\ Ph \\ Ph \end{pmatrix} + \begin{pmatrix} R \\ + \end{pmatrix}$	R NH OH H Ph Ph
10	Entwa	2 	Viald	$\frac{4d}{(0/)^b}$	Int-4d
	Entry	Cal. –		(%) ²	
			4d	Int-4d	
	1	TFA	29	trace	
	2	TfOH	37	23	
	3	<i>p</i> -TSA	trace	-	
	4	MsOH	trace	-	
	5	HNTf ₂	39	42	
	6	PhCOOH	24	36	
	7	СН3СООН	28	52	
	8	PA	32	57	
	9	Ni(OTf)2	29	33	
	10	Sc(OTf) ₃	21	38	
	11	Fe(OTf)2	-	-	
	12	Co(OTf)2	19	31	
	13	Cu(OTf)2	40	29	

^aReaction conditions: **1c** (0.2 mmol), **2** (0.06 mmol), and the **Cat.** (10 mol%) in the CH₂Cl₂ (1 mL) at r.t. for 12 hours. R = 4-ClPh.

^bIsolated yield.

Optimization of the reaction conditions for 5d

1) Effect of Solvents

Entry ^a	Cat.	Solvent	Time (h)	Yield (%) ^b	Time (h)	Yield (%) ^b
1	PA	Toluene	24	38	36	39
2	PA	CH_2Cl_2	24	42	36	43
3	PA	CH ₃ CN	24	41	36	41
4	PA	THF	24	33	36	45

^aReaction conditions: **Int-4d** and the **PA** (10 mol%) in the solvent specified (1 mL) at r.t. for specific time. R = 4-ClPh.

^bIsolated yield.

2) Effect of Temperatures

		R NH OH H Ph	PA (10 m THF, T	ol%)	N N H Ph	R		
		Int-4d			5d			
Entry ^a	T (°C)	Time	Yield	Time	Yield	Time	Yield	
		(h)	(%) ^b	(h)	(%) ^b	(h)	(%) ^b	
1	r.t.	12	trace	24	33	36	45	
2	40	12	25	24	55	36	54	
3	60	12	messy	24	-	36	-	
4	80	12	messy	24	-	36	-	

^aReaction conditions: Int-4d and the PA (10 mol%) in the THF (1 mL) at specific T (°C) for specific time. R = 4-ClPh.

^bIsolated yield.

General procedure for the synthesis of triazine compounds 2

In a 100 mL round-bottomed flask equipped with a Dean-Stark apparatus, a mixture of aniline (30 mmol), paraformaldehyde (33 mmol), and toluene (50 mL) was heated with refluxing for 2 hours. Then the solvent was concentrated under reduced pressure at 50 °C, a precipitate came out from the mixture. The precipitate was collected by filtration, washed with *n*-hexane several times, and dried to obtain 1,3,5-triazinanes **2**.

Procedure for the synthesis of compounds 3

Compounds 1 (0.20 mmol) and 1,3,5-triazinanes 2 (0.12 mmol) were dissolved in CH₃CN and PA (10 mol%) was added. The reaction mixture was stirred at room temperature for 10 minutes. The solvents were removed in vacuo and the crude products were separated by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to afford target products 3.

Procedure for the synthesis of compounds 4

Diaryl 2-indolylmethanol compounds 1 (0.20 mmol) and 1,3,5-triazinanes 2 (0.12 mmol) were dissolved in CH₃CN and **PA** (10 mol%) was added. The reaction mixture was stirred at room temperature for 10 minutes. The solvents were removed in vacuo and the crude products were separated by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to afford target products **4**.

Procedure for the synthesis of compounds Int-4

Diaryl 2-indolylmethanol compounds 1 (0.50 mmol) and 1,3,5-triazinanes 2 (0.15 mmol) were dissolved in CH_2Cl_2 and **PA** (10 mol%) was added. The reaction mixture was stirred at room temperature for 12 hours. The solvents were removed in vacuo and the crude products were separated by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to afford products **Int-4**.

Procedure for the synthesis of compounds 5

Compounds Int-4 (0.20mmol) were dissolved in THF and PA (10 mol%) was added. The reaction mixture was stirred at 40 °C for 24 hours. The solvents were removed in vacuo and the crude products were separated by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 15:1) to afford target products 5 and recover compounds Int-4, then recovered compounds Int-4 were repeated the above steps four times.

Procedure for the synthesis of compounds 5'

To the solution of compounds **5** (0.1 mmol) in DMF (1 mL) were added NaH (60% suspension in mineral oil, 0.15 mmol) at 0 °C, which was stirred at 25 °C for 30 minutes. Then iodomethane (0.156 mmol) was added to the reaction mixture at 0 °C, which was stirred at 25 °C for 30 minutes. After the completion of the reaction which was indicated by TLC, the organic layer was washed with saturated NH₄Cl aqueous solution (3×10 mL), the combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residues were purified through preparative thin layer chromatography on silica gel (petroleum ether/ethyl acetate = 15:1) to afford target products **5'**.

Special substrate

Compounds **1a** (0.20 mmol) and 1,3,5-triazinanes **2k** (0.20 mmol) were dissolved in CH₃CN and **PA** (10 mol%) was added. The reaction mixture was stirred for 10 minutes at room temperature. The solvents were removed in vacuo and the crude product was separated by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to afford target products **3k'**.

3. Characterization of products

<u>N-((4-phenyl-4,5-dihydro-1H,3H-[1,3,5]oxadiazepino[5,6-a]indol-11-yl)methyl)anilin</u> <u>e 3a:</u>

A white solid; 22.2 mg; isolated yield = 30%; m.p. 156.3 -157.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.50 (m, 1H), 7.38 – 7.30 (m, 1H), 7.26 – 7.16 (m, 3H), 7.14 – 7.08 (m, 2H), 7.07 – 7.01 (m, 3H), 6.87 – 6.78 (m, 1H), 6.74 – 6.69 (m, 1H), 6.66 – 6.61 (m, 2H), 5.76 (s, 2H), 5.23 (s, 2H), 4.98 (s, 2H), 4.33 (s, 2H), 3.61 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 145.6, 136.5, 136.1, 129.3, 126.9, 122.8, 121.9, 119.7, 119.5, 118.0, 117.5, 112.8, 111.2, 108.7, 86.8, 64.1, 61.4, 38.7. HRMS (ESI) m/z calcd for C₂₄H₂₃N₃ONa⁺ [M + Na]⁺ = 392.1733, found = 392.1732.

11-Methyl-4-phenyl-4,5-dihydro-1H,3H-[1,3,5]oxadiazepino[5,6-a]indole 3b:

A white solid; 41.1 mg; isolated yield = 82%; m.p. 134.4 -135.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.38 (m, 1H), 7.30 – 7.24 (m, 1H), 7.21 – 7.14 (m, 1H), 7.11 – 7.03 (m, 2H), 7.03 – 6.97 (m, 3H), 6.85 – 6.68 (m, 1H), 5.66 (s, 2H), 5.19 (s, 2H), 4.89 (s, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 136.4, 134.2, 129.2, 128.1, 122.4, 121.7, 119.4, 118.9, 118.0, 109.7, 108.3, 86.7, 64.3, 61.2, 8.8. HRMS (ESI) m/z calcd for C₁₈H₁₈N₂ONa⁺ [M + Na]⁺ = 301.1311, found = 301.1310.

<u>4-(2-Chlorophenyl)-11-methyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole <u>3c:</u></u>

A white solid; 39.9 mg; isolated yield = 71%; m.p. 146.7 -147.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 1H), 7.31 – 7.26 (m, 1H), 7.20 – 7.13 (m, 1H), 7.09 – 7.01 (m, 2H), 7.00 – 6.94 (m, 1H), 6.92 – 6.79 (m, 2H), 5.72 (s, 2H), 5.06 (s, 2H), 5.01 (s, 2H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 136.5, 134.2, 130.0, 129.0,

127.7, 127.7, 126.2, 126.1, 122.4, 119.1, 118.8, 109.8, 108.1, 89.5, 63.9, 61.5, 8.8. HRMS (ESI) m/z calcd for $C_{18}H_{17}CIN_2ONa^+[M + Na]^+ = 335.0922$, found = 335.0919.

11-Methyl-4-(m-tolyl)-4,5-dihydro-1H,3H-[1,3,5]oxadiazepino[5,6-a]indole 3d:

A white solid; 41.0 mg; isolated yield = 78%; m.p. 131.3 -131.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.40 (m, 1H), 7.33 – 7.26 (m, 1H), 7.23 – 7.15 (m, 1H), 7.09 – 6.94 (m, 2H), 6.87 – 6.78 (m, 2H), 6.67 – 6.55 (m, 1H), 5.72 (s, 2H), 5.23 (s, 2H), 4.93 (s, 2H), 2.23 (s, 3H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 138.9, 136.4, 134.1, 129.0, 128.0, 122.4, 122.4, 119.4, 118.9, 118.6, 114.8, 109.7, 108.3, 86.6, 64.3, 61.2, 21.6, 8.8. HRMS (ESI) m/z calcd for C₁₉H₂₀N₂ONa⁺ [M + Na]⁺ = 315.1468, found = 315.1465.

<u>4-(3-Chlorophenyl)-11-methyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole <u>3e:</u></u>

A white solid; 47.7 mg; isolated yield = 85%; m.p. 189.5 -190.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.40 (m, 1H), 7.32 – 7.26 (m, 1H), 7.24 – 7.17 (m, 1H), 7.08 – 7.02 (m, 2H), 7.01 – 6.96 (m, 1H), 6.92 – 6.85 (m, 1H), 6.79 – 6.71 (m, 1H), 5.70 (s, 2H), 5.19 (s, 2H), 4.93 (s, 2H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 136.4, 134.9, 133.8, 130.1, 128.0, 122.6, 121.6, 119.5, 119.1, 118.1, 115.8, 110.2, 108.1, 86.3, 64.4, 61.1, 8.8. HRMS (ESI) m/z calcd for C₁₈H₁₇ClN₂ONa⁺ [M + Na]⁺ = 335.0922, found = 335.0928.

<u>4-(3-Bromophenyl)-11-methyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole <u>3f:</u></u>

A white solid; 46.8 mg; isolated yield = 73%; m.p. 185.7 -186.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 - 7.42 (m, 1H), 7.35 - 7.26 (m, 1H), 7.25 - 7.18 (m, 2H), 7.10 - 7.01

(m, 1H), 6.97 - 6.87 (m, 3H), 5.70 (s, 2H), 5.19 (s, 2H), 4.93 (s, 2H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.0, 136.4, 133.8, 130.4, 128.0, 124.5, 123.1, 122.7, 121.0, 119.5, 119.1, 116.2, 110.2, 108.1, 86.3, 64.4, 61.1, 8.8. HRMS (ESI) m/z calcd for $C_{18}H_{17}BrN_2ONa^+[M + Na]^+ = 379.0416$, found = 379.0428.

<u>4-(4-Methoxyphenyl)-11-methyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indol e 3g:</u>

A white solid; 45.5 mg; isolated yield = 82%; m.p. 129.7-130.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.37 (m, 1H), 7.25 – 7.09 (m, 2H), 7.05 – 6.98 (m, 1H), 6.96 – 6.86 (m, 2H), 6.68 – 6.53 (m, 2H), 5.60 (s, 2H), 5.12 (s, 2H), 4.92 (s, 2H), 3.59 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 139.6, 136.3, 134.3, 128.0, 122.3, 121.1, 119.3, 118.8, 114.4, 109.6, 108.3, 88.0, 64.2, 62.4, 55.3, 8.8. HRMS (ESI) m/z calcd for C₁₉H₂₀N₂O₂Na⁺ [M + Na]⁺ = 331.1417, found = 331.1418.

<u>11-Methyl-4-(p-tolyl)-4,5-dihydro-1H,3H-[1,3,5]oxadiazepino[5,6-a]indole **3h**:</u>

A white solid; 44.2 mg; isolated yield = 84%; m.p. 149.9 -150.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.38 (m, 1H), 7.29 – 7.22 (m, 1H), 7.21 – 7.13 (m, 1H), 7.07 – 6.98 (m, 1H), 6.94 – 6.84 (m, 4H), 5.66 (s, 2H), 5.18 (s, 2H), 4.91 (s, 2H), 2.22 (s, 3H), 2.11 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.3, 136.4, 134.2, 131.2, 129.8, 128.0, 122.4, 119.4, 118.8, 118.3, 109.6, 108.3, 87.0, 64.3, 61.5, 20.5, 8.8. HRMS (ESI) m/z calcd for C₁₉H₂₀N₂ONa⁺ [M + Na]⁺ = 315.1468, found = 315.1470.

4-([1,1'-Biphenyl]-4-yl)-11-methyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]ind ole **3i**:

A white solid; 36.9 mg; isolated yield = 58%; m.p. 196.9 -197.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.40 (m, 3H), 7.38 – 7.30 (m, 4H), 7.27 – 7.18 (m, 3H), 7.12 – 7.02 (m, 3H), 5.81 (s, 2H), 5.30 (s, 2H), 4.98 (s, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 140.6, 136.3, 134.3, 134.0, 128.6, 128.0, 127.9, 126.6, 126.6, 122.5, 119.4, 118.9, 118.0, 109.9, 108.2, 86.6, 64.4, 61.2, 8.8. HRMS (ESI) m/z calcd for C₂₄H₂₂N₂ONa⁺ [M + Na]⁺ = 377.1624, found = 377.1631.

<u>4-(4-Fluorophenyl)-11-methyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole <u>3i:</u></u>

A white solid; 44.8 mg; isolated yield = 84%; m.p. 139.4 -140.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.37 (m, 1H), 7.28 – 7.10 (m, 2H), 7.07 – 7.01 (m, 1H), 7.00 – 6.94 (m, 2H), 6.80 – 6.72 (m, 2H), 5.66 (s, 2H), 5.15 (s, 2H), 4.94 (s, 2H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 157.2 (*J* = 240 Hz), 142.2, 142.2, 136.3, 134.1, 127.9, 122.5, 120.8, 120.8, 119.4, 118.9, 115.8, 115.6 (*J* = 22 Hz), 109.9, 108.1, 87.6, 64.2, 62.2, 8.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -121.59. HRMS (ESI) m/z calcd for C₁₈H₁₇FN₂ONa⁺ [M + Na]⁺ = 319.1217, found = 319.1215.

<u>4-(4-Chlorophenyl)-11-methyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole <u>3k:</u></u>

A white solid; 45.5mg; isolated yield = 81%; m.p. 175.8 -176.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (m, *J* = 7.9 Hz, 1H), 7.25 (m, *J* = 8.4 Hz, 1H), 7.22 - 7.15 (m, 1H), 7.09 - 7.01 (m, 3H), 6.98 - 6.92 (m, 2H), 5.69 (s, 2H), 5.18 (s, 2H), 4.93 (s, 2H), 2.23 (s, 2H), 5.18 (s, 2H), 5.18 (s, 2H), 5.18 (s, 2H), 5.23 (s

3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 136.4, 133.9, 129.1, 127.9, 126.9, 122.6, 119.5, 119.5, 119.0, 110.1, 108.1, 86.7, 64.3, 61.4, 8.8. HRMS (ESI) m/z calcd for C₁₈H₁₇ClN₂ONa⁺ [M + Na]⁺ = 335.0922, found = 335.0929.

<u>4-(4-Bromophenyl)-11-methyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole <u>31:</u></u>

A white solid; 53.2 mg; isolated yield = 83%; m.p. 193.1 -193.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.40 (m, 1H), 7.27 – 7.23 (m, 1H), 7.22 – 7.15 (m, 3H), 7.10 – 7.01 (m, 1H), 6.96 – 6.84 (m, 2H), 5.72 (s, 2H), 5.20 (s, 2H), 4.95 (s, 2H), 2.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 136.4, 133.8, 132.0, 127.9, 122.6, 119.8, 119.5, 119.0, 114.4, 110.1, 108.0, 86.6, 64.3, 61.3, 8.7. HRMS (ESI) m/z calcd for C₁₈H₁₇BrN₂ONa⁺ [M + Na]⁺ = 379.0416, found = 379.0426.

4-Butyl-11-methyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole 3m:

A white solid; 33.5 mg; isolated yield = 72%; m.p. 58.3 -58.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.45 (m, 1H), 7.30 – 7.16 (m, 2H), 7.11 – 7.02 (m, 1H), 5.22 (s, 2H), 4.82 (s, 2H), 4.71 (s, 2H), 2.36 – 2.31 (m, 2H), 2.30 (s, 3H), 1.48 – 1.34 (m, 2H), 1.28 – 1.13 (m, 2H), 0.88 – 0.74 (t, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 137.0, 134.6, 127.9, 122.2, 119.4, 118.8, 109.4, 108.3, 89.7, 63.8, 62.2, 46.6, 29.5, 20.2, 13.9, 8.8. HRMS (ESI) m/z calcd for C₁₆H₂₃N₂O⁺ [M + H]⁺ = 259.1805, found = 259.1808.

2-(11-Methyl-1H,3H-[1,3,5]oxadiazepino[5,6-a]indol-4(5H)-yl)ethan-1-ol 3n:

A white solid; 39.9 mg; isolated yield = 90%; m.p. 112.3 -113.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 - 7.47 (m, 1H), 7.26 - 7.16 (m, 2H), 7.11 - 7.03 (m, 1H), 5.22 (s, 2H), 4.83 (s, 2H), 4.72 (s, 2H), 3.45 - 3.32 (t, 2H), 2.64 - 2.53 (t, 2H), 2.46 (s, 1H), 2.29 (s, 2H), 3.45 - 3.32 (t, 2H), 3.45 - 3.45 (t, 2H), 3.45 (t, 2H),

3H). ¹³C NMR (100 MHz, CDCl₃) δ 136.9, 134.2, 127.9, 122.6, 119.6, 119.1, 110.1, 108.2, 89.8, 63.7, 62.3, 58.9, 50.1, 8.8. HRMS (ESI) m/z calcd for C₁₄H₁₈N₂O₂Na⁺ [M + Na]⁺ = 269.1260, found = 269.1259.

4-Cyclohexyl-11-methyl-4,5-dihydro-1H,3H-[1,3,5]oxadiazepino[5,6-a]indole 30:

A white solid; 41.4 mg; isolated yield = 81%; m.p. 106.7 -107.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.48 (m, 1H), 7.32 – 7.22 (m, 1H), 7.22 – 7.15 (m, 1H), 7.11 – 7.01 (m, 1H), 5.28 (s, 2H), 4.83 (s, 2H), 4.81 (s, 2H), 2.42 – 2.31 (m, 1H), 2.29 (s, 3H), 1.86 – 1.71 (m, 2H), 1.65 – 1.54 (m, 2H), 1.49 – 1.35 (m, 1H), 1.20 – 0.92 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 136.4, 134.9, 128.0, 122.1, 119.3, 118.7, 109.1, 108.4, 87.6, 64.1, 60.9, 55.4, 31.4, 25.8, 25.1, 8.8. HRMS (ESI) m/z calcd for C₁₈H₂₅N₂O⁺ [M + H]⁺ = 285.1961 found = 285.1957.

4-Cyclopropyl-11-methyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole 3p:

A white solid; 34.9 mg; isolated yield = 80%; m.p. 77.8 -78.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.46 (m, 1H), 7.35 – 7.27 (m, 1H), 7.25 – 7.16 (m, 1H), 7.11 – 7.03 (m, 1H), 5.20 (s, 2H), 4.86 (s, 2H), 4.71 (s, 2H), 2.32 (s, 3H), 1.79 – 1.64 (m, 1H), 0.49 – 0.43 (m, 2H), 0.42 – 0.37 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 134.6, 127.8, 122.2, 119.4, 118.8, 109.6, 108.5, 89.5, 63.7, 62.6, 28.6, 8.8, 7.1. HRMS (ESI) m/z calcd for C₁₅H₁₈N₂ONa⁺ [M + Na]⁺ = 265.1311, found = 265.1316.

4-(Tert-butyl)-11-methyl-4,5-dihydro-1H,3H-[1,3,5]oxadiazepino[5,6-a]indole 3q:

A white solid; 36.7 mg; isolated yield = 79%; m.p. 93.1 -93.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.45 (m, 1H), 7.33 – 7.25 (m, 1H), 7.25 – 7.15 (m, 1H), 7.11 – 7.00 (m, 1H), 5.38 (s, 2H), 4.92 (s, 2H), 4.87 (s, 2H), 2.29 (s, 3H), 0.99 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 135.5, 134.9, 128.3, 122.0, 119.3, 118.6, 109.1, 108.8, 87.0, 63.9, 60.0, 53.8, 29.5, 8.8. HRMS (ESI) m/z calcd for C₁₆H₂₃N₂O⁺ [M + H]⁺ = 259.1805, found = 259.1813.

A white solid; 42.1 mg; isolated yield = 80%; m.p. 155.3 -155.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 - 7.43 (m, 1H), 7.32 - 7.25 (m, 1H), 7.20 - 7.14 (m, 1H), 7.12 - 7.06 (m, 2H), 7.05 - 6.98 (m, 3H), 6.83 - 6.75 (m, 1H), 5.72 (s, 2H), 5.22 (s, 2H), 4.94 (s, 2H), 2.70 (q, *J* = 7.6 Hz, 2H), 1.18 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 136.4, 133.7, 129.2, 127.0, 122.3, 121.8, 119.4, 118.9, 118.2, 116.7, 108.4, 86.8, 64.1, 61.4, 17.6, 16.3. HRMS (ESI) m/z calcd for C₁₉H₂₀N₂ONa⁺[M + Na]⁺ = 315.1468, found = 315.1470.

4,11-Diphenyl-4,5-dihydro-1H,3H-[1,3,5]oxadiazepino[5,6-a]indole 3s:

A white solid; 46.5 mg; isolated yield = 76%; m.p. 168.3 -168.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.56 (m, 1H), 7.47 – 7.35 (m, 5H), 7.34 – 7.29 (m, 1H), 7.27 – 7.20 (m, 1H), 7.17 – 7.03 (m, 5H), 6.89 – 6.80 (m, 1H), 5.86 (s, 2H), 5.27 (s, 2H), 5.04 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 136.3, 134.7, 134.3, 130.0, 129.2, 128.6, 126.6, 126.5, 122.8, 121.9, 120.0, 119.9, 118.3, 117.1, 108.6, 86.8, 64.9, 61.6. HRMS (ESI) m/z calcd for C₂₃H₂₀N₂ONa⁺ [M + Na]⁺ = 363.1468, found = 363.1463.

<u>11-(3-Chlorophenyl)-4-phenyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole <u>3t:</u></u>

A white solid; 41.8 mg; isolated yield = 62%; m.p. 114.3 -114.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.50 (m, 1H), 7.43 – 7.31 (m, 3H), 7.31 – 7.21 (m, 3H), 7.19 – 7.10 (m, 2H), 7.10 – 7.04 (m, 3H), 6.88 – 6.80 (m, 1H), 5.83 (s, 2H), 5.25 (s, 2H), 5.00 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 136.3, 136.3, 135.1, 134.4, 129.8, 129.3, 128.2, 126.6, 126.4, 123.1, 122.0, 120.2, 119.8, 118.2, 115.8, 108.8, 86.8, 64.6, 61.6. HRMS (ESI) m/z calcd for C₂₃H₁₉ClN₂ONa⁺ [M + Na]⁺ = 397.1078, found = 397.1078.

A white solid; 46.0 mg; isolated yield = 69%; m.p. 132.3 -133.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.49 (m, 1H), 7.41 – 7.26 (m, 3H), 7.24 – 7.19 (m, 1H), 7.17 – 7.01 (m, 5H), 6.99 – 6.93 (m, 2H), 6.90 – 6.75 (m, 1H), 5.82 (s, 2H), 5.25 (s, 2H), 5.00 (s, 2H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 145.8, 136.3, 134.4, 131.1, 129.2, 126.9, 126.6, 122.7, 121.9, 120.0, 119.8, 118.2, 116.8, 114.1, 108.6, 86.8, 64.9, 61.5, 55.4. HRMS (ESI) m/z calcd for C₂₄H₂₂N₂O₂Na⁺ [M + Na]⁺ = 393.1573, found = 393.1567.

4-Phenyl-11-(*p*-tolyl)-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole 3v:

A white solid; 43.4 mg; isolated yield = 68%; m.p. 171.1 -171.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.53 (m, 1H), 7.43 – 7.33 (m, 1H), 7.32 – 7.27 (m, 2H), 7.27 – 7.19 (m, 3H), 7.18 – 7.00 (m, 5H), 6.90 – 6.79 (m, 1H), 5.84 (s, 2H), 5.26 (s, 2H), 5.02 (s, 2H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 136.3, 136.1, 134.6, 131.3, 129.9, 129.3, 129.2, 126.7, 122.7, 121.9, 120.1, 119.8, 118.2, 117.0, 108.6, 86.8, 64.9, 61.6, 21.2. HRMS (ESI) m/z calcd for C₂₄H₂₂N₂ONa⁺ [M + Na]⁺ = 377.1624, found = 377.1620.

<u>11-(4-Fluorophenyl)-4-phenyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole <u>3w:</u></u>

A white solid; 38.7 mg; isolated yield = 60%; m.p. 165.1 - 165.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 - 7.48 (m, 1H), 7.41 - 7.32 (m, 3H), 7.26 - 7.20 (m, 1H), 7.17 - 7.02

(m, 7H), 6.92 - 6.79 (m, 1H), 5.86 (s, 2H), 5.27 (s, 2H), 5.00 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 160.6 (J = 244 Hz), 145.7, 136.3, 134.7, 131.5, 131.4, 130.2, 130.2, 129.3, 126.6, 122.9, 122.0, 120.0, 119.8, 118.2, 116.1, 115.6, 115.4 (J = 22 Hz), 108.7, 86.8, 64.7, 61.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.15. HRMS (ESI) m/z calcd for C₂₃H₁₉FN₂ONa⁺ [M + Na]⁺ = 381.1374, found = 381.1373.

<u>11-(4-Chlorophenyl)-4-phenyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole <u>3x:</u></u>

A white solid; 42.4 mg; isolated yield = 63%; m.p. 154.4 -155.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 - 7.50 (m, 1H), 7.44 - 7.35 (m, 3H), 7.34 - 7.29 (m, 2H), 7.27 - 7.21 (m, 1H), 7.17 - 7.11 (m, 2H), 7.11 - 7.03 (m, 3H), 6.89 - 6.77 (m, 1H), 5.85 (s, 2H), 5.27 (s, 2H), 4.99 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 136.3, 134.9, 132.8, 132.4, 131.2, 130.0, 129.3, 128.8, 128.6, 126.4, 123.0, 122.0, 120.1, 119.7, 118.3, 118.2, 115.9, 108.7, 86.8, 64.7, 61.6. HRMS (ESI) m/z calcd for C₂₃H₁₉ClN₂ONa⁺ [M + Na]⁺ = 397.1078, found = 397.1082.

<u>10-Fluoro-11-methyl-4-phenyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole <u>3y:</u></u>

A white solid; 38.9 mg; isolated yield = 73%; m.p. 125.4 -126.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.08 (m, 2H), 7.06 – 6.99 (m, 4H), 6.87 – 6.78 (m, 1H), 6.68 – 6.57 (m, 1H), 5.71 (s, 2H), 5.23 (s, 2H), 4.91 (s, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 156.5 (*J* = 246 Hz), 145.5, 139.0, 138.9, 134.1, 129.2, 122.8, 122.7, 121.9, 118.1, 116.6, 116.4 (*J* = 19 Hz), 108.5, 108.5, 104.4, 104.4, 104.3, 104.1, 63.8, 61.7, 10.5, 10.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -124.67. HRMS (ESI) m/z calcd for C₁₈H₁₇FN₂ONa⁺ [M + Na]⁺ = 319.1217, found = 319.1227.

<u>9-Methoxy-11-methyl-4-phenyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole <u>3z:</u></u>

A white solid; 45.5 mg; isolated yield = 82%; m.p. 135.0 -135.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.15 (m, 1H), 7.14 – 7.07 (m, 2H), 7.04 – 6.98 (m, 2H), 6.89 – 6.77 (m, 3H), 5.69 (s, 2H), 5.23 (s, 2H), 4.93 (s, 2H), 3.82 (s, 3H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 145.7, 134.8, 131.6, 129.2, 128.2, 121.7, 118.0, 112.4, 109.2, 109.0, 101.2, 86.7, 64.4, 61.5, 55.9, 8.8. HRMS (ESI) m/z calcd for C₁₉H₂₀N₂O₂Na⁺ [M + Na]⁺ = 331.1417, found = 331.1412.

9,11-Dimethyl-4-phenyl-4,5-dihydro-1H,3H-[1,3,5]oxadiazepino[5,6-a]indole 3a':

A white solid; 37.3 mg; isolated yield = 71%; m.p. 145.5 -146.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.20 (m, 1H), 7.19 – 7.15 (m, 1H), 7.12 – 7.06 (m, 2H), 7.04 – 6.97 (m, 3H), 6.83 – 6.75 (m, 1H), 5.69 (s, 2H), 5.22 (s, 2H), 4.92 (s, 2H), 2.41 (s, 3H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 134.8, 134.2, 129.2, 128.2, 128.0, 123.9, 121.6, 119.1, 118.0, 109.2, 108.0, 86.7, 64.4, 61.3, 21.4, 8.8. HRMS (ESI) m/z calcd for C₁₉H₂₀N₂ONa⁺ [M + Na]⁺ = 315.1468, found = 315.1467.

<u>9-Chloro-11-methyl-4-phenyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole <u>3</u> <u>b':</u></u>

A white solid; 44.9 mg; isolated yield = 80%; m.p. 171.3 -172.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.34 (m, 1H), 7.21 – 7.05 (m, 4H), 7.03 – 6.95 (m, 2H), 6.87 – 6.75 (m, 1H), 5.68 (s, 2H), 5.21 (s, 2H), 4.91 (s, 2H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 135.5, 134.8, 129.2, 129.1, 124.5, 122.6, 121.9, 118.9, 118.1, 109.4, 109.3, 86.7, 64.1, 61.6, 8.7. HRMS (ESI) m/z calcd for C₁₈H₁₇ClN₂ONa⁺ [M + Na]⁺ = 335.0922, found = 335.0928.

<u>8-Chloro-11-methyl-4-phenyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole 3 <u>c':</u></u>

A white solid; 39.3 mg; isolated yield = 70%; m.p. 178.4 -179.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 1H), 7.26 – 7.23 (m, 1H), 7.16 – 7.09 (m, 2H), 7.04 – 6.95 (m, 3H), 6.87 – 6.78 (m, 1H), 5.65 (s, 2H), 5.21 (s, 2H), 4.90 (s, 2H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 136.7, 134.9, 129.3, 128.3, 126.6, 121.9, 120.2, 119.6, 118.1, 109.9, 108.3, 86.7, 64.1, 61.5, 8.7. HRMS (ESI) m/z calcd for C₁₈H₁₇ClN₂ONa⁺ [M + Na]⁺ = 335.0922, found = 335.0931.

<u>7-Fluoro-11-methyl-4-phenyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole 3 <u>d':</u></u>

A white solid; 39.9 mg; isolated yield = 75%; m.p. 155.2 -156.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.20 – 7.08 (m, 5H), 6.96 – 6.73 (m, 3H), 6.14 – 5.94 (m, 2H), 5.22 (s, 2H), 4.92 (s, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 148.0 (*J* = 240 Hz), 145.3, 135.6, 131.9, 131.8, 129.2, 124.3, 124.2, 121.5, 119.0, 118.9, 117.6, 117.6, 115.2, 115.1, 111.0, 108.4, 108.2 (*J* = 19 Hz), 86.5, 63.8, 63.3, 63.2, 9.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -134.97. HRMS (ESI) m/z calcd for C₁₈H₁₇FN₂ONa⁺ [M + Na]⁺ = 319.1217, found = 319.1210.

<u>7-Bromo-11-methyl-4-phenyl-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indole <u>3</u> <u>e':</u></u>

A white solid; 49.9 mg; isolated yield = 78%; m.p. 149.7 -150.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.40 (m, 1H), 7.34 – 7.25 (m, 1H), 7.23 – 7.16 (m, 1H), 7.14 – 7.07 (m, 2H), 7.06 – 7.00 (m, 2H), 6.84 – 6.75 (m, 1H), 5.74 (s, 2H), 5.24 (s, 2H), 4.95 (s, 2H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.7, 136.3, 134.1, 129.2, 128.0, 122.4, 121.7, 119.3, 118.9, 118.0, 109.7, 108.3, 86.7, 64.3, 61.3, 8.8. HRMS (ESI) m/z calcd for C₁₈H₁₇BrN₂ONa⁺ [M + Na]⁺ = 379.0416, found = 379.0415.

<u>4-Chloro-*N*-((4-(4-chlorophenyl)-4,5-dihydro-1*H*,3*H*-[1,3,5]oxadiazepino[5,6-*a*]indol -11-yl)methyl)aniline 3k'</u>

A white solid; 24.4 mg; isolated yield = 28%; m.p. 212.3. -213.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.50 (m, 1H), 7.36 – 7.28 (m, 1H), 7.26 – 7.21 (m, 1H), 7.19 – 7.06 (m, 5H), 7.01 – 6.96 (m, 2H), 6.62 – 6.53 (m, 2H), 5.78 (s, 2H), 5.22 (s, 2H), 5.01

(s, 2H), 4.32 (s, 2H), 3.67 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.8, 144.1, 136.5, 135.8, 129.2, 129.1, 129.1, 127.2, 126.6, 123.1, 122.1, 119.9, 119.6, 119.5, 116.2, 113.8, 111.1, 108.5, 86.9, 64.0, 61.6, 38.8. HRMS (ESI) m/z calcd for C₂₄H₂₁Cl₂N₃Na⁺ [M + Na]⁺ = 460.0954, found = 460.0959.

2,5,5-Triphenyl-2,3,5,6-tetrahydro-1*H*-[1,3]oxazepino[6,5-*b*]indole 4b:

A white solid; 59.2 mg; isolated yield = 79%; m.p. 186.9 -187.6 °C; ¹H NMR (400 MHz, DMSO) δ 9.65 (s, 1H), 7.80 – 7.73 (m, 1H), 7.41 – 7.29 (m, 7H), 7.21 – 7.11 (m, 4H), 7.09 – 7.03 (m, 2H), 7.02 – 6.96 (m, 4H), 6.77 – 6.69 (m, 1H), 5.23 (s, 2H), 4.73 (s, 2H). ¹³C NMR (100 MHz, DMSO) δ 148.0, 144.1, 139.1, 135.4, 129.3, 128.7, 128.6, 128.4, 128.2, 128.1, 127.4, 121.6, 119.6, 119.0, 118.4, 115.9, 113.0, 112.5, 86.3, 79.0, 45.9. HRMS (ESI) m/z calcd for C₂₉H₂₄N₂OK⁺[M + K]⁺= 455.1520, found = 455.1526.

2-Phenyl-5,5-di-p-tolyl-2,3,5,6-tetrahydro-1H-[1,3]oxazepino[6,5-b]indole 4c:

A colorless oil; 52.8 mg; isolated yield = 66%; ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.53 (m, 1H), 7.15 – 6.97 (m, 12H), 6.94 – 6.86 (m, 4H), 6.73 – 6.64 (m, 1H), 5.20 (s, 2H), 4.65 (s, 2H), 2.26 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 140.8, 138.9, 137.9, 134.3, 129.1, 128.5, 127.6, 127.4, 121.9, 119.9, 119.1, 118.2, 116.1, 113.9, 111.2, 85.9, 79.4, 46.1, 21.2. HRMS (ESI) m/z calcd for C₃₁H₂₉N₂O⁺ [M + H]⁺ = 445.2274, found = 445.2270.

5,5-Bis(4-chlorophenyl)-2-phenyl-2,3,5,6-tetrahydro-1*H*-[1,3]oxazepino[6,5-*b*]indole 4d:

A colorless oil; 65.4 mg; isolated yield = 75%; ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.55 (m, 1H), 7.22 – 7.15 (m, 5H), 7.13 – 7.07 (m, 5H), 7.01 – 6.92 (m, 6H), 6.74 – 6.67 (m, 1H), 5.19 (s, 2H), 4.65 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 141.9, 137.0, 134.6, 134.4, 129.8, 129.3, 129.1, 128.9, 128.7, 128.6, 127.3, 122.5, 120.3, 119.3,

118.3, 115.7, 114.5, 111.3, 84.9, 79.5, 45.9. HRMS (ESI) m/z calcd for $C_{29}H_{23}Cl_2N_2O^+$ [M + H]⁺ = 485.1182, found = 485.1184.

<u>2-(4-Methoxyphenyl)-5,5-diphenyl-2,3,5,6-tetrahydro-1*H*-[1,3]oxazepino[6,5-*b*]indol <u>e 4e:</u></u>

A white solid; 66.7 mg; isolated yield = 83%; m.p. 173.6 -174.0°C; ¹H NMR (400 MHz, DMSO) δ 9.60 (s, 1H), 7.79 – 7.65 (m, 1H), 7.39 – 7.29 (m, 7H), 7.15 – 7.09 (m, 2H), 7.07 – 7.02 (m, 2H), 7.01 – 6.95 (m, 4H), 6.86 – 6.73 (m, 2H), 5.17 (s, 2H), 4.65 (s, 2H), 3.65 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 152.9, 144.2, 142.0, 139.3, 135.4, 128.7, 128.6, 128.4, 127.4, 121.6, 119.5, 118.4, 117.7, 114.7, 113.1, 112.4, 86.3, 79.8, 55.6, 46.7. HRMS (ESI) m/z calcd for C₃₀H₂₇N₂O₂⁺ [M + H]⁺ = 447.2067, found = 447.2061.

5,5-Diphenyl-2-(p-tolyl)-2,3,5,6-tetrahydro-1H-[1,3]oxazepino[6,5-b]indole 4f:

A white solid; 57.3 mg; isolated yield = 74%; m.p. 218.2 -218.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.60 (m, 1H), 7.35 – 7.26 (m, 6H), 7.19 – 7.05 (m, 10H), 7.03 – 6.95 (m, 2H), 5.27 (s, 2H), 4.71 (s, 2H), 2.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 143.8, 138.4, 134.4, 129.7, 129.6, 128.6, 128.5, 128.5, 128.4, 128.3, 128.2, 127.8, 127.6, 127.5, 122.0, 119.9, 118.2, 116.3, 114.3, 111.2, 86.1, 79.9, 46.4, 20.4. HRMS (ESI) m/z calcd for C₃₀H₂₇N₂O⁺ [M + H]⁺ = 431.2118, found = 431.2131.

2-Benzyl-5,5-diphenyl-2,3,5,6-tetrahydro-1H-[1,3]oxazepino[6,5-b]indole 4g:

A white solid; 52.7 mg; isolated yield = 68%; m.p. 195.7 -196.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 6.96 (m, 20H), 4.72 (s, 2H), 4.01 (s, 2H), 3.97 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 139.2, 138.9, 134.6, 129.5, 128.7, 128.5, 128.5, 128.3, 128.2, 127.6, 127.1, 121.9, 119.7, 118.6, 112.8, 111.1, 86.2, 83.8, 53.9, 47.3. HRMS (ESI) m/z calcd for C₃₀H₂₇N₂O⁺ [M + H]⁺ = 431.2118, found = 431.2115.

A white solid; 38.3 mg; isolated yield = 56%; m.p. 221.0 -221.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.54 (m, 1H), 7.39 – 7.28 (m, 6H), 7.22 – 7.09 (m, 8H), 4.74 (s, 2H), 4.18 (s, 2H), 2.78 – 2.59 (m, 1H), 0.65 – 0.42 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 138.5, 134.6, 128.5, 128.4, 128.4, 128.2, 121.9, 119.7, 118.6, 113.7, 111.1, 86.2, 83.3, 48.9, 30.8, 7.3. HRMS (ESI) m/z calcd for C₂₆H₂₅N₂O⁺ [M + H]⁺ = 381.1961, found = 381.1974.

<u>9-Chloro-2-cyclopropyl-5,5-diphenyl-2,3,5,6-tetrahydro-1*H*-[1,3]oxazepino[6,5-*b*]ind ole **4i**:</u>

A white solid; 27.6 mg; isolated yield = 37%; m.p. 194.3 -195.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.37 (m, 1H), 7.31 – 7.23 (m, 6H), 7.18 – 7.07 (m, 5H), 7.05 – 6.97 (m, 2H), 4.65 (s, 2H), 4.05 (s, 2H), 2.88 – 2.34 (m, 1H), 0.60 – 0.23 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 139.2, 134.8, 128.5, 128.4, 128.3, 127.8, 126.9, 120.4, 119.5, 113.8, 111.0, 86.0, 83.2, 48.8, 30.7, 7.3. HRMS (ESI) m/z calcd for C₂₆H₂₄ClN₂O⁺ [M + H]⁺ = 415.1572, found = 415.1576.

<u>8-Chloro-2-cyclopropyl-5,5-diphenyl-2,3,5,6-tetrahydro-1*H*-[1,3]oxazepino[6,5-*b*]ind ole **4j**:</u>

A white solid; 39.5 mg; isolated yield = 53%; m.p. 211.3 -211.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.37 (m, 1H), 7.30 – 7.21 (m, 6H), 7.19 – 7.06 (m, 5H), 7.05 – 6.97 (m, 2H), 4.65 (s, 2H), 4.05 (s, 2H), 2.70 – 2.44 (m, 1H), 0.55 – 0.32 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 139.2, 134.8, 128.5, 128.4, 128.3, 127.8, 126.9, 120.4, 119.5, 113.8, 111.0, 86.0, 83.2, 48.8, 30.7, 7.3. HRMS (ESI) m/z calcd for C₂₆H₂₄ClN₂O⁺ [M + H]⁺ = 415.1572, found = 415.1570.

<u>8-Bromo-2-cyclopropyl-5,5-diphenyl-2,3,5,6-tetrahydro-1*H*-[1,3]oxazepino[6,5-*b*]ind ole 4k:</u>

A white solid; 33.8 mg; isolated yield = 41%; m.p. 196.1 -196.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.33 (m, 1H), 7.28 – 7.21 (m, 7H), 7.18 – 7.04 (m, 6H), 4.65 (s, 2H), 4.05 (s, 2H), 2.69 – 2.43 (m, 1H), 0.70 – 0.18 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 139.2, 135.2, 128.5, 128.4, 128.3, 127.2, 123.0, 119.9, 115.3, 114.0, 113.8, 86.0, 83.2, 48.7, 30.7, 7.3. HRMS (ESI) m/z calcd for C₂₆H₂₄BrN₂O⁺ [M + H]⁺=459.1067, found = 459.1075.

<u>7-Bromo-2-cyclopropyl-5,5-diphenyl-2,3,5,6-tetrahydro-1*H*-[1,3]oxazepino[6,5-*b*]ind ole **41**:</u>

A white solid; 47.0 mg; isolated yield = 57%; m.p. 180.9 -181.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.41 (m, 1H), 7.32 – 7.24 (m, 6H), 7.23 – 7.19 (m, 1H), 7.18 – 7.10 (m, 5H), 6.98 – 6.89 (m, 1H), 4.67 (s, 2H), 4.07 (s, 2H), 2.71 – 2.29 (m, 1H), 0.73 – 0.15 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 139.2, 133.2, 129.4, 128.5, 128.4, 128.3, 124.2, 120.9, 117.8, 114.9, 104.6, 86.0, 83.2, 49.0, 30.7, 7.3. HRMS (ESI) m/z calcd for C₂₆H₂₄BrN₂O⁺ [M + H]⁺=459.1067, found = 459.1074.

<u>2-(4-Methoxyphenyl)-5-methyl-5-phenyl-2,3,5,6-tetrahydro-1*H*-[1,3]oxazepino[6,5b]indole **4m**:</u>

A white solid; 49.1 mg; isolated yield = 71%; m.p. 186.4 -187.2 °C; ¹H NMR (400 MHz, DMSO) δ 10.99 (s, 1H), 7.77 – 7.67 (m, 1H), 7.44 – 7.24 (m, 4H), 7.16 – 6.94 (m, 6H), 6.74 – 6.68 (m, 2H), 5.39 (d, *J* = 12.5 Hz, 1H), 4.94 (d, *J* = 16.2 Hz, 1H), 4.72 (d, *J* = 12.5 Hz, 1H), 4.18 (d, *J* = 16.2 Hz, 1H), 3.61 (s, 3H), 1.87 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 152.8, 144.7, 142.1, 140.1, 135.2, 128.9, 128.1, 127.4, 126.8, 121.5, 119.5, 118.3, 117.4, 114.6, 111.9, 81.0, 79.6, 55.6, 46.2, 30.5. HRMS (ESI) m/z calcd for C₂₅H₂₅N₂O₂⁺ [M + H]⁺=385.1911, found = 385.1908.

6-Methyl-5,5-diphenyl-2-(*p*-tolyl)-2,3,5,6-tetrahydro-1*H*-[1,3]oxazepino[6,5-*b*]indole 4n:

A colorless oil; 60.8 mg; isolated yield = 76%; ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.67 (m, 1H), 7.31 – 6.99 (m, 13H), 6.77 – 6.68 (m, 2H), 6.42 – 6.26 (m, 2H), 5.03 (s, 2H), 4.80 (s, 2H), 2.80 (s, 3H), 2.14 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.3, 141.0, 140.8, 137.5, 129.4, 129.2, 128.2, 128.1, 128.0, 127.2, 126.1, 121.7, 119.5, 118.1, 114.8, 114.6, 109.2, 86.5, 79.2, 43.7, 31.9, 20.3. HRMS (ESI) m/z calcd for C₃₁H₂₉N₂O⁺ [M + H]⁺=445.2274, found = 445.2276.

Diphenyl(3-((phenylamino)methyl)-1H-indol-2-yl)methanol Int-4b:

A colorless oil; 97.0 mg; isolated yield = 48%; ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.59 (m, 1H), 7.42 – 7.00 (m, 16H), 6.90 – 6.71 (m, 2H), 6.17 (d, *J* = 7.4 Hz, 1H), 4.23 (s, 2H), 3.99 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 144.6, 136.8, 135.7, 135.3, 128.3, 128.2, 127.5, 126.5, 124.1, 123.1, 121.8, 119.3, 118.4, 110.8, 110.6, 69.5, 29.0. HRMS (ESI) m/z calcd for C₂₈H₂₄N₂ONa⁺ [M + Na]⁺ =427.1781, found = 427.1781.

4-Methyl-2,3,3-triphenyl-1,2,3,4-tetrahydropyrrolo[3,4-*b*]indole 5b':

A white solid; 41.6 mg; isolated yield = 52%; m.p. 231.2 -231.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.59 (m, 1H), 7.56 – 7.50 (m, 4H), 7.34 – 7.14 (m, 9H), 7.10 – 7.00 (m, 2H), 6.67 (d, *J* = 8.1 Hz, 2H), 6.60 (t, *J* = 7.2 Hz, 1H), 4.96 (s, 2H), 3.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 145.2, 141.4, 139.4, 129.0, 128.4, 128.3, 127.4, 121.9, 121.3, 119.9, 119.2, 116.4, 114.3, 111.2, 109.9, 74.3, 49.4, 30.8. HRMS (ESI) m/z calcd for C₂₉H₂₅N₂⁺ [M + H]⁺ = 401.2012, found = 401.2020.

<u>2-(3-Chlorophenyl)-4-methyl-3,3-diphenyl-1,2,3,4-tetrahydropyrrolo[3,4-*b*]indole <u>5</u> <u>c':</u></u>

A colorless oil; 51.2 mg; isolated yield = 59%; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 6.9 Hz, 1H), 7.55 – 7.45 (m, 4H), 7.36 – 7.13 (m, 9H), 6.95 – 6.84 (m, 1H), 6.76 – 6.65 (m, 1H), 6.63 – 6.44 (m, 2H), 4.94 (s, 2H), 3.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.2, 146.2, 141.5, 138.8, 134.4, 129.1, 128.9, 128.4, 127.7, 121.8, 121.5, 120.0, 119.2, 116.3, 113.8, 112.6, 110.7, 109.9, 74.5, 49.7, 30.9. HRMS (ESI) m/z calcd for C₂₉H₂₄ClN₂⁺ [M + H]⁺ = 435.1623, found = 435.1621.

<u>2-(4-Chlorophenyl)-4-methyl-3,3-diphenyl-1,2,3,4-tetrahydropyrrolo[3,4-*b*]indole <u>5</u> <u>d':</u></u>

A white solid; 46.0 mg; isolated yield = 53%; m.p. 228.1 -228.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.57 (m, 1H), 7.54 – 7.45 (m, 4H), 7.37 – 7.14 (m, 9H), 6.98 (d, *J* = 9.1 Hz, 2H), 6.57 (d, *J* = 9.1 Hz, 2H), 4.93 (s, 2H), 3.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 143.7, 141.5, 139.0, 128.9, 128.4, 128.3, 127.6, 121.8, 121.4, 121.4, 120.0, 119.2, 115.3, 110.9, 109.9, 74.4, 49.6, 30.8. HRMS (ESI) m/z calcd for C₂₉H₂₄ClN₂⁺ [M + H]⁺ = 435.1623, found = 435.1631.

<u>2-(4-Bromophenyl)-4-methyl-3,3-diphenyl-1,2,3,4-tetrahydropyrrolo[3,4-*b*]indole <u>5</u> <u>e':</u></u>

A colorless oil; 45.9 mg; isolated yield = 48%; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 7.2 Hz, 1H), 7.50 (d, J = 7.5 Hz, 4H), 7.33 – 7.08 (m, 11H), 6.53 (d, J = 9.0 Hz, 2H), 4.92 (s, 2H), 3.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.4, 144.1, 141.5, 139.0, 131.1, 128.9, 128.4, 127.7, 121.8, 121.5, 120.0, 119.2, 115.8, 110.9, 109.,9, 108.7, 74.4, 49.6, 30.9. HRMS (ESI) m/z calcd for C₂₉H₂₄BrN₂⁺ [M + H]⁺ = 479.1118, found = 479.1125.

2-(4-Chlorophenyl)-4-methyl-3,3-di-*p*-tolyl-1,2,3,4-tetrahydropyrrolo[3,4-*b*]indole 5 <u>f':</u>

A white solid; 47.1 mg; isolated yield = 51%; m.p. 183.7 -184.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 6.9 Hz, 1H), 7.37 (d, *J* = 8.2 Hz, 4H), 7.25 – 7.06 (m, 7H), 6.97 (d, *J* = 9.0 Hz, 2H), 6.57 (d, *J* = 9.0 Hz, 2H), 4.90 (s, 2H), 3.28 (s, 3H), 2.29 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 143.8, 141.5, 137.3, 136.1, 129.1, 128.9, 128.2, 121.9, 121.3, 121.2, 119.9, 119.2, 115.2, 110.7, 109.9, 74.1, 49.6, 30.8, 21.1. HRMS (ESI) m/z calcd for C₃₁H₂₈ClN₂⁺ [M + H]⁺ = 463.1936, found = 463.1930.

2,3,3-Tris(4-chlorophenyl)-4-methyl-1,2,3,4-tetrahydropyrrolo[3,4-b]indole 5g':

A colorless oil; 54.2 mg; isolated yield = 54%; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 7.6 Hz, 1H), 7.39 (d, J = 8.7 Hz, 4H), 7.31 – 7.15 (m, 7H), 7.00 (d, J = 9.0 Hz, 2H), 6.52 (d, J = 9.1 Hz, 2H), 4.90 (s, 2H), 3.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.2, 143.2, 141.5, 137.3, 133.8, 130.1, 128.7, 128.5, 122.2, 121.9, 121.7, 120.2, 119.3, 115.5, 111.4, 110.0, 73.6, 49.6, 30.9. HRMS (ESI) m/z calcd for C₂₉H₂₂Cl₃N₂⁺ [M + H]⁺ = 503.0843, found = 503.0846.

<u>2-(4-Chlorophenyl)-4,7-dimethyl-3,3-diphenyl-1,2,3,4-tetrahydropyrrolo[3,4-*b*]indole _**5h**':</u>

A white solid; 50.2 mg; isolated yield = 56%; m.p. 219.7 -220.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.44 (m, 4H), 7.42 – 7.20 (m, 7H), 7.16 – 7.08 (m, 1H), 7.06 – 6.94 (m, 3H), 6.69 – 6.44 (m, 2H), 4.89 (s, 2H), 3.26 (s, 3H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.4, 143.7, 139.9, 139.1, 129.3, 128.9, 128.4, 128.2, 127.6, 122.9, 121.9, 121.3, 118.9, 115.2, 110.4, 109.6, 74.4, 49.6, 30.8, 21.4. HRMS (ESI) m/z calcd for C₃₀H₂₆ClN₂⁺ [M + H]⁺ = 449.1779, found = 449.1773.

4. X-ray single crystal data for compounds

Compound 3a:

CCDC: 2312830 for 3a

Table S1 Crystal data and str	ucture refinement for 202305104_auto.
Identification code	202305104 auto

Identification code	202305104_auto
Empirical formula	$C_{24}H_{23}N_{3}O$
Formula weight	369.45
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	8.5178(5)
b/Å	24.0991(12)
c/Å	9.5851(5)
α/°	90
β/°	103.099(5)
γ/°	90
Volume/Å ³	1916.34(18)
Z	4
$\rho_{calc}g/cm^3$	1.281
μ/mm^{-1}	0.625
F(000)	784.0
Crystal size/mm ³	$0.16 \times 0.11 \times 0.1$
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	7.336 to 134.16
Index ranges	$-10 \le h \le 6, -28 \le k \le 28, -10 \le l \le 11$
Reflections collected	6618
Independent reflections	3401 [$R_{int} = 0.0339, R_{sigma} = 0.0490$]
Data/restraints/parameters	3401/0/257
Goodness-of-fit on F ²	1.034
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0488, wR_2 = 0.1210$
Final R indexes [all data]	$R_1 = 0.0739, wR_2 = 0.1385$
Largest diff. peak/hole / e Å $^{-3}$	0.14/-0.16

Compound 3b:

CCDC: 2312831 for 3b

Table S2 Crystal data and str	ucture refinement for 202305125_auto.
Identification code	202305125_auto
Empirical formula	$C_{18}H_{18}N_2O$
Formula weight	278.34
Temperature/K	293(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	15.8575(6)
b/Å	12.2410(4)
c/Å	14.9618(6)
α/°	90
β/°	90.113(4)
$\gamma/^{\circ}$	90
Volume/Å ³	2904.24(18)
Z	8
$\rho_{calc}g/cm^3$	1.273
μ/mm^{-1}	0.628
F(000)	1184.0
Crystal size/mm ³	0.18 imes 0.12 imes 0.1
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	9.126 to 134.13
Index ranges	$-16 \le h \le 18, -8 \le k \le 14, -17 \le l \le 17$
Reflections collected	5200
Independent reflections	2520 [R_{int} = 0.0219, R_{sigma} = 0.0288]
Data/restraints/parameters	2520/0/191
Goodness-of-fit on F ²	1.051
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0477, wR_2 = 0.1242$
Final R indexes [all data]	$R_1 \!=\! 0.0615, wR_2 \!=\! 0.1377$
Largest diff. peak/hole / e Å ⁻³	0.12/-0.17

Compound 4b:

CCDC: 2312832 for 4b

Table S3 Crystal data and structure refinement for 202308209_auto	
Identification code	202308209_auto
Empirical formula	$C_{61}H_{55}N_4O_2$
Formula weight	876.09
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	10.5803(4)
b/Å	12.2092(5)
c/Å	19.4505(8)
$\alpha/^{\circ}$	81.720(4)
β/°	79.349(4)
$\gamma/^{o}$	73.665(4)
Volume/Å ³	2358.29(18)
Z	2
$\rho_{calc}g/cm^3$	1.234
μ/mm^{-1}	0.578
F(000)	930.0
Crystal size/mm ³	$0.18 \times 0.13 \times 0.1$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.582 to 134.156
Index ranges	$-9 \le h \le 12, \text{-}12 \le k \le 14, \text{-}20 \le l \le 23$
Reflections collected	16507
Independent reflections	8342 [$R_{int} = 0.0289, R_{sigma} = 0.0433$]
Data/restraints/parameters	8342/19/605
Goodness-of-fit on F ²	1.021
Final R indexes $[I > = 2\sigma (I)]$	$R_1 = 0.0531, wR_2 = 0.1386$
Final R indexes [all data]	$R_1 \!=\! 0.0705, wR_2 \!=\! 0.1532$
Largest diff. peak/hole / e Å $^{-3}$	0.31/-0.26

0.

Compound 5d:

CCDC: 2312833 for 5d

Table S4 Crystal data and structure refinement for 202309232.	
Identification code	202309232
Empirical formula	$C_{32}H_{31}ClN_2O$
Formula weight	495.04
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.9507(5)
b/Å	10.9932(4)
c/Å	13.1900(8)
$\alpha/^{\circ}$	87.051(4)
β/°	68.775(5)
$\gamma^{\prime\circ}$	84.170(4)
Volume/Å ³	1337.86(12)
Z	2
$\rho_{calc}g/cm^3$	1.229
μ/mm^{-1}	1.463
F(000)	524.0
Crystal size/mm ³	$0.15 \times 0.11 \times 0.08$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	7.19 to 134.158
Index ranges	$-11 \le h \le 11, -13 \le k \le 11, -15 \le l \le 15$
Reflections collected	9187
Independent reflections	$4752 \ [R_{int} = 0.0255, R_{sigma} = 0.0399]$
Data/restraints/parameters	4752/3/335
Goodness-of-fit on F ²	1.035
Final R indexes $[I > = 2\sigma (I)]$	$R_1 \!=\! 0.0513, wR_2 \!=\! 0.1351$
Final R indexes [all data]	$R_1 \!=\! 0.0665, wR_2 \!=\! 0.1512$
Largest diff. peak/hole / e Å ⁻³	0.23/-0.23

5. NMR Spectra

3a ¹H NMR (400 MHz, CDCl₃)

3a ¹³C NMR (100 MHz, CDCl₃)

S33

S34

S35

3j ¹⁹F NMR (376 MHz, CDCl₃)

S45

S46

3u ¹H NMR (400 MHz, CDCl₃)

3w ¹⁹F NMR (376 MHz, CDCl₃)

3y ¹⁹F NMR (376 MHz, CDCl₃)

S61

S63

3d' ¹⁹F NMR (376 MHz, CDCl₃)

S66

4m¹H NMR (400 MHz, DMSO)

S82

S84

S86

6. References

1 P. Zheng, S. Wu, C. Mou, W. Xue, Z. Jin, Y. R. Chi, Org. Lett., 2019, 21, 5026-5029.

- 2 W. Tan, X. Li, Y. X. Gong, M. D. Ge, F. Shi, *Chem. Commun.*, 2014, **50**, 15901-15904.
- 3 Larry D. Bratton, Bruce D. Roth, Bharat K. Trivedi and Paul C. Unangst. J. *Heterocyclic Chem.*, 2000, **37**, 1103.
- 4 T. Z. Li, S. J. Liu, Y. W. Sun, S. Deng, W. Tan, Y. Jiao, Y. C. Zhang, F. Shi, *Angew. Chem. Int. Ed.*, 2021, **60**, 2355-2363.
- 5 P. Ruan, Q. Tang, Z. Yang, X. Liu, X. Feng, *Chem. Commun.*, 2022, **58**, 1001-1004.