Supporting Information

"On-Water" Defluorinative Cyclization of Trifluoromethyl Enones

with Phosphine Oxides: Synthesis of Polysubstituted Furans

Man-Hang Feng,^a Shu-Ji Gao,^a Xiao-Ying Li,^a Mengtao Ma,^b Zhi-Liang Shen,^{*,a} and Xue-Qiang Chu^{*,a}

^a Technical Institute of Fluorochemistry, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China. E-mails: ias_zlshen@njtech.edu.cn; xueqiangchu@njtech.edu.cn.

^b Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.

Table of Contents

General information	Page S2
General procedure for the synthesis of trifluoromethylated enones 1	Page S2
General procedure for the reaction of trifluoromethylated enones 1 with phosphine	Page S2
oxides 2	
Scale-up synthesis of product 3aa	Page S3
Further transformations of product 3aa	Page S3
Mechanistic studies	Page S5
Optimization of reaction conditions	Page S7
The X-ray crystal structure of products	Page S7
Characterization data for products	Page S10
References	Page S28
¹ H, ¹⁹ F, ³¹ P, and ¹³ C NMR spectra of products	Page S29

General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Melting points were recorded on an electrothermal digital melting point apparatus. ¹H, ¹⁹F, ³¹P, and ¹³C NMR spectra were recorded in CDCl₃ on Bruker Avance or Joel 400 MHz spectrometers. NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet of doublets (dd), doublet of triplets (dt), doublet of quartets (dq), triplet of doublets (td), triplet of triplets (tt), quartet of doublets (qd), and doublet of doublet (ddd), *etc*. The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. High resolution mass spectrometry (HRMS) data were obtained on a Waters LC-TOF mass spectrometer (Xevo G2-XS QTof) using electrospray ionization (ESI) in positive or negative mode. Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions.

General procedure for the synthesis of trifluoromethylated enones 1^[1-2]

$$\mathbb{R}^{2} \xrightarrow{\mathbb{P}^{h}_{P}}_{\mathbb{B}^{r}} \mathbb{P}^{h}_{F} + \mathbb{R}^{1} \xrightarrow{\mathbb{P}^{F}_{F}}_{F} \xrightarrow{\mathbb{E}^{t_{3}N} (1.5 \text{ equiv.})}_{\mathsf{THF/DMF, 0-80 °C, 3 h}} \mathbb{R}^{2} \xrightarrow{\mathbb{P}^{f}_{F}}_{F} \mathbb{P}^{f}_{F}$$

A solution of triphenylphosphonium salt (7.5 mmol, 1.5 equiv.) and triethylamine (758.9 mg, 7.5 mmol, 1.5 equiv.) in THF (20 mL) was added a solution of a trifluoromethyl ketone (5.0 mmol, 1 equiv.) in DMF (1.6 mL) at 0 °C (ice bath) under air. The mixture was stirred for 15 min at this temperature. After warming to room temperature, the solution was heated at 80 °C (oil bath) for 3 h. The solution was quenched with saturated aqueous NH₄Cl solution (30 mL) and extracted with ethyl acetate (50 mL x 3). The organic extract was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate: 100/1) to give the pure trifluoromethylated enones **1**.

<u>General procedure for the reaction of trifluoromethylated enones 1 with</u> phosphine oxides 2

A solution of trifluoromethylated enone (0.3 mmol, 1 equiv., **1**), phosphine oxide (0.45 mmol, 1.5 equiv., **2**), and Cs_2CO_3 (391.0 mg, 1.2 mmol, 4 equiv.) in H₂O (2 mL) was stirred at 70 °C (oil bath) for 4 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The combined organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (6/1~3/1) as eluent to afford the pure products **3**.

Scale-up synthesis of product 3aa

A solution of 4,4,4-trifluoro-1-phenyl-3-(trifluoromethyl)but-2-en-1-one (804.1 mg, 3 mmol, 1 equiv., **1a**), diphenylphosphine oxide (909.9 mg, 4.5 mmol, 1.5 equiv., **2a**), and Cs_2CO_3 (3910.0 mg, 12 mmol, 4 equiv.) in H₂O (10 mL) was stirred at 70 °C (oil bath) for 4 h. The reaction was then quenched by saturated NH₄Cl solution (40 mL) and extracted with EtOAc (40 mL x 3). The combined organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (6/1~3/1) as eluent to afford the pure product **3aa** (1122.5 mg, 87% yield).

Further transformations of product 3aa

a) Reduction of product 3aa by HSiCl₃

To an oven-dried vial equipped with stir bar was added а (5-fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (129.0 mg, 0.3 mmol, 1 equiv., **3aa**) at room temperature under air. The vial was capped with a rubber septum, evacuated and refilled with nitrogen (3 times). Anhydrous toluene (4 mL), trichlorosilane (1354.5 mg, 10 equiv., 3 mmol,), and Et₃N (60.7 mg, 2 equiv., 0.6 mmol) were added sequentially via syringe. The reaction mixture was placed in an oil bath at 100 °C and stirred for 6 h. After cooling the vial to room temperature, the reaction vial was opened to air and quenched with saturated NH₄Cl solution (20 mL). The resulting mixture was extracted with EtOAc (20 mL x 3). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether as eluent to afford the pure product 4 (110.6 mg, 89% yield).

b) Reduction of product 3aa by HOPPh₂

A solution of (5-fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (129.0 mg, 0.3 mmol, 1 equiv., **3aa**), diphenylphosphine oxide (91.0 mg, 0.45 mmol, 1.5 equiv.), and Cs_2CO_3 (244.4 mg, 0.75 mmol, 2.5 equiv.) in DMSO (2 mL) was stirred at 100 °C under air for 12 h. The reaction was then quenched by saturated NH4Cl solution (10 mL) and extracted with EtOAc (10 mL x 3). The combined organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash

silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate $(6/1 \sim 2/1)$ as eluent to afford the pure product **5** (113.7 mg, 92% yield).

c) Reaction of product 3aa with MeOH

A solution of (5-fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (129.0 mg, 0.3 mmol, 1 equiv., **3aa**), and Cs_2CO_3 (195.5 mg, 0.6 mmol, 2.0 equiv.) in MeOH (2 mL) was stirred at 70 °C under air for 12 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and extracted with EtOAc (10 mL x 3). The combined organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (5/1~1/1) as eluent to afford the pure product **6** (112.7 mg, 85% yield).

d) Reaction of product 3aa with benzimidazole

A solution of (5-fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (129.0 mg, 0.3 mmol, 1 equiv., **3aa**), benzimidazole (53.2 mg, 0.45 mmol, 1.5 equiv.), and Cs_2CO_3 (195.5 mg, 0.6 mmol, 2.0 equiv.) in MeCN (2 mL) was stirred at 100 °C under air for 12 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and extracted with EtOAc (10 mL x 3). The combined organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (4/1~1/1) as eluent to afford the pure product **7** (106.2 mg, 67% yield).

e) Reaction of product 3aa with Grignard reagent

bar To oven-dried vial equipped with added an stir was а (5-fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (129.0 mg, 0.3 mmol, 1 equiv., **3aa**), Ni(acac)₂ (7.7 mg, 0.03 mmol, 0.1 equiv.), and dppp (12.4 mg, 0.03 mmol, 0.1 equiv.) at room temperature under air. The vial was capped with a rubber septum, evacuated and refilled with nitrogen (3 times). Anhydrous THF (1 mL) and 4-OMeC₆H₄MgBr (1 mL, 1.5 mmol, 1.5 mol/L in THF, 5 equiv.) were added sequentially via syringe. The reaction was stirred at room temperature for 12 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and

extracted with EtOAc (10 mL x 3). The combined organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate ($6/1 \sim 1/1$) as eluent to afford the pure product **8** (127.7 mg, 82% yield).

Mechanistic studies

a) The reactivity of trifluoromethylated alkene 9

A solution of 4-(3,3,3-trifluoroprop-1-en-2-yl)-1,1'-biphenyl (74.4 mg, 0.3 mmol, 1 equiv., **9**), diphenylphosphine oxide (91.0 mg, 0.45 mmol, 1.5 equiv., **2a**), and Cs₂CO₃ (391.0 mg, 1.2 mmol, 4 equiv.) in H₂O (2 mL) was stirred at 70 °C (oil bath) for 4 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and extracted with EtOAc (10 mL x 3). The combined organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (6/1~1/1) as eluent to afford the pure product **10** (51.7 mg, 40% yield) and product **11** (<5% yield).

<u>This result indicated that the reaction might initiate via the intermolecular S_N2' -type defluorinative substitution.</u>

b) The reactivity of β , β -di-trichloromethylated alkene 12

A solution of 4,4,4-trichloro-1-phenyl-3-(trichloromethyl)but-2-en-1-one (109.2 mg, 0.3 mmol, 1 equiv., **12**), diphenylphosphine oxide (91.0 mg, 0.45 mmol, 1.5 equiv., **2a**), and Cs_2CO_3 (391.0 mg, 1.2 mmol, 4 equiv.) in H₂O (2 mL) was stirred at 70 °C (oil bath) under N₂ for 4 h. Only trace amount of the product **13** was formed.

This result suggested that the trifluoromethyl groups were discovered to be crucial in enhancing substrate reactivity.

c) The influence of β -substituted group on the reaction efficiency

Ph 1	$CF_3 + H - P - Ph - Ph - Ph - Ph - 2a$	Cs₂CO₃ (4 equiv.) H₂O, 70 °C, 4 h	Ph Ph Ph 3
	Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph 14	or Ph F F	O H Ph P [×] Ph
Entry	R	Products	Yield (%)
1	Me	3ra/14a/15a	0/95/0
2	Et	3sa/14b/15b	0/96/0
3	CO ₂ Et	3ta/14c/15c	0/0/8
4	н	3ua/14d/15d	0/60/0
5	Ph	3oa/14e/15e	trace/trace/0

A solution of β -trifluoromethyl enone (0.3 mmol, 1 equiv., **1q-t** and **1n**), diphenylphosphine oxide (91.0 mg, 0.45 mmol, 1.5 equiv., **2a**), and Cs₂CO₃ (391.0 mg, 1.2 mmol, 4 equiv.) in H₂O (2 mL) was stirred at 70 °C (oil bath) under air for 4 h. The reaction was then quenched by saturated NH₄Cl solution (10 mL) and extracted with EtOAc (10 mL x 3). The organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash silica gel column chromatography (300-400 mesh) using petroleum ether/ethyl acetate (10/1~2/1) as eluent to afford the pure products **14a** (118.6 mg, 95% yield), **14b** (123.9 mg, 96% yield), **14d** (72.4 mg, 60% yield), and **15c** (10.9 mg, 8% yield).

When R is Me, Et, CO₂Et, H, or Ph, only phospha-Michael addition byproducts 14 and ipso-defluorinative byproduct 15c were formed. These outcomes underscore the importance of the trifluoromethyl group in fine-tuning the reaction selectivity.

d) The heterogeneity of the reaction

Insoluble reactants tend to aggregate during the reaction course, and the heterogeneity of the reaction was observed.

e) The isotope kinetic effect (in D₂O)

A solution of 4,4,4-trifluoro-1-phenyl-3-(trifluoromethyl)but-2-en-1-one (80.4 mg, 0.3 mmol, 1 equiv., **1a**), diphenylphosphine oxide (91.0 mg, 0.45 mmol, 1.5 equiv., **2a**), and Cs_2CO_3 (195.5 mg, 0.6 mmol, 2 equiv.) in D₂O (2 mL) was stirred at 70 °C (oil bath) for 4 h. The reaction was then quenched by saturated NH₄Cl solution (20 mL) and extracted with EtOAc (20 mL x 3). The combined organic layer was washed with saturated brine twice, dried over MgSO₄, and concentrated under reduced pressure. ¹H NMR analysis of the obtained residue by using 4-fluoroanisole (0.1 mmol) as an internal standard indicated the formation of product **3aa** (74% NMR yield) and byproduct **3aa-IV** (13% NMR yield), respectively.

<u>A discernible isotope kinetic effect was observed. This result also supported the specific property</u> of the "on-water" reaction.

0

0

Optimization of Reaction Conditions

Table S1. Optimization of reaction conditions^a

		o [₣] ┽ [₣]	base	e (2 equiv.)	Ph F		Ph
	Ph		Ph sol., ter	mp., N ₂ , time 2F@1C	O _P CF ₃ Ph Ph	Ph Ph	
		1a	2a		3aa	3aa'	
Entry	1a/2a	Base (2 equiv)	Solvent	Temp. (°C)	Time (h)	Yield of 3aa (%) ^{b}	Yield of 3aa' $(\%)^b$
1	1/1.5	Cs ₂ CO ₃	H ₂ O	100	24	85	15
2	1/1.5	Cs ₂ CO ₃	H_2O	100	12	88	12
3	1/1.5	Cs ₂ CO ₃	H_2O	70	12	94	6
4	1/3	Cs ₂ CO ₃	H ₂ O	70	12	91	9
5	1/1.2	Cs ₂ CO ₃	H_2O	70	12	86	1
6	1/1.5	Cs ₂ CO ₃	H ₂ O	50	12	88	0
7	1/1.5	Cs ₂ CO ₃	H_2O	rt	12	71	0
8	1/1.5	Cs ₂ CO ₃	H_2O	70	8	90	2
9	1/1.5	Cs ₂ CO ₃	H ₂ O	70	4	97 (94) ^c	1
10	1/1.5	K_3PO_4	H_2O	70	4	76	0
11	1/1.5	DBU	H_2O	70	4	62	8
12	1/1.5	LiOH	H ₂ O	70	4	65	1
13	1/1.5	Cs ₂ CO ₃	MeOH	70	4	8	8
14	1/1.5	Cs ₂ CO ₃	MeCN	70	4	71	19
15	1/1.5	Cs ₂ CO ₃	DMSO	70	4	20	0

^a Reaction conditions: 1a (0.3 mmol), 2a (0.36-0.9 mmol), and base (0.6 mmol) in solvent (2 mL) at r.t.-100 °C under N₂. ^b Yields were

determined by ¹⁹F NMR analysis with PhOCF₃ (0.1 mmol) as an internal standard. ^c Isolated yield.

The X-ray crystal structure of products

The single crystal was grown from the mixed solution of EtOAc/DCM/DMSO by slowly

evaporating the above solvents at room temperature.

(5-Fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (3aa;

displacement ellipsoids are drawn at the 50% probability levels):

Table S2.	Crystal	data ar	d structure	refinement	for 3aa
-----------	---------	---------	-------------	------------	---------

Identification code	3aa		
Empirical formula	$C_{23}H_{15}F_4O_2P$		
Formula weight	430.32		
Temperature/K	169.99(10)		
Crystal system	monoclinic		
Space group	P2 ₁ /c		
a/Å	16.8764(3)		
b/Å	20.6631(4)		
c/Å	11.3864(2)		
α/°	90		
β/°	92.772(2)		
$\gamma/^{\circ}$	90		
Volume/Å ³	3966.00(13)		
Z	8		
$ ho_{calc}g/cm^3$	1.441		
μ/mm^{-1}	1.726		
F(000)	1760.0		
Crystal size/mm ³	$0.15\times0.13\times0.11$		
Radiation	Cu Ka ($\lambda = 1.54184$)		
2Θ range for data collection/° 5.242 to 147.124			
Index ranges	$\text{-}20 \leq h \leq 20, \text{-}25 \leq k \leq 24, \text{-}8 \leq l \leq 13$		
Reflections collected	16062		
Independent reflections	7786 [$R_{int} = 0.0411, R_{sigma} = 0.0510$]		
Data/restraints/parameters	7786/0/541		
Goodness-of-fit on F ²	1.078		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0491, wR_2 = 0.1286$		
Final R indexes [all data]	$R_1 = 0.0615, wR_2 = 0.1415$		
Largest diff. peak/hole / e Å ⁻³ 0.34/-0.30			

Crystal structure determination of [3aa]

Crystal Data for C₂₃H₁₅F₄O₂P (M =430.32 g/mol): monoclinic, space group P2₁/c (no. 14), a =

16.8764(3) Å, b = 20.6631(4) Å, c = 11.3864(2) Å, $\beta = 92.772(2)^{\circ}$, V = 3966.00(13) Å³, Z = 8, T = 10.8764(3) Å 169.99(10) K, μ (Cu K α) = 1.726 mm⁻¹, *Dcalc* = 1.441 g/cm³, 16062 reflections measured (5.242° $\leq 2\Theta \leq 147.124^{\circ}$), 7786 unique ($R_{int} = 0.0411$, $R_{sigma} = 0.0510$) which were used in all calculations. The final R_1 was 0.0491 (I > 2 σ (I)) and wR_2 was 0.1415 (all data).

(5-Fluoro-2,4-diphenylfuran-3-yl)diphenylphosphine oxide (3oa; displacement ellipsoids are drawn at the 50% probability levels):

Table S3. Crystal data and structure refinement for 30a				
Identification code	30a			
Empirical formula	$C_{28}H_{20}FO_2P$			
Formula weight	438.41			
Temperature/K	150.00(10)			
Crystal system	monoclinic			
Space group	P21/c			
a/Å	12.9054(3)			
b/Å	15.6356(3)			
c/Å	11.0833(2)			
α/°	90			
β/°	105.718(2)			
γ/°	90			
Volume/Å ³	2152.80(8)			
Z	4			
$\rho_{calc}g/cm^3$	1.353			
μ/mm^{-1}	1.397			
F(000)	912.0			
Crystal size/mm ³	$0.14 \times 0.12 \times 0.1$			
Radiation	Cu Ka ($\lambda = 1.54184$)			
20 range for data collection/° 7.116 to 147.664				
Index ranges	$\textbf{-16} \leq h \leq 12, \textbf{-19} \leq k \leq 18, \textbf{-13} \leq \textbf{l} \leq 12$			
Reflections collected	8405			
Independent reflections	4247 [$R_{int} = 0.0212$, $R_{sigma} = 0.0279$]			
Data/restraints/parameters	4247/0/299			
Goodness-of-fit on F ²	1.088			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0431, wR_2 = 0.1104$			
Final R indexes [all data]	$R_1 = 0.0474, wR_2 = 0.1130$			
Largest diff. peak/hole / e Å ⁻³ 0.28/-0.39				

Crystal structure determination of [3oa]

Crystal Data for C₂₈H₂₀FO₂P (M =438.41 g/mol): monoclinic, space group P2₁/c (no. 14), a = 12.9054(3) Å, b = 15.6356(3) Å, c = 11.0833(2) Å, $\beta = 105.718(2)^{\circ}$, V = 2152.80(8) Å³, Z = 4, T = 150.00(10) K, μ (Cu K α) = 1.397 mm⁻¹, *Dcalc* = 1.353 g/cm³, 8405 reflections measured (7.116° $\leq 2\Theta \leq 147.664^{\circ}$), 4247 unique ($R_{int} = 0.0212$, $R_{sigma} = 0.0279$) which were used in all calculations. The final R_1 was 0.0431 (I > 2 σ (I)) and wR_2 was 0.1130 (all data).

Characterization data for products

(5-Fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (3aa):

Yield = 94% (121.6 mg). White solid. M.p. 156.0–157.9 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 6/1~2/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.68-7.59$ (m, 4H), 7.41–7.35 (m, 2H), 7.32–7.24 (m, 4H), 7.22–7.18 (m, 2H), 7.18–7.12 (m, 1H), 7.06–6.99 (m, 2H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -54.72 (d, *J* = 16.4 Hz, 3F), -105.76 (qd, *J* = 15.3, 4.5Hz, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 18.82 ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 157.3–154.2 (m, 1C), 152.0 (d, *J* = 14.0 Hz), 132.2 (d, *J* = 2.6 Hz), 131.8 (d, *J* = 10.3 Hz), 131.6 (d, *J* = 109.1 Hz), 129.9, 129.7, 128.4 (d, *J* = 12.9 Hz), 127.9, 127.4, 120.6 (qd, *J* = 263.4, 5.9 Hz), 112.1 (d, *J* = 106.2 Hz), 92.9–92.6 (m, 1C) ppm. HRMS (m/z): calcd for C₂₃H₁₆F₄O₂P [M+H]⁺ 431.0819, found: 431.0816.

(5-Fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)bis(4-fluorophenyl)phosphine oxide (3ab): Yield = 90% (126.1 mg). White solid. M.p. 152.7–153.9 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 8/1~2/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.65-7.57$ (m, 4H), 7.25–7.18 (m, 3H), 7.11–7.07 (m, 2H), 7.01–6.96 (m, 4H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -54.74 (d, *J* = 15.5 Hz, 3F), -105.33 (qd, *J* = 15.8, 3.7 Hz, 1F), -105.72--105.84 (m, 2F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 16.99 ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 165.3 (dd, J = 254.5, 3.5 Hz), 157.4–154.3 (m, 1C), 152.2 (d, J

= 14.4 Hz), 134.3 (dd, J = 11.8, 9.0 Hz), 130.2, 129.8, 128.1, 127.3, 126.9 (d, J = 3.7 Hz), 120.6 (qd, J = 268.5, 5.3 Hz), 115.9 (dd, J = 21.6, 14.0 Hz), 112.0 (d, J = 110.1 Hz), 93.0-92.4 (m, 1C)ppm.

HRMS (m/z): calcd for $C_{23}H_{14}F_6O_2P [M+H]^+ 467.0630$, found: 467.0627.

Bis(4-chlorophenyl)(5-fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)phosphine oxide (3ac): Yield = 89% (133.2 mg). White solid. M.p. 153.8–155.5 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, $6/1 \sim 2/1$).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.59-7.51$ (m, 4H), 7.31–7.25 (m, 5H), 7.22–7.18 (m, 2H), 7.13-7.08 (m, 2H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -54.62 (d, J = 16.1 Hz, 3F), -105.87 (qd, J = 16.3, 2.9 Hz, 1F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): $\delta = 16.97$ ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 157.4 - 154.3$ (m, 1C), 152.3 (d, J = 14.4 Hz), 139.2 (d, J = 3.6Hz), 133.1 (d, J = 11.1 Hz), 130.2, 129.9 (d, J = 113.6 Hz), 129.8, 128.9 (d, J = 13.5 Hz), 128.1, 127.1, 120.6 (qd, *J* = 266.7, 5.2 Hz), 111.6 (d, *J* = 111.5 Hz), 93.4–91.7 (m, 1C) ppm.

HRMS (m/z): calcd for C₂₃H₁₄Cl₂F₄O₂P [M+H]⁺ 499.0039, found: 499.0039.

(5-Fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)di-*p*-tolylphosphine oxide (3ad):

Yield = 96% (132.2 mg). White solid. M.p. 157.9–158.8 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, $6/1 \sim 2/1$).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.52–7.44 (m, 4H), 7.18–7.13 (m, 3H), 7.06 (dd, J = 8.1, 2.9) Hz, 4H), 7.04–6.98 (m, 2H), 2.28 (s, 6H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -54.71 (d, J = 16.0 Hz, 3F), -105.97 (qd, J = 16.2, 3.0 Hz, 1F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): δ = 19.57 ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 157.2-154.1$ (m, 1C), 151.6 (d, J = 14.0 Hz), 142.7 (d, J = 2.9Hz), 131.8 (d, J = 10.6 Hz), 129.7, 129.4, 129.1, 129.0 (d, J = 13.4 Hz), 127.8, 127.7 (d, J = 43.5 Hz), 120.8 (qd, J = 267.5, 10.1 Hz), 112.7 (d, J = 107.3 Hz), 93.0–92.5 (m, 1C), 21.5 ppm. HRMS (m/z): calcd for C₂₅H₂₀F₄O₂P [M+H]⁺ 459.1132, found: 459.1126.

(5-Fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)di-*m*-tolylphosphine oxide (3ae):

Yield = 90% (124.0 mg). White solid. M.p. 148.9–150.8 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 7/1~2/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.48–7.42 (m, 2H), 7.41–7.33 (m, 2H), 7.20–7.11 (m, 7H), 7.03 (dd, *J* = 8.4, 7.0 Hz, 2H), 2.22 (s, 6H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -54.72 (d, *J* = 15.0 Hz, 3F), -105.94 (qd, *J* = 16.1, 3.6 Hz, 1F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): $\delta = 19.32$ ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 154.4-154.2$ (m, 1C), 151.7 (d, J = 14.2 Hz), 138.2 (d, J = 12.8 Hz), 132.9 (d, J = 2.9 Hz), 132.3 (d, J = 10.0 Hz), 131.5 (d, J = 111.0 Hz), 129.8, 129.5, 128.8 (d, J = 10.5 Hz), 128.2 (d, J = 13.6 Hz), 127.7, 127.5, 120.8 (qd, J = 267.5, 5.3 Hz), 112.4 (d, J = 106.5 Hz), 93.1–92.5 (m, 1C), 11.3 ppm.

HRMS (m/z): calcd for C₂₅H₂₀F₄O₂P [M+H]⁺ 459.1132, found: 459.1138.

(5-Fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)di-*o*-tolylphosphine oxide (3af):

Yield = 81% (111.6 mg). White solid. M.p. 151.2–153.1 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 10/1~2/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.55–7.27 (m, 3H), 7.24–7.10 (m, 5H), 7.10–6.81 (m, 5H), 2.53 (s, 6H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -54.92 (d, *J* = 16.1 Hz, 3F), -105.23 (qd, *J* = 16.4, 3.0 Hz, 1F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): $\delta = 27.41$ ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 157.6-154.1$ (m, 1C), 150.8 (d, J = 13.6 Hz), 143.8, 132.8, 132.4, 132.0 (d, J = 11.0 Hz), 129.8, 129.3, 128.8, 127.7, 127.1, 125.3 (d, J = 13.6 Hz), 120.7 (qd, J = 268.4, 5.3 Hz), 112.1 (dd, J = 105.4, 3.6 Hz), 93.8–92.4 (m, 1C), 21.7 (d, J = 4.8 Hz) ppm. HRMS (m/z): calcd for C₂₅H₂₀F₄O₂P [M+H]⁺ 459.1132, found: 459.1131.

Di([1,1'-biphenyl]-4-yl)(5-fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)phosphine oxide (3ag):

Yield = 82% (143.5 mg). White solid. M.p. 166.1–167.9 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 6/1~3/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.79-7.70$ (m, 4H), 7.56–7.50 (m, 8H), 7.49–7.42 (m, 4H), 7.42–7.35 (m, 2H), 7.27–7.20 (m, 2H), 7.15 (t, J = 7.5 Hz, 1H), 7.08–7.01 (m, 2H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -54.56 (d, *J* = 15.2 Hz, 3F), -105.62 (qd, *J* = 14.9, 3.3 Hz, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 18.73 ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 157.4-154.3$ (m, 1C), 151.8 (d, J = 14.2 Hz), 145.0 (d, J = 2.9 Hz), 139.9, 132.4 (d, J = 10.6 Hz), 130.2 (d, J = 113.2 Hz), 129.9, 129.7, 129.0, 128.3, 127.9, 127.5, 127.3, 127.1 (d, J = 13.2 Hz), 120.8 (qd, J = 267.4, 5.0 Hz), 112.5 (d, J = 108.2 Hz), 93.6–92.0 (m, 1C) ppm.

HRMS (m/z): calcd for C₃₅H₂₄F₄O₂P [M+H]⁺ 583.1445, found: 583.1451.

(5-Fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)bis(4-methoxyphenyl)phosphine oxide (3ah):

Yield = 87% (128.2 mg). White solid. M.p. 144.0–145.1 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 4/1~1/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.55-7.46$ (m, 4H), 7.20–7.13 (m, 3H), 7.08–7.01 (m, 2H), 6.80–6.73 (m, 4H), 3.75 (s, 6H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -54.78 (d, *J* = 16.3 Hz, 3F), -106.02 (qd, *J* = 14.9, 3.0 Hz, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 19.20 ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 162.6 (d, *J* = 3.0 Hz), 157.2–154.1 (m, 1C), 151.5 (d, *J* = 14.0 Hz), 133.7 (d, *J* = 11.8 Hz), 129.8, 129.6, 127.8, 127.6, 123.1 (d, *J* = 118.8 Hz), 120.7 (qd, *J* = 268.6, 5.4 Hz), 113.9 (d, *J* = 14.0 Hz), 113.0 (d, *J* = 108.8 Hz), 92.9–92.4 (m, 1C), 55.3 ppm. HRMS (m/z): calcd for C₂₅H₂₀F₄O₄P [M+H]⁺ 491.1030, found: 491.1028.

(5-Fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)di(naphthalen-1-yl)phosphine oxide (3ai): Yield = 91% (145.0 mg). White solid. M.p. 166.6–168.5 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 5/1~2/1).

¹H NMR (400 MHz, CDCl₃): $\delta = 8.32$ (dt, J = 14.8, 1.9 Hz, 2H), 7.84–7.68 (m, 6H), 7.63 (ddd, J = 10.2, 8.5, 1.6 Hz, 2H), 7.56–7.44 (m, 4H), 7.23–7.15 (m, 2H), 6.85–6.72 (m, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -54.62$ (d, J = 16.3 Hz, 3F), -103.60 (qd, J = 16.4, 2.8 Hz, 1F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): $\delta = 19.02$ ppm.

¹³**C NMR** (100 MHz, CDCl₃): δ = 157.3–154.3 (m, 1C), 152.0 (d, *J* = 14.4 Hz), 134.7 (d, *J* = 2.6 Hz), 134.1 (d, *J* = 9.7 Hz), 132.3 (d, *J* = 14.1 Hz), 129.62, 129.57, 128.9, 128.8 (d, *J* = 98.2 Hz), 128.4, 128.2, 127.7, 127.5, 127.1, 126.9 (qd, *J* = 266.9, 5.3 Hz), 126.2 (d, *J* = 11.1 Hz), 120.2 (m, 1C), 112.4 (d, *J* = 109.2 Hz), 93.2–92.6 (m, 1C) ppm.

HRMS (m/z): calcd for C₃₁H₂₀F₄O₂P [M+H]⁺ 531.1132, found: 531.1135.

(4-Chlorophenyl)(5-fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)(phenyl)phosphine oxide (3aj):

Yield = 93% (129.7 mg). White solid. M.p. 153.9–155.4 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 10/1~2/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.67-7.59$ (m, 2H), 7.56–7.49 (m, 2H), 7.45–7.39 (m, 1H), 7.34–7.29 (m, 2H), 7.25–7.16 (m, 5H), 7.09–7.03 (m, 2H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -54.67 (d, *J* = 15.0 Hz, 3F), -105.49 (qd, *J* = 15.5, 4.0 Hz, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** $\delta = 17.87$ ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 157.3–154.3 (m, 1C), 152.1 (d, *J* = 14.3 Hz), 138.9 (d, *J* = 3.5 Hz), 133.3 (d, *J* = 11.1 Hz), 132.4 (d, *J* = 2.9 Hz), 131.8, 131.6 (d, *J* = 10.3 Hz), 130.8 (d, *J* = 11.6 Hz), 130.0, 129.8, 128.62 (d, *J* = 26.3 Hz), 128.61, 128.0, 127.3, 120.6 (qd, *J* = 268.6, 5.3 Hz), 111.9 (d, *J* = 109.5 Hz), 93.0–92.5 (m, 1C) ppm.

HRMS (m/z): calcd for C₂₃H₁₅ClF₄O₂P [M+H]⁺ 465.0429, found: 465.0430.

(5-Fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)(phenyl)(*p*-tolyl)phosphine oxide (3ak): Yield = 87% (116.2 mg). White solid. M.p. 158.5–160.3 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 10/1~2/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.67-7.57$ (m, 2H), 7.54–7.46 (m, 2H), 7.41–7.33 (m, 1H), 7.29–7.24 (m, 2H), 7.20–7.13 (m, 3H), 7.08 (dd, J = 8.0, 3.0 Hz, 2H), 7.05–6.99 (m, 2H), 2.29 (s, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -54.71 (d, *J* = 16.4 Hz, 3F), -105.89 (qd, *J* = 15.6, 3.8 Hz, 1F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): $\delta = 19.21$ ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 157.3-154.2$ (m, 1C), 151.8 (d, J = 14.0 Hz), 142.8 (d, J = 3.0 Hz), 132.1 (d, J = 2.9 Hz), 131.9 (d, J = 111.5 Hz), 131.83, 131.82 (d, J = 19.4 Hz), 129.72, 129.67, 129.1 (d, J = 13.3 Hz), 128.3 (d, J = 12.8 Hz), 128.2 (d, J = 114.1 Hz), 127.9, 127.5, 120.6 (qd, J = 268.7, 5.3 Hz), 112.4 (d, J = 106.8 Hz), 93.0–92.6 (m, 1C), 21.6 ppm. HRMS (m/z): calcd for C₂₄H₁₈F₄O₂P [M+H]⁺ 445.0975, found: 445.0975.

Ethyl(5-fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)(phenyl)phosphine oxide (3al):

Yield = 86% (98.8 mg). Yellow oil.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 10/1~2/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.61-7.53$ (m, 2H), 7.47–7.43 (m, 2H), 7.42–7.22 (m, 6H), 2.25–2.12 (m, 1H), 2.06–1.94 (m, 1H), 1.02 (dt, J = 18.7, 7.6 Hz, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -54.66 (d, *J* = 16.4 Hz, 3F), -105.64 (qd, *J* = 18.1, 2.9 Hz, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 28.19 ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 157.2–154.1 (m, 1C), 151.7 (d, *J* = 13.0 Hz), 132.0 (d, *J* = 2.9 Hz), 131.7 (d, *J* = 105.1 Hz), 130.9 (d, *J* = 9.9 Hz), 130.5, 130.1, 128.4 (d, *J* = 12.3 Hz), 128.1, 127.9, 121.0 (qd, *J* = 267.8, 5.4 Hz), 112.3 (d, *J* = 99.2 Hz), 91.8 (d, *J* = 40.0 Hz), 23.2 (d, *J* = 77.2 Hz), 5.3 (d, *J* = 5.1 Hz) ppm.

HRMS (m/z): calcd for C₁₉H₁₆F₄O₂P [M+H]⁺383.0819, found: 383.0818.

Diethyl (5-fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)phosphonate (3am):

Yield = 43% (47.4 mg). Colourless oil.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, $5/1 \sim 2/1$).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.76–7.68 (m, 2H), 7.49–7.36 (m, 3H), 4.15–3.96 (m, 4H), 1.19 (t, J = 7.1 Hz, 6H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -56.52 (d, J = 17.3 Hz, 3F), -106.32 (qd, J = 16.4, 4.5 Hz, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 8.07 ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 157.0-153.5$ (m, 1C), 151.7 (d, J = 20.4 Hz), 130.5, 129.3, 128.3, 127.6, 120.8 (qd, J = 267.8, 5.4 Hz), 107.4 (d, J = 213.0 Hz), 92.8–92.0 (m, 1C), 62.9 (d, J= 5.8 Hz), 16.0 (d, J = 6.8 Hz) ppm.

HRMS (m/z): calcd for C₁₅H₁₆F₄O₄P [M+H]⁺367.0717, found: 367.0715.

(2-(4-Bromophenyl)-5-fluoro-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (3ba): Yield = 90% (137.4 mg). White solid. M.p. 156.0–157.5 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 6/1~2/1).

¹**H NMR (400 MHz, CDCl₃):** $\delta = 7.65 - 7.60 \text{ (m, 4H)}, 7.48 - 7.41 \text{ (m, 2H)}, 7.32 \text{ (td, } J = 7.7, 3.2 \text{ Hz},$ 4H), 7.21–7.16 (m, 2H), 7.15–7.08 (m, 2H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): $\delta = -54.73$ (d, J = 15.6 Hz, 3F), -105.16 (qd, J = 15.0, 2.9 Hz, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 18.85 ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 157.3-154.3$ (m, 1C), 150.8 (d, J = 13.4 Hz), 132.3 (d, J = 2.8Hz), 131.8 (d, J = 10.2 Hz), 131.5 (d, J = 111.5 Hz), 131.13, 131.09, 128.5 (d, J = 12.8 Hz), 126.3, 124.7, 120.4 (qd, *J* = 262.4, 5.1 Hz), 112.9 (d, *J* = 107.2 Hz), 93.7–91.7 (m, 1C) ppm.

HRMS (m/z): calcd for C₂₃H₁₅BrF₄O₂P [M+H]⁺ 508.9924, found: 508.9924.

(2-(3-Bromophenyl)-5-fluoro-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (3ca):

Yield = 85% (129.8 mg). White solid. M.p. 155.1–156.9 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 6/1~2/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.69–7.60 (m, 4H), 7.45–7.38 (m, 2H), 7.37–7.25 (m, 6H), 7.21 (dt, *J* = 7.8, 1.4 Hz, 1H), 6.98–6.88 (m, 1H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -54.76 (d, *J* = 15.7 Hz, 3F), -105.07 (qd, *J* = 14.9, 4.5 Hz, 1F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): δ = 18.35 ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 157.4-154.3$ (m, 1C), 150.0 (d, J = 13.8 Hz), 133.0, 132.7, 132.5 (d, J = 3.1 Hz), 131.7 (d, J = 10.3 Hz), 131.3 (d, J = 111.6 Hz), 129.4, 129.1 (d, J = 2.8 Hz), 128.5 (d, J = 12.7 Hz), 128.3, 121.9, 120.5 (qd, J = 268.7, 5.7 Hz), 113.5 (d, J = 106.7 Hz), 93.2–92.8 (m, 1C) ppm.

HRMS (m/z): calcd for C₂₃H₁₅BrF₄O₂P [M+H]⁺ 508.9924, found: 508.9920.

(2-(4-Chlorophenyl)-5-fluoro-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (3da): Yield = 93% (129.7 mg). White solid. M.p. 149.9–151.6 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 5/1~2/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.67-7.58$ (m, 4H), 7.48–7.41 (m, 2H), 7.34–7.30 (m, 4H), 7.22–7.16 (m, 2H), 7.07–7.00 (m, 2H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -54.71 (d, *J* = 16.4 Hz, 3F), -105.23 (qd, *J* = 15.7, 3.6 Hz, 1F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): δ = 18.35 ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 158.2–153.8 (m, 1C), 150.8 (d, *J* = 13.4 Hz), 136.3, 132.4 (d, *J* = 2.9 Hz), 132.1, 131.9 (d, *J* = 10.3 Hz), 130.9, 128.5 (d, *J* = 12.9 Hz), 128.2, 125.9, 120.5 (qd, *J* = 267.4, 9.2 Hz), 112.9 (d, *J* = 109.0 Hz), 93.8–91.8 (m, 1C) ppm.

HRMS (m/z): calcd for C₂₃H₁₅ClF₄O₂P [M+H]⁺ 465.0429, found: 465.0435.

(2-(2-Chlorophenyl)-5-fluoro-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (3ea):

Yield = 91% (127.0 mg). White solid. M.p. 148.8–150.6 $^{\circ}$ C

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 5/1~2/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.67–7.55 (m, 4H), 7.38–7.30 (m, 2H), 7.24 (ddd, *J* = 8.7, 6.8, 3.3 Hz, 4H), 7.14–7.04 (m, 2H), 6.92–6.80 (m, 2H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -54.89 (d, *J* = 14.8 Hz, 3F), -104.87 (qd, *J* = 15.0, 4.1 Hz, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 18.26 ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 157.5-154.4$ (m, 1C), 147.8 (d, J = 14.7 Hz), 134.8, 133.5, 132.3, 131.7, 131.6, 131.2 (d, J = 111.9 Hz), 129.3, 128.3 (d, J = 13.0 Hz), 126.7, 126.4, 120.7 (qd, J = 268.6, 5.1 Hz), 115.2 (d, J = 106.9 Hz), 92.7–92.2 (m, 1C) ppm.

HRMS (m/z): calcd for C₂₃H₁₅ClF₄O₂P [M+H]⁺ 465.0429, found: 465.0427.

(5-Fluoro-2-(4-fluorophenyl)-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (3fa): Yield = 88% (118.6 mg). Grey solid. M.p. 150.8–151.9 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 7/1~2/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.70–7.58 (m, 4H), 7.46–7.39 (m, 2H), 7.31 (td, *J* = 7.7, 3.2 Hz, 4H), 7.27–7.21 (m, 2H), 6.74 (t, *J* = 8.6 Hz, 2H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -54.75 (d, *J* = 15.0 Hz, 3F), -105.56 (qd, *J* = 14.9, 3.0 Hz, 1F), -109.2--109.3 (m, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 18.70 ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 163.5 (d, *J* = 251.8 Hz), 157.3–154.2 (m, 1C), 151.0 (d, *J* = 13.8 Hz), 132.3 (d, *J* = 2.9 Hz), 131.84 (d, *J* = 10.6 Hz), 131.82, 131.6 (d, *J* = 111.5 Hz), 128.5 (d, *J* = 12.9 Hz), 123.7 (d, *J* = 3.4 Hz), 120.5 (qd, *J* = 268.5, 5.1 Hz), 115.2 (d, *J* = 22.2 Hz), 112.4 (d, *J* = 106.1 Hz), 94.5–90.8 (m, 1C) ppm.

HRMS (m/z): calcd for C₂₃H₁₅F₅O₂P [M+H]⁺ 449.0724, found: 449.0729.

(5-Fluoro-2-(4-methoxyphenyl)-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (3ga):

Yield = 94% (130.0 mg). White solid. M.p. 143.9–145.3 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 6/1~2/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.68–7.58 (m, 4H), 7.44–7.36 (m, 2H), 7.30 (ddd, *J* = 8.6, 6.9, 3.3 Hz, 4H), 7.20–7.12 (m, 2H), 6.58–6.52 (m, 2H), 3.69 (s, 3H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -54.70 (d, *J* = 16.3 Hz, 3F), -106.23 (qd, *J* = 15.4, 3.3 Hz, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 18.89 ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 160.8, 157.1–154.0 (m, 1C), 152.3 (d, *J* = 13.9 Hz), 132.2 (d, *J* = 2.8 Hz), 131.91 (d, *J* = 111.4 Hz), 131.85 (d, *J* = 10.1 Hz), 131.2, 128.4 (d, *J* = 12.6 Hz), 120.6 (qd, *J* = 268.6, 5.3 Hz), 119.8, 113.4, 111.0 (d, *J* = 109.0 Hz), 92.9–92.3 (m, 1C), 55.3 ppm. HRMS (m/z): calcd for C₂₄H₁₈F₄O₃P [M+H]⁺ 461.0924, found: 461.0923.

(2-([1,1'-Biphenyl]-4-yl)-5-fluoro-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (3ha):

Yield = 86% (131.2 mg). White solid. M.p. 144.2–144.9 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 6/1~2/1).

¹H NMR (400 MHz, CDCl₃): δ = 7.71–7.64 (m, 4H), 7.47–7.35 (m, 7H), 7.33–7.23 (m, 8H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -54.67 (d, *J* = 15.1 Hz, 3F), -105.56 (qd, *J* = 15.6, 3.5 Hz, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 18.88 ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 157.3-154.1$ (m, 1C), 151.8 (d, J = 13.7 Hz), 142.6, 140.0, 132.1 (d, J = 2.8 Hz), 131.9 (d, J = 10.3 Hz), 131.7 (d, J = 111.5 Hz), 130.1, 129.0, 128.4 (d, J = 12.8 Hz), 128.0, 127.1, 126.5, 126.2, 120.6 (qd, J = 268.7, 5.1 Hz), 112.3 (d, J = 106.4 Hz), 93.1–92.6 (m, 1C) ppm.

HRMS (m/z): calcd for C₂₉H₂₀F₄O₂P [M+H]⁺ 507.1132, found: 507.1129.

(5-Fluoro-2-(p-tolyl)-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (3ia):

Yield = 91% (121.5 mg). White solid. M.p. 150.1–151.6 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 6/1~2/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.69–7.59 (m, 4H), 7.43–7.36 (m, 2H), 7.29 (ddd, *J* = 8.7, 7.0, 3.3 Hz, 4H), 7.12–7.07 (m, 2H), 6.83 (d, *J* = 7.9 Hz, 2H), 2.21 (s, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -54.71 (d, *J* = 15.1 Hz, 3F), -106.02 (qd, *J* = 15.3, 3.0 Hz, 1F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): $\delta = 19.05$ ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 157.8–153.4 (m, 1C), 152.4 (d, *J* = 14.1 Hz), 140.2, 132.0 (d, *J* = 2.9 Hz), 131.9 (d, *J* = 10.2 Hz), 131.8 (d, *J* = 111.4 Hz), 129.6, 128.6, 128.3 (d, *J* = 12.8 Hz), 124.5, 120.6 (qd, *J* = 268.4, 5.3 Hz), 111.6 (d, *J* = 108.2 Hz), 93.2–92.0 (m, 1C), 21.4 ppm. HRMS (m/z): calcd for C₂₄H₁₈F₄O₂P [M+H]⁺ 445.0975, found: 445.0978.

(5-Fluoro-2-(4-nitrophenyl)-4-(trifluoromethyl) furan-3-yl) diphenyl phosphine oxide (3 ja):

Yield = 63% (90.0 mg). White solid. M.p. 149.7–150.2 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, $4/1 \sim 1/1$). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.01-7.93$ (m, 2H), 7.72–7.62 (m, 4H), 7.61–7.54 (m, 2H), 7.51–7.44 (m, 2H), 7.39–7.34 (m, 4H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -54.71 (d, *J* = 16.3 Hz, 3F), -103.69 (qd, *J* = 16.4, 2.8 Hz, 1F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): δ = 19.06 ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 158.0-154.4$ (m, 1C), 149.4 (d, J = 12.8 Hz), 148.2, 132.8, 132.7, 132.6 (d, J = 178.2 Hz), 131.9 (d, J = 10.4 Hz), 130.6 (d, J = 2.8 Hz), 128.7 (d, J = 13.0 Hz), 123.0, 120.3 (qd, J = 261.9, 5.5 Hz), 115.1 (d, J = 102.0 Hz), 94.6–92.6 (m, 1C) ppm. HRMS (m/z): calcd for C₂₄H₁₅F₄NO₄P [M+H]⁺ 476.0669, found: 476.0667.

(5-Fluoro-2-(naphthalen-2-yl)-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (3ka): Yield = 88% (126.4 mg). White solid. M.p. 163.2–164.9 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 10/1~2/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.74-7.63$ (m, 6H), 7.62–7.50 (m, 2H), 7.43 (dddd, J = 17.5, 8.2, 6.9, 1.5 Hz, 2H), 7.30 (dd, J = 8.6, 1.8 Hz, 1H), 7.25–7.12 (m, 6H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -54.64 (d, *J* = 16.0 Hz, 3F), -106.02 (qd, *J* = 15.6, 2.9 Hz, 1F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): $\delta = 18.70$ ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 157.5-154.0$ (m, 1C), 152.0 (d, J = 13.9 Hz), 133.3, 132.2, 132.0 (d, J = 2.9 Hz), 131.8, 131.6 (d, J = 10.2 Hz), 131.1, 130.8, 128.5, 128.3 (d, J = 12.9 Hz), 127.7, 127.5, 126.6, 125.4, 124.4, 120.6 (qd, J = 268.7, 5.3 Hz), 112.6 (d, J = 107.8 Hz), 93.3–92.5 (m, 1C) ppm.

HRMS (m/z): calcd for C₂₇H₁₈F₄O₂P [M+H]⁺ 481.0975, found: 481.0975.

(5-Fluoro-2-(thiophen-2-yl)-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (3la): Yield = 66% (86.5 mg). White solid. M.p. 142.7–143.9 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 6/1~2/1).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.74–7.59 (m, 4H), 7.47 (ddd, *J* = 7.3, 5.2, 1.6 Hz, 2H), 7.37 (dd, *J* = 7.6, 3.3 Hz, 4H), 7.28–7.23 (m, 1H), 7.12 (dd, *J* = 3.8, 1.2 Hz, 1H), 6.69 (dd, *J* = 5.1, 3.7 Hz, 1H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -54.82 (d, *J* = 16.4 Hz, 3F), -104.98 (qd, *J* = 16.5, 3.4 Hz, 1F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): δ = 19.67 ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 157.7–153.2 (m, 1C), 146.1 (d, *J* = 13.3 Hz), 132.5, 132.4 (d, *J* = 2.9 Hz), 132.0 (d, *J* = 10.7 Hz), 130.9, 129.5, 128.5 (d, *J* = 13.0 Hz), 127.7, 127.4, 120.5 (qd, *J* = 268.0, 5.3 Hz), 113.1 (d, *J* = 86.8 Hz), 93.9–92.0 (m, 1C) ppm.

HRMS (m/z): calcd for C₂₄H₁₄F₄O₂PS [M+H]⁺ 437.0383, found: 437.0385.

(2-(2,3-Dihydrobenzo[*b*][1,4]dioxin-6-yl)-5-fluoro-4-(trifluoromethyl)furan-3-yl)diphenylpho sphine oxide (3ma):

Yield = 73% (107.1 mg). White solid. M.p. 138.6–140.4 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 4/1~1/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.68–7.59 (m, 4H), 7.46–7.39 (m, 2H), 7.32 (ddd, *J* = 8.7, 7.1, 3.2 Hz, 4H), 6.71 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.61 (d, *J* = 2.1 Hz, 1H), 6.53 (d, *J* = 8.3 Hz, 1H), 4.18–4.07 (m, 4H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -54.76 (d, *J* = 15.8 Hz, 3F), -106.06 (qd, *J* = 15.6, 3.5 Hz, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 18.97 ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 157.0-154.0$ (m, 1C), 151.6 (d, J = 14.1 Hz), 143.8 (d, J = 268.9 Hz), 132.04, 132.01, 131.82 (d, J = 10.2 Hz), 131.77 (d, J = 111.6 Hz), 128.4 (d, J = 13.0 Hz), 123.2, 120.7 (qd, J = 269.0, 4.9 Hz), 120.3, 119.2, 116.9, 111.5 (d, J = 108.7 Hz), 93.1–92.0 (m, 1C), 64.4, 64.1 ppm.

HRMS (m/z): calcd for C₂₅H₁₈F₄O₄P [M+H]⁺ 489.0873, found: 489.0873.

(2-Cyclohexyl-5-fluoro-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (3na):

Yield = 82% (107.5 mg). Colourless oil.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 6/1~2/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.71-7.64$ (m, 4H), 7.60–7.53 (m, 2H), 7.49–7.44 (m, 4H), 2.34–2.25 (m, 1H), 1.63–1.50 (m, 5H), 1.44–1.33 (m, 2H), 1.12–1.00 (m, 1H), 0.93–0.76 (m, 2H) ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ = -54.90 (d, *J* = 16.0 Hz, 3F), -106.68 (q, *J* = 16.0 Hz, 1F) ppm. ³¹P NMR (162 MHz, CDCl₃): δ = 21.21 ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 159.0 (dd, J = 15.6, 2.5 Hz), 156.7–153.2 (m, 1C), 132.6 (d, J = 2.9 Hz), 132.2 (d, J = 111.3 Hz), 131.9 (d, J = 10.5 Hz), 128.7 (d, J = 12.7 Hz), 120.7 (qd, J = 268.1, 5.5 Hz), 109.1 (d, J = 111.6 Hz), 90.4, 36.2, 31.2, 25.8, 25.4 ppm.

HRMS (m/z): calcd for $C_{23}H_{22}F_4O_2P [M+H]^+ 437.1288$, found: 437.1286.

(5-Fluoro-2,4-diphenylfuran-3-yl)diphenylphosphine oxide (30a):

Yield = 42% (55.3 mg). White solid. M.p. 121.6–122.5 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 6/1~2/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.62-7.52$ (m, 4H), 7.48–7.39 (m, 2H), 7.32–7.23 (m, 2H), 7.15–7.08 (m, 3H), 7.07–7.00 (m, 9H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -120.64 (d, *J* = 4.1 Hz, 1F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): δ = 16.86 ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 154.2 (dd, *J* = 281.1, 16.1 Hz), 151.5 (d, *J* = 15.9 Hz), 132.7 (d, *J* = 109.4 Hz), 131.3 (d, *J* = 9.6 Hz), 131.2, 131.1, 129.9, 129.2, 129.1, 128.7, 128.5 (d, *J* = 3.8 Hz), 128.0 (d, *J* = 6.5 Hz), 127.8 (d, *J* = 11.3 Hz), 127.2, 113.3 (d, *J* = 113.7 Hz), 102.1 (t, *J* = 9.3 Hz) ppm.

HRMS (m/z): calcd for C₂₈H₂₁FO₂P [M+H]⁺ 439.1258, found: 439.1259.

4-(3-(Diphenylphosphoryl)-5-fluoro-4-(trifluoromethyl)furan-2-yl)phenyl 2-(4-isobutylphenyl)propanoate (3pa):

Yield = 69% (131.5 mg). White solid. M.p. 149.3–150.1 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 6/1~3/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.62$ (ddd, J = 12.8, 8.4, 1.4 Hz, 4H), 7.42–7.37 (m, 2H), 7.34–7.23 (m, 6H), 7.23–7.08 (m, 4H), 6.75–6.64 (m, 2H), 3.89 (q, J = 7.1 Hz, 1H), 2.47 (d, J = 7.1

7.2 Hz, 2H), 1.87 (dt, J = 13.5, 6.8 Hz, 1H), 1.57 (d, J = 7.1 Hz, 3H), 0.91 (d, J = 6.6 Hz, 6H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -54.73 (d, *J* = 15.8 Hz, 3F), -105.55 (qd, *J* = 15.1, 3.1 Hz, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 18.78 ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 172.6$, 157.2–154.1 (m, 1C), 152.0, 151.0 (d, J = 13.9 Hz), 141.0, 137.0, 132.4 (d, J = 3.0 Hz), 131.7, 131.5 (d, J = 111.6 Hz), 130.8, 129.6, 128.4 (d, J = 12.7 Hz), 127.2, 124.8, 121.4, 120.5 (qd, J = 273.6, 5.0 Hz), 112.6 (d, J = 107.9 Hz), 93.1–92.6 (m, 1C), 45.2, 45.1, 30.3, 22.4, 18.5 ppm.

HRMS (m/z): calcd for C₃₆H₃₂F₄O₄P [M+H]⁺ 635.1969, found: 635.1967.

4-(3-(Diphenylphosphoryl)-5-fluoro-4-(trifluoromethyl)furan-2-yl)phenyl 3-(4,5-diphenyloxazol-2-yl)propanoate (3qa):

Yield = 71% (153.8 mg). White solid. M.p. 157.8–159.3 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, $6/1 \sim 2/3$).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.69–7.55 (m, 8H), 7.45–7.27 (m, 12H), 7.23–7.18 (m, 2H), 6.83–6.77 (m, 2H), 3.28 (t, *J* = 7.5 Hz, 2H), 3.13 (t, *J* = 7.0 Hz, 2H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -54.74 (d, *J* = 15.2 Hz, 3F), -105.41 (qd, *J* = 16.3, 3.5 Hz, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 18.81 ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 170.1$, 161.4, 154.4–153.9 (m, 1C), 151.7, 151.0 (d, J = 13.8 Hz), 145.7, 135.2, 132.5, 132.4, 131.8 (d, J = 10.2 Hz), 131.4 (d, J = 111.6 Hz), 131.0, 128.9, 128.8, 128.7, 128.6, 128.4, 128.3, 127.9, 126.6, 125.1, 121.3, 120.5 (qd, J = 273.6, 5.0 Hz), 112.7 (d, J = 107.4 Hz), 93.2–92.5 (m, 1C), 31.2, 23.5 ppm.

HRMS (m/z): calcd for C₄₁H₂₉F₄NO₅P [M+H]⁺ 722.1714, found: 722.1718.

(5-Fluoro-2-phenyl-4-(trifluoromethyl)furan-3-yl)diphenylphosphane (4):

Yield = 89% (110.6 mg). White solid. M.p. 134.8–135.3 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, $6/1 \sim 2/1$). ¹**H NMR (400 MHz, CDCl₃):** $\delta = 7.62 - 7.57$ (m, 2H), 7.49–7.43 (m, 4H), 7.42–7.32 (m, 9H) ppm. ¹⁹**F NMR (376 MHz, CDCl₃):** δ = -55.44 (dd, *J* = 15.7, 7.1 Hz, 3F), -105.28 (q, *J* = 15.7 Hz, 1F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = -24.98 (q, *J* = 7.7 Hz) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 156.0 (dt, *J* = 289.8, 3.8 Hz), 151.6 (d, *J* = 34.1 Hz), 133.9 (d, *J* = 8.6 Hz), 132.6 (d, *J* = 19.3 Hz), 129.5, 129.0 (d, *J* = 7.1 Hz), 128.8, 128.5 (d, *J* = 6.6 Hz), 128.32, 128.26, 121.1 (qd, *J* = 268.3, 5.3 Hz), 112.4 (dd, *J* = 31.6, 4.2 Hz), 93.3 (q, *J* = 39.5 Hz) ppm.

HRMS (m/z): calcd for C₂₃H₁₆F₄OP [M+H]⁺ 415.0869, found: 415.0865.

Diphenyl(2-phenyl-4-(trifluoromethyl)furan-3-yl)phosphine oxide (5):

Yield = 92% (113.7 mg). White solid. M.p. 138.6–140.3 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 6/1~2/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.95-7.94$ (m, 1H), 7.68–7.55 (m, 4H), 7.41–7.34 (m, 2H), 7.32–7.23 (m, 6H), 7.20–7.12 (m, 1H), 7.10–7.00 (m, 2H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -55.96 (s, 3F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 18.82 ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 162.9 (d, *J* = 16.0 Hz), 143.9 (td, *J* = 14.0, 6.9 Hz), 132.2 (d, *J* = 111.0 Hz), 132.0 (d, *J* = 2.9 Hz), 131.9 (d, *J* = 10.2 Hz), 129.7, 129.5, 128.7, 128.2 (d, *J* = 12.7 Hz), 127.8, 121.6 (q, *J* = 268.9 Hz), 121.0 (dd, *J* = 37.6, 8.0 Hz), 110.3 (d, *J* = 110.3 Hz) ppm. HRMS (m/z): calcd for C₂₃H₁₇F₃O₂P [M+H]⁺ 413.0913, found: 413.0909.

(5-Methoxy-2-phenyl-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (6):

Yield = 85% (112.7 mg). White solid. M.p. 121.6–122.5 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 6/1~2/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 7.69–7.58 (m, 4H), 7.34 (td, *J* = 7.3, 1.5 Hz, 2H), 7.28–7.18 (m, 6H), 7.14–7.08 (m, 1H), 7.04–6.95 (m, 2H), 4.06 (s, 3H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -53.47 (s, 3F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 19.00 ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 158.8-158.7$ (m, 1C), 151.8 (d, J = 14.7 Hz), 132.5 (d, J = 110.8 Hz), 131.81, 131.75 (d, J = 7.4 Hz), 129.7, 129.3, 128.6, 128.2 (d, J = 12.8 Hz), 127.8, 122.0 (q, J = 268.0 Hz), 111.7 (d, J = 110.6 Hz), 93.1–92.7 (m, 1C), 59.2 ppm.

HRMS (m/z): calcd for C₂₄H₁₉F₃O₃P [M+H]⁺ 443.1018, found: 443.1018.

(5-(1*H*-benzo[*d*]imidazol-1-yl)-2-phenyl-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (7):

Yield = 67% (106.2 mg). White solid. M.p. 121.6–122.5 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, $3/1 \sim 1/1$). ¹**H NMR (400 MHz, CDCl₃):** $\delta = 8.07$ (s, 1H), 7.89–7.81 (m, 1H), 7.78–7.66 (m, 4H), 7.46 (dt, J

= 6.9, 2.9 Hz, 1H), 7.43–7.27 (m, 10H), 7.23–7.13 (m, 1H), 7.06 (t, *J* = 7.7 Hz, 2H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -54.21 (s, 3F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): δ = 18.65 ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 159.2$ (d, J = 14.1 Hz), 143.1, 143.0–142.5 (m, 1C), 142.2, 133.7, 132.2 (d, J = 2.9 Hz), 131.8 (d, J = 111.4 Hz), 131.7 (d, J = 10.1 Hz), 130.3, 129.7, 128.4 (d, J = 12.9 Hz), 128.0, 127.6, 125.1, 124.2, 121.0, 120.9 (q, J = 270.0 Hz), 112.7 (d, J = 106.6 Hz), 111.5 (qd, J = 38.2, 7.8 Hz), 111.4 (qd, J = 38.2, 7.8 Hz), 110.9 ppm.

HRMS (m/z): calcd for C₃₀H₂₁F₃N₂O₂P [M+H]⁺ 529.1287, found: 529.1285.

(5-(4-Methoxyphenyl)-2-phenyl-4-(trifluoromethyl)furan-3-yl)diphenylphosphine oxide (8): Yield = 82% (127.7 mg). White solid. M.p. 121.6–122.5 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, $6/1 \sim 2/1$). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.72 - 7.66$ (m, 4H), 7.64–7.57 (m, 2H), 7.38–7.31 (m, 2H), 7.31–7.22 (m, 6H), 7.17–7.10 (m, 1H), 7.08–6.99 (m, 2H), 6.99–6.90 (m, 2H), 3.83 (s, 3H) ppm. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -51.84$ (s, 3F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): $\delta = 19.13$ ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 161.1, 160.5 (d, *J* = 15.7 Hz), 155.3 (m, 1C), 132.9 (d, *J* = 110.8 Hz), 131.8, 131.70, 131.66, 130.2, 129.7, 129.5, 128.9, 128.2 (d, *J* = 12.7 Hz), 127.8, 122.3 (q, *J* = 269.6 Hz), 120.8, 114.1, 112.0 (d, *J* = 110.1 Hz), 55.4 ppm.

HRMS (m/z): calcd for C₃₀H₂₃F₃O₃P [M+H]⁺ 519.1331, found: 519.1331.

(2-([1,1'-Biphenyl]-4-yl)-3,3-difluoroallyl)diphenylphosphine oxide (10):

Yield = 40% (51.7 mg). White solid. 150.0–150.9 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 6/1~2/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.72-7.66$ (m, 4H), 7.55–7.51 (m, 2H), 7.49–7.43 (m, 4H), 7.42–7.33 (m, 8H), 7.28 (d, J = 1.0 Hz, 1H), 3.47–3.43 (m, 2H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -86.1 (dd, *J* = 34.3, 8.9 Hz, 1F), -87.6 (dd, *J* = 32.8, 13.4 Hz, 1F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): $\delta = 28.58$ (dd, J = 14.2, 8.3 Hz) ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 154.7 (td, *J* = 291.4, 10.6 Hz), 140.7, 140.3, 132.5, 132.0 (d, *J* = 2.5 Hz), 131.8, 131.5, 131.1 (d, *J* = 9.4 Hz), 129.1, 128.9, 128.6 (d, *J* = 11.8 Hz), 127.5, 127.1 (d, *J* = 2.3 Hz), 85.5–85.0 (m, 1C), 31.2 (d, *J* = 69.4 Hz) ppm.

HRMS (m/z): calcd for $C_{27}H_{22}F_2OP [M+H]^+ 431.1371$, found: 431.1371.

3-(Diphenylphosphoryl)-4,4,4-trifluoro-3-methyl-1-phenylbutan-1-one (14a):

Yield = 95% (118.6 mg). White solid. M.p. 121.6–122.5 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 5/1~3/1).

¹**H NMR (400 MHz, CDCl₃):** δ = 8.12–8.07 (m, 4H), 7.90–7.83 (m, 2H), 7.61–7.48 (m, 7H), 7.42 (t, *J* = 7.7 Hz, 2H), 3.62 (dd, *J* = 15.2, 9.0 Hz, 1H), 3.35 (dd, *J* = 15.2, 8.3 Hz, 1H), 1.76 (d, *J* = 14.9 Hz, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -63.46 (d, J = 4.0 Hz, 3F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): δ = 31.06 ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 196.5 (d, J = 10.6 Hz), 137.6, 133.4, 132.7–132.3 (m, 3C), 129.6 (dd, J = 95.3, 10.1 Hz), 128.7 (d, J = 5.3 Hz), 128.5 (d, J = 16.9 Hz), 129.0 (q, J = 283.4 Hz), 49.8 (dd, J = 61.4, 24.8 Hz), 36.4, 15.7 ppm.

HRMS (m/z): calcd for C₂₃H₂₁F₃O₂P [M+H]⁺ 417.1226, found: 417.1224.

3-(Diphenylphosphoryl)-1-phenyl-3-(trifluoromethyl)pentan-1-one (14b):

Yield = 96% (123.9 mg). White solid. M.p. 120.1–121.5 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 5/1~3/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 8.12-7.96$ (m, 4H), 7.91–7.85 (m, 2H), 7.60–7.39 (m, 9H), 3.91 (dd, J = 16.6, 7.7 Hz, 1H), 3.55 (dd, J = 16.6, 13.2 Hz, 1H), 2.52–2.26 (m, 2H), 1.05 (t, J = 7.4 Hz, 3H) ppm.

¹⁹**F** NMR (376 MHz, CDCl₃): δ = -61.16 (s, 3F) ppm.

³¹**P** NMR (162 MHz, CDCl₃): $\delta = 31.49$ ppm.

¹³C NMR (100 MHz, CDCl₃): δ = 196.1 (d, *J* = 8.2 Hz), 137.6, 133.2, 132.4 (dd, *J* = 23.0, 8.6 Hz), 132.3 (d, *J* = 7.3 Hz), 130.5 (dd, *J* = 130.0, 93.9 Hz), 128.6, 128.6 (dd, *J* = 11.5, 9.7 Hz), 128.2, 127.2 (q, *J* = 283.6 Hz), 54.2 (dd, *J* = 59.7, 23.1 Hz), 33.5, 22.3, 9.2 (d, *J* = 5.8 Hz) ppm. HRMS (m/z): calcd for C₂₄H₂₃F₃O₂P [M+H]⁺ 431.1382, found: 431.1377.

3-(Diphenylphosphoryl)-4,4,4-trifluoro-1-phenylbutan-1-one (14d):

Yield = 60% (72.4 mg). White solid. M.p. 116.7–118.4 °C.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 10/1~3/1).

¹**H** NMR (400 MHz, CDCl₃): $\delta = 7.97-7.89$ (m, 2H), 7.88–7.80 (m, 4H), 7.59–7.48 (m, 4H), 7.47–7.37 (m, 5H), 4.57–4.43 (m, 1H), 3.63 (dt, J = 18.9, 6.9 Hz, 1H), 3.43 (ddd, J = 18.8, 14.9, 3.8 Hz, 1H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -60.48 (dd, *J* = 9.6, 5.2 Hz, 3F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 28.72–28.45 (m, 1P) ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 194.6$ (d, J = 6.7 Hz), 135.5, 134.0, 132.6 (dd, J = 8.3, 2.9 Hz), 131.2 (dd, J = 21.6, 9.5 Hz), 130.5 (dd, J = 103.5, 49.4 Hz), 128.9 (dd, J = 27.5, 12.3 Hz), 128.8, 128.3, 127.0 (q, J = 281.3 Hz), 39.3 (dd, J = 66.2, 26.7 Hz), 33.0 ppm.

HRMS (m/z): calcd for C₂₂H₁₉F₃O₂P [M+H]⁺ 403.1069, found: 403.1068.

Ethyl 2-((diphenylphosphoryl)difluoromethyl)-4-oxo-4-phenylbutanoate (15c):

Yield = 8% (10.9 mg). Colourless oil.

Purified by flash silica gel column chromatography (petroleum ether/ethyl acetate, 10/1~3/1).

¹**H** NMR (400 MHz, CDCl₃): δ = 7.83–7.75 (m, 2H), 7.74–7.66 (m, 4H), 7.44–7.29 (m, 7H), 7.25–7.18 (m, 2H), 5.05 (ddd, *J* = 16.3, 11.5, 2.6 Hz, 1H), 4.00 (qd, *J* = 7.2, 0.9 Hz, 2H), 3.42 (ddd, *J* = 17.7, 11.5, 5.0 Hz, 1H), 2.86 (ddd, *J* = 17.6, 9.0, 2.6 Hz, 1H), 1.10 (t, *J* = 7.2 Hz, 3H) ppm.

¹⁹**F NMR (376 MHz, CDCl₃):** δ = -102.16 (d, *J* = 3.7 Hz, 2F) ppm.

³¹**P NMR (162 MHz, CDCl₃):** δ = 28.61 ppm.

¹³C NMR (100 MHz, CDCl₃): $\delta = 197.0$ (d, J = 2.5 Hz), 171.5 (d, J = 16.6 Hz), 138.1, 132.9, 132.4 (d, J = 3.0 Hz), 131.6 (dd, J = 34.5, 9.3 Hz), 130.0 (dd, J = 100.5, 37.3 Hz), 128.7 (d, J = 3.7 Hz), 128.60, 128.56, 128.3, 61.4, 47.5 (d, J = 56.3 Hz), 32.7, 14.0 ppm.

HRMS (m/z): calcd for C₂₅H₂₄F₂O₄P [M+H]⁺ 457.1375, found: 457.1373.

References

Wu, X.; Xie, F.; Gridnev, I. D.; Zhang, W. *Org. Lett.* **2018**, *20*, 1638–1642.
 Chu, X.-Q.; Sun, L.-W.; Chen, Y.-L.; Chen, J.-W.; Ying, X.; Ma, M.; Shen, Z.-L. *Green Chem.* **2022**, *24*, 2777–2782.

H, ¹⁹F, ³¹P, and ¹³C NMR spectra of products

¹H NMR spectra of the product **3aa** (400 MHz, CDCl₃):

80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300

³¹P NMR spectra of the product **3aa** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3aa** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹H NMR spectra of the product **3ab** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3ab** (376 MHz, CDCl₃):

 $100 \quad 80 \quad 60 \quad 40 \quad 20 \quad 0 \quad -20 \quad -40 \quad -60 \quad -80 \quad -100 \quad -120 \quad -140 \quad -160 \quad -180 \quad -200 \quad -220 \quad -240 \quad -260 \quad -280 \quad -300 \quad -3$

³¹P NMR spectra of the product **3ab** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ab** (100 MHz, CDCl₃):

^{20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1}

¹H NMR spectra of the product **3ac** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3ac** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3ac** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ac** (100 MHz, CDCl₃):

^{20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0}

¹H NMR spectra of the product **3ad** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3ad** (376 MHz, CDCl₃):

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300

³¹P NMR spectra of the product **3ad** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ad** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
¹H NMR spectra of the product **3ae** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3ae** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3ae** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ae** (100 MHz, CDCl₃):

^{220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0}

¹H NMR spectra of the product **3af** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3af** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3af** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3af** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

¹H NMR spectra of the product **3ag** (400 MHz, CDCl₃):

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300

³¹P NMR spectra of the product **3ag** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ag** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

¹H NMR spectra of the product **3ah** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3ah** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3ah** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ah** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

¹H NMR spectra of the product **3ai** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3ai** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3ai** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ai** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

¹H NMR spectra of the product **3aj** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3aj** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3aj** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3aj** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹H NMR spectra of the product **3ak** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3ak** (376 MHz, CDCl₃):

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300

³¹P NMR spectra of the product **3ak** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ak** (100 MHz, CDCl₃):

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

¹H NMR spectra of the product **3al** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3al** (376 MHz, CDCl₃):

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300

¹³C NMR spectra of the product **3al** (100 MHz, CDCl₃):

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1

¹H NMR spectra of the product **3am** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3am** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3am** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3am** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

¹⁹F NMR spectra of the product **3ba** (376 MHz, CDCl₃):

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300

³¹P NMR spectra of the product **3ba** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ba** (100 MHz, CDCl₃):

¹H NMR spectra of the product **3ca** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3ca** (376 MHz, CDCl₃):

 $100 \quad 80 \quad 60 \quad 40 \quad 20 \quad 0 \quad -20 \quad -40 \quad -60 \quad -80 \quad -100 \quad -120 \quad -140 \quad -160 \quad -80 \quad -200 \quad -220 \quad -240 \quad -260 \quad -280 \quad -300 \quad -30$

³¹P NMR spectra of the product **3ca** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ca** (100 MHz, CDCl₃):

^{20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1}

¹H NMR spectra of the product **3da** (400 MHz, CDCl₃):

-105.16 -105.17 -105.20 -105.25 -105.28 -105.21 -105.24 -105.29 -54.71 -54.75 F CI 95 -54.68 -54.72 3da

¹⁹F NMR spectra of the product **3da** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3da** (162 MHz, CDCl₃):

 ^{13}C NMR spectra of the product **3da** (100 MHz, CDCl₃):

¹H NMR spectra of the product **3ea** (400 MHz, CDCl₃):

³¹P NMR spectra of the product **3ea** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ea** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

¹H NMR spectra of the product **3fa** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3fa** (376 MHz, CDCl₃):

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300

³¹P NMR spectra of the product **3fa** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3fa** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

¹H NMR spectra of the product **3ga** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3ga** (376 MHz, CDCl₃):

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300

³¹P NMR spectra of the product **3ga** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ga** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

¹H NMR spectra of the product **3ha** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3ha** (376 MHz, CDCl₃):

100 80 -20 -40 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 60 40 20 0 -60

³¹P NMR spectra of the product **3ha** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ha** (100 MHz, CDCl₃):

¹H NMR spectra of the product **3ia** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3ia** (376 MHz, CDCl₃):

 $100 \quad 80 \quad 60 \quad 40 \quad 20 \quad 0 \quad -20 \quad -40 \quad -60 \quad -80 \quad -100 \quad -120 \quad -140 \quad -160 \quad -80 \quad -200 \quad -220 \quad -240 \quad -260 \quad -280 \quad -300 \quad -30$

³¹P NMR spectra of the product **3ia** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ia** (100 MHz, CDCl₃):

¹H NMR spectra of the product **3ja** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3ja** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3ja** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ja** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
¹H NMR spectra of the product **3ka** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3ka** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3ka** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ka** (100 MHz, CDCl₃):

¹H NMR spectra of the product **3la** (400 MHz, CDCl₃):

 ^{19}F NMR spectra of the product **3la** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3la** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3la** (100 MHz, CDCl₃):

^{220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0}

¹H NMR spectra of the product **3ma** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3ma** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3ma** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3ma** (100 MHz, CDCl₃):

¹H NMR spectra of the product **3na** (400 MHz, CDCl₃):

 $\begin{array}{c} 7.77\\ 7.76\\ 7.76\\ 7.76\\ 7.76\\ 7.76\\ 7.76\\ 8.8\\ 7.76\\ 7.76\\ 8.8\\ 7.76\\ 7.76\\ 8.8\\ 7.75\\ 7.$

¹⁹F NMR spectra of the product **3na** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3na** (162 MHz, CDCl₃):

 ^{13}C NMR spectra of the product **3na** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

¹⁹F NMR spectra of the product **3oa** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **30a** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **30a** (100 MHz, CDCl₃):

|--|

¹H NMR spectra of the product **3pa** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3pa** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3pa** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3pa** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

¹H NMR spectra of the product **3qa** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **3qa** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **3qa** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **3qa** (100 MHz, CDCl₃):

¹H NMR spectra of the product **4** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **4** (376 MHz, CDCl₃):

¹³C NMR spectra of the product **4** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹H NMR spectra of the product **5** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **5** (376 MHz, CDCl₃):

100 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300 80 60

 ^{13}C NMR spectra of the product **5** (100 MHz, CDCl_3):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹⁹F NMR spectra of the product **6** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **6** (162 MHz, CDCl₃):

¹³C NMR spectra of the product **6** (100 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

¹⁹F NMR spectra of the product **7** (376 MHz, CDCl₃):

100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 -260 -280 -300

¹³C NMR spectra of the product **7** (100 MHz, CDCl₃):

^{220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -}

¹H NMR spectra of the product **8** (400 MHz, CDCl₃):

¹⁹F NMR spectra of the product **8** (376 MHz, CDCl₃):

³¹P NMR spectra of the product **8** (162 MHz, CDCl₃):

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

¹H NMR spectra of the product **10** (400 MHz, CDCl₃)

 ^{19}F NMR spectra of the product 10 (376 MHz, CDCl₃)

^{140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240}

^{20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -2}

¹H NMR spectra of the product **14a** (400 MHz, CDCl₃)

¹⁹F NMR spectra of the product **14a** (376 MHz, CDCl₃)

³¹P NMR spectra of the product **14a** (162 MHz, CDCl₃)

¹³C NMR spectra of the product **14a** (100 MHz, CDCl₃)

¹H NMR spectra of the product **14b** (400 MHz, CDCl₃)

¹⁹F NMR spectra of the product **14b** (376 MHz, CDCl₃)

³¹P NMR spectra of the product **14b** (162 MHz, CDCl₃)

 ^{13}C NMR spectra of the product 14b (100 MHz, CDCl₃)

¹H NMR spectra of the product **14d** (400 MHz, CDCl₃)

¹⁹F NMR spectra of the product **14d** 376 MHz, CDCl₃)

³¹P NMR spectra of the product **14d** (162 MHz, CDCl₃)

28.63 28.60 28.56 28.55

^{220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20}

¹H NMR spectra of the product **15c** (400 MHz, CDCl₃)

¹⁹F NMR spectra of the product **15c** 376 MHz, CDCl₃)

³¹P NMR spectra of the product **15c** (162 MHz, CDCl₃)

¹³C NMR spectra of the product **15c** (100 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0