Supporting Information

Access to Chiral Sulfones with An All-Carbon Quaternary Stereocenter from Sulfur Dioxide

Chunxi Huang,^{1†} Xuemei Zhang,^{1†} Liping Luo,¹ Xiuwen Jia,¹ Jian Liao^{*2} and Zhong Lian^{*1}

[1] C. Huang, Dr. X. Zhang, Dr. Li Xue, L. Luo, X. Jia, Prof. Dr. Z. Lian

Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center

West China Hospital, Sichuan University

[2] Prof. Dr. J. Liao

Chengdu Institute of Biology, Chinese Academy of Sciences

†These authors contributed equally.

Table of Contents

General information	2
General procedure for the synthesis of starting material	2
General procedure for the synthesis of pybim ligands	5
Effect of Reaction Parameters	6
General procedure for the synthesis of compounds 3 and 5	9
Characterization data of products 3 and 5	10
Transformations	30
Mechanistic Experiments	32
Reference	35
HRMS detection of intermediates	36
Single Crystal X-Ray Diffraction Data	37
The spectrums of NMR and HPLC chromatograms	48
	General information General procedure for the synthesis of starting material General procedure for the synthesis of pybim ligands Effect of Reaction Parameters General procedure for the synthesis of compounds 3 and 5 Characterization data of products 3 and 5 Characterization data of products 3 and 5 Transformations Mechanistic Experiments Reference HRMS detection of intermediates Single Crystal X-Ray Diffraction Data The spectrums of NMR and HPLC chromatograms

1. General information

All reactions were carried out in oven dried two-chamber under argon atmosphere glovebox (Vigor, SGI800-750TS-F). Unless otherwise noted, all reactions or reagents were obtained from commercial suppliers and used as received. All work-up and purification procedures were carried out with reagent-grade solvents in air. Chromatography was generally performed on silica gel (200-300 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions.

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded at 400 MHz, 100 MHz and 376 MHz, respectively in CDCl₃ or (CD₃)₂SO at room temperature. ¹H NMR was reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quadruplet, m = multiplet), coupling constant (*J* values) in Hz and integration. Chemical shifts (δ) were reported with respect to the corresponding solvent residual peak at 2.50 ppm for (CD₃)₂SO for ¹H NMR. The ¹³C NMR spectra (¹H-broadband decoupled) were reported in ppm using the central peak of (CD₃)₂SO at 39.52 ppm. The solvent residue peak of ethyl acetate in (CD₃)₂SO was at 1.99 ppm, 4.03 ppm and 1.17 ppm for ¹H NMR and 20.68 ppm, 170.31 ppm, 59.74ppm and 14.40 ppm for ¹³C NMR. The solvent residue peak for dichloromethane in (CD₃)₂SO is at 5.76 ppm for ¹H NMR and 54.84 ppm for ¹³C NMR.

High-resolution mass spectrometric measurements were provided by the Department of The State Key Laboratory of Biotherapy, Sichuan University. The molecular ion [M+H]⁺ and [M+Na]⁺ are given in m/z units.

Enantiomer ratios were determined by UHPLC (Chiralpak AD-H, OD-H, IA-H, IB-H, IC-H columns were purchased from Daicel Chemical Industries, LTD). Optical rotations were measured on an INESA SGW-1polarimeter, and reported as $[\alpha]_{\lambda}^{T}$ (concentration (c): g/100 mL, in CHCl₃).

2. General procedure for the synthesis of starting material

A. General procedure for the synthesis of α , β -unsaturated amides^[1-4]

The procedure was based on a modified literature procedure. Oxalyl chloride (10.0 mmol, 2.0 equiv.) was added dropwise to a solution of 2-aryl acrylic acid (5.0 mmol, 1.0 equiv.) in dry DCM (20 mL) under N₂ at 0 °C, followed by the addition of a catalytic amount of dry DMF (3 drops). The reaction mixture was stirred at room temperature for 3 hours. Subsequently, the reaction was evaporated under reduced pressure and the resulting crude acyl chloride was used directly for the next reaction without further purification.

For the next step, a solution of aniline (5.0 mmol, 1.0 equiv.) and Et₃N (1.1 mL, 7.5 mmol, 1.5 equiv.) in DCM (30 mL) was prepared at 0 °C. To this solution, a solution of acyl chloride (5.0 mmol, 1.0 equiv.) in DCM was added dropwise, and the resulting mixture was stirred at room temperature for 3 hours. The mixture was then diluted with DCM (20 mL) and washed sequentially with saturated NaHCO₃ (aq. 30 mL) and brine (30 mL). The organic extracts were dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give the corresponding α , β -unsaturated amides. The product was purified by flash chromatography.

The procedure was based on a modified literature procedure. Oxalyl chloride (10.0 mmol, 2.0 equiv.) was added dropwise to a solution of 2-bromoacrylic acid (5.0 mmol, 1.0 equiv.) in dry dichloromethane (DCM, 20 mL) at 0 °C under a nitrogen atmosphere, followed by some dimethylformamide (DMF, 3 drops). The reaction mixture was stirred at room temperature for 2 hours. The volatiles were evaporated under reduced pressure and the resulting crude acyl chloride was used directly for the next reaction without further purification. To a solution of aniline (5.0 mmol, 1.0 equiv.) and Et₃N (7.5 mmol, 1.5 equiv.) in DCM (20.0 mL) at 0 °C was added dropwise a solution of acyl chloride (5.0 mmol, 1.0 equiv.) in DCM (5.0 mL), the resulting mixture was stirred at room temperature for 2 hours. The mixture was washed by H₂O, and the organic extracts were dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Finally, the residue was purified by column chromatography to give the desired 2-bromoacrylic amide.

In glovebox, to a pressure bottle was added the 2-bromoacrylic amide (2.0 mmol, 1.0 equiv.), aryl boronic acid (2.4 mmol, 1.2 equiv.), $Pd(dppf)Cl_2$ (0.04 mmol, 0.02 equiv.), K_2CO_3 (2.4 mmol, 1.2 equiv.), dioxane (5.0 mL) and water (5.0 mL). The bottle was sealed and removed out of the glovebox and heated to 80 °C for 6 hours in an oil bath. After 6 hours, the bottle was cooled to room temperature. The mixture was washed by brine, dried, concentrated and purified by column chromatography to give the desired product.

The procedure was based on a modified literature procedure. To a solution of atropic acid (3.37 mmol, 1.0 equiv.) and oxalyl chloride (4.1 mmol, 1.2 equiv.) in anhydrous DCM (6.7 mL), was added a drop of anhydrous DMF. The reaction was then stirred at room temperature for 3 h. The excess amount of solvent and oxalyl chloride were removed in vacuo, and (ca. 20%) aqueous solution of NH₃ (0.54 mL) was added to the residue under stirring at 0 °C. The reaction was stirred at room temperature for another 1 h. The reaction mixture was extracted with ethyl acetate (15 mL × 3), then combined organic layer was then washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The solid residue was purified through crystallization (10% EA/PE) to afford the product as a colorless crystalline solid (367 mg, 2.49 mmol, 74%).

The procedure was based on a modified literature procedure. A dry 100 mL round bottom flask equipped with а magnetic stir bar was charged with methyltriphenylphosphonium bromide (10 mmol, 2.0 equiv.) and KOtBu (12 mmol, 1.2 equiv.) followed by THF (20 mL). The resulting yellow suspension was stirred at room temperature for 1 hour. A solution of 2-benzoylpyridine (5.0 mmol, 1.0 equiv.) in THF (10 mL) was added dropwise and the resulting mixture was stirred at 50 °C for 1 hour and allowed to cool down overnight. Next, a saturated solution of NH₄Cl (25 mL) followed by distilled water (25 mL) were added and the resulting mixture was extracted with ethyl acetate (3 x 50 mL). The organic phases were combined and dried with anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was further purified by flash chromatography on silica gel to afford the corresponding alkenes.

B. General procedure for the synthesis of diazonium salts^[5-6]

In a 100 mL round-bottom flask, the aniline (10.0 mmol, 1.0 equiv.) was dissolved in a mixture of absolute ethanol (3.0 mL) and an aqueous solution of HBF₄ (48% aq. 13.6 mmol, 1.36 equiv.), followed by dropwise addition of tert-butyl nitrite (23.0 mmol, 2.3 equiv.) at 0 °C. After stirring at room temperature for 2 hours, diethyl ether (20 mL) was added to precipitate the arenediazonium tetrafluoroborate. The solids were filtered off and washed with diethyl ether (3×10 mL), dried in vacuo for 10 minutes, and stored in refrigerator under N₂ atmosphere.

C. sGeneral procedure for the synthesis of 4^[7]

To a mixture of **1a** (0.44 g, 3.0 mmol), amino acids or peptides (3.0 mmol), and diisopropylethylamine (1.16 g, 9.0 mmol) in dry CH_2CI_2 (20 mL) was added 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, 0.69 g, 3.6 mmol) and 1-hydroxybenzotriazole (HOBt, 0.49 g, 3.6 mmol) in portions at 0 °C. The reaction mixture was stirred at 0 °C for 2 h and stirred at 25 °C for 12 h. The mixture was washed with sat. aq. NaHCO₃ (1 x 20 mL), citric acid (1 x 20 mL) and H₂O (1 x 20 mL), dried over anhydrous MgSO₄, filtrated, and concentrated. The resulting crude material was purified by column chromatography on silica gel to provide **4** as a white solid.

3. General procedure for the synthesis of pybim ligands^[8]

To pyridine-2,6-carbodinitrile **S6** (41.5 mmol) in anhydrous MeOH (100 mL), Na (5.2 mmol) was added. After stirring for 40 h at room temperature, acetic acid (5.25 mmol) was added and the solvent was removed under reduced pressure. **S7** was obtained as a yellow powder (100 %) and was used directly for further reactions.

A 100 mL pressure tube was charged with **S7** (804 mg, 4.17 mmol), (R, R)-1,2diphenyl ethylene diamine (8.75 mmol) and DCM (20 mL). After the resulting mixture was stirred at refluxing temperature for two days, water (20 mL) was added and the phases were separated. The aqueous phase was extracted with DCM (20 mL x 2). The combined organic layer was dried over MgSO₄ and the solvent was removed in vacuo to give a yellow solid, which was purified by crystallization to give **L6** as a white solid.

To a stirring solution of **L6** (0.62 mmol) in anhydrous THF (15 mL), sodium hydride (2.47 mmol) was added at 0 °C. After 15 min, 4-Methylbenzyl bromide (1.85 mmol) was slowly added and the reaction mixture was stirred at room temperature for 4 h. The reaction mixture was quenched with water and the aqueous phase was extracted with DCM (20 mL x 2). The organic layer was dried over MgSO₄ and the solvents were removed in vacuo to give a yellow solid, which was purified by column chromatography on silica gel to give **L7** as a white solid.

A 100 mL round-bottom flask was charged with **L6** (1.0 mmol), DMAP (3.0 mmol) and DCM (15 mL). The resulting mixture was cooled to 0 °C, and acyl chloride (2.5 mmol) was added neat at once. The ice bath was removed, and the reaction mixture was stirred at room temperature for 5 hours. The solvent was removed under vacuo, the residue was partitioned between saturated NH₄Cl (25 mL) and ethyl acetate (25 mL), and the aqueous phase was re-extracted with ethyl acetate (25 mL x 2). The combined organic layer was dried (over MgSO₄), and the solvent was removed in vacuo to give **L1-L5** as a white solid, which was purified by column chromatography on silica gel.

4. Detailed Optimization of Reaction Conditions

Chamber A:		D -	
Br Br +	H ₃ C 100 100 100	$\begin{array}{c} \begin{array}{c} & & \\ & \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Сн.
Chamber B:	+ H ₃ CO	SO ₂ (4.0 equiv.) TMSCN (2.0 equiv.) Cu(OAC) ₂ (10 mol%) L1 (12 mol%) CH ₃ COOLi (2.0 equiv.) Solvent, 60 °C 48 h	Two Chamber
1a, 0.2 mmol	2a, 0.4 mmol	Jan	
Entry	Solvent	Yield (%)	Ee (%)
1	DCM (20 °C)	62	>99
	Dom (E0 e)	02	00
2	DMSO	n.d.	1
2 3	DMSO THF	n.d. trace	/
2 3 4	DMSO THF Anisole	n.d. trace 26	/ / >99

[a] Reaction conditions: The metal and ligand were stirred for 1h in advance. Chamber A, **S9** (0.88 mmol), **S10** (0.8 mmol), tetradecane (1 mL), at 100 °C for 10 min; Chamber B, **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol), TMSCN (0.4 mmol), CH₃COOLi (0.4 mmol), Cu(OAc)₂ (10 mol%), **L1** (12 mol%), Solvent (x mL), at 60 °C for 48 h. Yields were determined by ¹H NMR (1,3,5-Trimethoxybenzene was the internal standard). Enantiomeric excess (*ee*) was determined by ultra-high-performance liquid chromatography with a chiral stationary phase.

	SO ₂ (4 TMSCN (N ₂ BF ₄ Cu(OAc)) H ₃ CO H ₃ CO CU(OAC)) L1 (12 Base (2 DCM, 2	0 equiv.) 2.0 equiv.) 2 (10 mol%) 2 mol%) 0 °C 48 h	$ \begin{array}{c} $
1a, 0.2 mmol	2a, 0.4 mmol	3a 🎽	
Entry	Base	Yield (%)	Ee (%)
1	None	n.d.	/
2	CsF	40	>99
3	<i>t</i> BuOLi	21	>99
4	CH₃COONa	15	>99
5	CH₃COOK	17	>99
6	CH₃COOLi (2.0 equiv.)	62	>99
7	CH₃COOLi (2.5 equiv.)	66	>99
8	CH₃COOLi (3.0 equiv.)	59	>99

Supplementary Table S2. Reaction condition optimization: screening of base

[a] Reaction conditions: The metal and ligand were stirred for 1h in advance. Chamber A, **S9** (0.88 mmol), **S10** (0.8 mmol), tetradecane (1 mL), at 100 °C for 10 min; Chamber B, **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol), TMSCN (0.4 mmol), base (x mmol), Cu(OAc)₂ (10 mol%), **L1** (12 mol%), DCM (2.5 mL), at 20 °C for 48 h. Yields were determined by ¹H NMR (1,3,5-Trimethoxybenzene was the internal standard). Enantiomeric excess (*ee*) was determined by ultra-high-performance liquid chromatography with a chiral stationary phase.

1a, 0.2 mmol	+ H ₃ CO + N ₂ BF ₄ Cu(OAC) ₂ (1 H ₃ CO + Cu(OAC) ₂ (1 L1 (12 m CH ₃ COOLi (2 DCM, 20 °	equiv.) equiv.) 0 mol%) 0%) NC 48 h 3a OCH ₃ tBu- Ph- Ph- Ph- Ph- Ph- Ph- Ph- Ph	$ \begin{array}{c} 0 \\ N \\ N \\ N \\ h \\ L1 \end{array} \begin{array}{c} 0 \\ H \\$
Entry	TMSCN (x equiv.)	Yield (%)	Ee (%)
1	2.0	66	>99
2	1.75	67	>99
3	1.5	71	>99
4	1.25	65	>99
5	1.0	61	>99

Supplementary Table S3. Reaction condition optimization: screening of TMSCN ratio

[a] Reaction conditions: The metal and ligand were stirred for 1h in advance. Chamber A, **S9** (0.88 mmol), **S10** (0.8 mmol), tetradecane (1 mL), at 100 °C for 10 min; Chamber B, **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.4 mmol), TMSCN (x mmol), CH₃COOLi (0.5 mmol), Cu(OAc)₂ (10 mol%), **L1** (12 mol%), DCM (2.5 mL), at 20 °C for 48 h. Yields were determined by ¹H NMR (1,3,5-Trimethoxybenzene was the internal standard). Enantiomeric excess (*ee*) was determined by ultra-high-performance liquid chromatography with a chiral stationary phase.

Supplementary Table S4. Reaction condition optimization: screening of aryldiazonium tetrafluoroborate ratio

$ \begin{array}{c} SO_{2} (4.0 \text{ equiv.}) \\ TMSCN (1.5 \text{ equiv.}) \\ Cu(OAc)_{2} (10 \text{ mol}\%) \\ CH_{3}COOLi (2.5 \text{ equiv.}) \\ DCM, 20 \ ^{\circ}C \ 48 \ h \end{array} \right) \xrightarrow{\text{OCH}_{3}} \begin{array}{c} Bu \downarrow O \downarrow fBu \\ Ph \downarrow N N N \\ Ph \downarrow N N N \\ Ph \downarrow L1 \ Ph \end{array} $				
1a, 0.2 mmol	2a, x equiv.	3a		
Entry	2a (x equiv.)	Yield (%)	Ee (%)	
1	1.0	67	>99	
2	1. 5 (48 h)	77	>99	
3	1. 5 (72 h)	85	>99	
4	2.0	71	>99	
5	2.5	70	>99	
6	3.0	57	>99	

[a] Reaction conditions: The metal and ligand were stirred for 1h in advance. Chamber A, **S9** (0.88 mmol), **S10** (0.8 mmol), tetradecane (1 mL), at 100 °C for 10 min; Chamber B, **1a** (0.2 mmol, 1.0 equiv.), **2a** (x mmol), TMSCN (0.3 mmol), CH₃COOLi (0.5 mmol), Cu(OAc)₂ (10 mol%), L1 (12 mol%), DCM (2.5 mL), at 20 °C for 48 h. Yields were determined by ¹H NMR (1,3,5-Trimethoxybenzene was the internal standard). Enantiomeric excess (*ee*) was determined by ultra-high-performance liquid chromatography with a chiral stationary phase.

Supplementary Table S5. Reaction condition optimization: screening of SO₂ source and SO₂ ratio

	SO ₂ source (4. TMSCN (1.5 H ₃ CO H ₃ CO N ₂ BF ₄ Cu(OAc) ₂ (10 L1 (12 mc CH ₃ COOLi (2.9 DCM, 20 °C	0 equiv.) equiv.) 0 mol%) 0 NC H 5 equiv.) 72 h	$ \begin{array}{c} 0 \\ N \\ N \\ N \\ N \\ L1 \end{array} \begin{array}{c} 0 \\ N \\ N \\ L1 \end{array} \begin{array}{c} 0 \\ A \\ B \\ B$
Entry	SO ₂	Yield (%)	Ee (%)
1	$Na_2S_2O_5$	28	>99
2	$K_2S_2O_5$	23	>99
3	$Na_2S_2O_4$	25	>99
4	DABSO	35	>99
5	Rongalite	n.d.	>99
6 ^[b]	TsCl	trace	1
7	SOgen (3.5 equiv.)	60	>99
8	SOgen (4.0 equiv.)	85	>99
B [c]	SOgen (4.0 equiv.)	trace	1

[a] Reaction conditions: The metal and ligand were stirred for 1h in advance. **SO**₂ substitutes, **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol), TMSCN (0.3 mmol), CH₃COOLi (0.5 mmol), Cu(OAc)₂ (10 mol%), **L1** (12 mol%), DCM (2.5 mL), at 20 °C for 72 h. Yields were determined by ¹H NMR (1,3,5-Trimethoxybenzene was the internal standard). Enantiomeric excess (*ee*) was determined by ultra-high-performance liquid chromatography with a chiral stationary phase. [b] TsCl was substituted for **2a** and **SOgen** at 20 °C for 72 h. [c] The metal and ligand were stirred for 1h in advance. Then, a mixture of **S9** (0.88 mmol), **S10** (0.8

mmol), tetradecane (1 mL), **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol), TMSCN (0.3 mmol), CH₃COOLi (0.5 mmol), Cu(OAc)₂ (10 mol%), **L1** (12 mol%), and DCM (2.5 mL) was heated at 100 °C for 10 minutes followed by an additional 72 hours at 20 °C.

Supplementary Table S6. Reaction condition optimization: screening of other nucleophile

1a, 0.2 mmol	+ H_3CO N_2BF_4 C H_3CO CH 2a, 0.3 mmol	02 source (4.0 equiv.) cleophile (1.5 equiv.) cu(OAc)2 (10 mol%) L1 (12 mol%) H3COOLi (2.5 equiv.) DCM, 20 °C 72 h	OCH3 OCS NC 3a	$ \begin{array}{c} fBu \downarrow 0 & 0 \downarrow fBu \\ Ph \downarrow N & N \\ -N & N \\ Ph & L1 & Ph \end{array} $
Entry	Nucleophile	ļ	Yield (%)	Ee (%)
1	TMSCF ₃		n.d.	/
2	TMSCI		n.d.	/
3	Me, Me−Si− === −Ph Me		n.d.	1

[a] Reaction conditions: The metal and ligand were stirred for 1h in advance. Chamber A, **S9** (0.88 mmol), **S10** (0.8 mmol), tetradecane (1 mL), at 100 °C for 10 min; Chamber B, **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol), nucleophile (0.3 mmol), CH₃COOLi (0.5 mmol), Cu(OAc)₂ (10 mol%), **L1** (12 mol%), DCM (2.5 mL), at 20 °C for 48 h. Yields were determined by ¹H NMR (1,3,5-Trimethoxybenzene was the internal standard). Enantiomeric excess (*ee*) was determined by ultra-high-performance liquid chromatography with a chiral stationary phase.

5. General procedure for the synthesis of compounds 3 and 5

In the argon glovebox, Cu(OAc)₂ (3.6 mg, 10.0 mol%) and L1 (16.5 mg 12.0 mol%) were dissolved in DCM (2.5 mL) in a dried sealed vial under argon atmosphere, and the mixture was stirred for 30 minutes. Then 1 (0.2 mmol, 1.0 equiv.), 2 (0.3 mmol, 1.5 equiv.), TMSCN (0.3 mmol, 1.5 equiv.), CH₃COOLi (0.5 mmol, 2.5 equiv.) and the mixture were added to chamber B. Tetrabromothiophene S, S-dioxides (0.88 mmol, 380 mg) in tetradecane (1.0 mL) was added to chamber A, followed by addition of 4-methylphenylene (0.80 mmol, 105 μ l). The chamber A was sealed and removed out of the glovebox and heated to 100 °C in heating mantle for 10 min. Then chamber B heated to 20 °C in low-temperature stirring reaction bath for 72 hours. After 72 hours, two chamber was cooled to room temperature. The filtrate was washed by ethyl acetate and H₂O (15 mL×3), dried by Na₂SO₄, then concentrated and the residue was purified by flash column chromatography to give the desired product.

6. Characterization data of products 3 and 5

(R)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-N,2-diphenylpropanamide (3a)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (70 mg, 83% yield, >99% *ee*). ^[α]D¹⁹ = + 47.0 (c = 0.64, CHCl₃). According to the X-ray analysis, the "absolute stereochemistry" of the product is the *R* configuration. ¹H NMR (400 MHz, DMSO-*d*₆) δ

10.00 (s, 1H), 7.76 (d, J = 8.8 Hz, 2H), 7.53 – 7.48 (m, 4H), 7.44 – 7.36 (m, 3H), 7.33 – 7.29 (m, 2H), 7.14 – 7.07 (m, 3H), 4.71 (d, J = 14.8 Hz, 1H), 4.52 (d, J = 14.8 Hz, 1H), 3.82 (s, 3H); ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ 163.4, 162.8, 137.8, 133.3, 131.4, 130.2, 129.1, 128.6, 126.4, 124.7, 121.0, 117.2, 114.5, 59.4, 55.8, 51.0; HRMS *m*/*z* calculated for C₂₃H₂₀N₂O₄S [M+Na]⁺: 443.1036, found: 443.1038; HPLC (Daicel Chirapak IC column, hexane/isopropanol = 45/55, flow 0.5 mL/min, detection at 214 nm) retention time = 45.28 min (minor) and 50.66 min (major).

(R)-2-cyano-N,2-diphenyl-3-((3,4,5-trimethoxyphenyl)sulfonyl)propenamide (3b)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (48 mg, 50% yield, >99% *ee*). ^[α]D¹⁶ = + 31.8 (c = 0.37, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.99 (s, 1H), 7.50 – 7.47 (m, 4H), 7.39 – 7.29 (m, 5H), 7.14 – 7.09 (m, 1H), 7.01 (s, 2H), 4.74 –

4.66 (m, 2H), 3.81 (s, 6H), 3.69 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 162.8, 152.7, 141.6, 137.8, 134.3, 132.6, 129.1, 128.9, 128.7, 126.6, 124.7, 120.9, 117.3, 105.3, 60.1, 59.3, 56.1, 51.0; HRMS *m*/*z* calculated for C₂₅H₂₄N₂O₆S [M+Na]⁺: 503.1247, found: 503.1249; HPLC (Daicel Chirapak IC column, hexane/isopropanol = 70/30, flow 0.5 mL/min, detection at 214 nm) retention time = 73.61 min (minor) and 78.53 min(major).

(R)-2-cyano-3-((4-phenoxyphenyl)sulfonyl)-N,2-diphenylpropanamide (3c)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (61 mg, 63% yield, >99% *ee*). ^[α]D¹⁹ = + 33.3 (c = 0.40, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.02 (s, 1H), 7.80 (d, *J* = 9.2 Hz, 2H), 7.53 – 7.46 (m, 6H), 7.44 – 7.38 (m, 3H), 7.34 – 7.25 (m,

3H), 7.15 – 7.09 (m, 3H), 7.06 (d, J = 9.2 Hz, 2H), 4.74 (d, J = 15.2 Hz, 1H), 4.60 (d, J =

15.2 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.7, 161.7, 154.6, 137.7, 133.5, 133.0, 130.6, 130.5, 129.13, 129.11, 128.6, 126.4, 125.1, 124.7, 121.0, 120.1, 117.5, 117.2, 59.2, 50.9; HRMS *m*/*z* calculated for C₂₈H₂₂N₂O₄S [M+Na]⁺: 505.1192, found: 505.1196; HPLC (Daicel Chirapak IC column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 49.37 min (minor) and 54.81 min (major).

(R)-2-cyano-N,2-diphenyl-3-tosylpropanamide (3d)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (50 mg, 62% yield, 96% *ee*). ^[α]D¹⁹ = + 36.9 (c = 0.29, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.02 (s, 1H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.53 – 7.47 (m, 4H), 7.43 – 7.37 (m, 5H), 7.34 – 7.29 (m,

2H), 7.14 – 7.10 (m, 1H), 4.72 (d, J = 14.8 Hz, 1H), 4.54 (d, J = 14.8 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.7, 144.6, 137.7, 137.1, 133.2, 129.7, 129.1, 128.6, 127.9, 126.4, 124.7, 121.0, 117.2, 59.3, 50.9, 21.1; HRMS *m*/*z* calculated for : C₂₃H₂₀N₂O₃S [M+Na]⁺: 427.1087, found: 427.1088; HPLC (Daicel Chirapak IC column, hexane/isopropanol = 45/55, flow 0.5 mL/min, detection at 214 nm) retention time = 38.98 min (minor) and 44.59 min (major).

(R)-2-cyano-3-((3,4-dimethylphenyl)sulfonyl)-N,2-diphenylpropanamide (3e)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (53 mg, 63% yield, >99% *ee*). ^[α]D¹⁹ = + 65.8 (c = 0.57, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.96 (s, 1H), 7.55 (d, *J* = 8.0, 1H), 7.51 – 7.45 (m, 5H), 7.41-7.37 (m, 3H), 7.33-7.29 (m, 3H), 7.13 –

7.09 (m, 1H), 4.70 (d, J = 15.2 Hz, 1H), 4.54 (d, J = 15.2 Hz, 1H), 2.24 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.7, 143.4, 137.7, 137.6, 137.1, 133.1, 130.0, 129.1, 129.0, 128.6, 128.4, 126.4, 125.3, 124.6, 120.9, 117.2, 59.2, 51.0, 19.5, 19.3; HRMS *m/z* calculated for C₂₄H₂₂N₂O₃S [M+Na]⁺: 441.1243, found: 441.1245; HPLC (Daicel Chirapak IC column, hexane/isopropanol = 35/65, flow 0.5 mL/min, detection at 214 nm) retention time = 33.79 min (minor) and 37.53 min (major).

(R)-3-((4-(tert-butyl)phenyl)sulfonyl)-2-cyano-N,2-diphenylpropanamide (3f)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (67 mg, 75% yield, >99% *ee*). $[\alpha]D^{18} = +19.7$ (c = 0.29, CHCl₃); ¹H NMR (400 MHz, DMSO-d₆) δ 10.01 (s, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.50 – 7.47 (m, 4H), 7.39 – 7.29 (m, 5H), 7.14 – 7.09 (m, 1H), 4.72 (d, J = 15.2 Hz, 1H), 4.57 (d, J = 15.2 Hz, 1H), 1.28 (s,

9H); ¹³C NMR (100 MHz, DMSO-d₆) δ 162.7, 157.0, 137.8, 137.0, 132.9, 129.12, 129.05, 128.6, 127.7, 126.4, 126.1, 124.7, 121.0, 117.3, 59.2, 50.9, 35.0, 30.7; HRMS m/z calculated for C₂₆H₂₆N₂O₃S [M+Na]⁺: 469.1556, found: 469.1557; HPLC (Daicel Chirapak IC column, hexane/isopropanol = 70/30, flow 0.5 mL/min, detection at 214 nm) retention time = 77.25 min (minor) and 84.58 min (major).

(R)-2-cyano-3-((4',5-dimethoxy-[1,1'-biphenyl]-2-yl)sulfonyl)-N,2diphenylpropanamide (3g)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (71 mg, 67% yield, >99% ee). ^[a]D¹⁶ = + 28.0 (c = 0.71, CHCl₃); ¹H NMR (400 MHz, DMSO d_6) δ 10.02 (s, 1H), 7.78 (d, J = 8.8 Hz, 1H), 7.44 (d, J = 7.6 Hz,

2H), 7.40 – 7.28 (m, 9H), 7.13 – 7.09 (m, 1H), , 7.03 (dd, J = 8.8, 2.4 Hz, 1H), 6.99 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 2.4 Hz, 1H), 4.24 (d, J = 14.8 Hz, 1H), 3.85 (s, 3H), 3.79 (s, 3H), 3.67 (d, J = 14.8 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 162.6, 162.5, 159.2, 143.0, 137.7, 132.7, 131.5, 131.1, 130.5, 130.3, 129.2, 129.1, 128.6, 126.2, 124.7, 121.1, 118.2, 117.1, 113.3, 112.8, 59.3, 55.9, 55.2, 50.6; **HRMS** m/z calculated for : $C_{30}H_{26}N_2O_5S$ [M+Na]*: 549.1455, found: 549.1456; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 20.37 min (major) and 24.50 min (minor).

(R)-3-([1,1'-biphenyl]-4-ylsulfonyl)-2-cyano-N,2-diphenylpropanamide (3h)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (75 mg, 80% yield, >99% ee). $[\alpha]D^{19} = +33.5$ (c = 0.20, CHCl₃); ¹H NMR (400 MHz, DMSO-d₆) δ 10.07 (s, 1H), 7.88 (dd, J = 8.8 Hz, 18.4 Hz 4H), 7.71 (d, J = 7.2 Hz, 2H), 7.55 – 7.44 (m, 7H), 7.42 – 7.36 (m, 3H), 7.32 – 7.28 (m, 2H), 7.13 – 7.09 (m, 1H), 4.80 (d, J = 15.2 Hz, 1H), 4.65 (d, J = 15.2 Hz, 1H); ¹³**C NMR (100 MHz, DMSO-***d***₆)** δ 162.7, 145.4, 138.6, 138.3, 137.7, 133.0, 129.2, 129.1, 128.8, 128.6, 128.5, 127.4, 127.2, 126.4, 124.7, 121.0, 117.3, 59.3, 50.9; **HRMS** *m/z* calculated for : C₂₈H₂₂N₂O₃S [M+Na]⁺: 489.1243, found: 489.1244; **HPLC** (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 29.78 min (minor) and 32.39 min (major).

(*R*)-2-cyano-3-((4-fluorophenyl)sulfonyl)-*N*,2-diphenylpropanamide (3i)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (53 mg, 65% yield, >99% *ee*). ^[α]D¹⁸ = + 69.6 (c = 0.73, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.06 (s, 1H), 7.92 – 7.87 (m, 2H), 7.52 – 7.49 (m, 4H), 7.44 – 7.39 (m, 5H), 7.34 – 7.30 (m, 2H),

7.15 – 7.10 (m, 1H), 4.77 (d, J = 15.2 Hz, 1H), 4.66 (d, J = 15.2 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.1 (d, J = 251), 162.7, 137.7, 136.2 (d, J = 3), 132.9, 131.2 (d, J = 10), 129.2, 129.1, 128.6, 126.4, 124.7, 121.0, 117.2, 116.4 (d, J = 23), 59.2, 50.9; ¹⁹F NMR (376 Hz, DMSO-d6) δ -104.5; HRMS *m*/*z* calculated for : C₂₂H₁₇FN₂O₃S [M+Na]⁺: 431.0836, found: 431.0838; HPLC (Daicel Chirapak IC column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 30.91 min (minor) and 35.01 min (major).

(R)-3-((4-chlorophenyl)sulfonyl)-2-cyano-N,2-diphenylpropanamide (3j)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (56 mg, 66% yield, >99% *ee*). ^[α]D¹⁸ = + 50.8 (c = 0.44, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.06 (s, 1H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.51-7.47 (m, 4H), 7.42 – 7.37

(m, 3H), 7.34-7.30 (m, 2H), 7.15 – 7.10 (m, 1H), 4.78 (d, J = 15.2 Hz, 1H), 4.67 (d, J = 15.2 Hz, 1H); ¹³**C NMR (100 MHz, DMSO-***d***₆)** δ 162.6, 139.1, 138.6, 137.7, 132.9, 129.8, 129.4, 129.17, 129.12, 128.6, 126.4, 124.7, 121.0, 117.1, 59.1, 50.8; **HRMS** *m*/*z* calculated for C₂₂H₁₇ClN₂O₃S [M+Na]⁺: 447.0541, found: 447.0541; **HPLC** (Daicel Chirapak IC column, hexane/isopropanol = 45/55, flow 0.5 mL/min, detection at 214 nm) retention time = 27.06 min (minor) and 29.44 min (major).

(R)-3-((4-bromophenyl)sulfonyl)-2-cyano-N,2-diphenylpropanamide (3k)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (60 mg, 64% yield, >99% ee). $[\alpha]D^{19} = +69.0$ (c = 0.58, CHCl₃); ¹H NMR (400 MHz, DMSO-d₆) δ 10.07 (s, 1H), 7.81 – 7.74 (m, 4H), 7.52-7.47 (m, 4H), 7.42-7.37 (m, 3H), 7.34-7.30 (m, 2H), 7.14 - 7.10 (m, 1H), 4.78 (d, J = 15.2 Hz, 1H), 4.66 (d, J = 15.2 Hz, 1H); ¹³C NMR (100 **MHz**, **DMSO**-*d*₆) δ 162.6, 139.0, 137.7, 132.9, 132.3, 129.9, 129.2, 129.1, 128.6, 128.3, 126.4, 124.7, 121.0, 117.1, 59.1, 50.8; **HRMS** *m/z* calculated for C₂₂H₁₇BrN₂O₃S [M+Na]⁺:

491.0035, found: 491.0041; HPLC (Daicel Chirapak IC column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 35.52 min (minor) and 38.99 min (major).

(R)-3-((2-bromophenyl)sulfonyl)-2-cyano-N,2-diphenylpropanamide (31)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (59 mg, 63% yield, >99% ee). $[\alpha]D^{16} = +3.6$ (c = 0.41, CHCl₃); ¹H NMR (400 MHz, DMSO-d₆) δ 10.2 (s, 1H), 7.84 (dd, J = 7.6, 1.6 Hz, 1H), 7.74 (dd, J = 7.6, 1.6 Hz, 1H), 7.55 (td, J = 7.6, 1.6

Hz, 1H), 7.51 – 7.46 (m, 5H), 7.37 – 7.29 (m, 5H), 7.14 – 7.10 (m, 1H), 4.86 – 4.76 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆) δ 162.7, 139.0, 137.8, 135.5, 135.3, 132.2, 131.2, 129.4, 129.2 128.7, 128.4, 126.4, 124.8, 121.1, 120.0, 117.3, 58.6, 50.9; **HRMS** *m*/*z* calculated for : C₂₂H₁₇BrN₂O₃S [M+Na]⁺: 491.0035, found: 491.0039; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 85/15, flow 0.5 mL/min, detection at 214 nm) retention time = 58.26 min (major) and 66.27 min (minor).

(R)-2-cyano-3-((4-iodophenyl)sulfonyl)-N,2-diphenylpropanamide (3m)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (62 mg, 60% yield, >99% ee). $[\alpha]D^{19} = +65.6$ (c = 0.75, CHCl₃); ¹H NMR (400 MHz, DMSO-d₆) δ 10.05 (s, 1H), 7.97 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.51 – 7.46 (m, 4H), 7.42 – 7.37

(m, 3H), 7.34-7.30 (m, 2H), 7.14 – 7.10 (m, 1H), 4.76 (d, J = 15.2 Hz, 1H), 4.63 (d, J = 15.2 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d₆) δ 162.6, 139.4, 138.1, 137.7, 132.9, 129.4, 129.1, 128.7, 126.4, 124.7, 121.0, 117.1, 103.0, 59.1, 50.8; **HRMS** *m/z* calculated for $C_{22}H_{17}IN_2O_3S$ [M+Na]⁺: 538.9897, found: 538.9900; **HPLC** (Daicel Chirapak IC column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 40.11 min (minor) and 43.96 min (major).

(R)-3-((4-chloro-2-iodophenyl)sulfonyl)-2-cyano-N,2-diphenylpropanamide (3n)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (47 mg, 43% yield, 99% ee). $^{[\alpha]}D^{19} = + 21.1$ (c = 0.37, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.18 (s, 1H), 8.19 (d, *J* = 2.0 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.54 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.49 - 7.44 (m, 4H), 7.37 - 7.29 (m, 5H), 7.14 - 7.10 (m, 1H), 4.86 - 4.76 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.6, 141.0, 140.9, 138.7, 137.6, 132.1, 132.0, 129.2, 129.1, 128.6, 126.3, 124.8, 121.0, 117.1, 96.2, 57.8, 50.8; HRMS *m*/z calculated for : C₂₂H₁₆ClIN₂O₃S [M+H]⁺: 572.9507, found: 572.9507; HPLC (Daicel Chirapak IC column, hexane/isopropanol = 35/65, flow 0.5 mL/min, detection at 214 nm) retention time = 27.26 min (minor) and 30.68 min (major).

(*R*)-3-((3-chloro-4-((3-fluorobenzyl)oxy)phenyl)sulfonyl)-2-cyano-*N*,2diphenylpropanamide (30)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (77 mg, 70% yield, >99% *ee*). ^[α]D¹⁸ = + 30.7 (c = 0.48, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.02 (s, 1H), 7.76 – 7.74 (m, 2H), 7.52 – 7.46 (m, 5H), 7.39 – 7.29 (m, 8H), 7.21 (td, *J* = 8.4, 2.4 Hz, 1H), 7.13 –

7.09 (m, 1H), 5.31 (s, 2H), 4.79 – 4.69 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 162.7, 162.2 (d, *J* = 243 Hz), 157.5, 138.6 (d, *J* = 7 Hz),137.7, 132.8, 132.4, 130.7 (d, *J* = 8 Hz), 129.7, 129.2, 129.0, 128.9, 128.6, 126.5, 124.7, 123.4 (d, *J* = 3 Hz), 122.1, 120.9, 117.2, 115.0 (d, *J* = 20 Hz), 114.2 (d, *J* = 22 Hz), 114.0, 69.7, 59.2, 51.0; ¹⁹F NMR (376 Hz, DMSOd6) δ -112.8; HRMS *m*/*z* calculated for : C₂₉H₂₂ClFN₂O₄S [M+Na]⁺: 571.0865, found: 571.0864; HPLC (Daicel Chirapak IB column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 40.05 min (minor) and 44.73 min (major).

Ethyl (R)-4-((2-cyano-3-oxo-2-phenyl-3-(phenylamino)propyl)sulfonyl)benzoate (3p)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (40 mg, 43% yield, 99% *ee*). ^[α]D¹⁵ = + 52.7 (c = 0.89, CHCl₃); ¹H NMR (400 MHz, DMSO-d6) δ 10.06 (s, 1H), 8.08 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 8.8 Hz, 2H), 7.52 – 7.45 (m, 4H), 7.40 – 7.36

(m, 3H), 7.32 – 7.28 (m, 2H), 7.13 – 7.09 (m, 1H), 4.83 (d, J = 15.2 Hz, 2H), 4.74 (d, J = 15.2 Hz, 1H), 4.35 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2 Hz, 3H). ¹³**C NMR (100 MHz, DMSO-d6)** δ 164.6, 162.6, 143.5, 137.7, 134.3, 132.9, 129.9, 129.3, 129.2, 128.7, 128.4, 126.5, 124.8, 120.9, 117.2, 61.6, 59.0, 50.9, 14.1. **HRMS** *m*/*z* calculated for: C₂₅H₂₂N₂O₅S [M+H]⁺: 463.1322, found: 463.1320; **HPLC** (Daicel Chirapak IC column, hexane/isopropanol = 70/30, flow 1.0 mL/min, detection at 210 nm) retention time = 27.56 min (minor) and 31.08 min (major).

(R)-2-cyano-N,2-diphenyl-3-((4-(trifluoromethyl)phenyl)sulfonyl)propenamide (3q)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (32 mg, 35% yield, 98% ee). ^[α]D¹⁵ = + 10.1 (c = 1.39, CHCl₃); ¹H NMR (400 MHz, DMSO-d6) δ 10.09 (s, 1H), 8.02 (d, J = 8.0 Hz, 2H), 7.94 (d, J = 8.0 Hz, 2H), 7.50 – 7.46 (m, 4H), 7.38 –

7.29 (m, 5H), 7.14 – 7.10 (m, 1H), 4.81 (dd, J = 15.2 Hz, 2H). ¹³C NMR (101 MHz, DMSOd6) δ 162.6, 143.6, 137.7, 133.4 (q, J = 32.2 Hz), 132.6, 129.2, 129.1, 129.0, 128.7, 126.5, 126.4 (q, J = 3.7 Hz), 124.8, 120.9, 117.1, 59.0, 50.8. ¹⁹F NMR (376 Hz, DMSO-d6) δ -61.8; HRMS *m*/*z* calculated for: C₂₃H₁₇F₃N₂O₃S [M+H]⁺: 459.0985, found: 459.0988; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 70/30, flow 0.5 mL/min, detection at 210 nm) retention time = 24.68 min (minor) and 25.93 min (major).

(*R*)-2-cyano-2-(3-methoxyphenyl)-3-((4-methoxyphenyl)sulfonyl)-*N*-phenylpropanamide (3r)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (68 mg, 75% yield, >99% ee). ^[a]D¹⁸ = + 30.6 (c = 0.26, CHCl₃); ¹H NMR (400 MHz, DMSO- d_6) δ 9.98 (s, 1H), 7.72 (d, J = 8.8 Hz, 2H), 7.48 (d, J = 7.2 Hz,

2H), 7.32 (td, J = 8.0, 3.2 Hz, 3H),, 7.14 – 7.04 (m, 4H), 6.99 – 6.93 (m, 2H), 4.67 (d, J = 15.2 Hz, 1H), 4.55 (d, J = 15.2 Hz, 1H) 3.81 (s, 3H), 3.73 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.4, 162.7, 159.5, 137.8, 134.3, 131.3, 130.3, 130.2, 128.6, 124.7, 121.0, 118.5, 117.2, 114.4, 114.3, 112.6, 59.2, 55.8, 55.3, 50.9; HRMS *m*/*z* calculated for : C₂₄H₂₂N₂O₅S [M+Na]⁺: 473.1142, found: 473.1142; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 80/20, flow 0.5 mL/min, detection at 214 nm) retention time = 66.19 min (major) and 71.48 min (minor).

(*R*)-2-(3-(tert-butyl)phenyl)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-*N*-phenylpropanamide (3s)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (58 mg, 61% yield, >99% *ee*). ^[α]D¹⁹ = + 57.9 (c = 0.49, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.02 (s, 1H), 7.73 (d, *J* = 8.8 Hz, 2H), 7.51 (s, 1H), 7.46 (d,

J = 8.0 Hz, 2H), 7.42 – 7.39 (m, 1H), 7.34 – 7.30 (m, 4H), 7.14 – 7.10 (m, 1H), 7.06 (d, J = 8.8 Hz, 2H), 4.69 (d, J = 14.8 Hz, 1H), 4.57 (d, J = 14.8 Hz, 1H), 3.81 (s, 3H), 1.24 (s, 9H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.4, 162.9, 151.6, 137.7, 132.9, 131.4, 130.2, 128.8, 128.6, 126.1, 124.7, 123.6, 123.1, 121.2, 117.4, 114.4, 59.6, 55.8, 51.2, 34.7, 31.0; HRMS *m/z* calculated for : C₂₇H₂₈N₂O₄S [M+Na]⁺: 499.1662, found: 499.1665; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 12.29 min (major) and 13.91 min (minor).

(*R*)-2-cyano-2-(3-isopropylphenyl)-3-((4-methoxyphenyl)sulfonyl)-*N*-phenylpropanamide (3t)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (60 mg, 65% yield, >99% *ee*). ^[α]D¹⁸ = + 64.3 (c = 0.85, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.00 (s, 1H), 7.73 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 7.6 Hz,

2H), 7.37 (s, 1H), 7.34 – 7.24 (m, 5H), 7.14 – 7.10 (m, 1H), 7.06 (d, J = 8.8 Hz, 2H), 4.69 (d, J = 15.2 Hz, 1H), 4.54 (d, J = 15.2 Hz, 1H), 3.81 (s, 3H), 2.86 (hept, J = 6.8 Hz, 1H), 1.17 (d, J = 7.2 Hz, 6H); ¹³**C NMR (100 MHz, DMSO-***d***₆)** δ 163.4, 162.8, 149.3, 137.8, 133.1, 131.4, 130.2, 129.1, 128.6, 127.0, 124.7, 124.5, 123.9, 121.1, 117.3, 114.4, 59.5 55.8, 51.0, 33.4, 23.6; **HRMS** *m*/*z* calculated for : C₂₆H₂₆N₂O₄S [M+Na]⁺: 485.1505, found:

485.1506; **HPLC** (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 13.37 min (major) and 15.09 min (minor).

(R)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-N-phenyl-2-(p-tolyl)propenamide (3u)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (46 mg, 53% yield, >99% *ee*). ^[α]D¹⁹ = + 32.6 (c = 0.28, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.95 (s, 1H), 7.72 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 7.6 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H),

7.33 – 7.29 (m, 2H), 7.18 (d, J = 8.0 Hz, 2H), 7.13 – 7.09 (m, 1H), 7.06 (d, J = 8.8 Hz, 2H), 4.66 (d, J = 15.2 Hz, 1H), 4.49 (d, J = 15.2 Hz, 1H), 3.81 (s, 3H), 2.27 (s, 3H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 163.4, 162.9, 138.7, 137.8, 131.4, 130.21, 130.18, 129.6, 128.6, 126.2, 124.6, 121.0, 117.3, 114.4, 59.4, 55.8, 50.7, 20.5; HRMS *m*/*z* calculated for : C₂₄H₂₂N₂O₄S [M+Na]⁺: 457.1192, found: 457.1192; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 34.34 min (major) and 40.55 min (minor).

(*R*)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-*N*-phenyl-2-(4-(trimethylsilyl)phenyl)propenamide (3v)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (66 mg, 67% yield, >99% *ee*). ^[α]D¹⁶ = + 3.3 (c = 0.31, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.99 (s, 1H), 7.72 (d, *J* = 8.8 Hz, 2H), 7.53 – 7.46 (m, 6H),

7.33 – 7.29 (m, 2H), 7.14 – 7.09 (m, 1H), 7.04 (d, J = 8.8 Hz, 2H), 4.68 (d, J = 15.2 Hz, 1H), 4.55 (d, J = 15.2 Hz, 1H), 3.81 (s, 3H), 0.23 (s, 9H); ¹³C NMR (100 MHz, DMSO-d₆) 163.3, 162.7, 141.2, 137.8, 133.9, 133.6, 131.3, 130.2, 128.6, 125.7, 124.7, 120.9, 117.1, 114.4, 59.3, 55.8, 51.0, -1.3; HRMS *m*/*z* calculated for : C₂₆H₂₈N₂O₄SSi [M+Na]⁺: 515.1431, found: 515.1432; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 16.67 min (major) and 18.65 min (minor).

(*R*)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-2-(naphthalen-2-yl)-*N*-phenylpropanamide (3w)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (66 mg, 70% yield, >99% *ee*). ^[α]D¹⁸ = + 66.6 (c = 0.49, CHCl₃); ¹H NMR (400 MHz, DMSO-

 d_6) δ 10.05 (s, 1H), 8.06 (d, J = 2.4 Hz, 1H), 7.96 – 7.86 (m, 3H), 7.66 (d, J = 8.8 Hz, 2H), 7.60 – 7.56 (m, 2H), 7.51 – 7.46 (m, 3H), 7.32 – 7.28 (m, 2H), 7.13 – 7.08 (m, 1H), 6.88 (d, J = 8.8 Hz, 2H), 4.76 (d, J = 15.2 Hz, 1H), 4.66 (d, J = 15.2Hz, 1H), 3.71 (s, 3H); ¹³**C** NMR (100 MHz, DMSO- d_6) δ 163.2, 162.8, 137.8, 132.7, 132.4, 131.1, 130.1, 130.0, 128.9, 128.6, 128.2, 127.4, 127.2, 127.0, 126.3, 124.7, 123.3, 121.0, 117.2, 114.2, 59.2, 55.6, 51.0; HRMS *m/z* calculated for : C₂₇H₂₂N₂O₄S [M+Na]⁺: 493.1192, found: 493.1193; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 27.61 min (major) and 31.90 min (minor).

(R)-2-cyano-2-(4-fluorophenyl)-3-((4-methoxyphenyl)sulfonyl)-N-

phenylpropanamide (3x)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (55 mg, 63% yield, >99% *ee*). ^[α]D¹⁹ = + 50.1 (c = 0.41, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.03 (s, 1H), 7.71 (d, *J* = 8.8 Hz, 2H), 7.54 – 7.46 (m, 4H), 7.34 – 7.30 (m, 2H), 7.24

- 7.20 (m, 2H), 7.14 – 7.10 (m, 1H), 7.06 (d, J = 9.2 Hz, 2H), 4.67 (d, J = 15.2 Hz, 1H), 4.57 (d, J = 15.2 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.4, 162.7, 162.2 (d, J = 245 Hz), 137.7, 131.3, 130.2, 129.1 (d, J = 4 Hz), 128.9 (d, J = 9 Hz), 128.6, 124.8, 121.0, 117.2, 115.9 (d, J = 22 Hz), 114.4, 59.3, 55.8, 50.4; ¹⁹F NMR (376 Hz, DMSOd6) δ -112.9; HRMS *m*/*z* calculated for : C₂₃H₁₉FN₂O₄S [M+Na]⁺: 461.0942, found: 461.0941; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 28.15 min (major) and 31.98 min (minor).

(*R*)-2-(4-chlorophenyl)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-*N*-phenylpropanamide (3y)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (57 mg, 63% yield, >99% ee). ^[α]D¹⁶ = + 90.8 (c = 0.90, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.06 (s, 1H), 7.67 (d, *J* = 8.8 Hz, 2H), 7.48 – 7.41 (m, 6H),

7.34 – 7.30 (m, 2H), 7.15 – 7.10 (m, 1H), 7.04 (d, J = 9.2 Hz, 2H), 4.66 (d, J = 15.2 Hz, 1H), 4.59 (d, J = 15.2 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 163.4, 162.4, 137.7, 134.0, 131.6, 131.2, 130.1, 128.9, 128.7, 128.6, 124.8, 121.0, 117.0, 114.4, 59.1, 55.8, 50.4; **HRMS** *m*/*z* calculated for : C₂₃H₁₉ClN₂O₄S [M+Na]⁺: 477.0646, found: 477.0647; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 35/65, flow 0.5 mL/min, detection at 214 nm) retention time = 25.10 min (major) and 30.88 min (minor).

(R)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-N-phenyl-2-(4-(trifluoromethyl)phenyl)propenamide (3z)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (62 mg, 63% yield, >99% ee). ^[a]D¹⁹ = + 61.1 (c = 0.84, CHCl₃); ¹H NMR (400 MHz, DMSO d_6) δ 10.14 (s, 1H), 7.74 – 7.64 (m, 6H), 7.48 (d, J = 8.0 Hz, 2H),

7.34 – 7.30 (m, 2H), 7.15 – 7.11 (m, 1H), 7.00 (d, J = 8.8 Hz, 2H), 4.74 – 4.66 (m, 2H), 3.80 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 163.4, 162.2, 137.6, 136.7, 131.1, 130.1, 129.5 (q, J = 32 Hz), 128.7, 127.9, 125.9 (q, J = 4 Hz), 124.9, 123.9 (q, J = 271 Hz), 121.1, 116.8, 114.4, 59.0, 55.7, 50.8. ; ¹⁹F NMR (376 Hz, DMSO-d6) δ -61.4; HRMS m/z calculated for : C₂₄H₁₉F₃N₂O₄S [M+Na]⁺: 511.0910, found: 511.0915; **HPLC** (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 23.94 min (major) and 33.06 min (minor).

(R)-2-cyano-2-(4-cyanophenyl)-3-((4-methoxyphenyl)sulfonyl)-N-

phenylpropanamide (3aa)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (42 mg, 47% yield, >99% *ee*). $[\alpha]D^{15} = +41.6$ (c = 0.51, CHCl₃); ¹H NMR (400 MHz, DMSO-d₆) δ 10.14 (s, 1H), 7.84 (d, J =

2H), 7.34 – 7.30 (m, 2H), 7.15 – 7.11 (m, 1H), 7.04 (d, J = 9.2 Hz, 2H), 4.69 (dd, J = 15.2, 17.2 Hz, 2H), 3.83 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 163.4, 161.9, 137.6, 137.4, 132.8, 131.0, 130.1, 128.7, 127.9, 124.9, 121.0, 118.1, 116.6, 114.4, 112.0, 58.7, 55.8, 50.9; **HRMS** *m*/*z* calculated for : C₂₄H₁₉N₃O₄S [M+Na]⁺: 468.0988, found: 468.0990; **HPLC** (Daicel Chirapak IB column, hexane/isopropanol = 35/65, flow 0.7 mL/min, detection at 214 nm) retention time = 26.52 min (major) and 46.78 min (minor).

(*R*)-2-cyano-*N*-(4-methoxyphenyl)-3-((4-methoxyphenyl)sulfonyl)-2phenylpropanamide (3ab)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (63 mg, 70% yield, >99% ee). ^[α]D¹⁹ = + 67.6 (c = 0.60, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.88 (s, 1H), 7.75 (d, *J* = 9.2 Hz, 2H), 7.50 (dd, *J* = 8.4, 2.0

Hz, 2H), 7.43-7.35 (m, 5H), 7.08 (d, J = 8.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 4.67 (d, J = 14.8 Hz, 1H), 4.49 (d, J = 14.8 Hz, 1H), 3.82 (s, 3H), 3.72 (s, 3H).; ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.4, 162.5, 156.2, 133.4, 131.4, 130.7, 130.2, 129.12, 129.09, 126.3, 122.7, 117.3, 114.4, 113.7, 59.5, 55.8, 55.2, 50.7; HRMS *m*/*z* calculated for: C₂₄H₂₂N₂O₅S [M+Na]⁺: 473.1142, found: 473.1144; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 35/65, flow 0.5 mL/min, detection at 214 nm) retention time = 28.81 min (major) and 36.40 min (minor).

(*R*)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-*N*-(4-phenoxyphenyl)-2phenylpropanamide (3ac)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (74 mg, 72% yield, >99% *ee*). ^[α]D¹⁹ = + 51.5 (c = 0.28, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.03 (s, 1H), 7.77 (d, *J* = 8.8 Hz, 2H), 7.53 – 7.48 (m, 4H),

7.44 – 7.34 (m, 5H), 7.14 – 7.07 (m, 3H), 6.99 – 6.96 (m, 4H), 4.70 (d, J = 14.8 Hz, 1H), 4.51 (d, J = 14.8 Hz, 1H), 3.82 (s, 3H); ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ 163.5, 162.7, 157.0, 153.0, 133.4, 133.3, 131.4, 130.3, 130.0, 129.2, 126.3, 123.3, 122.7, 119.0, 118.2, 117.3, 114.5, 59.4, 55.8, 50.9; HRMS *m*/*z* calculated for : C₂₉H₂₄N₂O₅S [M+Na]⁺: 535.1298, found: 535.1299; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 41.04 min (major) and 46.42 min (minor).

(*R*)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-2-phenyl-*N*-(3,4,5trimethoxyphenyl)propenamide (3ad)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (70 mg, 69% yield, 99% ee). $^{[\alpha]}D^{19} = + 29.0$ (c = 0.31, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) 1 H NMR (400 MHz, DMSO-*d*₆) 5 9.85 (s, 1H), 7.74 (d, *J* = 9.2 Hz, 2H), 7.51 – 7.48 (m, 2H), 7.43 – 7.36 (m, 3H), 7.06 (d, *J* = 8.8

Hz, 2H), 6.94 (s, 2H), 4.69 (d, J = 14.8 Hz, 1H), 4.52 (d, J = 14.8 Hz, 1H), 3.80 (s, 3H), 3.72 (s, 6H), 3.61 (s, 3H); ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ 163.4, 162.5, 152.5, 134.3, 134.0, 133.2, 131.3, 130.2, 129.2, 126.4, 117.2, 114.4, 98.1, 60.1, 59.3, 55.8, 55.7, 51.1; HRMS *m*/*z* calculated for C₂₆H₂₆N₂O₇S [M+Na]⁺: 533.1353, found: 533.1356; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 35/65, flow 0.5 mL/min, detection at 214 nm) retention time = 20.90 min (minor) and 44.24 min (major).

(*R*)-*N*-(4-(tert-butyl)phenyl)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-2phenylpropanamide (3ae)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (46 mg, 48% yield, >99% *ee*). ^[α]D¹⁶ = + 48.7 (c = 1.03, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.93 (s, 1H), 7.76 (d, J = 8.8 Hz, 2H), 7.52 – 7.49 (m, 2H),

7.43 – 7.37 (m, 5H), 7.32 (d, J = 8.8 Hz, 2H), 7.07 (d, J = 8.8 Hz, 2H), 4.69 (d, J = 15.2 Hz, 1H), 4.50 (d, J = 15.2 Hz, 1H), 3.81 (s, 3H), 1.24 (s, 9H); ¹³**C NMR (100 MHz, DMSO-d₆)** δ 163.5, 162.6, 147.1, 135.3, 133.4, 131.4, 130.3, 129.1, 126.4, 125.2, 120.6, 117.3, 114.5, 59.4, 55.8, 51.0, 34.1, 31.2; **HRMS** *m/z* calculated for : C₂₇H₂₈N₂O₄S [M+Na]⁺: 499.1662, found: 499.1662; **HPLC** (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 26.23 min (major) and 37.70 min (minor).

(R)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-2-phenyl-N-(o-tolyl)propanamid (3af)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (53 mg, 61% yield, 99% *ee*). ^[α]D¹⁵ = + 18.5 (c = 0.37, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.71 (s, 1H), 7.76 (d, *J* = 8.8 Hz, 2H), 7.55 – 7.53 (m, 2H), 7.45 – 7.38 (m, 3H), 7.21 – 7.13 (m, 3H),

7.10 (d, *J* = 9.2 Hz, 2H), 7.07 – 7.05 (m, 1H), 4.64 (d, *J* = 15.2 Hz, 1H), 4.49 (d, *J* = 15.2 Hz, 1H), 3.84 (s, 3H), 1.95 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.44, 163.35, 135.1,

134.3, 133.4, 131.6, 130.4, 130.2, 129.11, 129.07, 126.82, 126.76, 126.3, 126.1, 117.4, 114.5, 59.3, 55.9, 50.3, 17.1; **HRMS** *m*/*z* calculated for : $C_{24}H_{22}N_2O_4S$ [M+Na]⁺: 457.1192, found: 457.1190; **HPLC** (Daicel Chirapak IA column, hexane/isopropanol = 35/65, flow 0.5 mL/min, detection at 214 nm) retention time = 17.70 min (major) and 21.01 min (minor).

(*R*)-2-cyano-*N*-(2,4-dimethylphenyl)-3-((4-methoxyphenyl)sulfonyl)-2phenylpropanamide (3ag)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolate as white solid using ethyl acetate/petroleum ether (1:3) as eluent (65 mg, 72% yield, >99% ee). ^[α]D¹⁹ = + 58.0 (c = 0.60, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.63 (s, 1H), 7.75 (d, *J* = 8.8 Hz, 2H), 7.53 (dd, *J* = 8.4, 2.0 Hz, 2H), 7.44 –

7.39 (m, 3H), 7.09 (d, J = 8.8 Hz, 2H), 6.99 – 6.96 (m, 2H), 6.92 (d, J = 7.6 Hz, 1H), 4.62 (d, J = 15.2 Hz, 1H), 4.47 (d, J = 15.2 Hz, 1H), 3.84 (s, 3H), 2.24 (s, 3H), 1.90 (s, 3H); ¹³**C NMR (100 MHz, DMSO**-*d*₆) δ 163.41, 163.35, 136.0, 134.0, 133.4, 132.5, 131.6, 130.9, 130.2, 129.04, 129.01, 126.6, 126.5, 126.3, 117.4, 114.4, 59.3, 55.8, 50.2, 20.5, 17.0; **HRMS** *m*/*z* calculated for : C₂₅H₂₄N₂O₄S [M+Na]⁺: 471.1349, found: 471.1349; **HPLC** (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 24.89 min (major) and 45.82 min (minor).

(*R*)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-*N*-(naphthalen-2-yl)-2phenylpropanamide (3ah)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (52 mg, 55% yield, >99% *ee*). ^[α]D¹⁰ = + 68.3 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.20 (s, 1H), 8.08 (d, *J* = 2.0 Hz, 1H), 7.87 – 7.83 (m, 3H),

7.77 (d, J = 9.2 Hz, 2H), 7.58 – 7.54 (m, 3H), 7.51 – 7.39 (m, 5H), 7.07 (d, J = 8.8 Hz, 2H), 4.76 (d, J = 15.2 Hz, 1H), 4.57 (d, J = 15.2 Hz, 1H), 3.76 (s, 3H); ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ 163.5, 163.0, 135.4, 133.3, 133.0, 131.3, 130.4, 130.3, 129.2, 128.2, 127.49, 127.46, 126.6, 126.4, 125.3, 121.0, 117.8, 117.2, 114.5, 59.3, 55.7, 51.1; HRMS *m/z* calculated for : C₂₇H₂₂N₂O₄S [M+Na]⁺: 493.1192, found: 493.1195; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 35/65, flow 0.5 mL/min, detection at 214 nm) retention time = 27.59 min (major) and 32.24 min (minor).

(*R*)-2-cyano-*N*-(4-fluorophenyl)-3-((4-methoxyphenyl)sulfonyl)-2phenylpropanamide (3ai)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (53 mg, 60% yield, >99% *ee*). ^[α]D²⁰ = + 43.0 (c = 0.30, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.07 (s, 1H), 7.76 (d, *J* = 8.8 Hz, 2H), 7.52 - 7.47 (m, 4H), 7.44 - 7.37 (m, 3H), 7.18

-7.14 (m, 2H), 7.08 (d, *J* = 8.8 Hz, 2H), 4.68 (d, *J* = 14.8 Hz, 1H), 4.52 (d, *J* = 14.8 Hz, 1H), 3.82 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.5, 162.8, 158.9 (d, *J* = 240 Hz), 134.1 (d, *J* = 3 Hz), 133.2, 131.3, 130.2, 129.2, 126.3, 123.0 (d, *J* = 8 Hz), 117.2, 115.3 (d, *J* = 23 Hz), 114.5, 59.4, 55.8, 50.8; ¹⁹F NMR (376 Hz, DMSO-d6) δ -117.6; HRMS *m/z* calculated for : C₂₃H₁₉FN₂O₄S [M+Na]⁺: 461.0942, found: 461.0938; HPLC (Daicel Chirapak IC column, hexane/isopropanol = 35/65, flow 0.5 mL/min, detection at 214 nm) retention time = 29.12 min (minor) and 32.23 min (major).

(*R*)-*N*-(4-chlorophenyl)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-2phenylpropanamide (3aj)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (65 mg, 71% yield, >99% *ee*). ^[α]D¹⁵ = + 72.0 (c = 0.45, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.13 (s, 1H), 7.76 (d, *J* = 8.8 Hz, 2H), 7.53 – 7.50 (m, 4H), 7.44 – 7.36 (m, 5H), 7.07

(d, J = 8.8 Hz, 2H), 4.70 (d, J = 15.2 Hz, 1H), 4.54 (d, J = 15.2 Hz, 1H), 3.81 (s, 3H); ¹³**C NMR (100 MHz, DMSO-***d*₆**)** δ 163.4, 162.9, 136.7, 133.1, 131.3, 130.2, 129.22, 129.20, 128.5, 128.4, 126.3, 122.5, 117.1, 114.5, 59.3, 55.8, 51.0; **HRMS** *m*/*z* calculated for : C₂₃H₁₉ClN₂O₄S [M+Na]⁺: 477.0646, found: 477.0648; **HPLC** (Daicel Chirapak IC column, hexane/isopropanol = 60/40, flow 0.5 mL/min, detection at 214 nm) retention time = 58.48 min (minor) and 62.34 min (major).

(*R*)-*N*-(4-bromophenyl)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-2phenylpropanamide (3ak)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (59 mg, 59% yield, >99% ee). $[^{\alpha}]D^{19} = +$ 48.7 (c = 0.32, CHCl₃); ¹H NMR (400 MHz, DMSO-

^o d_6) δ 10.11 (s, 1H), 7.75 (d, J = 8.8 Hz, 2H), 7.52 – 7.38 (m, 9H), 7.07 (d, J = 8.8 Hz, 2H), 4.69 (d, J = 15.2 Hz, 1H), 4.53 (d, J = 15.2 Hz, 1H), 3.81 (s, 3H); ¹³**C** NMR (100 MHz, DMSO- d_6) δ 163.5, 162.9, 137.1, 133.1, 131.5, 131.3, 130.2, 129.24, 129.22, 126.3, 122.9, 117.1, 116.6, 114.5, 59.2, 55.8, 51.0; HRMS *m/z* calculated for : C₂₃H₁₉BrN₂O₄S [M+Na]⁺: 521.0141, found: 521.0145; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 33.89 min (major) and 37.80 min (minor).

(*R*)-2-cyano-*N*-(4-iodophenyl)-3-((4-methoxyphenyl)sulfonyl)-2-phenylpropanamide (3al)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (65 mg, 60% yield, >99% *ee*). ^[α]D¹⁶ = + 59.3 (c = 0.48, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.07 (s, 1H), 7.75 (d, *J* = 8.8 Hz, 2H), 7.66 (d, *J* = 8.8 Hz, 2H), 7.51 – 7.48 (m, 2H),

7.43 – 7.36 (m, 3H), 7.32 (d, J = 8.8 Hz, 2H), 7.07 (d, J = 8.8 Hz, 2H), 4.69 (d, J = 15.2 Hz, 1H), 4.53 (d, J = 15.2 Hz, 1H), 3.81 (s, 3H); ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ 163.4, 162.9, 137.6, 137.3, 133.1, 131.2, 130.2, 129.2, 126.3, 123.0, 117.1, 114.5, 88.8, 59.2, 55.8, 51.1; HRMS *m*/*z* calculated for : C₂₃H₁₉IN₂O₄S [M+Na]⁺: 569.0002, found: 569.0004; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 35/65, flow 0.5 mL/min, detection at 214 nm) retention time = 28.76 min (major) and 31.78 min (minor).

(*R*)-2-cyano-*N*-(3-fluoro-4-morpholinophenyl)-3-((4-methoxyphenyl)sulfonyl)-2phenylpropanamide (3am)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (48 mg, 46% yield, 99% *ee*). ^[α]D¹⁸ = + 59.2 (c = 0.50, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.02 (s, 1H), 7.75 (d, *J* = 8.8 Hz, 2H), 7.49 (dd, *J* = 8.4, 2.0 Hz, 2H), 7.43 – 7.34 (m, 4H), 7.20 (dd, *J* = 8.8, 2.0

Hz, 1H), 7.07 (d, J = 8.8 Hz, 2H), 7.00 – 6.95 (m, 1H), 4.67 (d, J = 15.2 Hz, 1H), 4.51 (d, J

= 15.2 Hz, 1H), 3.81 (s, 3H), 3.72 (t, J = 4.4 Hz, 4H), 2.94 (t, J = 4.4 Hz, 4H); ¹³C NMR (100 MHz, DMSO-d₆) δ 163.5, 162.6, 154.1 (d, J = 242 Hz), 136.4 (d, J = 8 Hz), 133.3, 132.6 (d, J = 11 Hz), 131.3, 130.3, 129.2, 126.3, 118.8 (d, J = 4 Hz), 117.2, 117.0 (d, J = 3 Hz), 114.5, 109.08 (d, J = 25 Hz), 66.2, 59.3, 55.8, 50.9, 50.6 (d, J = 3 Hz); ¹⁹F NMR (376 Hz, DMSO-d6) δ -121.7; HRMS *m*/*z* calculated for : C₂₇H₂₆FN₃O₅S [M+Na]⁺: 546.1469, found: 546.1473; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 35/65, flow 0.5 mL/min, detection at 214 nm) retention time = 32.36 min (major) and 45.96 min (minor).

(R)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-2-phenyl-N-(4-

(trifluoromethyl)phenyl)propenamide (3an)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (43 mg, 44% yield, 99% *ee*). ^[α]D¹⁸ = + 25.7 (c = 0.32, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.31 (s, 1H), 7.77 – 7.68 (m, 6H), 7.52 (dd, *J* = 8.4, 2.0 Hz,

2H), 7.45 – 7.38 (m, 3H), 7.07 (d, J = 8.8 Hz, 2H), 4.74 (d, J = 15.2 Hz, 1H), 4.59 (d, J = 15.2 Hz, 1H), 3.79 (s, 3H); ¹³**C NMR (100 MHz, DMSO-***d*₆) δ 163.5, 163.3, 141.4, 133.0, 131.2, 130.3, 129.33, 129.28, 126.4, 125.9 (q, J = 3 Hz), 124.6 (q, J = 32 Hz), 124.2 (q, J = 270 Hz), 120.8, 117.0, 114.5, 59.1, 55.8, 51.2; ¹⁹**F NMR (376 Hz, DMSO-***d*6) δ -60.6; **HRMS** *m*/*z* calculated for : C₂₄H₁₉F₃N₂O₄S [M+Na]⁺: 511.0910, found: 511.0912; **HPLC** (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 25.89 min (major) and 29.76 min (minor).

(R)-N-benzyl-2-cyano-3-((4-methoxyphenyl)sulfonyl)-2-phenylpropanamide (3ao)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (52 mg, 60% yield, >99% *ee*). ^[α]D¹⁶ = + 17.7 (c = 0.30, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.83 (t, *J* = 6.0 Hz, 1H), 7.71 (d, *J* = 8.8 Hz, 2H), 7.44 – 7.42 (m, 2H), 7.36 – 7.35 (m,

3H), 7.25 - 7.17 (m, 3H), 7.10 - 7.06 (m, 4H), 4.52 (d, J = 14.8 Hz, 1H), 4.38 (d, J = 14.8 Hz, 1H), 4.30 (dd, J = 15.2, 6.0 Hz, 1H), 4.18 (dd, J = 15.2, 5.6 Hz, 1H), 3.84 (s, 3H); 13 **C NMR (100 MHz, DMSO-***d*₆**)** δ 164.3, 163.4, 138.5, 133.3, 130.1, 128.9, 128.14, 128.11, 126.9, 126.8, 126.2, 117.5, 114.4, 59.4, 55.8, 49.8, 43.3; **HRMS** *m*/*z* calculated for : C₂₄H₂₂N₂O₄S [M+Na]⁺: 457.1192, found: 457.1192; **HPLC** (Daicel Chirapak IA column, hexane/isopropanol = 35/65, flow 0.5 mL/min, detection at 214 nm) retention time = 17.09

min (major) and 22.69 min (minor).

(R)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-2-phenyl-N-(prop-2-yn-1yl)propenamide (3ap)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:2) as eluent (41 mg, 53% yield, >99% *ee*). $[\alpha]D^{16} = +16.1$ (c = 0.27, CHCl₃); ¹H NMR (400 MHz, DMSO-d₆) δ 8.76 (t, J = 5.2 Hz, 1H), 7.70 (d, J = 8.8 Hz, 2H), 7.42 – 7.35 (m, 5H), 7.07 (d, J = 8.8 Hz, 2H), 4.46 (d, J = 14.8 Hz, 1H), 4.37 (d, J = 14.8 Hz, 1H), 3.85 - 3.73 (m, 5H), 3.09 (t, J = 2.4 Hz, 1H);¹³C NMR (100 MHz, DMSO-d₆) δ 164.0, 163.4, 133.1, 131.4, 130.1, 128.9, 126.2, 117.2, 114.4, 79.9, 73.4, 59.4, 55.8, 49.7 29.5; HRMS *m/z* calculated for C₂₀H₁₈N₂O₄S [M+Na]⁺: 405.0879, found: 405.0880; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 45/55, flow 0.5 mL/min, detection at 214 nm) retention time = 16.22 min (major) and 19.19 min(minor).

(R)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-2-phenyl-N-propylpropanamide (3aq)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (34 mg, 44% yield, 98% *ee*). $[\alpha]D^{18} = +39.4$ (c = 0.33, CHCl₃); ¹H NMR (400 MHz, DMSO-d₆) δ 8.22 (t, J = 5.6 Hz, 1H), 7.71 (d, J = 8.8 Hz, 2H), 7.43 – 7.33 (m, 5H), 7.08 (d, J = 8.8 Hz,

2H), 4.47 (d, J = 14.8 Hz, 1H), 4.32 (d, J = 14.8 Hz, 1H), 3.84 (s, 3H), 3.04 – 2.90 (m, J = 6.4 Hz 2H), 1.39 – 1.30 (m, J = 7.2 Hz, 2H), 0.70 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, **DMSO-***d*₆) δ 164.0, 163.3, 133.6, 131.5, 130.2, 128.9, 128.8, 126.1, 117.6, 114.4, 59.6, 55.8, 49.7, 41.7, 21.7, 11.0; **HRMS** *m*/*z* calculated for : C₂₀H₂₂N₂O₄S [M+Na]⁺: 409.1192, found: 409.1193; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 17.04 min (major) and 22.47 min (minor).

(R)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-2-phenylpropanamide (3ar)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (30 mg, 44% yield, 97% ee). ^[a]D¹⁸ = + 4.9 (c = 0.43, CHCl₃); ¹H NMR (400 MHz, DMSO-d₆) δ 7.74 – 7.68 (m, 4H), 7.44 – 7.41 (m, 2H), 7.37 - 7.33 (m, 3H), 7.06 (d, J = 8.8 Hz, 2H), 4.45 (d, J = 14.8 Hz, 1H), 4.33 (d, J = 14.8 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 165.7, 163.3, 133.4, 131.6, 130.1, 128.9, 128.8, 126.2, 117.6, 114.4, 59.4, 55.8, 49.8; HRMS *m/z* calculated for : C₁₇H₁₆N₂O₄S [M+Na]⁺: 367.0723, found: 367.0719; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 35/65, flow 0.5 mL/min, detection at 214 nm) retention time = 15.94 min (major) and 18.17 min (minor).

(S)-3-((4-methoxyphenyl)sulfonyl)-2-phenyl-2-(pyridin-2-yl)propanenitrile (3as)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (44 mg, 58% yield, 92% *ee*). ^[α]D¹⁸ = + 53.2 (c = 0.36, CHCl₃). According to the X-ray analysis, the "absolute stereochemistry" of the product is the S configuration. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.47 (d, *J* = 4.4 Hz, 1H), 7.80 (td, *J* = 7.6, 1.6 Hz, 1H), 7.58 (d, *J* = 9.2

Hz, 2H), 7.48 (d, J = 8.0 Hz, 1H), 7.40 – 7.37 (m, 2H), 7.34 – 7.25 (m, 4H), 6.98 (d, J = 8.8 Hz, 2H), 4.87 (d, J = 15.2 Hz, 1H), 4.70 (d, J = 15.2 Hz, 1H), 3.83 (s, 3H); ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ 163.2, 155.8, 149.0, 138.0, 136.9, 131.4, 130.0, 128.9, 128.4, 126.5, 123.5, 121.7, 119.4, 114.3, 60.3, 55.8, 49.9; HRMS *m*/*z* calculated for : C₂₁H₁₈N₂O₃S [M+Na]⁺: 401.0930, found: 401.0934; HPLC (Daicel Chirapak OD-H column, hexane/isopropanol = 55/45, flow 0.5 mL/min, detection at 214 nm) retention time = 22.84 min (major) and 25.94 min (minor).

Methyl (S)-2-((R)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-2-phenylpropanamido)-3,3dimethylbutanoate (5a)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (20 mg, 21% yield, >99% *de*). ^[α]D¹⁶ = + 8.7 (c = 0.30, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.93 (d, *J* = 8.8 Hz, 1H), 7.71 (d, *J* = 8.8 Hz, 2H), 7.45 – 7.43 (m, 2H), 7.37 – 7.35 (m, 3H),

7.08 (d, J = 8.8 Hz, 2H), 4.65 (d, J = 14.8 Hz, 1H), 4.48 (d, J = 14.8 Hz, 1H), 4.21 (d, J = 8.8 Hz, 1H), 3.84 (s, 3H), 3.58 (s, 3H), 0.84 (s, 9H); ¹³**C** NMR (100 MHz, DMSO-*d*₆) δ 170.2, 164. 6, 163. 5, 132.9, 131.6, 130.3, 129.0, 128.9, 126.6, 117.4, 114.4, 61.2, 58.7, 55.9, 51.7, 50.7, 34.5, 26.4; HRMS *m*/*z* calculated for: C₂₄H₂₈N₂O₆S [M+Na]⁺: 495.1560, found: 495.1561; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 85/15, flow 0.5 mL/min, detection at 214 nm) retention time = 55.26 min (major) and 108.27 min (minor). Our reactions can also be applied to chiral substrates, but may be affected by the chirality of

the substrate, and the product of the reaction is not racemic.

Methyl ((R)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-2-phenylpropanoyl)-Lmethioninate (5b)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:1) as eluent (31 mg, 32% yield, >99% *de*). $[\alpha]D^{10} = + 30.6$ (c = 0.61, CHCl₃); ¹H NMR (400 MHz, **DMSO-** d_6) δ 8.72 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.44 – 7.35 (m, 5H), 7.08 (d, J = 8.8 Hz, 2H), 4.45 – 4.31 (m, 3H), 3.84 (s, 3H), 3.52 (s, 3H), 2.48 – 2.34 (m, 2H), 2.01 – 1.96 (m, 5H); ¹³C NMR (100 MHz, DMSO-d₆) δ 171.2, 164.5, 163.4, 132.9, 131.7, 130.1, 129.0, 128.8, 126.6, 117.3, 114.4, 59.9, 55.9, 52.1, 52.0,

49.6, 29.6, 14.6; **HRMS** *m*/*z* calculated for C₂₃H₂₆N₂O₆S₂ [M+Na]⁺: 513.1124, found: 513.1126; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 45/55, flow 0.5 mL/min, detection at 214 nm) retention time = 20.82 min (major) and 24.10 min (minor).

Methyl (R)-(2-cyano-3-((4-methoxyphenyl)sulfonyl)-2-phenylpropanoyl)glycinate (5c)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (1:1) as eluent (41 mg, 49% yield, >99% ee). ^[α]D¹⁰ = + 45.6 (c = 0.48, CHCl₃); ¹H NMR (400 MHz, DMSO**d**₆) δ 8.72 (t, J = 6.0 Hz, 1H), 7.69 (d, J = 9.2 Hz, 2H), 7.46 – 7.44

(m, 2H), 7.38 – 7.35 (m, 3H), 7.07 (d, J = 8.8 Hz, 2H), 4.42 – 4.34 (m, 2H), 3.85 (s, 3H), 3.78 (t, J = 5.2 Hz, 2H), 3.55 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 169.2, 164.7, 163.4, 133.0, 131.4, 130.2, 129.0, 128.9, 126.5, 117.3, 114.4, 59.6, 55.8, 51.7, 49.5, 41.8; HRMS m/z calculated for C₂₀H₂₀N₂O₆S [M+Na]⁺: 439.0934, found: 439.0934; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 45/55, flow 0.5 mL/min, detection at 214 nm) retention time = 19.15 min (major) and 22.64 min(minor).

Methyl (R)-(R)-(2-cyano-3-((4-methoxyphenyl)sulfonyl)-2phenylpropanoyl)glycylglycinate (5d)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (2:1) as eluent (29 mg, 31% yield, >99% *ee*). ^[α]D¹⁰ = + 54.0 (c = 0.39, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.53 (t, *J* = 5.6 Hz, 1H), 8.23 (t, *J* =

6.0 Hz, 1H), 7.69 (d, J = 8.8 Hz, 2H), 7.49 – 7.47 (m, 2H), 7.35 – 7.34 (m, 3H), 7.07 (d, J = 8.8 Hz, 2H), 4.48 – 4.40 (m, 2H), 3.87 – 3.85 (m, 5H), 3.70 (t, J = 5.6 Hz, 2H), 3.62 (s, 3H); ¹³**C NMR (100 MHz, DMSO-***d*₆**)** δ 170.1, 168.3, 164.4, 163.4, 133.1, 131.2, 130.2, 128.93, 128.88, 126.5, 117.4, 114.4, 59.4, 55.8, 51.8, 49.8, 42.9, 40.5; **HRMS** *m/z* calculated for C₂₂H₂₃N₃O₇S [M+Na]⁺: 496.1149, found: 496.1150; **HPLC** (Daicel Chirapak ADH column, hexane/isopropanol = 45/55, flow 0.5 mL/min, detection at 214 nm) retention time = 24.32 min (major) and 37.48 min(minor).

Methyl ((*R*)-2-cyano-3-((4-methoxyphenyl)sulfonyl)-2-phenylpropanoyl)-*L*-alanyl-*L*alaninate (5e)

Prepared by the general procedure in a 0.2 mmol scale at the 20 °C for 72 h; Isolated as white solid using ethyl acetate/petroleum ether (2:1) as eluent (40 mg, 40% yield, >99% *de*). ^[α]D¹⁰ = + 11.6 (c = 0.32, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.18 (dd, *J* = 6.8, 3.2 Hz, 2H), 7.70

(d, J = 9.2 Hz, 2H), 7.45 – 7.42 (m, 2H), 7.36 – 7.34 (m, 3H), 7.08 (d, J = 8.8 Hz, 2H), 4.49 – 4.40 (m, 2H), 4.27 – 4.19 (m, 2H), 3.85 (s, 3H), 3.60 (s, 3H), 1.24 (dd, J = 7.2, 5.2 Hz, 6H); ¹³**C NMR (100 MHz, DMSO-***d***₆)** δ 172.8, 171.1, 163.6, 163.4, 133.0, 131.3, 130.2, 128.9, 126.5, 117.5, 114.4, 59.3, 55.9, 51.9, 50.0, 49.3, 47.6, 17.5, 16.8; **HRMS** *m/z* calculated for C₂₄H₂₇N₃O₇S [M+Na]⁺: 524.1462, found: 524.1464; **HPLC** (Daicel Chirapak IA column, hexane/isopropanol = 45/55, flow 0.5 mL/min, detection at 214 nm) retention time = 17.30 min (major) and 29.38 min(minor).

7. Transformations

In a vial, **3a** (42.6 mg, 0.1 mmol, 1.0 equiv.) was dissolved in 1 mL of MeOH. Then H_2O_2 (0.15 mL, 30% aqueous solution) and 3 drops of sat. Na₂CO₃ solution were added

sequentially. The reaction mixture was stirred at room temperature for overnight. The aqueous layer was extracted with ethyl acetate for 3 times. The combined organic layers were concentrated under reduced pressure. The residue was purified by column chromatography (PE/ EA = 2/1) to afford **6** (49 mg, 56%, >99% ee) as a white solid. ^[α]D¹⁶ = + 37.3 (c = 0.89, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.65 (s, 1H), 8.00 (s, 1H), 7.79 (s, 1H), 7.73 (d, *J* = 8.8 Hz, 2H), 7.43 – 7.38 (m, 4H), 7.36 – 7.26 (m, 5H), 7.10 – 7.06 (m, 1H), 7.01 (d, *J* = 8.8 Hz, 2H), 4.76 (d, *J* = 14.4 Hz, 1H), 4.67 (d, *J* = 14.4 Hz, 1H), 3.75 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.9, 167.4, 163.1, 139.2, 138.1, 132.3, 130.0, 128.71, 128.66, 127.8, 126.1, 123.9, 119.9, 114.2, 59.6, 56.7, 55.7; HRMS *m/z* calculated for C₂₃H₂₂N₂O₅S [M+Na]⁺: 461.1142, found: 461.1144; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 45/55, flow 0.5 mL/min, detection at 214 nm) retention time = 16.07 min (minor) and 20.49 min(major).

In a vial, **3an** (42.6 mg, 0.1 mmol, 1.0 equiv.), 0.1 mmol Phl(OAc)₂, 0.1 mmol Lil and 1 mL CH₂Cl₂ were added under argon atmosphere. The reaction mixture was stirred at room temperature until complete disappearance of the starting material as shown by TLC (usually 12 h). CH₂Cl₂ (10 mL) was then added, and the mixture was washed with aqueous Na₂S₂O₃. The organic layer was dried by Na₂SO₄ and concentrated to give crude residue, which was purified by flash column chromatography to give the corresponding products **7** (69 mg, 68%, 99% ee) as a white solid. ^[α]D¹⁰ = + 37.6 (c = 0.33, CHCl₃); ¹H NMR (400 MHz, DMSO-d₆) δ 7.75 (d, *J* = 9.2 Hz, 2H), 7.52 – 7.50 (m, 2H), 7.44 – 7.41 (m, 3H), 7.11 (d, *J* = 8.8 Hz, 2H), 5.85 (t, *J* = 3.2 Hz, 1H), 4.68 (d, *J* = 15.2 Hz, 1H), 4.51 (d, *J* = 15.2 Hz, 1H), 4.47 – 4.30 (m, 2H), 3.86 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 163.7, 160.6, 156.1, 132.5, 130.4, 130.3, 129.6, 129.4, 126.4, 115.9, 114.4, 59.9, 57.8, 55.9, 51.3, 44.3; HRMS *m*/z calculated for C₂₀H₁₇IN₂O₄S [M+Na]⁺: 530.9846, found: 530.9846; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 45/55, flow 0.5 mL/min, detection at 214 nm) retention time = 18.86 min (minor) and 39.05 min(major).

In a vial, a solution of **3an** (0.1 mmol) and arylhydrazine (0.15 mmol) in 1,2dimethoxyethane (1 mL), zinc bromide (0.3 mmol) was added under argon atmosphere. The reaction mixture was heated at 110 °C for 24 h (TLC control). After removal of the solvent, the crude product was purified by column chromatography (PE/EA = 2/1) to afford **8** (69 mg, 73%, >99% ee) as a white solid. ^[α]D¹⁵ = + 30.8 (c = 0.34, CHCl₃); ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.92 (s, 1H), 9.59 (s, 1H), 7.78 (d, *J* = 9.2 Hz, 2H), 7.60 – 7.57 (m, 2H), 7.47 – 7.41 (m, 3H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.10 (d, *J* = 9.2 Hz, 2H), 7.06 (d, *J* = 7.6 Hz, 1H), 7.00 – 6.96 (m, 1H), 6.91 – 6.87 (m, 1H), 4.69 (d, *J* = 14.8 Hz, 1H), 4.50 (d, *J* = 14.8 Hz, 1H), 3.85 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 164.2, 163.4, 133.9, 133.5, 131.8, 130.6, 130.1, 129.0, 126.3, 124.7, 120.4, 118.5, 117.6, 117.1, 114.4, 110.7, 108.9, 59.4, 55.8, 50.2, 10.8; HRMS *m/z* calculated for C₂₆H₂₃N₃O₄S [M+Na]⁺: 496.1301, found: 496.1302; HPLC (Daicel Chirapak IA column, hexane/isopropanol = 45/55, flow 0.5 mL/min, detection at 214 nm) retention time = 20.43 min (major) and 28.56 min(minor).

8. Mechanistic Experiments

a) Radical trapping experiment with 1,1-diphenylethylene

In the argon glovebox, $Cu(OAc)_2$ (3.6 mg, 10.0 mol%) and L6 (16.5 mg 12.0 mol%) were dissolved in DCM (2.5 mL) in a dried sealed vial under argon atmosphere, and the mixture was stirred for 30 minutes. Then **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), TMSCN (0.3 mmol, 1.5 equiv.), CH₃COOLi (0.5 mmol, 2.5 equiv.), 1,1- diphenylethylene (0.6 mmol, 3.0 equiv.) and the mixture were added to chamber B. Tetrabromothiophene S,S-dioxides (0.88 mmol, 380 mg) in tetradecane (1.0 mL) was added to chamber A, followed by addition of 4-methylphenylene (0.80 mmol, 105 µl). The chamber A was sealed and removed out of the glovebox and heated to 100 °C in heating mantle for 10 min. Then chamber B heated to 20 °C in low-temperature stirring reaction bath for 72 hours. After 72 hours, two chamber was cooled to room temperature. TLC, GC and LC-MS analysis

demonstrated the product **3a** was not detected. The aryIsulfonyl radical combined with 1,1diphenylethylene **9** was detected by LC-MS. ¹H NMR (400 MHz, DMSO-d6) δ 7.55 – 7.51 (m, 2H), 7.43 – 7.33 (m, 6H), 7.31 (s, 1H), 7.24 – 7.22 (m, 2H), 7.04 – 7.00 (m, 4H), 3.82 (s, 3H). ¹³C NMR (101 MHz, DMSO-d6) δ 162.9, 152.9, 138.6, 135.6, 133.0, 130.3, 129.5, 129.2, 129.0, 128.7, 128.6, 128.1, 127.9, 114.4, 55.8.

In the argon glovebox, Cu(OAc)₂ (3.6 mg, 10.0 mol%) and **L6** (16.5 mg 12.0 mol%) were dissolved in DCM (2.5 mL) in a dried sealed vial under argon atmosphere, and the mixture was stirred for 30 minutes. Then **1** (0.2 mmol, 1.0 equiv.), **2** (0.3 mmol, 1.5 equiv.), TMSCN (0.3 mmol, 1.5 equiv.), CH₃COOLi (0.5 mmol, 2.5 equiv.), BHT (0.6 mmol, 3.0 equiv.) and the mixture were added to chamber B. Tetrabromothiophene S,S-dioxides (0.88 mmol, 380 mg) in tetradecane (1.0 mL) was added to chamber A, followed by addition of 4-methylphenylene (0.80 mmol, 105 μ I). The chamber A was sealed and removed out of the glovebox and heated to 100 °C in heating mantle for 10 min. Then chamber B heated to 20 °C in low-temperature stirring reaction bath for 72 hours. After 72 hours, two chamber was cooled to room temperature. The mixture was purified by column chromatography on silica gel. Isolated as white solid using ethyl acetate/petroleum ether (1:3) as eluent (25

3a, 30% >99% ee

10, 32%, detected by LCMS

2a

1a

mg, 30% yield, >99% ee). The arylsulfonyl radical combined with BHT **10** was detected by LC-MS. ¹H NMR (400 MHz, DMSO-d6) δ 7.50 (d, J = 8.8 Hz, 2H), 7.05 (d, J = 8.8 Hz, 2H), 7.00 (s, 1H), 6.72 (s, 2H), 4.40 (s, 2H), 3.82 (s, 3H), 1.26 (s, 18H). ¹³C NMR (101 MHz, DMSO-d6) δ 163.2, 154.0, 138.7, 130.6, 129.7, 127.4, 120.0, 114.2, 61.7, 55.8, 34.3, 30.2.

9. Reference

[1] L. Wu, F. Wang, P. Chen and G. Liu, J. Am. Chem. Soc. 2019, 141, 1887-1892.

[2] L. Wu, Z. Zhang, D. Wu, F. Wang, P. Chen, Z. Lin and G. Liu, *Angew. Chem. Int. Ed.* **2021**, *60*, 6997-7001.

[3] M. V. Popescu, A. Mekereeya, J. V. Alegre-Requena, R. S. Paton and M. D. Smith, *Angew. Chem. Int. Ed.* **2020**, *59*, 23020-23024.

[4] L. Cardinale, M. O. Konev and A. Jacobi von Wangelin, *Chem. Eur. J.* **2020**, *26*, 8239-8243.

[5] Y. Liu, Q. Pan, X. Hu, Y. Guo, Q.-Y. Chen and C. Liu, Org. Lett. 2021, 23, 3975-3980.

[6] T. Zhong, M.-K. Pang, Z.-D. Chen, B. Zhang, J. Weng and G. Lu, *Org. Lett.* **2020**, *22*, 3072-3078.

[7] N. Miwa, C. Tanaka, S. Ishida, G. Hirata, J. Song, T. Torigoe, Y. Kuninobu and T. Nishikata, *J. Am. Chem. Soc.* **2020**, *142*, 1692-1697.

[8] S. Bhor, G. Anilkumar, M. K. Tse, M. Klawonn, C. Dobler, B. Bitterlich, A. Grotevendt and M. Beller, *Org. Lett.* **2005**, *7*, 3393-3396.

10. HRMS detection of intermediates

Electrospray ionization high-resolution mass spectra (ESI-HRMS) were recorded on a Bruke P-SIMS-Gly FT-ICR mass spectrometer. The reaction ran for 3 hours. After the 3 hours, 10 μ L of reaction sample was extracted with a syringe, diluted into 1 mL of methanol, and transferred to a 0.5 mL syringe for immediate infusion into the mass spectrometer.

11. Single Crystal X-Ray Diffraction Data

Crystal data and structure refinement for **3a** (CCDC 2214049), Thermal ellipsoids are shown at 50% probability level.

A suitable crystal of compound **3a** was obtained by slowly evaporating a mixture of petroleum ether and ethyl acetatec solution at ambient temperature. It was selected and analyzed on a Bruker APEX-II CCD diffractometer. The crystal was kept at 302.0 K during data collection. Using Olex2,^[9] the structure was solved with the SHELXT^[10] structure solution program using Charge Flipping and refined with the SHELXL^[11] refinement package using Least Squares minimisation.

Crystal Data for $C_{23}H_{20}N_2O_4S$ (M =420.47 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 10.1780(12) Å, b = 10.3013(13) Å, c = 19.462(3) Å, V = 2040.6(5) Å³, Z = 4, T = 302.0 K, μ (MoK α) = 0.192 mm⁻¹, Dcalc = 1.369 g/cm³, 9227 reflections measured (4.186° ≤ 2 Θ ≤ 55.03°), 4458 unique (R_{int} = 0.0556, R_{sigma} = 0.0847) which were used in all calculations. The final R₁ was 0.0559 (I > 2 σ (I)) and wR₂ was 0.1171.

Identification code	mo_lz_hcx_0622_3_0m_a
Empirical formula	$C_{23}H_{20}N_2O_4S$
Formula weight	420.47
Temperature/K	302.0
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	10.1780(12)
b/Å	10.3013(13)
c/Å	19.462(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2040.6(5)
Z	4
ρ _{calc} g/cm ³	1.369
µ/mm ⁻¹	0.192

Table S6 Crystal data and structure refinement for 3a

F(000)	880.0
Crystal size/mm ³	0.13 × 0.13 × 0.07
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	4.186 to 55.03
Index ranges	-13 ≤ h ≤ 13, -13 ≤ k ≤ 9, -25 ≤ l ≤ 22
Reflections collected	9227
Independent reflections	4458 [R_{int} = 0.0556, R_{sigma} = 0.0847]
Data/restraints/parameters	4458/0/272
Goodness-of-fit on F ²	1.032
Final R indexes [I>=2σ (I)]	R ₁ = 0.0559, wR ₂ = 0.0943
Final R indexes [all data]	R ₁ = 0.1123, wR ₂ = 0.1171
Largest diff. peak/hole / e Å ⁻³	0.17/-0.24
Flack parameter	0.01(10)

Table S7 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for 3a. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
S1	5216.2(11)	4838.6(12)	3616.0(7)	48.1(3)
C5	-892(5)	3409(7)	4637(3)	79(2)
O2	4870(3)	7209(4)	4874.8(16)	61.5(10)
O3	5645(3)	4277(4)	2979.7(19)	64.4(11)
O4	5910(3)	4524(4)	4238.7(18)	57.6(10)
N1	7004(3)	6892(4)	5142.5(18)	47.0(11)
N2	8586(4)	6080(4)	3621(3)	64.3(13)
01	-262(4)	3267(4)	3999(2)	69.1(11)
C2	1000(5)	3671(5)	3952(3)	51.2(13)
C3	1751(5)	4089(5)	4500(3)	54.6(14)
C4	3040(5)	4466(5)	4393(3)	49.8(13)
C1	3563(4)	4430(4)	3739(3)	43.7(11)
C6	5267(5)	6579(4)	3509(2)	46.5(12)
C7	6379(4)	7218(5)	3931(2)	38.4(11)
C8	6019(4)	7095(5)	4707(2)	41.7(11)
C9	6784(4)	6597(5)	5852(2)	41.8(12)
C10	6846(5)	5340(6)	6076(3)	65.8(16)
C11	6701(6)	5069(7)	6762(3)	73.6(17)
C12	6463(5)	6044(7)	7222(3)	65.0(17)
C13	2802(5)	4055(5)	3186(3)	53.6(14)
C14	1528(5)	3676(5)	3291(3)	56.7(14)
C15	6523(4)	8672(5)	3764(2)	42.6(11)
C16	5440(5)	9435(5)	3645(3)	53.9(13)
C17	5583(6)	10746(5)	3509(3)	64.3(15)
C18	6793(6)	11311(6)	3503(3)	68.3(16)

C19	7884(6)	10559(5)	3637(3)	66.0(15)
C20	7759(5)	9244(5)	3764(3)	51.1(13)
C21	6526(5)	7568(5)	6310(3)	55.2(13)
C22	6366(5)	7273(7)	6999(3)	64.3(16)
C23	7623(4)	6566(5)	3767(2)	43.8(12)

Table S8 Anisotropic Displacement Parameters (Å²×10³) for 3a. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

liopidoenit						
Atom	U11	U22	U33	U23	U13	U12
S1	41.2(6)	51.6(7)	51.4(8)	0.3(7)	-3.0(6)	0.3(6)
C5	52(3)	104(5)	80(5)	19(4)	11(3)	-18(3)
02	35.1(17)	104(3)	45(2)	14(2)	4.4(15)	9.0(19)
O3	60(2)	73(3)	61(2)	-16(2)	13.4(18)	8(2)
O4	45.7(18)	61(3)	66(2)	11.8(19)	-16.6(17)	-1.5(17)
N1	31.1(18)	74(3)	36(2)	6(2)	2.5(17)	0(2)
N2	52(2)	66(3)	76(3)	-14(3)	9(3)	3(2)
01	49.3(19)	75(3)	83(3)	3(2)	-2(2)	-20(2)
C2	45(3)	42(3)	66(4)	3(3)	-2(3)	-5(2)
C3	51(3)	67(4)	46(3)	10(3)	0(3)	-10(3)
C4	50(3)	58(3)	41(3)	2(2)	-7(2)	-9(2)
C1	44(2)	44(3)	43(3)	4(2)	-3(2)	0(2)
C6	45(2)	51(3)	44(3)	4(2)	-7(2)	-3(2)
C7	33(2)	47(3)	36(3)	2(2)	-0.7(19)	1(2)
C8	37(2)	46(3)	43(3)	7(2)	2(2)	0(2)
C9	34(2)	57(3)	34(3)	9(2)	-1(2)	2(2)
C10	84(4)	59(4)	55(4)	1(3)	10(3)	9(3)
C11	87(4)	61(4)	74(4)	29(4)	14(3)	10(4)
C12	55(3)	97(5)	43(3)	23(3)	-3(3)	8(3)
C13	52(3)	62(4)	47(3)	-8(3)	-5(3)	-4(3)
C14	54(3)	66(4)	50(3)	-8(3)	-12(3)	-12(3)
C15	48(3)	48(3)	31(3)	3(2)	0(2)	2(2)
C16	52(3)	58(3)	52(3)	4(3)	6(3)	3(3)
C17	77(4)	57(4)	59(4)	4(3)	-1(3)	18(3)
C18	90(4)	52(3)	63(4)	6(3)	8(3)	-1(3)
C19	74(3)	58(4)	66(4)	6(3)	4(3)	-11(3)
C20	49(3)	55(3)	50(3)	1(3)	3(2)	-5(3)
C21	59(3)	61(4)	45(3)	6(3)	4(3)	-1(3)
C22	73(4)	78(5)	42(3)	-7(3)	2(3)	4(3)
C23	44(3)	47(3)	40(3)	-4(2)	0(2)	-2(2)

Table S9 Bond Lengths for 3a.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	O3	1.435(4)	C7	C8	1.559(6)
S1	O4	1.440(3)	C7	C15	1.540(6)

S1	C1	1.751(5)	C7	C23	1.469(6)
S1	C6	1.806(5)	C9	C10	1.368(7)
C5	01	1.405(6)	C9	C21	1.366(7)
O2	C8	1.220(5)	C10	C11	1.372(7)
N1	C8	1.329(5)	C11	C12	1.368(8)
N1	C9	1.431(5)	C12	C22	1.342(8)
N2	C23	1.137(5)	C13	C14	1.369(7)
01	C2	1.354(5)	C15	C16	1.374(6)
C2	C3	1.381(7)	C15	C20	1.389(6)
C2	C14	1.393(7)	C16	C17	1.385(7)
C3	C4	1.384(6)	C17	C18	1.363(8)
C4	C1	1.380(6)	C18	C19	1.378(7)
C1	C13	1.381(6)	C19	C20	1.382(6)
C6	C7	1.545(6)	C21	C22	1.384(7)

Table S10 Bond Angles for 3a.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O3	S1	O4	119.1(2)	O2	C8	N1	124.6(4)
O3	S1	C1	108.3(2)	O2	C8	C7	118.4(4)
O3	S1	C6	107.0(2)	N1	C8	C7	117.0(4)
O4	S1	C1	107.6(2)	C10	C9	N1	120.1(5)
O4	S1	C6	107.8(2)	C21	C9	N1	120.3(5)
C1	S1	C6	106.4(2)	C21	C9	C10	119.6(5)
C8	N1	C9	122.0(4)	C9	C10	C11	119.8(6)
C2	01	C5	117.4(4)	C12	C11	C10	120.5(6)
01	C2	C3	124.7(5)	C22	C12	C11	119.5(5)
01	C2	C14	115.4(5)	C14	C13	C1	119.6(5)
C3	C2	C14	119.9(4)	C13	C14	C2	120.3(5)
C2	C3	C4	119.7(5)	C16	C15	C7	121.0(4)
C1	C4	C3	119.8(5)	C16	C15	C20	118.9(5)
C4	C1	S1	119.3(4)	C20	C15	C7	120.0(4)
C4	C1	C13	120.7(4)	C15	C16	C17	120.4(5)
C13	C1	S1	120.0(4)	C18	C17	C16	120.9(5)
C7	C6	S1	112.5(3)	C17	C18	C19	119.1(5)
C6	C7	C8	108.0(3)	C18	C19	C20	120.7(5)
C15	C7	C6	111.9(4)	C19	C20	C15	119.9(5)
C15	C7	C8	107.8(4)	C9	C21	C22	119.6(5)
C23	C7	C6	108.7(4)	C12	C22	C21	120.8(6)
C23	C7	C8	112.1(4)	N2	C23	C7	177.9(6)
C23	C7	C15	108.4(4)				

Table S11 Torsion Angles for 3a.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
S1	C1	C13	C14	176.9(4)	C6	C7	C15	C20	-144.9(5)

S1	C6	C7	C8	-68.8(4)	C7	C15	C16	C17	178.8(5)
S1	C6	C7	C15	172.7(3)	C7	C15	C20	C19	-177.8(5)
S1	C6	C7	C23	53.0(5)	C8	N1	C9	C10	99.5(6)
C5	01	C2	C3	6.9(8)	C8	N1	C9	C21	-81.2(6)
C5	O1	C2	C14	-	C8	C7	C15	C16	-80.4(5)
				171.7(5)					
O3	S1	C1	C4	158.6(4)	C8	C7	C15	C20	96.6(5)
O3	S1	C1	C13	-20.4(5)	C9	N1	C8	O2	9.4(8)
O3	S1	C6	C7	-	C9	N1	C8	C7	-171.8(4)
				109.6(3)					
04	S1	C1	C4	28.6(5)	C9	C10	C11	C12	1.6(9)
04	S1	C1	C13	-	C9	C21	C22	C12	0.0(8)
				150.3(4)					
O4	S1	C6	C7	19.7(4)	C10	C9	C21	C22	1.8(7)
N1	C9	C10	C11	176.7(5)	C10	C11	C12	C22	0.2(9)
N1	C9	C21	C22	-	C11	C12	C22	C21	-1.0(9)
				177.5(4)					
01	C2	C3	C4	179.2(5)	C14	C2	C3	C4	-2.3(8)
01	C2	C14	C13	-	C15	C7	C8	02	83.7(5)
				179.3(5)					
C2	C3	C4	C1	0.4(8)	C15	C7	C8	N1	-95.2(5)
C3	C2	C14	C13	2.0(9)	C15	C16	C17	C18	-1.4(9)
C3	C4	C1	S1	-	C16	C15	C20	C19	-0.8(8)
				177.1(4)					
C3	C4	C1	C13	1.8(8)	C16	C17	C18	C19	0.0(9)
C4	C1	C13	C14	-2.0(8)	C17	C18	C19	C20	1.0(10)
C1	S1	C6	C7	134.9(3)	C18	C19	C20	C15	-0.6(9)
C1	C13	C14	C2	0.1(8)	C20	C15	C16	C17	1.8(8)
C6	S1	C1	C4	-86.7(4)	C21	C9	C10	C11	-2.6(8)
C6	S1	C1	C13	94.4(4)	C23	C7	C8	02	-157.0(5)
C6	C7	C8	02	-37.3(6)	C23	C7	C8	N1	24.1(6)
C6	C7	C8	N1	143.8(4)	C23	C7	C15	C16	158.1(4)
C6	C7	C15	C16	38.2(6)	C23	C7	C15	C20	-25.0(6)

Table	S12	Hydrogen	Atom	Coordinates	(Å×10 ⁴)	and	Isotropic	Displacement
Param	eters	(Å ² ×10 ³) fo	r 3a.					

	10) 101 00.			
Atom	x	У	Z	U(eq)
H5A	-1800	3172	4592	118
H5B	-828	4295	4785	118
H5C	-478	2855	4969	118
H1	7797	6940	4993	56
H3	1392	4116	4939	66
H4	3552	4742	4760	60
H6A	5393	6780	3027	56

H6B	4431	6944	3650	56
H10	6986	4670	5764	79
H11	6766	4217	6915	88
H12	6369	5857	7687	78
H13	3152	4059	2745	64
H14	1013	3422	2920	68
H16	4605	9068	3657	65
H17	4843	11248	3419	77
H18	6882	12192	3411	82
H19	8712	10940	3641	79
H20	8502	8744	3849	61
H21	6457	8422	6160	66
H22	6190	7934	7311	77

Crystal data and structure refinement for **3aq** (CCDC 2267265), Thermal ellipsoids are shown at 50% probability level.

A suitable crystal of compound **3as** was obtained by slowly evaporating a mixture of petroleum ether and ethyl acetate solution at ambient temperature. It was selected and analyzed on a Xcalibur, Eos diffractometer. The crystal was kept at 293.15 K during data collection. Using Olex2, ^[9] the structure was solved with the ShelXT^[10] structure solution program using Charge Flipping and refined with the ShelXL^[11] refinement package using Least Squares minimisation.

Crystal Data for C₂₁H₁₈N₂O₃S (M =378.43 g/mol): monoclinic, space group I2/a (no. 15), a = 16.5437(14) Å, b = 6.8832(5) Å, c = 33.016(3) Å, β = 97.208(9)°, V = 3729.9(5) Å³, Z = 8, T = 293.15 K, μ (MoK α) = 0.198 mm⁻¹, Dcalc = 1.348 g/cm³, 8138 reflections measured (6.048° ≤ 2 Θ ≤ 52.734°), 3830 unique (Rint = 0.0428, Rsigma = 0.0783) which were used in all calculations. The final R₁ was 0.0918 (I > 2 σ (I)) and wR₂ was 0.2422.

Table S1	3 Crystal	data and	structure	refinement	for 3aq.
----------	-----------	----------	-----------	------------	----------

Identification code	230602_s2_hcx_auto
Empirical formula	$C_{21}H_{18}N_2O_3S$
Formula weight	378.43

Temperature/K	293.15
Crystal system	monoclinic
Space group	l2/a
a/Å	16.5437(14)
b/Å	6.8832(5)
c/Å	33.016(3)
a/°	90
β/°	97.208(9)
γ/°	90
Volume/Å ³	3729.9(5)
Z	8
ρ _{calc} g/cm ³	1.348
µ/mm⁻¹	0.198
F(000)	1584.0
Crystal size/mm ³	0.35 × 0.3 × 0.25
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	6.048 to 52.734
Index ranges	-13 ≤ h ≤ 20, -8 ≤ k ≤ 5, -40 ≤ l ≤ 41
Reflections collected	8138
Independent reflections	$3830 [R_{int} = 0.0428, R_{sigma} = 0.0783]$
Data/restraints/parameters	3830/1/233
Goodness-of-fit on F ²	1.044
Final R indexes [I>=2σ (I)]	$R_1 = 0.0918$, $wR_2 = 0.2070$
Final R indexes [all data]	$R_1 = 0.1444$, $wR_2 = 0.2422$
Largest diff. peak/hole / e Å ⁻³	0.93/-0.91

Table S14 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3aq. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)						
S1	2167.1(7)	7362.0(18)	3511.6(4)	43.2(4)						
O1	2195(2)	9379(5)	3399.5(10)	52.2(9)						
N1	4350(3)	6872(8)	3925.7(14)	67.9(14)						
C1	3969(3)	8624(7)	3960.8(13)	42.6(11)						
O2	1385.7(19)	6398(5)	3479.8(11)	60.0(10)						
N2	2551(3)	11976(7)	4219.5(16)	76.1(15)						
C2	4227(3)	10310(8)	3800.9(15)	56.9(14)						
O3	4121(2)	3153(5)	2434.7(11)	59.4(10)						
C3	4925(4)	10257(11)	3597.9(18)	75.1(19)						
C4	5319(3)	8543(14)	3563.5(18)	81(2)						

C5	5025(4)	6914(11)	3722.0(18)	76.7(19)
C6	3237(3)	8564(7)	4204.4(14)	40.4(11)
C7	3555(4)	8048(9)	4651.3(18)	76.9(11)
C8	3810(4)	9456(10)	4928.7(17)	79.8(19)
C9	4159(5)	8968(13)	5321(2)	93(2)
C10	4230(4)	7107(11)	5429(2)	80(2)
C11	3967(4)	5733(10)	5155.7(18)	76.9(11)
C12	3624(4)	6210(9)	4764.8(18)	76.9(11)
C13	2847(3)	10500(8)	4204.6(16)	52.8(13)
C14	2593(3)	7061(7)	4029.9(14)	43.6(11)
C15	2775(3)	6049(7)	3208.8(13)	37.6(10)
C16	2783(3)	4055(7)	3217.5(15)	48.2(12)
C17	3229(3)	3041(7)	2962.7(15)	49.8(13)
C18	3664(3)	4011(7)	2698.5(13)	42.6(11)
C19	3649(3)	6027(7)	2687.3(15)	56.9(14)
C20	3213(3)	7023(7)	2947.0(16)	53.8(13)
C21	4156(4)	1095(8)	2428.3(17)	62.4(15)

Table S15 Anisotropic Displacement Parameters (Ų×10³) for 3aq. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*b*}U_{12}+\cdots]$.

	-	-		-		-
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S1	37.4(6)	44.0(7)	48.5(7)	-6.4(6)	6.9(5)	1.1(5)
01	61(2)	39.1(18)	56(2)	-2.7(16)	4.2(17)	7.7(16)
N1	57(3)	88(4)	61(3)	0(3)	16(2)	15(3)
C1	38(2)	53(3)	36(2)	-2(2)	4(2)	-3(2)
O2	36.3(18)	69(2)	76(2)	-19(2)	8.2(17)	-6.0(17)
N2	103(4)	54(3)	70(3)	-15(3)	7(3)	14(3)
C2	60(3)	60(3)	52(3)	1(3)	10(3)	-16(3)
O3	74(3)	50(2)	59(2)	-8.6(18)	28(2)	6.1(19)
C3	66(4)	106(5)	55(3)	1(4)	12(3)	-39(4)
C4	38(3)	149(7)	56(4)	-8(4)	9(3)	-17(4)
C5	64(4)	105(5)	64(4)	-6(4)	21(3)	29(4)
C6	42(3)	40(2)	41(2)	-2(2)	10(2)	-6(2)
C7	111(3)	64(2)	52.4(19)	-0.8(19)	1(2)	5(2)
C8	112(5)	71(4)	50(3)	-1(3)	-16(3)	-16(4)
C9	110(6)	110(6)	54(4)	-8(4)	-11(4)	-16(5)
C10	79(4)	108(6)	53(4)	11(4)	4(3)	14(4)
C11	111(3)	64(2)	52.4(19)	-0.8(19)	1(2)	5(2)
C12	111(3)	64(2)	52.4(19)	-0.8(19)	1(2)	5(2)
C13	59(3)	48(3)	52(3)	-14(3)	11(3)	-3(3)

C14	46(3)	44(3)	42(3)	-2(2)	13(2)	-4(2)
C15	33(2)	40(3)	39(2)	-5(2)	2.8(19)	-2(2)
C16	51(3)	41(3)	55(3)	3(2)	17(2)	-1(2)
C17	61(3)	32(2)	58(3)	2(2)	16(3)	0(2)
C18	47(3)	43(3)	39(2)	-7(2)	7(2)	4(2)
C19	78(4)	44(3)	56(3)	3(3)	36(3)	-3(3)
C20	67(3)	38(3)	59(3)	1(2)	20(3)	1(2)
C21	73(4)	53(3)	62(3)	-9(3)	12(3)	14(3)

Table S16 Bond Lengths for 3aq.

Atom	Atom	Length/Å	Atom	Atom	Length/Å				
S1	O1	1.439(3)	C6	C13	1.481(7)				
S1	O2	1.445(3)	C6	C14	1.543(6)				
S1	C14	1.779(5)	C7	C8	1.363(8)				
S1	C15	1.755(4)	C7	C12	1.321(8)				
N1	C1	1.372(6)	C8	C9	1.391(8)				
N1	C5	1.374(7)	C9	C10	1.331(9)				
C1	C2	1.366(7)	C10	C11	1.342(9)				
C1	C6	1.536(6)	C11	C12	1.383(8)				
N2	C13	1.131(6)	C15	C16	1.373(6)				
C2	C3	1.406(8)	C15	C20	1.371(6)				
O3	C18	1.358(5)	C16	C17	1.377(6)				
O3	C21	1.418(6)	C17	C18	1.372(6)				
C3	C4	1.360(9)	C18	C19	1.388(7)				
C4	C5	1.353(9)	C19	C20	1.371(7)				
C6	C7	1.544(7)							

Table S17 Bond Angles for 3aq.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	S1	02	118.8(2)	C8	C7	C6	121.2(5)
01	S1	C14	109.8(2)	C12	C7	C6	119.9(5)
01	S1	C15	108.1(2)	C12	C7	C8	118.8(6)
02	S1	C14	105.0(2)	C7	C8	C9	120.7(7)
02	S1	C15	107.1(2)	C10	C9	C8	119.7(7)
C15	S1	C14	107.6(2)	C9	C10	C11	119.2(6)
C1	N1	C5	115.6(5)	C10	C11	C12	121.4(6)
N1	C1	C6	114.9(4)	C7	C12	C11	120.2(6)
C2	C1	N1	123.0(4)	N2	C13	C6	177.5(6)
C2	C1	C6	122.0(4)	C6	C14	S1	116.9(3)
C1	C2	C3	118.5(6)	C16	C15	S1	120.5(3)

C18	O3	C21	118.1(4)	C20	C15	S1	119.6(4)
C4	C3	C2	119.6(6)	C20	C15	C16	119.8(4)
C5	C4	C3	119.2(6)	C15	C16	C17	119.9(4)
C4	C5	N1	124.1(6)	C18	C17	C16	120.4(4)
C1	C6	C7	108.0(4)	O3	C18	C17	125.1(4)
C1	C6	C14	112.0(4)	O3	C18	C19	115.3(4)
C13	C6	C1	110.4(4)	C17	C18	C19	119.6(4)
C13	C6	C7	107.6(4)	C20	C19	C18	119.5(5)
C13	C6	C14	108.9(4)	C15	C20	C19	120.7(5)
C14	C6	C7	109.8(4)				

Table S18 Torsion Angles for 3aq.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
S1	C15	C16	C17	176.6(4)	C6	C7	C8	C9	-174.5(6)
S1	C15	C20	C19	-175.6(4)	C6	C7	C12	C11	175.1(6)
01	S1	C14	C6	-27.1(4)	C7	C6	C14	S1	-178.5(4)
01	S1	C15	C16	-172.3(4)	C7	C8	C9	C10	-1.5(12)
01	S1	C15	C20	4.5(5)	C8	C7	C12	C11	-1.5(11)
N1	C1	C2	C3	-1.3(8)	C8	C9	C10	C11	0.5(11)
N1	C1	C6	C7	65.6(5)	C9	C10	C11	C12	0.0(11)
N1	C1	C6	C13	-177.0(4)	C10	C11	C12	C7	0.6(11)
N1	C1	C6	C14	-55.5(5)	C12	C7	C8	C9	2.0(11)
C1	N1	C5	C4	0.4(9)	C13	C6	C7	C8	-30.9(8)
C1	C2	C3	C4	0.4(8)	C13	C6	C7	C12	152.6(6)
C1	C6	C7	C8	88.3(7)	C13	C6	C14	S1	63.9(4)
C1	C6	C7	C12	-88.2(7)	C14	S1	C15	C16	69.2(4)
C1	C6	C14	S1	-58.5(5)	C14	S1	C15	C20	-114.0(4)
02	S1	C14	C6	-155.9(3)	C14	C6	C7	C8	-149.3(6)
02	S1	C15	C16	-43.2(5)	C14	C6	C7	C12	34.2(8)
02	S1	C15	C20	133.5(4)	C15	S1	C14	C6	90.3(4)
C2	C1	C6	C7	-113.0(5)	C15	C16	C17	C18	-0.3(8)
C2	C1	C6	C13	4.5(6)	C16	C15	C20	C19	1.2(8)
C2	C1	C6	C14	126.0(5)	C16	C17	C18	O3	-179.9(5)
C2	C3	C4	C5	0.8(9)	C16	C17	C18	C19	-0.4(8)
O3	C18	C19	C20	-179.1(5)	C17	C18	C19	C20	1.4(8)
C3	C4	C5	N1	-1.2(10)	C18	C19	C20	C15	-1.8(8)
C5	N1	C1	C2	0.9(7)	C20	C15	C16	C17	-0.1(8)
C5	N1	C1	C6	-177.6(4)	C21	O3	C18	C17	0.1(7)
C6	C1	C2	C3	177.1(4)	C21	O3	C18	C19	-179.4(5)

Atom	x	У	Z	U(eq)	
H2	3947.94	11468.08	3825.83	68	
H3	5114.99	11386.67	3487.74	90	
H4	5784.51	8490.65	3432.81	97	
H5	5296.34	5751.04	3691.07	92	
H8	3748.76	10757.11	4855.02	96	
H9	4342.72	9937.14	5506	112	
H10	4459.33	6763.78	5691	96	
H11	4015.5	4431.56	5230.8	92	
H12	3441.35	5233.24	4581.17	92	
H14A	2151.81	7082.57	4197.37	52	
H14B	2840.33	5781.72	4058.39	52	
H16	2487.37	3389.79	3395.23	58	
H17	3235.95	1690.71	2969.72	60	
H19	3932.35	6696.86	2505.09	68	
H20	3214.61	8374.14	2945.42	65	
H21A	4462.31	680.68	2215.51	94	
H21B	3613.12	579.71	2378.46	94	
H21C	4414.96	631	2686.66	94	

Table S19 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 3aq.

[9] Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

[10] Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.

[11] Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

12. The spectrums of NMR and HPLC chromatograms

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 6 f1 (ppm)

110 100 f1 (ppm) 210 200 190 180 170 160 150 140 130 120

NMR of Compound of 3h

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

o -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 120 -130 -140 -150 160 -170 -180 -190 -200 -210 f1 (ppm)

-112.82

NMR of Compound of 3p

NMR of Compound of 3q

-30				
f1	(n	n		

NMR of Compound of 3w

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

--112.86

210 200 150 180 170 180 150 140 150 120 110 100 60 80 70 60 50 40 30 20 10 5 -10 f1 (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 cpm>

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

0 -10 -20 -30 -40 -50 -50 -70 -80 90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 cppm)

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

NMR of Compound of 10

HPLC chromatograms of Compound of 3a

HPLC chromatograms of Compound of 3c

HPLC chromatograms of Compound of 3e

HPLC chromatograms of Compound of 3g

HPLC chromatograms of Compound of 3i

HPLC chromatograms of Compound of 3j

HPLC chromatograms of Compound of 3I

HPLC chromatograms of Compound of 3p

HPLC chromatograms of Compound of 3r

HPLC chromatograms of Compound of 3t

HPLC chromatograms of Compound of 3w

HPLC chromatograms of Compound of 3z

HPLC chromatograms of Compound of 3ab

HPLC chromatograms of Compound of 3ad

HPLC chromatograms of Compound of 3af

HPLC chromatograms of Compound of 3ak

HPLC chromatograms of Compound of 3al

HPLC chromatograms of Compound of 3ao

HPLC chromatograms of Compound of 5a

HPLC chromatograms of Compound of 5d

HPLC chromatograms of Compound of 5e

HPLC chromatograms of Compound of 6

HPLC chromatograms of Compound of 7

