Supporting Information:

Reversal of Enantioselectivity in Cobalt(II)-Catalyzed Asymmetric Michael–Alkylation Reactions: Synthesis of Spiro-Cyclopropane-Oxindoles

Jun-Hao Zhang^a, Wei-Jing Yang^a, Ning Li^a, Yin Tian,^{*b} Ming-Sheng Xie,^{*a} and Hai-Ming Guo^{*a}

^aState Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China. Email: xiemingsheng@htu.edu.cn; ghm@htu.edu.cn

^bState Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Email: ytian227@outlook.com

Contents

General information	S2
Synthesis of the chiral ligand L11	S 3
General procedures for the preparation of substrates	S3-S4
Optimization of the reaction conditions	S5-S6
Catalytic asymmetric Michael-Alkylation reactions	S7-S21
General procedure for the synthesis of spiro-cyclopropane-oxindoles 6a-6c	S22-S24
Gram-scale synthesis of 3a	S25-S26
Nonlinear effect experiment	S27-S31
Transformation of the product 3a	S32-S34
X-ray data of 8a and 10a	S35-S38
NMR Spectra	S39-S63
HPLC Spectra	S64-S93
Quantum chemical calculations	S94-S102
References	S103-S104

General information

¹H NMR spectra were recorded on Bruker Avance III HD 600 or Avance 400 MHz spectrometer. Chemical shifts are recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet; t = triplet; q = quartet; sept = septet; m = multiplet; br = broad), coupling constants (Hz), integration. ¹³C NMR data were collected on Bruker Avance III HD 150 or Avance 100 MHz spectrometer. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. Enantiomer excesses were determined by chiral HPLC analysis on Chiralcel IE/ID/IG in comparison with the authentic racemates. Chiral HPLC analysis recorded on Thermo scientific Dionex Ultimate 3000 and Agilent Technologies 1260 Infinity. Optical rotations were reported as follows: $[\alpha]_D^T$ (c: g/100 mL, in solvent). Optical rotations recorded on Autopol Automatic Polarimeter. HRMS was recorded on an ABI/Sciex QStar Mass Spectrometer (ESI). EtOAc and DCM were purchased extra dry solvents. Other solvents used for work-up and purification purposes were purchased in technical grade quality and distilled by rotary evaporator before use. Single crystal X-ray crystallography data were obtained on Supernova Atlas S2 CCD detector. These ligands L1-L10 and L12 were prepared by previous reported methods.¹⁻⁵ The β , γ -unsaturated- α -ketoesters **2a-2k** were prepared according to literature precedures.⁶ The 2,3-dioxopyrrolidine 5a were prepared according to literature precedures.⁷

Synthesis of the chiral ligand L11

In a round-bottomed flask containing a stir bar, compound **S1a** (475.0 μ L, 5.0 mmol), (*R*,*R*)-TSDPEN **S2a** (1.83 g, 5.0 mmol), AcOH (429.3 μ L, 7.5 mmol), and dichloromethane (50.0 mL) were added. Then, the reaction was stirred at 30 °C under N₂ for 6 h. After that, the reaction mixture was quenched by aqueous NaHCO₃. The organic layers were extracted with dichloromethane for 3 times, and the collected organic layers were dried over Na₂SO₄. After removing the solvent under reduced pressure, ligand L11 could be obtained by recrystallization (recrystallization solvent: Pet/EtOAc) as a white solid.

2-((2S,4R,5R)-4,5-Diphenyl-1-tosylimidazolidin-2-yl) pyridine (L11)

White solid: 1.9 g, 83% yield; m.p.: 131.7-134.4 °C; $R_f = 0.6$ (Pet/EtOAc, 5/1, v/v); $[\alpha]_D^{24} = -22.90$ (c = 0.91, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 8.61 (d, *J* = 4.4 Hz, 1H), 8.05 – 7.98 (m, 1H), 7.85 (td, *J* = 7.6, 1.6 Hz, 1H), 7.65 – 7.60 (m, 2H), 7.34 – 7.29 (m, 1H), 7.25 – 7.15 (m, 10H), 7.03 – 6.98 (m, 2H), 5.95 (s, 1H), 4.66 (d, *J* = 6.8 Hz, 1H), 4.33 (d, *J* = 6.8 Hz, 1H), 3.79 (s, 1H), 2.44 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.8, 149.2, 143.9, 139.8, 139.2, 137.0, 134.4, 129.7, 128.5, 128.4, 128.1, 127.7, 127.6, 127.4, 127.1, 123.9, 123.5, 78.4, 72.1, 69.9, 21.7.

HRMS (ESI): exact mass calcd for $C_{27}H_{25}N_3NaO_2S^+$ (M+Na)⁺ requires m/z 478.1560, found m/z 478.1559 ($\Delta = -1$ ppm).

General procedures for the preparation of substrates

The substituted 3-chloride oxindoles 1a-1h were prepared according to literature precedures.⁸

In a 250 mL round bottom flask, 1*H*-indole-3-carbaldehyde **S3a** (3.0 g, 20.0 mmol), Oxone (12.7 g, 40.0 mmol) and NaCl (2.4 g, 40.0 mmol) were dissolved in the solvent of CH₃CN/H₂O (1:1). The reaction

mixture was stirred at 50 °C for 3 h as monitored by TLC. After completion of the reaction, the reaction mixture was diluted with ethyl acetate and then the organic layers were dried over Na_2SO_4 and concentrated under vacuum. The residue was purified by flash column chromatography to give the desired product **1a**.

PIFA (12.0 mmol) was added dropwise to a solution of indoles **S4a** (10.0 mmol) and $nBu_4NCl\cdot H_2O$ (TBAC) (12.0 mmol) in CH₂Cl₂ with stirring under open-air conditions at room temperature. The resulting solution was stirred for further 5 minutes. After completion of the reaction, the reaction mixture was diluted with ethyl acetate and then the organic layers were dried over Na₂SO₄ and concentrated under vacuum. The residue was purified by flash column chromatography to obtain the products **1b-1h**.

Optimization of the reaction conditions

Table	S1 .	Screening	of Col	(III)) salts ^a
Table	D1 .	Sereening	01 000	11,	Juno

Cl N H H	O metal-L1 (10 CO ₂ Me Na ₂ CO ₃ , DC	0 mol%) E, 30 °C	CO ₂ Me Ph- Ph- Ph- Ph- Ph- Ph- Ph- Ph-	Ts Ph N N N N O NH N O
1a	2a	3a	4a	L1
entry	metal	yield (3a) (%) ^b	3a:4a°	ee (3a) (%) ^d
1	$Co(OAc)_2$	55	79:21	64
2	CoBr ₂	14	40:60	41
3	$Co(acac)_3$	24	82:18	24
4	$Co(acac)_2$	41	90:10	80
5	Co(ClO ₄) ₂ ·6H ₂ O	34	52:48	83
6	Co(BF ₄) ₂ ·6H ₂ O	63	82:18	78

^aUnless otherwise noted, reactions were carried out with metal (10 mol%), L1 (10 mol%), 1a (0.1 mmol), 2a (0.1 mmol), Na₂CO₃ (1.1 equiv.) in DCE (2.0 mL) at 30 °C for 12 h. ^bIsolated yield of 3a. ^cThe ratio of 3a:4a was determined by ¹H NMR spectra of the crude product. ^dThe ee of 3a was determined by chiral HPLC analysis.

	0.0	a	•	0	1 , 9
Table	NZ.	Screet	nng	of sc	lvents ^a
	~	~ • • • • •			

CI N H 1a	CO ₂ Me Co(acac) ₂ -L6 Na ₂ CO ₃ , solv	(10 mol%) ent, 30 °C H 3a	CO ₂ Me	
entry	solvent	yield (3a) (%) ^b	3a:4a°	ee (3a) (%) ^d
1	DCM	88	92:8	99
2	THF	34	90:10	97
3	MeCN	86	89:11	96
4	PhCF ₃	96	93:7	84
5	EtOAc	94	>95:5	99
6	TBME	96	>95:5	92
7	PhCl	86	94:6	99
8	toluene	80	82:18	89

^aUnless otherwise noted, reactions were carried out with Co(acac)₂ (10 mol%), L6 (10 mol%), 1a (0.1 mmol), 2a (0.1 mmol), Na₂CO₃ (1.1 equiv.) in solvent (2.0 mL) at 30 °C for 12 h. ^bIsolated yield of 3a. ^cThe ratio of 3a:4a was determined by ¹H NMR spectra of the crude product. ^dThe ee of 3a was determined by chiral HPLC analysis.

Table S3: Screening of metal/ligand^a

CI NHO + P	O CO2Me	Co(acac)₂ (x mol%) L6 (y mol%) Na₂CO₃, EtOAc, 30 °C	$\begin{array}{c} O_{2}Me \\ O_{1}O_{1}O_{2}Me \\ O_{1}O_{2}O_{2}Me \\ O_{1}O_{2}O_{2}O_{2}Me \\ O_{1}O_{2}O_{2}O_{2}Me \\ O_{1}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$		
entry	Х	у	yield (3a) (%) ^b	3a:4a ^c	ee $(3a) (\%)^d$
1	10	10	95	>95:5	99
2	10	11	94	>95:5	99
3	10	12	95	>95:5	99

^aUnless otherwise noted, reactions were carried out with Co(acac)₂ (x mol%), L6 (y mol%), 1a (0.1 mmol), 2a (0.1 mmol), Na₂CO₃ (1.1 equiv.) in EtOAc (2.0 mL) at 30 °C for 12 h. ^bIsolated yield of 3a. ^cThe ratio of 3a:4a was determined by ¹H NMR spectra of the crude product. ^dThe ee of 3a was determined by chiral HPLC analysis.

Table	S4:	Screening	the amount	of metal	and ligand ^a
	~ ~ ~				

$ \begin{array}{c} $	o CO ₂ Me	Co(acac)2 -L6 (1:1, x mol%) Na ₂ CO ₃ , EtOAc, 30 °C	O = O = O = O = O = O = O = O = O = O =	$ \begin{array}{c} CO_2Me \\ & & \\$	
entry	X	time (h)	yield (3a) (%) ^b	3a:4a ^c	ee $(3a)$ (%) ^d
1	10	12	95	>95:5	99
2	5	36	94	>95:5	99
3	2.5	48	95	>95:5	99
4	1	48	94	>95:5	97
5	0.5	48	87	92:8	93
6	0.25	48	67	74:26	79
7	0.1	48	43	47:53	28

^aUnless otherwise noted, reactions were carried out with $Co(acac)_2/L6 = 1:1$ (x mol%), 1a (0.1 mmol), 2a (0.1 mmol), Na₂CO₃ (1.1 equiv.) in EtOAc (2.0 mL) at 30 °C. ^bIsolated yield of 3a. ^cThe ratio of 3a:4a was determined by ¹H NMR spectra of the crude product. ^dThe ee of **3a** was determined by chiral HPLC analysis.

Catalytic asymmetric Michael-Alkylation reactions

Preparation of $Co(acac)_2$ and L6 solution: in a 2.0 mL volumetric flask, $Co(acac)_2$ (6.4 mg, 0.025 mmol) was added, then THF was added to make the total volume up to 2.0 mL. In a 2.0 mL volumetric flask, L6 (17.6 mg, 0.025 mmol) was added, then THF was added to make the total volume up to 2.0 mL.

In a dry reaction tube, 200 µL (2.5 mol%) of Co(acac)₂ solution and 200 µL (2.5 mol%) of L6 were added. Then, THF was removed under vacuum. After that, β , γ -unsaturated- α -ketoesters **2** (19.0 mg, 0.1 mmol) and EtOAc (2.0 mL) were added and the reaction was stirred at 30 °C for 0.5 h. Subsequently, 3-chlorooxindoles **1** (16.7 mg, 0.1 mmol) and Na₂CO₃ (11.7 mg, 0.11 mmol) were added and the reaction was stirred at 30 °C until **1** was consumed (detected by TLC, Pet/EtOAc, 1/1, v/v). Finally, the corresponding product **3** was purified directly by flask column chromatography (Pet/EtOAc, 5/1-1/1, v/v).

Methyl 2-oxo-2-((1R,2S,3R)-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl) acetate (3a)

Colorless solid, 30.5 mg, 95% yield, 97:3 dr, 99% ee; $R_f = 0.4$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{24} = +100.00$ (c = 0.77, CH₂Cl₂); reaction time: 48 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 14.418 min (major), 16.940 min (minor).

¹**H NMR** (400 MHz, DMSO-d⁶) δ 10.70 (s, 1H), 7.36 – 7.28 (m, 5H), 7.10 (td, *J* = 5.2, 0.8 Hz, 1H), 6.87 (d, *J* = 5.2 Hz, 1H), 6.66 (td, *J* = 5.2, 0.8 Hz, 1H), 6.10 (d, *J* = 5.2 Hz, 1H), 3.91 (d, *J* = 5.6 Hz, 1H), 3.72 (s, 3H), 3.59 (d, *J* = 5.6 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶) δ 186.5, 174.0, 159.9, 142.5, 133.1, 130.0, 128.4, 127.7, 127.6, 125.7, 121.0, 120.8, 109.7, 52.7, 40.1, 38.6, 36.8.

HRMS (ESI): exact mass calcd for $C_{19}H_{15}NNaO_4^+$ (M+Na)⁺ requires m/z 344.0893, found m/z 344.0892 ($\Delta = -1$ ppm). Known compound.⁹

Methyl 2-oxo-2-((1S,2R,3S)-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl)acetate (ent-3a)

Colorless solid, 29.9 mg, 93% yield, 98:2 dr, 98% ee; $R_f = 0.4$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +114.99$ (c = 1.25, CH₂Cl₂); reaction time: 48 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 14.562 min (minor), 16.398 min (major).

Methyl 2-((1*R*,2*S*,3*R*)-5'-chloro-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoacetat e (3b)

Light yellow solid, 30.2 mg, 85% yield, >99:1 dr, 97% ee; m.p.: 126.6-129.3 °C; $R_f = 0.45$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{24} = +66.03$ (c = 1.26, CH₂Cl₂); reaction time: 60 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 10.542 min (major), 12.155 min (minor).

¹**H NMR** (400 MHz, DMSO-d⁶) δ 10.87 (s, 1H), 7.41 – 7.27 (m, 5H), 7.16 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.09 (d, *J* = 2.0 Hz, 1H), 4.04 (d, *J* = 8.4 Hz, 1H), 3.72 (s, 3H), 3.63 (d, *J* = 8.4 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶) δ 186.3, 173.8, 159.8, 141.4, 132.6, 129.6, 128.5, 128.0, 127.8, 127.4, 124.9, 121.1, 111.0, 52.8, 40.0, 38.7, 37.3.

HRMS (ESI): exact mass calcd for $C_{19}H_{14}CINNaO_4^+$ (M+Na)⁺ requires m/z 378.0504, found m/z 378.0511 ($\Delta = +7$ ppm).

Methyl 2-((1*S*,2*R*,3*S*)-5'-chloro-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoacetat e (*ent*-3b)

Light yellow solid, 34.4 mg, 97% yield, >99:1 dr, 95% ee; $R_f = 0.45$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} =$ +60.68 (c = 1.90, CH₂Cl₂); reaction time: 60 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 10.718 min (minor), 12.053 min (major).

Methyl 2-((1*R*,2*S*,3*R*)-5'-bromo-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoacetat e (3c)

Light yellow oil, 35.9 mg, 90% yield, >99:1 dr, 97% ee; $R_f = 0.45$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{24} = +54.07$ (c = 1.49, CH₂Cl₂); reaction time: 72 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IG, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 10.233 min (major), 11.855 min (minor).

¹**H NMR** (400 MHz, DMSO-d⁶) δ 10.87 (s, 1H), 7.39 – 7.27 (m, 6H), 6.84 (d, J = 8.0 Hz, 1H), 6.20 (d,

J = 2.0 Hz, 1H), 4.03 (d, *J* = 8.4 Hz, 1H), 3.72 (s, 3H), 3.62 (d, *J* = 8.4 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶) δ 186.3, 173.7, 159.8, 141.8, 132.6, 130.2, 129.6, 128.5, 128.2, 128.0, 123.8, 112.6, 111.5, 52.8, 39.9, 38.8, 37.3.

HRMS (ESI): exact mass calcd for $C_{19}H_{14}BrNNaO_4^+$ (M+Na)⁺ requires m/z 421.9998, found m/z 421.9995 ($\Delta = -3$ ppm).

Methyl 2-((1*R*,2*S*,3*R*)-6'-bromo-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoacetat e (3d)

Yellow solid, 37.9 mg, 95% yield, 99:1 dr, 96% ee; $R_f = 0.35$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{24} = +91.55$ (c = 1.22, CH₂Cl₂); reaction time: 72 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 12.550 min (major), 14.337 min (minor).

¹H NMR (400 MHz, DMSO-d⁶) δ 10.90 (s, 1H), 7.31 (s, 5H), 7.03 (s, 1H), 6.85 (d, *J* = 7.6 Hz, 1H), 6.01 (d, *J* = 7.6 Hz, 1H), 3.98 (d, *J* = 8.4 Hz, 1H), 3.72 (s, 3H), 3.63 (d, *J* = 8.4 Hz, 1H).
¹³C NMR (100 MHz, DMSO-d⁶) δ 186.1, 173.9, 159.8, 144.0, 132.8, 129.5, 128.5, 127.9, 125.1, 123.5, 122.6, 120.3, 112.5, 52.8, 39.8, 38.7, 37.1.

HRMS (ESI): exact mass calcd for $C_{19}H_{14}BrNNaO_4^+$ (M+Na)⁺ requires m/z 421.9998, found m/z 421.9989 ($\Delta = -9$ ppm). Known compound.⁹

Methyl 2-((1*S*,2*R*,3*S*)-6'-bromo-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoacetat e (*ent*-3d)

Yellow solid, 38.3 mg, 96% yield, 98:2 dr, 95% ee; $R_f = 0.35$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +81.10$ (c = 2.27, CH₂Cl₂); reaction time: 72 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 12.872 min (minor), 14.223 min (major).

Methyl 2-((1*R*,2*S*,3*R*)-4'-methyl-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoaceta te (3e)

Colorless solid, 28.1 mg, 84% yield, 89:11 dr, 97% ee; $R_f = 0.5$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +57.23$ (c = 1.74, CH₂Cl₂); reaction time: 72 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 13.680 min (major), 16.305 min (minor).

¹**H NMR** (400 MHz, DMSO-d⁶) δ 10.76 (s, 1H), 7.37 – 7.23 (m, 3H), 7.23 – 7.12 (m, 2H), 7.05 (t, *J* = 7.6 Hz, 1H), 6.78 (d, *J* = 7.6 Hz, 1H), 6.53 (d, *J* = 7.6 Hz, 1H), 4.15 (d, *J* = 8.8 Hz, 1H), 3.72 (s, 3H), 3.38 (d, *J* = 8.4 Hz, 1H), 1.21 (s, 3H).

¹³C NMR (100 MHz, DMSO-d⁶) δ 187.8, 174.8, 159.9, 143.3, 135.4, 133.7, 129.6, 128.6, 127.8, 127.5,

124.4, 122.4, 107.9, 52.7, 40.7, 37.8, 35.5, 18.1.

HRMS (ESI): exact mass calcd for $C_{20}H_{17}NNaO_4^+$ (M+Na)⁺ requires m/z 358.1050, found m/z 358.1047 ($\Delta = -3$ ppm). Known compound.⁹

Methyl 2-((1*R*,2*S*,3*R*)-5'-methyl-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoaceta te (3f)

Light yellow oil, 31.8 mg, 95% yield, 97:3 dr, 99% ee; $R_f = 0.5$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +74.04$ (c = 2.42, CH₂Cl₂); reaction time: 48 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 14.418 min (major), 17.948 min (minor).

¹**H NMR** (400 MHz, DMSO-d⁶) δ 10.60 (s, 1H), 7.38 – 7.26 (m, 5H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 1H), 5.91 (s, 1H), 3.86 (d, *J* = 8.4 Hz, 1H), 3.71 (s, 3H), 3.57 (d, *J* = 8.4 Hz, 1H), 1.96 (s, 3H).

¹³C NMR (100 MHz, DMSO-d⁶) δ 186.5, 174.0, 159.9, 140.0, 133.1, 129.54, 129.47, 128.4, 127.8, 127.7, 125.8, 121.8, 109.3, 52.7, 40.2, 38.6, 36.7, 20.7.

HRMS (ESI): exact mass calcd for $C_{20}H_{17}NNaO_4^+$ (M+Na)⁺ requires m/z 358.1050, found m/z 358.1045 ($\Delta = -5$ ppm). Known compound.⁹

Methyl 2-((1*R*,2*S*,3*R*)-5'-methoxy-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoace tate (3g)

Light yellow solid, 33.7 mg, 96% yield, 96:4 dr, 99% ee; m.p.: 57.4-60.0 °C; $R_f = 0.5$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{24} = +93.56$ (c = 1.03, CH₂Cl₂); reaction time: 36 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 19.437 min (major), 24.952 min (minor).

¹**H NMR** (400 MHz, DMSO-d⁶) δ 10.53 (s, 1H), 7.45 – 7.23 (m, 5H), 6.77 (d, *J* = 8.4 Hz, 1H), 6.67 (dd, *J* = 8.4, 2.8 Hz, 1H), 5.70 (d, *J* = 2.4 Hz, 1H), 3.91 (d, *J* = 8.4 Hz, 1H), 3.72 (s, 3H), 3.60 (d, *J* = 8.4 Hz, 1H), 3.41 (s, 3H).

¹³C NMR (100 MHz, DMSO-d⁶) δ 186.5, 173.9, 159.9, 154.0, 135.8, 133.0, 129.6, 128.4, 127.7, 126.9, 112.2, 109.9, 108.1, 55.0, 52.7, 40.4, 38.5, 36.8.

HRMS (ESI): exact mass calcd for $C_{20}H_{17}NNaO_5^+$ (M+Na)⁺ requires m/z 374.0999, found m/z 374.0998 ($\Delta = -1$ ppm).

Methyl 2-((1*S*,2*R*,3*S*)-5'-methoxy-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoacet ate (*ent*-3g)

Light yellow solid, 30.9 mg, 88% yield, 97:3 dr, 98% ee; $R_f = 0.5$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +78.70$ (c = 1.62, CH₂Cl₂); reaction time: 36 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 19.788 min (minor), 24.232 min (major).

Methyl 2-((1*R*,2*S*,3*R*)-7'-methyl-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoaceta

te (3h)

Colorless solid, 32.8 mg, 98% yield, >99:1 dr, 99% ee; m.p.: 69.4-72.0 °C; $R_f = 0.55$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +90.67$ (c = 2.15, CH₂Cl₂); reaction time: 36 h; reaction temperature: 30 °C.

HPLC CHIRALPAK ID, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 10.772 min (major), 14.203 min (minor).

¹**H NMR** (400 MHz, DMSO-d⁶) δ 10.75 (s, 1H), 7.38 – 7.23 (m, 5H), 6.92 (d, *J* = 7.6 Hz, 1H), 6.57 (t, *J* = 7.6 Hz, 1H), 5.93 (d, *J* = 7.2 Hz, 1H), 3.89 (d, *J* = 8.4 Hz, 1H), 3.72 (s, 3H), 3.58 (d, *J* = 8.4 Hz, 1H), 2.21 (s, 3H).

¹³C NMR (100 MHz, DMSO-d⁶) δ = 186.5, 174.5, 159.9, 141.0, 133.1, 129.6, 128.9, 128.4, 127.7, 125.3, 120.8, 119.0, 118.3, 52.7, 40.4, 38.6, 36.9, 16.3.

HRMS (ESI): exact mass calcd for $C_{20}H_{17}NNaO_4^+$ (M+Na)⁺ requires m/z 358.1050, found m/z 358.1044 ($\Delta = -6$ ppm).

Methyl 2-((1*S*,2*R*,3*S*)-7'-methyl-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoaceta

te (ent-3h)

Colorless solid, 32.2 mg, 96% yield, >99:1 dr, 97% ee; $R_f = 0.55$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +134.12$ (c = 1.32, CH₂Cl₂); reaction time: 36 h; reaction temperature: 30 °C. HPLC CHIRALPAK ID, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention

time: 10.985 min (minor), 13.860 min (major).

Methyl 2-((1*R*,2*S*,3*R*)-2-(4-chlorophenyl)-2'-oxospiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoaceta te (3i)

Yellow oil, 34.4 mg, 97% yield, 98:2 dr, 99% ee; $R_f = 0.4$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{24} = +106.76$ (c = 1.73, CH₂Cl₂); reaction time: 48 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 12.380 min (major), 14.317 min (minor).

¹**H NMR** (400 MHz, DMSO-d⁶) δ 10.73 (s, 1H), 7.43 – 7.30 (m, 4H), 7.12 (td, *J* = 7.6, 1.2 Hz, 1H), 6.89 (d, *J* = 7.6 Hz, 1H), 6.70 (td, *J* = 7.6, 1.2 Hz, 1H), 6.14 (dd, *J* = 7.6, 1.2 Hz, 1H), 3.92 (d, *J* = 8.4 Hz, 1H), 3.72 (s, 3H), 3.58(d, *J* = 8.4 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶) δ 186.2, 173.9, 159.9, 142.5, 132.4, 132.2, 131.5, 128.5, 127.7, 125.4, 121.0, 109.8, 52.8, 38.6, 36.1.

HRMS (ESI): exact mass calcd for C19H14ClNNaO4+ (M+Na)+ requires m/z 378.0504, found m/z

378.0508 ($\Delta = +4$ ppm). Known compound.⁹

Methyl 2-((1*S*,2*R*,3*S*)-2-(4-chlorophenyl)-2'-oxospiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoacetat e (*ent*-3i)

Yellow oil, 30.5 mg, 86% yield, 98:2 dr, 99% ee; $R_f = 0.4$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +90.87$ (c = 1.34, CH₂Cl₂); reaction time: 48 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 12.462 min (minor), 14.080 min (major).

Methyl 2-((1R,2S,3R)-2-(4-bromophenyl)-2'-oxospiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoaceta

te (3j)

Light yellow solid, 37.9 mg, 95% yield, 98:2 dr, 98% ee; $R_f = 0.4$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +84.41$ (c = 2.12, CH₂Cl₂); reaction time: 60 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 12.910 min (major), 14.915 min (minor).

¹**H NMR** (400 MHz, DMSO-d⁶) δ 10.72 (s, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.71 (t, *J* = 7.6 Hz, 1H), 6.14 (d, *J* = 7.2 Hz, 1H), 3.91 (d, *J* = 8.4 Hz, 1H), 3.72 (s, 3H), 3.55 (d, *J* = 8.4 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶) δ 186.2, 173.8, 159.9, 142.5, 132.6, 131.8, 131.4, 127.7, 125.4, 121.00, 120.96, 109.8, 52.8, 40.1, 38.5, 36.1.

HRMS (ESI): exact mass calcd for $C_{19}H_{14}BrNNaO_4^+$ (M+Na)⁺ requires m/z 421.9998, found m/z 421.9996 ($\Delta = -2$ ppm). Known compound.⁹

Methyl 2-((1S,2R,3S)-2-(4-bromophenyl)-2'-oxospiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoacetat

e (ent-3j)

Light yellow solid, 36.3 mg, 91% yield, 98:2 dr, 98% ee; $R_f = 0.4$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +73.68$ (c = 1.63, CH₂Cl₂); reaction time: 60 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 12.918 min (minor), 14.455 min (major).

Methyl 2-((1*R*,2*S*,3*R*)-2-(3-chlorophenyl)-2'-oxospiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoaceta te (3k)

Yellow oil, 27.3 mg, 77% yield, >99:1 dr, 98% ee; $R_f = 0.35$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +191.27$ (c = 1.25, CH₂Cl₂); reaction time: 48 h; reaction temperature: 30 °C.

HPLC CHIRALPAK ID, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 9.312 min (major), 11.497 min (minor).

¹**H NMR** (400 MHz, DMSO-d⁶) δ 10.74 (s, 1H), 7.45 (s, 1H), 7.40 – 7.22 (m, 3H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.89 (d, *J* = 7.6 Hz, 1H), 6.70 (t, *J* = 7.6 Hz, 1H), 6.13 (d, *J* = 7.2 Hz, 1H), 3.96 (d, *J* = 8.0 Hz, 1H), 3.72 (s, 3H), 3.61 (d, *J* = 8.4 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶) δ 186.1, 173.7, 159.9, 142.5, 135.7, 133.1, 130.2, 129.4, 128.3, 127.8, 125.4, 120.94, 120.91, 109.8, 52.8, 38.5, 36.0.

HRMS (ESI): exact mass calcd for $C_{19}H_{14}CINNaO_4^+$ (M+Na)⁺ requires m/z 378.0504, found m/z 378.0508 ($\Delta = +4$ ppm). Known compound.⁹

Methyl 2-((1S,2R,3S)-2-(3-chlorophenyl)-2'-oxospiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoacetat

e (ent-3k)

Yellow oil, 26.6 mg, 77% yield, 98:2 dr, 97% ee; $R_f = 0.35$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +98.59$ (c = 1.84, CH₂Cl₂); reaction time: 48 h; reaction temperature: 30 °C.

HPLC CHIRALPAK ID, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 9.290 min (minor), 11.132 min (major).

Methyl 2-((1*R*,2*S*,3*R*)-2-(2-bromophenyl)-2'-oxospiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoaceta te (3l)

White solid, 23.5 mg, 59% yield, 97:3 dr, 98% ee; $R_f = 0.35$ (Pet/EtOAc, 1/1, v/v); m.p.: 132.7-135.1 °C; $[\alpha]_D^{23} = +46.46$ (c = 0.96, CH₂Cl₂); reaction time: 60 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 18.197 min (major), 27.780 min (minor).

¹H NMR (400 MHz, DMSO-d⁶) δ 10.70 (s, 1H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.56 – 7.44 (m, 2H), 7.28 (td, *J* = 7.6, 1.6 Hz, 1H), 7.11 (td, *J* = 7.6, 1.2 Hz, 1H), 6.86 (d, *J* = 7.6 Hz, 1H), 6.62 (td, *J* = 7.6, 1.2 Hz, 1H), 5.93 (d, *J* = 7.2 Hz, 1H), 3.98 (d, *J* = 8.4 Hz, 1H), 3.73 (s, 3H), 3.44 (d, *J* = 8.4 Hz, 1H).
¹³C NMR (100 MHz, DMSO-d⁶) δ 185.9, 173.7, 159.8, 142.5, 133.2, 132.3, 130.7, 130.0, 127.8, 127.7, 126.2, 125.3, 120.8, 119.9, 109.6, 52.8, 38.0.

HRMS (ESI): exact mass calcd for $C_{19}H_{14}BrNNaO_4^+$ (M+Na)⁺ requires m/z 421.9998, found m/z 421.9991 ($\Delta = -7$ ppm).

Methyl 2-oxo-2-((1R,2S,3R)-2'-oxo-2-(p-tolyl)spiro[cyclopropane-1,3'-indolin]-3-yl)acetate (3m)

Yellow solid, 31.8 mg, 95% yield, 98:2 dr, 99% ee; $R_f = 0.45$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +87.53$ (c = 0.97, CH₂Cl₂); reaction time: 36 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 14.913 min (major), 18.173 min (minor).

¹**H NMR** (400 MHz, DMSO-d⁶) δ 10.68 (s, 1H), 7.16 (dd, J = 16.0, 5.2 Hz, 4H), 7.10 (t, J = 5.2 Hz, 1H), 6.87 (d, J = 5.2 Hz, 1H), 6.68 (t, J = 5.2 Hz, 1H), 6.14 (d, J = 5.2 Hz, 1H), 3.88 (d, J = 5.6 Hz, 1H), 3.71 (s, 3H), 3.53 (d, J = 5.6 Hz, 1H), 2.28 (s, 3H).

¹³C NMR (100 MHz, DMSO-d⁶) δ 186.5, 174.0, 159.9, 142.4, 136.9, 130.0, 129.4, 129.0, 127.5, 125.7, 121.0, 120.9, 109.6, 52.7, 40.2, 38.7, 36.7, 20.7.

HRMS (ESI): exact mass calcd for $C_{20}H_{17}NNaO_4^+$ (M+Na)⁺ requires m/z 358.1050, found m/z 358.1056 ($\Delta = +6$ ppm). Known compound.⁹

Methyl 2-oxo-2-((1S,2R,3S)-2'-oxo-2-(p-tolyl)spiro[cyclopropane-1,3'-indolin]-3-yl)acetate (ent-3m)

Yellow solid, 32.2 mg, 96% yield, 98:2 dr, 99% ee; $R_f = 0.45$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +100.90$ (c = 1.37, CH₂Cl₂); reaction time: 36 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 15.093 min (minor), 17.580 min (major).

Methyl 2-((1*R*,2*S*,3*R*)-2-(4-methoxyphenyl)-2'-oxospiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoace tate (3n)

Colorless oil, 34.0 mg, 97% yield, 97:3 dr, 96% ee; $R_f = 0.45$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{24} = +119.46$ (c = 0.86, CH₂Cl₂); reaction time: 36 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 22.880 min (major), 26.883 min (minor).

¹**H NMR** (400 MHz, DMSO-d⁶) δ 10.68 (s, 1H), 7.21 (d, *J* = 8.4 Hz, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.92 – 6.83 (m, 3H), 6.68 (t, *J* = 7.6 Hz, 1H), 6.13 (d, *J* = 7.2 Hz, 1H), 3.86 (d, *J* = 8.4 Hz, 1H), 3.73 (s, 3H), 3.71 (s, 3H), 3.53 (d, *J* = 8.4 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶) δ 186.5, 174.0, 159.9, 158.7, 142.4, 130.7, 127.5, 125.8, 124.8, 121.0, 120.9, 113.8, 109.6, 55.1, 52.7, 40.3, 36.4.

HRMS (ESI): exact mass calcd for $C_{20}H_{17}NNaO_5^+$ (M+Na)⁺ requires m/z 374.0999, found m/z 374.1004 ($\Delta = +5$ ppm). Known compound.⁹

Methyl 2-((1*S*,2*R*,3*S*)-2-(4-methoxyphenyl)-2'-oxospiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoacet ate (*ent*-3n)

Colorless oil, 33.0 mg, 94% yield, 97:3 dr, 96% ee; $R_f = 0.45$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +77.86$ (c = 1.76, CH₂Cl₂); reaction time: 36 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 22.903 min (minor), 25.690 min (major).

Methyl 2-((1*R*,2*S*,3*R*)-2-([1,1'-biphenyl]-4-yl)-2'-oxospiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoa cetate (30)

White solid, 38.5 mg, 97% yield, 99:1 dr, 99% ee; $R_f = 0.5$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +98.96$ (c = 2.66, CH₂Cl₂); reaction time: 32 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IG, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 18.165 min (major), 25.285 min (minor).

¹**H NMR** (400 MHz, DMSO-d⁶) δ 10.73 (s, 1H), 7.67 (t, *J* = 8.0 Hz, 4H), 7.51 – 7.32 (m, 5H), 7.12 (t, *J* = 7.6 Hz, 1H), 6.88 (d, *J* = 7.6 Hz, 1H), 6.68 (t, *J* = 7.6 Hz, 1H), 6.23 (d, *J* = 7.6 Hz, 1H), 3.97 (d, *J* = 8.8 Hz, 1H), 3.73 (s, 3H), 3.62 (d, *J* = 8.4 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶) δ 186.4, 174.0, 159.9, 142.5, 139.4, 139.2, 132.3, 130.1, 129.0, 127.6, 126.6, 125.7, 121.0, 120.9, 109.7, 52.7, 40.3, 38.6, 36.6.

HRMS (ESI): exact mass calcd for $C_{25}H_{17}NNaO_4^+$ (M+Na)⁺ requires m/z 420.1206, found m/z 420.1201 ($\Delta = -5$ ppm). Known compound.⁹

Methyl 2-((1*R*,2*S*,3*R*)-2-(naphthalen-2-yl)-2'-oxospiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoacet ate (3p)

Light yellow solid, 35.2 mg, 95% yield, 98:2 dr, 99% ee; $R_f = 0.45$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{24} = +100.30$ (c = 0.56, CH₂Cl₂); reaction time: 48 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 18.068 min (major), 20.622 min (minor).

¹**H NMR** (400 MHz, CD₃CN) δ 8.73 (s, 1H), 7.89 – 7.83 (m, 3H), 7.80 (d, J = 8.4 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.30 (dd, J = 8.4, 2.0 Hz, 1H), 7.10 (td, J = 8.0, 1.2 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 6.56 (t, J = 7.6 Hz, 1H), 6.08 (d, J = 7.6 Hz, 1H), 3.90 (d, J = 8.4 Hz, 1H), 3.84 (d, J = 8.4 Hz, 1H), 3.78 (s, 3H). ¹³C NMR (100 MHz, CD₃CN) δ 187.6, 175.0, 161.4, 143.2, 134.1, 133.8, 131.9, 129.2, 129.1, 128.9, 128.8, 128.7, 128.6, 127.5, 127.4, 126.7, 122.21, 122.15, 120.96, 109.8, 53.7, 41.3, 40.4, 38.5. **HRMS** (ESI): exact mass calcd for C₂₃H₁₇NNaO₄⁺ (M+Na)⁺ requires m/z 394.1050, found m/z 394.1044 (Δ = -6 ppm). Known compound.⁹

Methyl 2-oxo-2-((1*R*,2*S*,3*R*)-2'-oxo-2-(thiophen-2-yl)spiro[cyclopropane-1,3'-indolin]-3-yl) acetate (3q)

Yellow oil, 31.1 mg, 95% yield, 99:1 dr, 97% ee; $R_f = 0.45$ (Pet/EtOAc, 1/1, v/v); m.p.: 160.2-163.1 °C; [α] $_D^{23} = +65.69$ (c = 0.75, CH₂Cl₂); reaction time: 36 h; reaction temperature: 30 °C. HPLC CHIRALPAK IG, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: 16.750 min (major), 19.067 min (minor).

¹**H NMR** (400 MHz, DMSO-d⁶) δ 10.75 (s, 1H), 7.46 (d, J = 5.2 Hz, 1H), 7.21 – 7.11 (m, 2H), 7.04 (dd, J = 4.8, 3.2 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 6.74 (t, J = 7.6 Hz, 1H), 6.35 (d, J = 7.6 Hz, 1H), 3.94 (d, J = 8.0 Hz, 1H), 3.71 (s, 3H), 3.57 (d, J = 8.0 Hz, 1H).

¹³C NMR (100 MHz, DMSO-d⁶) δ 185.9, 173.6, 159.7, 142.4, 136.1, 128.0, 127.9, 127.0, 126.7, 125.2, 121.1, 120.7, 109.8, 52.8, 40.5, 39.9, 31.5.

HRMS (ESI): exact mass calcd for $C_{17}H_{13}NNaO_4S^+$ (M+Na)⁺ requires m/z 350.0457, found m/z 350.0459 ($\Delta = +2$ ppm).

Methyl 2-((1R,2S,3R)-2-methyl-2'-oxospiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoacetate (3r)

Yellow oil, 23.3 mg, 90% yield, 96:4 dr, 98% ee; $R_f = 0.55$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{23} = +153.71$ (c = 0.53, CH₂Cl₂); reaction time: 36 h; reaction temperature: 30 °C.

HPLC CHIRALPAK ID, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 11.205 min (major), 14.463 min (minor).

¹H NMR (400 MHz, DMSO-d⁶) δ 10.60 (s, 1H), 7.27 – 7.16 (m, 2H), 6.99 (td, *J* = 7.6, 0.8 Hz, 1H), 6.91 (d, *J* = 7.6 Hz, 1H), 3.67 (s, 3H), 3.16 (d, *J* = 8.0 Hz, 1H), 2.34 – 2.22 (m, 1H), 1.32 (d, *J* = 6.4 Hz, 3H).
¹³C NMR (100 MHz, DMSO-d⁶) δ 187.1, 174.8, 160.0, 142.6, 127.5, 126.4, 122.0, 121.2, 109.8, 52.6, 41.4, 38.9, 28.2, 11.4.

HRMS (ESI): exact mass calcd for $C_{14}H_{13}NNaO_4^+$ (M+Na)⁺ requires m/z 282.0737, found m/z 282.0730 ($\Delta = -7$ ppm).

Methyl 2-((1*S*,2*R*,3*S*)-2-methyl-2'-oxospiro[cyclopropane-1,3'-indolin]-3-yl)-2-oxoacetate (*ent*-**3r**) CO_2Me

Yellow oil, 20.7 mg, 80% yield, 99:1 dr, 95% ee; $R_f = 0.55$ (Pet/EtOAc, 1/1, v/v); $[\alpha]_D^{25} = -64.98$ (c = 1.01, CH₂Cl₂); reaction time: 36 h; reaction temperature: 30 °C.

HPLC CHIRALPAK ID, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 11.238 min (minor), 13.540 min (major).

Methyl 2-oxo-2-((1*S*,2*S*,3*R*)-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl)acetate (4a)

Light yellow oil; $R_f = 0.5$ (Pet/EtOAc, 1/1, v/v).

¹**H** NMR (600 MHz, DMSO-d⁶) δ 10.66 (s, 1H), 7.38 – 7.18 (m, 6H), 7.15 (d, *J* = 7.8 Hz, 1H), 6.96 (t, *J* = 7.8 Hz, 1H), 6.91 (d, *J* = 7.8 Hz, 1H), 4.13 (d, *J* = 8.4 Hz, 1H), 3.86 (d, *J* = 8.4 Hz, 1H), 3.76 (s, 3H). **HRMS** (ESI): exact mass calcd for C₁₉H₁₅NNaO₄⁺ (M+Na)⁺ requires m/z 344.0893, found m/z 344.0892 (Δ = -1 ppm). Known compound.⁹

General procedure for the synthesis of spiro-cyclopropane-oxindoles 6a-6c

Preparation of Co(acac)₂ and L6 solution: in a 2.0 mL volumetric flask, Co(acac)₂ (6.4 mg, 0.025 mmol) was added, then THF was added to make the total volume up to 2.0 mL. In a 2.0 mL volumetric flask, L6 (17.6 mg, 0.025 mmol) was added, then THF was added to make the total volume up to 2.0 mL.

In a dry reaction tube, 200 µL (2.5 mol%) of Co(acac)₂ solution and 200 µL (2.5 mol%) of L6 were added. Then, THF was removed under vacuum. After that, β , γ -unsaturated- α - ketoamides **5a** (26.5 mg, 0.1 mmol) and EtOAc (2.0 mL) were added and the reaction was stirred at 30 °C for 0.5 h. Subsequently, 3-chlorooxindoles **1a** (16.7 mg, 0.1 mmol) and Na₂CO₃ (11.7 mg, 0.11 mmol) were added and the reaction was stirred at 30 °C until **1a** was consumed (detected by TLC, Pet/EtOAc, 1/1, v/v). Finally, the corresponding product **6a** was purified directly by flask column chromatography (Pet/EtOAc, 5/1-1/1, v/v).

N-benzyl-2-oxo-2-((1R,2S,3R)-2'-oxo-2-phenylspiro[cyclopropane-1,3'-indolin]-3-yl)acetamide (6a)

Light yellow oil, 36.0 mg, 91% yield, 95:5 dr, 97% ee; $R_f = 0.4$ (Pet/EtOAc, 2/1, v/v); $[\alpha]_D^{25} = +82.46$ (c = 0.69, CH₂Cl₂); reaction time: 36 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 70/30, flow rate 1.0 mL/min, λ = 254 nm, retention time: 13.143 min (major), 21.757 min (minor).

¹**H NMR** (600 MHz, DMSO-d⁶) δ 10.64 (s, 1H), 9.24 (t, *J* = 6.6 Hz, 1H), 7.37 – 7.21 (m, 10H), 7.09 (td, *J* = 7.8, 1.2 Hz, 1H), 6.86 (d, *J* = 7.2 Hz, 1H), 6.65 (t, *J* = 7.8 Hz, 1H), 6.15 (d, *J* = 7.2 Hz, 1H), 4.37 – 4.24 (m, 2H), 4.01 (d, *J* = 9.0 Hz, 1H), 3.58 (d, *J* = 8.4 Hz, 1H).

¹³C NMR (150 MHz, DMSO-d⁶) δ 191.6, 174.0, 160.2, 142.5, 138.6, 133.4, 129.6, 128.4, 128.2, 127.6, 127.4, 127.3, 126.8, 126.0, 121.0, 120.7, 109.5, 42.1, 40.0, 37.8, 36.7.

HRMS (ESI): exact mass calcd for $C_{25}H_{20}N_2NaO_3^+$ (M+Na)⁺ requires m/z 419.1366, found m/z 419.1373 ($\Delta = +7$ ppm).

In a dry reaction tube, a mixture of 2,3-dioxopyrrolidine **5** (0.1 mmol), $Co(acac)_2$ (2.6 mg, 0.1 mmol, 10 mol%) and ligand **L6** (7.1 mg, 0.1 mmol, 10 mol%) in EtOAc (2.0 mL) were stirred at 30 °C for 0.5 h. After that, 3-chlorooxindole **1a** (16.7 mg, 0.1 mmol) and Na₂CO₃ (11.7 mg, 0.11 mmol) were added. Subsequently, the reaction was stirred at 30 °C for 24 h. After the reaction was complete monitored by TLC (Pet/EtOAc, 3/1, v/v), the reaction was purified by flash column chromatography (Pet/EtOAc, 5/1-3/1, v/v) to give the product **6b** as a light yellow solid (27.6 mg, 70% yield, 99:1 dr, 99% ee) and **6c** as a light yellow solid (26.5 mg, 65% yield, 96:4 dr, 91% ee).

(2'*S*,3*R*,3'*S*)-1'',3'-Diphenyldispiro[indoline-3,1'-cyclopropane-2',3''-pyrrolidine]-2,4'',5''-trione (6b)

Light yellow solid, 27.6 mg, 70% yield, 99:1 dr, 99% ee; $R_f = 0.35$ (Pet/EtOAc, 2/1, v/v); $[\alpha]_D^{20} = -15.14$ (c = 0.78, CH₂Cl₂); reaction time: 24 h; reaction temperature: 30 °C.

HPLC CHIRALPAK ID, n-hexane/2-propanol = 60/40, flow rate 1.0 mL/min, λ = 254 nm, retention time: 19.988 min (major), 26.047 min (minor).

¹**H NMR** (600 MHz, CDCl₃) δ 8.65 (s, 1H), 7.90 (d, *J* = 8.4 Hz, 2H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.36 – 7.27 (m, 4H), 7.10 (d, *J* = 7.8 Hz, 1H), 6.99 – 6.92 (m, 3H), 6.88 (t, *J* = 7.8 Hz, 1H), 4.62 (d, *J* = 12.0 Hz, 1H), 4.53 (d, *J* = 12.0 Hz, 1H), 4.02 (s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 191.6, 174.1, 157.8, 141.0, 138.5, 130.8, 129.5, 128.8, 128.6, 128.5, 128.3, 127.0, 122.4, 121.8, 119.4, 110.0, 48.4, 47.6, 43.3, 41.0.

HRMS (ESI): exact mass calcd for $C_{25}H_{18}N_2NaO_3^+$ (M+Na)⁺ requires m/z 417.1210, found m/z 417.1206 ($\Delta = -4$ ppm). Known compound.¹⁰

(2'*S*,3*R*,3'*S*)-1"-benzyl-3'-phenyldispiro[indoline-3,1'-cyclopropane-2',3"-pyrrolidine]-2,4",5"-trion e (**6c**)

Light yellow solid, 26.5 mg, 65% yield, 96:4 dr, 91% ee; $R_f = 0.35$ (Pet/EtOAc, 2/1, v/v); $[\alpha]_D^{20} = -31.88$ (c = 0.69, CH₂Cl₂); reaction time: 24 h; reaction temperature: 30 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 60/40, flow rate 1.0 mL/min, λ = 254 nm, retention time: 18.170 min (major), 21.755 min (minor).

¹**H NMR** (600 MHz, CDCl₃) δ 8.73 (s, 1H), 6.86 – 6.78 (m, 5H), 6.77 – 6.71 (m, 3H), 6.64 (t, *J* = 7.2 Hz, 1H), 6.53 (d, *J* = 7.8 Hz, 1H), 6.38 (d, *J* = 8.4 Hz, 1H), 6.34 (d, *J* = 8.4 Hz, 2H), 6.30 (t, *J* = 7.8 Hz, 1H), 4.35 (d, *J* = 14.4 Hz, 1H), 4.08 (d, *J* = 14.4 Hz, 1H), 3.50 (d, *J* = 12.6 Hz, 1H), 3.42 (d, *J* = 13.2 Hz, 1H), 3.28 (s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 192.2, 174.0, 159.3, 141.5, 134.7, 130.8, 129.2, 128.8, 128.52, 128.47, 128.42, 128.3, 128.1, 121.9, 110.0, 48.8, 47.6, 47.1, 43.3, 41.2.

HRMS (ESI): exact mass calcd for $C_{26}H_{20}N_2NaO_3^+$ (M+Na)⁺ requires m/z 431.1366, found m/z 431.1366 ($\Delta = 0$ ppm).

Gram-scale synthesis of 3a

In a dry reaction tube, a mixture of β , γ -unsaturated- α -ketoester **2a** (760.0 mg, 4.0 mmol), Co(acac)₂ (25.7 mg, 0.1 mmol, 2.5 mol%) and ligand **L6** (70.5 mg, 0.1 mmol, 2.5 mol%) in EtOAc (80.0 mL) were stirred at 30 °C for 6 h. After that, 3-chlorooxindole **1a** (668.0 mg, 4.0 mmol) and Na₂CO₃ (466.4 mg, 4.4 mmol) were added. Subsequently, the reaction was stirred at 30 °C for 48 h. After the reaction was complete monitored by TLC (R_f = 0.4, Pet/EtOAc, 1/1, v/v), the reaction was purified by flash column chromatography (Pet/EtOAc, 5/1-1/1, v/v) to give the product **3a** as a colorless solid (1.2 g, 94% yield, 97:3 dr, 98% ee).

Figure S1. HPLC spectra of 3a on a gram-scale

HPLC Spectrum of **3a**

Nonlinear effect experiment

Nonlinear effect experiment between the ee value of ligand L6 and product 3a

a) Preparation of catalyst **L6** solution: in a 5.0 mL volumetric flask, **L6** (35.3 mg, 0.05 mmol) was added, then THF was added to make the total volume up to 5.0 mL.

b) Preparation of catalyst *ent*-L6 solution: in a 5.0 mL volumetric flask, *ent*-L6 (35.3 mg, 0.05 mmol) was added, then THF was added to make the total volume up to 5.0 mL.

c) Preparation of metal solution: in a 5.0 mL volumetric flask, Co(acac)₂ (12.9 mg, 0.05 mmol) was added, then THF was added to make the total volume up to 5.0 mL.

For 0% ee of L6: 250 µL L6 was mixed with 250 µL ent-L6;

For 20% ee of L6: 300 µL L6 was mixed with 200 µL ent-L6;

For 40% ee of L6: 350 µL L6 was mixed with 150 µL ent-L6;

For 60% ee of L6: 400 μ L L6 was mixed with 100 μ L ent-L6;

For 80% ee of L6: 450 µL L6 was mixed with 50 µL ent-L6;

In a dry reaction tube, 2.5 mol % of Co(acac)₂ solution and 2.5 mol % of L6 (0-99% ee) solution were added. Then, THF was removed under vacuum. After that, β , γ -unsaturated- α -ketoester 2a (0.1 mmol, 19.0 mg) and EtOAc (2.0 mL) were added and the reaction was stirred at 30 °C for 0.5 h. Subsequently, 3-chlorooxindole 1a (0.1 mmol, 16.7 mg) and Na₂CO₃ (11.7 mg, 0.11 mmol) were added and the reaction was stirred at 30 °C until 1a was consumed (detected by TLC, Pet/EtOAc, 1/1, v/v). Finally, the corresponding product 3a was purified directly by flask column chromatography (Pet/EtOAc, 5/1-1/1, v/v).

Table S5: the ee value of ligand L6 and product 3a

entry	ee of L6 (%)	tested ee of L6 (%)	ee (3a) (%)
1	0	11	10
2	20	26	29
3	40	51	47
4	60	73	72
5	80	85	80
6	>99	>99	99

Figure S2. Determination of the linearity between ee values of ligand L6 and product 3a.

In the presence of ligand L6 with 0% ee

In the presence of ligand L6 with 20% ee

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	10.587	19.426	46.696	2.00	2.17
2	12.072	9.730	24.806	1.00	1.15
3	14.422	612.766	1436.066	63.04	66.67
4	16.648	330.167	646.575	33.96	30.02
Total:		972.089	2154.143	100.00	100.00

In the presence of ligand L6 with 40% ee

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	10.597	20.229	50.988	2.31	2.56
2	12.083	6.567	17.891	0.75	0.90
3	14.425	631.607	1489.323	72.16	74.86
4	16.705	216.841	431.175	24.77	21.67
Total:		875.243	1989.377	100.00	100.00

In the presence of ligand L6 with 60% ee

r can		Alea	rieigiit	Alea	rieigin
	min	mAU*min	mAU	%	%
1	10.613	20.987	62.974	2.17	2.82
2	12.120	4.257	12.086	0.44	0.54
3	14.457	817.797	1909.400	84.73	85.65
4	16.825	122.195	244.728	12.66	10.98
Total:		965.236	2229.188	100.00	100.00

In the presence of ligand L6 with 80% ee

In the presence of ligand L6 with >99% ee

Figure S3. HPLC of 3a with different ee value of ligand L6

Transformation of the product 3a

(Boc)₂O (32.7 mg, 0.15 mmol) and DMAP (2.4 mg, 20 mol%) were added to a solution of **3a** (32.1 mg, 0.1 mmol) in DCM (2.0 mL). Then, the mixture was stirred for 3 h at room temperature until **3a** was consumed (detected by TLC). Finally, the corresponding product **8a** (25.3 mg, 60% yield, 99:1 dr, 99% ee) was purified directly by flask column chromatography (Pet/EtOAc, 50/1-5/1, v/v) as a white solid.

Tert-butyl (1*R*,2*S*,3*R*)-2-(2-methoxy-2-oxoacetyl)-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indolin e]-1'-carboxylate (8a)

White solid, 25.3 mg, 60% yield, 99:1 dr, 99% ee; $R_f = 0.4$ (Pet/EtOAc, 5/1, v/v); $[\alpha]_D^{24} = +124.49$ (c = 1.01, CH₂Cl₂); reaction time: 3 h; reaction temperature: 25 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, retention time: 14.720 min (major), 16.880 min (minor).

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.0 Hz, 1H), 7.32 – 7.29 (m, 3H), 7.22 (td, *J* = 7.6, 1.2 Hz, 1H), 7.19 – 7.16 (m, 2H), 6.82 (td, *J* = 8.0, 0.8 Hz, 1H), 6.03 (dd, *J* = 7.6, 1.6 Hz, 1H), 4.10 (d, *J* = 8.8 Hz, 1H), 3.86 (s, 3H), 3.51 (d, *J* = 8.4 Hz, 1H), 1.65 (s, 9H).

HRMS (ESI): exact mass calcd for $C_{24}H_{23}NNaO_6^+$ (M+Na)⁺ requires m/z 444.1418, found m/z 444.1424 ($\Delta = +6$ ppm). Known compound.⁹

In a test tube, N,N'-dimethylthiourea **9a** (41.7 mg, 0.4 mmol), **3a** (32.1 mg, 0.1 mmol) and K₂CO₃ (13.8 mg, 0.1 mmol) were added. Then, DCM (2.0 mL) was added and the mixture was stirred at room

temperature until **3a** was consumed (determined by TLC). Then the solvent was removed and the mixture was purified by flask column chromatography (Pet/EtOAc, 5/1-3/1, v/v) to afford the products.

(1*R*,2*S*,3*R*)-2-(4-Hydroxy-1,3-dimethyl-5-oxo-2-thioxoimidazolidin-4-yl)-3-phenylspiro[cycloprop ane-1,3'-indolin]-2'-one (10a)

White solid, 18.5 mg, 47% yield, 98:2 dr, 99% ee; m.p.: 188.9-191.3 °C; $R_f = 0.3$ (Pet/EtOAc, 2/1, v/v); [α] $_D^{23} = -35.22$ (c = 1.05, CH₂Cl₂); reaction time: 12 h; reaction temperature: 25 °C.

HPLC CHIRALPAK IE, n-hexane/2-propanol = 90/10, flow rate 1.0 mL/min, λ = 254 nm, retention time: 35.127 min (major), 48.557 min (minor).

¹**H NMR** (400 MHz, CDCl₃) δ 8.84 (s, 1H), 8.10 (s, 1H), 7.39 – 7.29 (m, 3H), 7.23 – 7.16 (m, 2H), 7.08 (td, *J* = 7.6, 1.2 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.68 (td, *J* = 7.6, 0.8 Hz, 1H), 5.95 (d, *J* = 7.6 Hz, 1H), 4.12 (d, *J* = 8.4 Hz, 1H), 3.47 (s, 3H), 3.24 (s, 3H), 2.56 (d, *J* = 8.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 182.7, 179.5, 173.5, 140.1, 132.4, 129.6, 129.0, 128.5, 127.8, 126.0, 122.6, 120.9, 110.7, 84.1, 39.8, 36.8, 36.4, 29.6, 28.2.

HRMS (ESI): exact mass calcd for $C_{21}H_{19}N_3NaO_3S^+$ (M+Na)⁺ requires m/z 416.1039, found m/z 416.1045 ($\Delta = +6$ ppm).

(1*R*,2*S*,3*R*)-2-((S)-4-Hydroxy-1,3-dimethyl-5-oxo-2-thioxoimidazolidin-4-yl)-3-phenylspiro [cyclop ropane-1,3'-indolin]-2'-one (11a)

Yellow solid, 18.1 mg, 46% yield, >99:1 dr, 99% ee; m.p.: 229.8-232.5 °C; $R_f = 0.25$ (Pet/EtOAc, 2/1, v/v); $[\alpha]_D^{23} = +21.99$ (c = 0.69, CH₂Cl₂); reaction time: 12 h; reaction temperature: 25 °C. **HPLC** CHIRALPAK IG, n-hexane/2-propanol = 90/10, flow rate 1.0 mL/min, $\lambda = 254$ nm, retention time: 18.562 min (major), 25.237 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.10 (s, 1H), 7.29 – 7.22 (m, 3H), 7.18 (td, *J* = 7.6, 1.2Hz, 1H), 7.10 – 7.04 (m, 2H), 7.01 (d, *J* = 7.6 Hz, 1H), 6.75 (td, *J* = 7.6, 1.2 Hz, 1H), 5.88 (d, *J* = 7.6 Hz, 1H), 4.12 (d, *J* = 8.8 Hz, 1H), 3.41 (s, 3H), 3.12 (s, 3H), 2.39 (d, *J* = 8.8 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 182.4, 180.2, 171.1, 139.4, 132.3, 130.2, 128.7, 128.3, 128.2, 125.6, 123.1, 122.0, 110.6, 87.2, 40.2, 38.9, 38.3, 28.67, 28.65.

HRMS (ESI): exact mass calcd for $C_{21}H_{19}N_3NaO_3S^+$ (M+Na)⁺ requires m/z 416.1039, found m/z 416.1041 ($\Delta = +2$ ppm).

X-ray data of 8a

Figure S4. X-Ray crystal structure of 8a (Recrystallization solvent: DCM/Pet).

Table S6. Crystal data and structure refinement for (1R,2S,3R)-8a	
Identification code	(1 <i>R</i> ,2 <i>S</i> ,3 <i>R</i>)-8a
Empirical formula	C ₂₄ H ₂₃ NO ₆
Formula weight	421.43
Temperature/K	293
Crystal system	monoclinic
Space group	P21
a/Å	10.51870(10)
b/Å	9.68800(10)
c/Å	10.81100(10)
α/°	90
β/°	93.3660(10)
$\gamma^{/\circ}$	90
Volume/Å ³	1099.796(19)
Z	2
$\rho_{calc}g/cm^3$	1.273
μ/mm ⁻¹	0.758
F(000)	444.0
Crystal size/mm ³	$0.15 \times 0.08 \times 0.06$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.192 to 142.772
Index ranges	$\text{-}12 \le h \le 12, \text{-}11 \le k \le 11, \text{-}13 \le l \le 13$
Reflections collected	28934
Independent reflections	4237 [$R_{int} = 0.0289, R_{sigma} = 0.0145$]
Data/restraints/parameters	4237/8/284
Goodness-of-fit on F ²	1.028
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0442, wR_2 = 0.1176$
Final R indexes [all data]	$R_1 = 0.0450, wR_2 = 0.1190$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.24
Flack parameter	0.03(6)

X-ray data of 10a

Figure S5. X-Ray crystal structure of 10a (Recrystallization solvent: DCM/Pet). (CCDC: 2322316)

Table S7. Crystal data and structure refinement for (1R,2S,3R)-10a				
Identification code	(1 <i>R</i> ,2 <i>S</i> ,3 <i>R</i>)-10a			
Empirical formula	$C_{21}H_{19}N_3O_3S$			
Formula weight	393.45			
Temperature/K	293(2)			
Crystal system	trigonal			
Space group	R3			
a/Å	21.7227(2)			
b/Å	21.7227(2)			
c/Å	11.97970(10)			
α/°	90			
β/°	90			
$\gamma^{\prime\circ}$	120			
Volume/Å ³	4895.58(10)			
Ζ	9			
pcalcg/cm ³	1.201			
µ/mm ⁻¹	1.526			
F(000)	1854.0			
Crystal size/mm ³	$0.22\times0.21\times0.18$			
Radiation	$CuK\alpha (\lambda = 1.54184)$			
2Θ range for data collection/°	8.14 to 142.976			
Index ranges	$-26 \le h \le 23, -24 \le k \le 26, -14 \le l \le 14$			
Reflections collected	24617			
Independent reflections	4218 [Rint = 0.0261, Rsigma = 0.0166]			
Data/restraints/parameters	4218/1/259			
Goodness-of-fit on F ²	1.029			
Final R indexes [I>= 2σ (I)]	R1 = 0.0329, wR2 = 0.0930			
Final R indexes [all data]	R1 = 0.0334, $wR2 = 0.0937$			
Largest diff. peak/hole / e Å ⁻³	0.15/-0.15			
Flack parameter	0.004(11)			

Datablock zjh-20230830_auto - ellipsoid plot

NMR Spectra

¹H NMR Spectrum of L11 (400 MHz, CDCl₃)

¹³C NMR Spectrum of L11 (100 MHz, CDCl₃)

¹H NMR Spectrum of **3a** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3a** (100 MHz, DMSO-d⁶)

¹H NMR Spectrum of **3b** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3b** (100 MHz, DMSO-d⁶)

¹H NMR Spectrum of **3c** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3c** (100 MHz, DMSO-d⁶)

¹H NMR Spectrum of **3d** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3d** (100 MHz, DMSO-d⁶)

¹H NMR Spectrum of **3e** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3e** (100 MHz, DMSO-d⁶)

¹H NMR Spectrum of **3f** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3f** (100 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3g** (100 MHz, DMSO-d⁶)

¹H NMR Spectrum of **3h** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3h** (100 MHz, DMSO-d⁶)

¹H NMR Spectrum of **3i** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3i** (100 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3j** (100 MHz, DMSO-d⁶)

¹H NMR Spectrum of **3k** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3k** (100 MHz, DMSO-d⁶)

¹H NMR Spectrum of **3l** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **31** (100 MHz, DMSO-d⁶)

¹H NMR Spectrum of **3m** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3m** (100 MHz, DMSO-d⁶)

¹H NMR Spectrum of **3n** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3n** (100 MHz, DMSO-d⁶)

¹H NMR Spectrum of **30** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **30** (100 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3p** (100 MHz, CD₃CN)

¹H NMR Spectrum of **3q** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3q** (100 MHz, DMSO-d⁶)

¹H NMR Spectrum of **3r** (400 MHz, DMSO-d⁶)

¹³C NMR Spectrum of **3r** (100 MHz, DMSO-d⁶)

¹H NMR Spectrum of 4a (600 MHz, DMSO-d⁶)

¹H NMR Spectrum of **6a** (600 MHz, DMSO-d⁶)

¹H NMR Spectrum of **6b** (600 MHz, CDCl₃)

¹H NMR Spectrum of **6c** (600 MHz, CDCl₃)

¹³C NMR Spectrum of **6c** (150 MHz, CDCl₃)

¹H NMR Spectrum of 8a (400 MHz, CDCl₃)

¹H NMR Spectrum of **10a** (400 MHz, CDCl₃)

¹³C NMR Spectrum of **10a** (100 MHz, CDCl₃)

¹³C NMR Spectrum of **11a** (100 MHz, CDCl₃)

HPLC spectra

HPLC Spectrum of 3a

I	геак	Retention Time	Area	Height	Area	Height
l		min	mAU*min	mAU	%	%
ſ	1	10.480	31.817	96.448	3.46	4.58
I	2	11.955	31.078	90.023	3.38	4.27
I	3	14.325	430.583	1060.196	46.84	50.33
l	4	16.512	425.876	859.651	46.32	40.81
ſ	Total:		919.354	2106.318	100.00	100.00

HPLC Spectrum of 3a

HPLC Spectrum of 3b

Total

1209.257

100.00

100.00

443.363

HPLC Spectrum of ent-3b

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	10.258	392.127	893.520	48.19	48.74
2	11.778	421.635	939.800	51.81	51.26
Total		813.762	1833.320	100.00	100.00

HPLC Spectrum of 3c

Total

100.00

100.00

391.613

2058.049

887.469

100.00

100.00

HPLC Spectrum of 3d

Total

HPLC Spectrum of 3e

HPLC Spectrum of 3f

HPLC Spectrum of 3g

Total		1048.228	1720.905	100.00	100.00
4	24.952	5.302	7.368	0.51	0.43
3	19.437	1005.616	1674.406	95.93	97.30
2	12.472	19.613	24.360	1.87	1.42

HPLC Spectrum of ent-3g

HPLC Spectrum of 3h

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	10.985	6.139	15.631	1.40	1.72
2	13.860	431.494	893.074	98.60	98.28
Total		437.633	908.706	100.00	100.00

HPLC Spectrum of 3i

HPLC Spectrum of ent-3i

100.00

100.00

420.356

```
HPLC Spectrum of 3j
```

Total:

Total:		1333.637	2656.263	100.00	100.00
4	14.455	1296.690	2569.022	97.23	96.72
3	12.918	15.426	34.604	1.16	1.30
2	11.482	17.033	45.071	1.28	1.70

HPLC Spectrum of ent-3k

100.00

100.00

227.759

```
HPLC Spectrum of 31
```

Total:


```
HPLC Spectrum of 3m
```


HPLC Spectrum of 3n

HPLC Spectrum of ent-3n

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	12.980	48.292	80.818	1.86	3.09
2	16.477	<u>60.196</u>	75.851	2.32	2.90
3	18.252	1275.697	1490.950	49.25	56.91
4	24.090	1205.911	972.028	46.56	37.11
Total:		2590.096	2619.647	100.00	100.00


```
HPLC Spectrum of 3p
```


100.00

100.00

533.845

HPLC Spectrum of 3q

Total:

4 13.540 1178.235 2259.194	96.04 94.25	
3 11.238 32.390 88.902	2.64 3.71	
2 9.213 15.368 45.506	1.25 1.90	

HPLC Spectrum of 6a

Total

1447.420

100.00

100.00

897.498

1403.368

1.46

100.00

0.71

100.00

8.808

601.866

HPLC Spectrum of 6b

Total

21.757

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	10.033	12.547	21.604	39.84	54.85
2	12.878	12.693	14.430	40.31	36.63
3	21.222	3.314	2.240	10.52	5.69
4	26.738	2.937	1.117	9.33	2.83
Total		31.491	39.390	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	10.012	1.654	2.608	0.25	0.52
2	12.825	3.518	3.538	0.54	0.71
3	19.988	645.205	492.583	98.97	98.61
4	26.047	1.532	0.773	0.23	0.15
Total		651.909	499.501	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	13.153	28.790	47.672	6.16	7.12
2	15.197	204.668	350.351	43.79	52.35
3	18.353	30.700	36.915	6.57	5.52
4	21.212	203.176	234.311	43.48	35.01
Total		467.334	669.249	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	13.382	26.086	42.333	4.41	5.68
2	15.530	13.255	22.146	2.24	2.97
3	18.170	537.801	665.749	90.99	89.39
4	21.755	13.913	14.563	2.35	1.96
Total		591.055	744.790	100.00	100.00

Peak	Retention Time	Area	Height	Area	Height
	min	mAU*min	mAU	%	%
1	18.380	343.193	332.392	49.92	54.07
2	23.900	344.254	282.318	50.08	45.93
Total:		687.447	614.710	100.00	100.00

Quantum chemical calculations

The exchange and correlation electronic effects were considered by employing the density functional theory (DFT)¹¹ with Gaussian 16 program¹². The ultrafine grid (99,590), having 99 radial shells and 590 angular points per shell, was used to evaluate the numerical integration accuracy. Geometry optimizations were performed at M06-2X-D3¹³ level of theory with the double-zeta basis set Def2-SVP¹⁴. The harmonic vibrational frequencies were analyzed after the geometry optimizations to characterize the nature of the stationary point as a minimum with all positive frequencies at the same theoretical level.

Figure S6. Proposed enantio-determining transition states for two chiral ligands.

Figure S7. DFT-optimized structures of complexes between chiral ligands and substrate **2a** at the M06-2X-D3/Def2-SVP level.

Cartesian coordinate for DFT calculation

L6-2a			
Co	0.43020800	0.44665500	0.76177600
С	-0.78696200	-2.15540200	1.52511200
C	-0.84350300	-3.45462000	2.01943300
C	0.35865900	-4.12087200	2.26171300
C	1.5/245400	-3.48434300	2.00311000
С и	1.33924900	-2.18439100	2 17649600
H	0 34750900	-5 14141200	2.17049000
Ĥ	2.52733900	-3.98698600	2.16613100
С	-2.00987600	-1.32308100	1.15950200
Н	-2.87262400	-1.64815600	1.76523600
N	0.38393700	-1.55862800	1.29062700
N C	-2.31424800	-1.3/582300	-0.26536100
н	2.78927000	-1.42/82/00 -1.71941000	1.10511400
C	3 68022200	-0.60817400	-0.90894300
č	4.66025500	1.25101500	0.57075100
Н	5.55533300	0.97582600	-0.00282900
Н	4.56771100	2.34512600	0.53040900
C	-2.37242200	-0.05358700	-0.87121400
N	2.59024100	0.05125500	1.11651400
0 C	4.23291100	-0.58510100	-1.9/215500
Н	2 80869700	1 31272700	-0.61845500
N	3.16235600	-1.71134600	-0.26958900
С	4.67730700	0.77093600	2.02566600
Н	5.17306100	-0.20775300	2.11762300
C	3.18867600	0.65017400	2.33895000
H	2.75742700	1.65185500	2.4/91/000
п	2.93483700	1 46146600	2 70292600
H	-3.22968000	0.00916800	-1.55926600
Ĉ	-2.60050000	0.82844500	0.37659200
Н	-2.20271100	1.84340500	0.21376800
N	-1.70725600	0.11656500	1.31396400
Н	-1.81920400	0.42517700	2.28070000
S	-3.14286000	-2.68444400	-0.92/59500
0	-3.01461400	-2.83499500	-2.20293300
č	-4.82590000	-2.17230900	-1.04109900
С	-5.30779100	-1.68357400	-2.25388800
С	-5.63805700	-2.25874200	0.09265500
C	-6.62984500	-1.24821600	-2.31980100
H	-4.66000800	-1.6/149000	-3.13229400
Ч	-0.95208100	-1.82155000	0.00234000
C	-7.46677600	-1.30714700	-1.19928100
Ĥ	-7.02324400	-0.87087600	-3.26543700
Н	-7.60151200	-1.88823900	0.87765000
C	-8.89876300	-0.85797800	-1.27371800
H	-9.16900900	-0.25741200	-0.39348900
H U	-9.09121500	-0.26/15900	-2.1//62900
C II	-9.37133300	0.31881700	-1.61463600
č	-0.98142600	1.58435800	-2.20707300
Ċ	-0.05779500	-0.60831500	-1.77891900
С	0.15650600	1.92084800	-2.93546700
H	-1.80017300	2.30409600	-2.11997900
C	1.08411700	-0.26660800	-2.51365000
н С	-0.20014800	-1.02392300	-1.411///00
С Н	0.21995700	2.89996400	-3 41356300
Ĥ	1.86624200	-1.00752300	-2.68543700
Ĥ	2.08774800	1.25075600	-3.66219200
С	-4.05590300	0.92088900	0.80554700
С	-4.48455700	0.60308000	2.09678800

	-4.9934//00	1.40/30900	-0.11439100
С	-5.82192500	0.76771000	2.46386800
Н	-3.78779400	0.22386400	2.84831900
С	-6.32590000	1.57464300	0.24986300
Н	-4.68198400	1.67267300	-1.12824500
С	-6.74398900	1.25660000	1.54319300
Н	-6.13878600	0.51648400	3.47681900
Н	-7.04132400	1.95777000	-0.47941600
Н	-7.78704900	1.39306000	1.83226700
С	7.12436100	-4.94343500	-0.00013100
С	6.10127600	-5.63561400	-0.59951000
С	4.84657400	-5.01306600	-0.84358800
С	4.66384400	-3.65303500	-0.45555100
С	5.74301900	-2.95868700	0.15560000
С	6.94267400	-3.59038200	0.37851700
Н	3.93415200	-6.75057800	-1.76432700
Н	8.08370000	-5.42942300	0.17942600
Н	6.23804800	-6.67512700	-0.90254500
С	3.77640800	-5.71201700	-1.46789200
С	3.39284300	-3.05363400	-0.70535700
Н	5.62601800	-1.90718200	0.42726400
Н	7.76790500	-3.04649200	0.83971200
С	2.37655000	-3.75413000	-1.31112200
С	2.56954000	-5.10000800	-1.70166200
Н	1.41603300	-3.26371100	-1.48128000
Н	1.75770300	-5.64127200	-2.18720700
С	2.36848800	8.67098300	-0.79424400
С	1.97474500	7.44946900	-0.27612100
С	1.97292700	6.29831800	-1.09781600
С	2.37623700	6.41344400	-2.44673700
C	2.77130800	7.63996400	-2.96135100
C	2.76675400	8.76644600	-2.13502500
H	2.36933000	9.55920100	-0.16229100
H	1.66433200	/.38240000	0.76730400
H	2.3//60600	5.52591100	-3.08310600
п	3.08338400	7.72514500	-4.00224000
п	5.07042100	9.75255200	-2.33092100
C	1.37033800	167282100	-0.01014600
с u	1.1/339400	4.07282100	1 34468300
и Ц	1.117/1700	5 30/80600	1 /6820100
C	0.82496100	3 32787600	0.93651200
0	0.82490100	2 38020300	0.13061300
Č	0.02230200	2.90020500	2 35752900
õ	0.20649900	1 73991400	2 58617600
ŏ	0.32058400	3 88100200	3 21794200
č	-0.05660100	3 55251500	4 56982700
ŭ	-1.07339300	3 14211500	4 57277200
11			4.0/2//000
H	-0.01449000	4.49132400	5.12591300
H H	-0.01449000 0.64824400	4.49132400 2.81843300	4. <i>37277</i> 300 5.12591300 4.97753000
H H	-0.01449000 0.64824400	4.49132400 2.81843300	4.37277300 5.12591300 4.97753000
н Н Н L6-2a-f2	-0.01449000 0.64824400	4.49132400 2.81843300	4.97753000 4.97753000
н Н Н L6-2а-f2 Со	-0.01449000 0.64824400 -0.33068700	4.49132400 2.81843300 0.74002500	4.37277300 5.12591300 4.97753000 0.41673900
н Н Н L6-2a-f2 Со С	-0.01449000 0.64824400 -0.33068700 -0.02700300	4.49132400 2.81843300 0.74002500 -1.06859300	4.37277500 5.12591300 4.97753000 0.41673900 -1.91512700
Н Н Н Со Со С	-0.01449000 0.64824400 -0.33068700 -0.02700300 -0.37115100	4.49132400 2.81843300 -1.06859300 -1.69813400	4.37277500 5.12591300 4.97753000 -0.41673900 -1.91512700 -3.10699000
Н Н Н Со С С С С	-0.01449000 0.64824400 -0.33068700 -0.02700300 -0.37115100 -1.68991300	4.49132400 2.81843300 -1.06859300 -1.69813400 -1.59234200	4.37277300 5.12591300 4.97753000 -1.91512700 -3.10699000 -3.55167000
Н Н Н Со С С С С С С	-0.01449000 0.64824400 -0.33068700 -0.02700300 -0.37115100 -1.68991300 -2.62322500	0.74002500 0.74002500 -1.06859300 -1.69813400 -0.87598800	4.37277300 5.12591300 4.97753000 -1.91512700 -3.10699000 -3.55167000 -2.80257400
H H L6-2a-f2 Co C C C C C C C	-0.01449000 0.64824400 -0.33068700 -0.02700300 -0.37115100 -1.68991300 -2.62322500 -2.19604900	0.74002500 0.74002500 -1.06859300 -1.69813400 -0.87598800 -0.27759300 2222200	4.37277500 5.12591300 4.97753000 -1.91512700 -3.10699000 -3.55167000 -2.80257400 -1.62109600
Н Н Н Со С С С С С С С С С С С С С С	-0.01449000 0.64824400 -0.33068700 -0.02700300 -0.37115100 -1.68991300 -2.62322500 -2.19604900 0.37010600	0.74002500 2.81843300 0.74002500 -1.06859300 -1.69813400 -0.87598800 -0.27759300 -2.8322800 2.7592000	4.37277500 5.12591300 4.97753000 0.41673900 -1.91512700 -3.10699000 -3.55167000 -2.80257400 -1.62109600 -3.64919100
Н Н Н Со С С С С С С С С С Н Н Н	-0.01449000 0.64824400 -0.02700300 -0.02700300 -0.37115100 -1.68991300 -2.62322500 -2.19604900 0.37010600 -1.99154900	0.74002500 2.81843300 0.74002500 -1.06859300 -1.69813400 -0.87598800 -0.27759300 -2.28322800 -2.07799000 -0.7290000	4.37277500 5.12591300 4.97753000 0.41673900 -1.91512700 -3.10699000 -3.55167000 -2.80257400 -1.62109600 -3.64919100 -4.48055900
н Н Н Н Со С С С С С С С С С С С С С С С	-0.01449000 0.64824400 -0.02700300 -0.02700300 -0.37115100 -1.68991300 -2.62322500 -2.19604900 0.37010600 -1.99154900 -3.66547600	0.74002500 2.81843300 0.74002500 -1.06859300 -1.69813400 -1.59234200 -0.87598800 -0.27759300 -2.28322800 -0.7799000 -0.773999900	4.37277500 5.12591300 4.97753000 0.41673900 -1.91512700 -3.10699000 -3.55167000 -2.80257400 -1.62109600 -3.11574200 -3.11574200 1.268(6000)
н Н Н Н Со С С С С С С С С С С С С С С С	-0.01449000 0.64824400 -0.02700300 -0.02700300 -0.37115100 -1.68991300 -2.62322500 -2.19604900 0.37010600 -1.99154900 -3.66547600 1.35095800 2.11556400	0.74002500 2.81843300 0.74002500 -1.06859300 -1.69813400 -1.59234200 -0.27759300 -2.28322800 -0.7799000 -0.773999900 -1.4752700 1.2065500	4.37277500 5.12591300 4.97753000 -1.91512700 -3.10699000 -3.55167000 -2.80257400 -1.62109600 -3.11574200 -3.11574200 -2.4471500
н Н Н Н Со С С С С С С С С С С С С С С С	-0.01449000 0.64824400 -0.33068700 -0.02700300 -0.37115100 -1.68991300 -2.62322500 -2.19604900 0.37010600 -1.99154900 -3.66547600 1.35095800 2.11556400 0.93135200	0.112132400 2.81843300 0.74002500 -1.06859300 -1.69813400 -1.59234200 -0.87598800 -0.27759300 -2.28322800 -2.07799000 -0.79399900 -1.4752700 -1.32065800 -0.37847700	4.37277500 5.12591300 4.97753000 -1.91512700 -3.10699000 -3.55167000 -2.80257400 -1.62109600 -3.1574200 -1.26866000 -2.04471500
н Н Н Н Со С С С С С С С С С С С С С С С	-0.01449000 0.64824400 -0.02700300 -0.02700300 -0.37115100 -1.68991300 -2.62322500 -2.19604900 0.37010600 -1.99154900 -3.66547600 1.35095800 2.11556400 -0.93135200 1.41517000	0.112132400 2.81843300 0.74002500 -1.06859300 -1.69813400 -1.59234200 -0.87598800 -0.27759300 -2.28322800 -2.07799000 -0.79399900 -1.4752700 -1.32065800 -0.37847700 -2.6549300	4.37277500 5.12591300 4.97753000 -1.91512700 -3.10699000 -3.55167000 -2.80257400 -1.62109600 -3.1574200 -1.26866000 -2.04471500 -1.2658000
н Н Н Н Со С С С С С С С С С С С С С С С	-0.01449000 0.64824400 -0.02700300 -0.02700300 -0.37115100 -1.68991300 -2.62322500 -2.19604900 0.37010600 -1.99154900 -3.66547600 1.35095800 2.11556400 -0.93135200 1.41517000 -3.14001900	0.112132400 2.81843300 0.74002500 -1.06859300 -1.69813400 -1.59234200 -0.87598800 -0.27759300 -2.28322800 -2.07799000 -0.79399900 -1.32065800 -0.37847700 -2.16549300	4.31217300 5.12591300 4.97753000 -1.91512700 -3.10699000 -3.55167000 -2.80257400 -1.62109600 -3.64919100 -4.48055900 -3.11574200 -1.26866000 -2.04471500 -1.2658000 -0.22667800
н Н Н Со С С С С С С С С С С С С С С С С	-0.01449000 0.64824400 -0.02700300 -0.02700300 -0.37115100 -1.68991300 -2.62322500 -2.19604900 0.37010600 -1.99154900 -3.66547600 1.35095800 2.11556400 -0.93135200 1.41517000 -3.14001900 -3.91129200	0.74002500 2.81843300 0.74002500 -1.06859300 -1.69813400 -1.59234200 -0.87598800 -0.27759300 -2.28322800 -2.07799000 -0.79399900 -1.14752700 -1.32065800 -0.37847700 -2.16549300 0.44374100 0.95242700	4.31217300 5.12591300 4.97753000 4.97753000 -1.91512700 -3.10699000 -3.55167000 -2.80257400 -1.62109600 -3.64919100 -4.48055900 -3.11574200 -1.26866000 -2.04471500 -1.2658000 -0.67837900 -1.28844000
н Н Н Со С С С С С С С С С С С С С С С С	-0.01449000 0.64824400 -0.02700300 -0.02700300 -0.37115100 -1.68991300 -2.62322500 -2.19604900 0.37010600 -1.99154900 -3.66547600 1.35095800 2.11556400 -0.93135200 1.41517000 -3.91129200 -3.94145100	0.74002500 2.81843300 0.74002500 -1.06859300 -1.69813400 -1.59234200 -0.87598800 -0.27759300 -2.28322800 -2.07799000 -0.77999000 -1.32065800 -0.37847700 -2.16549300 0.44374100 0.95242700 0.09076600	4.31217300 5.12591300 4.97753000 -1.91512700 -3.10699000 -3.55167000 -2.80257400 -1.62109600 -3.64919100 -4.48055900 -3.11574200 -1.26866000 -2.04471500 -1.2658000 -0.22667800 -0.7837900 -1.28844000 1.49994400

Н	-4.99697200	2.42265200	2.03325600
H	-3.53052200	3.36954600	2.32466500
Ĉ	1 85522800	-1 62618100	1 05181500
Ň	-2 43520200	1 42386600	0.20127100
0	-4 58742000	-0.35068100	2 40750700
č	-3 13577100	1 38012100	1 52791100
с ц	2 41652700	1 20287500	2 35553200
II N	2 76258800	0.47280200	2.33333200
N C	-3.70238800	2 21845600	0.23737200
C II	-4.00939/00	3.21843000	0.21007200
П	-4.80200000	2.75400100	-0.39001300
C	-2.63158300	2.8104/800	-0.30206800
H	-1.86200300	3.45598300	0.14438900
H	-2.50000800	2.83932200	-1.39277600
H	-4.16665200	4.30342100	0.17507100
Н	2.57031800	-2.31550900	1.52669700
C	2.55924200	-0.33112300	0.59144000
Н	2.53857300	0.43002100	1.38818300
Ν	1.60844900	0.06804700	-0.46638000
Н	1.94957500	0.84052300	-1.04045800
S	1.60761900	-3.79345200	-0.61180800
0	0.87088600	-4.51405900	0.40211300
0	1.26577400	-3.83652000	-2.02377600
С	3.32631200	-4.13104900	-0.41324900
Ĉ	3.77476700	-4.70427900	0.77505100
Č	4 20322300	-3 80852800	-1 45219300
č	5 14031200	-4 93414600	0.93093600
н	3 05811000	-4 98622400	1 54854200
C II	5 55847100	4 04008600	1.27512000
U U	2 82112100	-4.04908000	-1.2/312000
П	5.82112100	-3.40020800	-2.39183300
C II	0.0482/400	-4.00980400	-0.08383300
H	5.5049/900	-5.39031400	1.85304900
Н	6.25609900	-3.80890800	-2.0800/500
C	7.51855800	-4.8/685100	0.07398400
Н	8.11399500	-4.02323100	-0.27998600
Н	7.78246300	-5.08321000	1.11845900
Н	7.81437200	-5.75035900	-0.52644400
С	0.70561500	-1.35182300	2.01128300
С	0.96442500	-0.77333600	3.26276600
С	-0.60345500	-1.75061300	1.70358700
С	-0.06623900	-0.58189900	4.17925200
Н	1.98811900	-0.49881600	3.53347700
Ĉ	-1 63538900	-1 56483700	2 63118200
Ĥ	-0 77981300	-2 29919400	0 77714300
C	-1 37157500	-0.96868100	3 86270600
с ц	0 15162600	0.15370500	5.15008100
и П	-2 63984700	-1 02020600	2 41145800
П П	-2.03984700	-1.92929000	4 58207000
П	-2.10139000	-0.83810900	4.36207900
C	3.99339300	-0.34313000	0.13301700
C	4.43349000	-0.1343/300	-1.11//9100
C	4.90100300	-1.12238900	1.05158400
C	5.79689500	-0.29/26/00	-1.4/033400
H	3./834/300	0.32635500	-1.84566300
C	6.23934400	-1.282/6800	0.68369700
H	4.56828500	-1.44348900	2.02211000
C	6.69165700	-0.86828800	-0.57015800
Н	6.14096300	0.03092700	-2.45188800
Н	6.93272600	-1.73226300	1.39621400
Н	7.74129200	-0.98806500	-0.84233300
С	-8.52771500	-1.22130600	-1.46493600
С	-7.88923700	-2.43344800	-1.55455700
С	-6.53890600	-2.57745700	-1.13344100
С	-5.85274800	-1.44008900	-0.61438800
С	-6.54130000	-0.19981300	-0.52552200
Č	-7.84633900	-0.09451600	-0.94232600
й	-6 40377700	-4 68845400	-1 60727300
H	-9 56462400	-1 12270800	1 78722200
H	-8 41181200	_3 30771200	1 94650000
C .	-5.86252100	-3.82625000	-1.24032200
č	-3.00232100	-3.02033000	-1.21333000
U	-4.49382/00	-1.00990400	-0.20333100

Н	-6.03715800	0.66985000	-0.09817400
Н	-8.36942100	0.85905400	-0.86090000
C	-3 86802400	-2 83006700	-0 29381800
C C	4 55021800	2.05520400	0.20060200
	-4.55921800	-3.93330400	-0.80000200
H	-2.82/50/00	-2.920/9100	0.02395/00
Н	-4.05124800	-4.91781400	-0.85833400
С	2.91233600	8.73094500	-0.79197500
С	2 41064300	7 51692400	-0 35534500
Č	2 06030900	6 51660600	-1 29120200
C	2.00030700	(.77215(00))	-1.2)120200
C	2.2294/800	0.//313000	-2.00939100
C	2.73175600	7.99224900	-3.10251000
С	3.07237300	8.96908100	-2.16402000
Н	3.18346800	9.50223900	-0.07092700
H	2 29031100	7 33855100	0 71388600
U U	1 05071700	6.00286100	2 20/81600
п	1.939/1/00	0.00280100	-3.39401000
H	2.85982000	8.18/21500	-4.16/25/00
Н	3.46783100	9.92849400	-2.50145300
С	1.53457600	5.23946800	-0.89749800
С	1 27403800	4 80053600	0 37626600
й	1 31042500	4 53707400	-1.70830100
11	1.31042300	5 41647400	1 25792700
П	1.44362300	5.4164/400	1.25/85/00
С	0./4411900	3.49684600	0.57611900
0	0.49450400	2.63893300	-0.28327600
С	0.39820400	3.03792200	2.00138800
0	-0.04849100	1 90934800	2 16016800
Ő	0.60215200	3 88505700	2.10010000
0	0.00213300	2 401 (1000	2.93000700
C	0.29009600	3.48161000	4.30049900
Н	-0.78012900	3.25268400	4.37198800
Н	0.55469300	4.33139400	4.93295900
Н	0.88104900	2.59449000	4.55638200
1720			
L/-2a	1.00(50200	2 50212000	0.75120000
C	1.09650200	-2.30212900	0./5139900
C	1.0/124400	-3.81016400	0.28281100
С	-0.03811800	-4.21721900	-0.46021200
С	-1.07220500	-3.31837100	-0.71796400
С	-0 98140800	-2.03476000	-0 18493700
й	1 01360500	-1 17003100	0 16117900
11	0.00000000	5 22250400	0.4044/900
П	-0.09008800	-5.25550400	-0.85255000
Н	-1.948/5800	-3.6131/500	-1.29222600
C	2.32916900	-1.86946700	1.36413500
C H	2.32916900 2.89041400	-1.86946700 -2.64420400	1.36413500 1.91761300
C H C	2.32916900 2.89041400 3.66699800	-1.86946700 -2.64420400 -0.04647600	$\begin{array}{c} 1.36413500 \\ 1.91761300 \\ 0.70458000 \end{array}$
C H C	2.32916900 2.89041400 3.66699800 4.20089000	-1.86946700 -2.64420400 -0.04647600 -0.23410000	1.36413500 1.91761300 0.70458000 3.22626600
C H C C	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400	-1.86946700 -2.64420400 -0.04647600 -0.23410000 0.65828700	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100
C H C C H	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100
C H C C H H	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800
C H C C H H N	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000	$\begin{array}{c} 1.36413500\\ 1.91761300\\ 0.70458000\\ 3.22626600\\ 2.78322100\\ 3.80526800\\ 0.53434800 \end{array}$
C H C C H H N N	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500	$\begin{array}{c} 1.36413500\\ 1.91761300\\ 0.70458000\\ 3.22626600\\ 2.78322100\\ 3.80526800\\ 0.53434800\\ 2.24944800 \end{array}$
C H C C H H N N C	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500
C H C C H H N N C H	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300
C H C C H H N N C H O	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400
СНССННИМСНОС	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 2.18708200	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.186(4200	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.12845200
СНССННИКСНОСИ	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.12845200
СНССННИКОСНОСН	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700	$\begin{array}{c} -1.86946700\\ -2.64420400\\ -0.04647600\\ -0.23410000\\ -0.65838700\\ 0.64392100\\ -1.66913000\\ -0.71221500\\ -0.95110400\\ -1.08959700\\ 0.68247600\\ 0.18664200\\ 1.23661300 \end{array}$	$\begin{array}{c} 1.36413500\\ 1.91761300\\ 0.70458000\\ 3.22626600\\ 2.78322100\\ 3.80526800\\ 0.53434800\\ 2.24944800\\ -0.38149500\\ -1.37708300\\ 0.05033400\\ 2.12845200\\ 2.25361400\\ \end{array}$
C H C C H H N N C H O C H N	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -1.42573200	$\begin{array}{c} -1.86946700\\ -2.64420400\\ -0.04647600\\ -0.23410000\\ -0.65838700\\ 0.64392100\\ -1.66913000\\ -0.71221500\\ -0.95110400\\ -1.08959700\\ 0.68247600\\ 0.18664200\\ 1.23661300\\ 0.38713600\end{array}$	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.12845200 2.25361400 -0.21921300
СНССННИКСНОСНИС	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.50113100	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.12845200 2.25361400 -0.21921300 0.20319700
C H C C H H N N C H O C H N C H	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.50113100 -2.04155900	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200 2.17339600	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.12845200 2.25361400 -0.21921300 0.20319700 0.70093300
C H C C H H N N C H O C H N C H N	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.50113100 -2.04155900 3.15168500	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200 2.17339600 1.2642900	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.12845200 2.25361400 -0.21921300 0.20319700 0.70093300 0.32614700
C H C C H H N N C H O C H N C H N N	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.50113100 -2.04155900 3.15168500 2.06156200	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200 2.17339600 -1.26042900 0.9022200	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.12845200 2.25361400 -0.21921300 0.20319700 0.70093300 0.32614700 0.6555000
C H C C H H N N C H O C H N C H N N C	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.50113100 -2.04155900 3.15168500 -3.06156300	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200 2.17339600 -1.26042900 -0.9203300	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.12845200 2.25361400 -0.21921300 0.20319700 0.70093300 0.32614700 0.65395000
C H C C H H N N C H O C H N C H N N C	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.50113100 -2.04155900 3.15168500 -3.06156300 3.44628700	$\begin{array}{r} -1.86946700\\ -2.64420400\\ -0.04647600\\ -0.23410000\\ -0.65838700\\ 0.64392100\\ -1.66913000\\ -0.71221500\\ -0.95110400\\ -1.08959700\\ 0.68247600\\ 0.18664200\\ 1.23661300\\ 0.38713600\\ 1.30492200\\ 2.17339600\\ -1.26042900\\ -0.92033300\\ -1.26202600\end{array}$	$\begin{array}{c} 1.36413500\\ 1.91761300\\ 0.70458000\\ 3.22626600\\ 2.78322100\\ 3.80526800\\ 0.53434800\\ 2.24944800\\ -0.38149500\\ -1.37708300\\ 0.05033400\\ 2.12845200\\ 2.25361400\\ -0.21921300\\ 0.20319700\\ 0.70093300\\ 0.32614700\\ 0.65395000\\ 4.09451700\\ \end{array}$
C H C C H H N N C H O C H N C H N N C H	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.50113100 -2.04155900 3.15168500 -3.06156300 3.44628700 3.80212600	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200 2.17339600 -1.26042900 -0.92033300 -1.26202600 -2.28230500	$\begin{array}{c} 1.36413500\\ 1.91761300\\ 0.70458000\\ 3.22626600\\ 2.78322100\\ 3.80526800\\ 0.53434800\\ 2.24944800\\ -0.38149500\\ -1.37708300\\ 0.05033400\\ 2.12845200\\ 2.25361400\\ -0.21921300\\ 0.20319700\\ 0.20319700\\ 0.32614700\\ 0.65395000\\ 4.09451700\\ 3.89546900 \end{array}$
C H C C H H N N C H O C H N C H N N C H C	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.50113100 -2.04155900 3.15168500 -3.06156300 3.44628700 3.80212600 1.97951900	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200 2.17339600 -1.26042900 -0.92033300 -1.26202600 -2.28230500 -1.10458100	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.12845200 2.25361400 -0.21921300 0.20319700 0.32614700 0.32614700 0.65395000 4.09451700 3.89546900 3.67992100
C H C C H H N N C H O C H N C H N N C H C H	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.04155900 3.15168500 -3.06156300 3.44628700 3.80212600 1.97951900 1 50038000	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200 2.17339600 -1.26042900 -0.92033300 -1.26202600 -2.28230500 -1.10458100 -0.28450400	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.12845200 2.25361400 -0.21921300 0.20319700 0.70093300 0.32614700 0.65395000 4.09451700 3.89546900 3.67992100 4.2328600
C H C C H H N N C H O C H N C H N N C H C H H	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.50113100 -2.04155900 3.15168500 -3.06156300 3.44628700 3.80212600 1.97951900 1.50038000 1.36824600	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200 2.17339600 -1.26042900 -0.92033300 -1.26202600 -2.28230500 -1.10458100 -0.28450400 2.09000200	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.25361400 -0.21921300 0.20319700 0.70093300 0.32614700 0.65395000 4.09451700 3.89546900 3.67992100 4.23298600
C H C C H H N N C H O C H N C H N N C H C H H C	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.50113100 -2.04155900 3.15168500 -3.06156300 3.44628700 3.80212600 1.97951900 1.50038000 1.36834600	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200 2.17339600 -1.26042900 -0.92033300 -1.26202600 -2.28230500 -1.10458100 -0.28450400 -0.28450400 -0.28450400	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.12845200 2.25361400 -0.21921300 0.20319700 0.70093300 0.32614700 0.65395000 4.09451700 3.89546900 3.67992100 4.23298600 3.80907000
C H C C H H N N C H O C H N C H N N C H C H H Co	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.04155900 3.15168500 -3.06156300 3.44628700 3.80212600 1.97951900 1.50038000 1.36834600 0.15807700	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200 2.17339600 -1.26042900 -0.92033300 -1.26202600 -2.28230500 -1.10458100 -0.28450400 -2.20900800 0.22153200	$\begin{array}{c} 1.36413500\\ 1.91761300\\ 0.70458000\\ 3.22626600\\ 2.78322100\\ 3.80526800\\ 0.53434800\\ 2.24944800\\ -0.38149500\\ -1.37708300\\ 0.05033400\\ 2.12845200\\ 2.25361400\\ -0.21921300\\ 0.20319700\\ 0.20319700\\ 0.32614700\\ 0.65395000\\ 4.09451700\\ 3.89546900\\ 3.67992100\\ 4.23298600\\ 3.80907000\\ 1.36774300\\ \end{array}$
С Н С С Н Н N N С Н О С Н N С Н N N С Н С Н Н С О С	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -2.04155900 3.15168500 -3.06156300 3.44628700 3.80212600 1.97951900 1.50038000 1.36834600 0.15807700 5.56762700	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200 2.17339600 -1.26042900 -0.9203300 -1.26042900 -0.28230500 -1.10458100 -0.28450400 -2.28230500 -1.10458100 -0.28450400 -2.20900800 0.22153200 -4.72549700	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.12845200 2.25361400 -0.21921300 0.20319700 0.32614700 0.32614700 0.65395000 4.09451700 3.89546900 3.67992100 4.23298600 3.80907000 1.36774300 -0.30146600
С Н С С Н Н N N С Н О С Н N С Н N N С Н С Н Н С С С С	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.50113100 -2.04155900 3.15168500 -3.06156300 3.44628700 3.80212600 1.97951900 1.50038000 1.36834600 0.15807700 5.56762700 4.84054500	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.26042900 -0.9203300 -1.2602600 -2.28230500 -1.10458100 -0.28450400 -0.28450400 -2.00900800 0.22153200 -4.72549700 -3.57875000	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.12845200 2.25361400 -0.21921300 0.20319700 0.20319700 0.32614700 0.32614700 0.65395000 4.09451700 3.89546900 3.67992100 4.23298600 3.80907000 1.36774300 -0.30146600 -0.08852500
C H C C H H N N C H O C H N C H N N C H C H H C C C C C	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.04155900 3.15168500 -3.06156300 3.44628700 3.80212600 1.97951900 1.50038000 1.36834600 0.15807700 5.56762700 4.84054500 4.09186300	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200 2.17339600 -1.26042900 -0.92033300 -1.26202600 -2.28230500 -1.10458100 -0.28450400 -0.28450400 -0.28450400 -0.28450400 -2.00900800 0.22153200 -4.72549700 -3.57875000 -2.99385700	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.12845200 2.25361400 -0.21921300 0.20319700 0.70093300 0.32614700 0.65395000 4.09451700 3.89546900 3.67992100 4.23298600 3.80907000 1.36774300 -0.30146600 -0.08852500 -1.14641200
C H C C H H N N C H O C H N C H N N C H C H H C C C C C C	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.04155900 3.15168500 -3.06156300 3.44628700 3.80212600 1.57951900 1.50038000 1.36834600 0.15807700 5.56762700 4.84054500 4.09186300 4.12535800	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200 2.17339600 -1.26042900 -0.9203300 -1.26202600 -2.28230500 -1.10458100 -0.28450400 -0.28450400 -0.28450400 -0.28450400 -2.0990880 0.22153200 -4.72549700 -3.57875000 -2.99385700 -3.59698200	1.36413500 1.91761300 0.70458000 3.22626600 2.78322100 3.80526800 0.53434800 2.24944800 -0.38149500 -1.37708300 0.05033400 2.25361400 -0.21921300 0.20319700 0.70093300 0.32614700 0.32614700 0.32614700 0.3295000 4.09451700 3.89546900 3.67992100 4.23298600 3.80907000 1.36774300 -0.30146600 -0.08852500 -1.14641200 -2.43838900
C H C C H H N N C H O C H N C H N N C H C H H C C C C C C C	2.32916900 2.89041400 3.66699800 4.20089000 5.11184400 4.51027800 0.07965100 2.01178000 -2.03692100 -2.49872100 4.36420100 3.18798300 2.89301700 -1.42573200 -2.50113100 -2.04155900 3.15168500 -3.06156300 3.44628700 3.80212600 1.97951900 1.50038000 1.36834600 0.15807700 5.56762700 4.84054500 4.09186300 4.12535800	-1.86946700 -2.64420400 -0.04647600 -0.23410000 -0.65838700 0.64392100 -1.66913000 -0.71221500 -0.95110400 -1.08959700 0.68247600 0.18664200 1.23661300 0.38713600 1.30492200 2.17339600 -1.26042900 -0.92033300 -1.26202600 -2.28230500 -1.10458100 -0.28450400 -0.28450400 -2.00900800 0.22153200 -4.72549700 -3.57875000 -2.99385700 -3.59698200 4.78326400	$\begin{array}{c} 1.36413500\\ 1.91761300\\ 0.70458000\\ 3.22626600\\ 2.78322100\\ 3.80526800\\ 0.53434800\\ 2.24944800\\ -0.38149500\\ -1.37708300\\ 0.05033400\\ 2.12845200\\ 2.25361400\\ -0.21921300\\ 0.20319700\\ 0.70093300\\ 0.32614700\\ 0.65395000\\ 4.09451700\\ 3.89546900\\ 3.80907000\\ 1.36774300\\ -0.30146600\\ -0.30146600\\ -0.30146600\\ -2.43838900\\ 2.6228200\end{array}$

С	5.58573500	-5.33900800	-1.57923900
Н	6.14891000	-5.16179200	0.51182100
Н	4.86240400	-3.09018700	0.88758900
C	3.29356400	-1.82605100	-0.97552100
C	3.40758500	-2.99533200	-3.50854000
H	4.91241500	-5.24262600	-3.61275400
Н	6.16867100	-6.24769100	-1.73207200
C	2.67536900	-1.84902100	-3.31414100
C	2.605/6400	-1.26512500	-2.02/11000
H	3.45240200	-3.46138000	-4.49455200
П	2.13013100	-1.39394000	-4.1455/400
п	2.00180400	-0.5/594000	-1.859/0800
П	-0.93120400	1.81535200	-1.00904900
C	-3.42399300	2 77359600	-0.88349900
C	-3 3/3/0/00	2.77339000	-2.22185800
C	-5 23009200	3 33112600	-1 47016100
н	-4 45226800	3 10057500	0.52100900
C	-4 20021700	1 97454300	-3 17665300
Ĥ	-2.60453400	0.68747400	-2.55125800
Ĉ	-5.13892500	2.93263500	-2.80531500
Ĥ	-5.95927900	4.08519200	-1.17127500
H	-4.12465800	1.65559200	-4.21723000
Н	-5.79548600	3.37615600	-3.55517200
С	-3.18856500	0.40216500	1.25449700
Н	-4.24804900	0.66902200	1.37782800
С	-2.49272900	0.49641400	2.60279600
С	-2.58748000	1.68704700	3.33552800
С	-1.78797600	-0.58651700	3.14584700
С	-1.98809000	1.80010300	4.58487800
Н	-3.16613500	2.52370300	2.93388600
C	-1.19129200	-0.46859000	4.40980900
H	-1.81200200	-1.54968200	2.63069600
C	-1.28091500	0.72197600	5.12449900
H	-2.09489800	2./2232500	5.15835500
H	-0./0191500	-1.33505800	4.85596200
П S	-0.85/85900	0.80010500	0.11823200
3	-4.40490/00	-1.93829800	0.32893200
0	-5.82913900	-3.2103/300 -1.7103/700	1 75528300
C	-5 33971900	-1 33211200	-0.83896300
C	-6 26821800	-0.31015500	-0.62731800
C	-5 12568700	-1 87193800	-2.10698800
Č	-6.96431000	0.19356700	-1.71826400
Ĥ	-6.46286000	0.05571000	0.38249300
C	-5.83654500	-1.35321900	-3.18609000
Н	-4.44072200	-2.71117600	-2.23564700
С	-6.75847700	-0.31405100	-3.01086100
Н	-7.69619300	0.98948600	-1.56592500
Н	-5.68644700	-1.77567500	-4.18134100
С	-7.54321700	0.23014400	-4.17064400
Н	-8.56721400	-0.17322700	-4.16003100
H	-7.62451700	1.32441500	-4.11272600
H	-7.08721900	-0.04140000	-5.13081900
H	3.5/8//000	-1.08668900	5.16882100
C	5.56915900	5.56//0/00	-2.68293400
C	4.54/42900	4.96943000	-1.96600500
C	4.31429300	2 81452800	-2.0931/100
C	5.15446400	2.01433000	-2.93008800
č	6 37762700	4 79226200	-3 52592000
й	5 74668800	6 63957200	-2 59438500
Ĥ	3 91564900	5 57631900	-1 31591300
Ĥ	4.96102000	1.73918400	-3.02905300
Ĥ	6.80288500	2.82522500	-4.31269700
H	7.18367300	5.26979800	-4.08545600
С	3.28448500	2.89719000	-1.36982400
С	2.50107600	3.39718200	-0.35256100
Н	3.13748100	1.84412000	-1.62460400

н	2 60760600	4 40924000	0.03502500
C	1 61052500	2 52125200	0.05502500
C	1.01052500	2.32123300	0.30400200
0	1.31881600	1.3517/900	-0.01620900
С	0.94930200	2.95783900	1.61855300
0	0.32075300	2.12527900	2.26471100
0	1 10926900	4 18658400	1 97354600
C	0.50605000	4.62024400	2 20024400
C	0.30003900	4.02024400	3.20924400
Н	0.74987700	5.68055700	3.30190100
Н	-0.57795700	4.46398200	3.15625900
Н	0.92673100	4.04194500	4.04050500
I 7 20 f2			
L/-2a-12	0.7(01(400	2 (0222000	1 21720000
C	-0./6816400	-2.69233000	-1.21/30000
С	-0.31851200	-3.97165500	-1.52076200
С	1.04664900	-4.23339300	-1.39175200
C	1 91043400	-3 22824600	-0.95975100
C	1 22020500	1 06714000	0.55575100
	1.00050500	-1.90/14900	-0.09934300
Н	-1.023/1100	-4./5018400	-1.81/00900
Н	1.43586800	-5.22753200	-1.61451300
Н	2.97937400	-3.40597200	-0.85438400
С	-2.23583200	-2 33285000	-1 11251000
ц Ц	2 80877700	2.02020000	1 83628000
II C	-2.80877700	1 52880400	-1.03020000
Č	-3.54///100	-1.52880400	0.6661/900
C	-4.91461500	-0.94605500	-1.44313600
Н	-5.38905800	-1.88663700	-1.13110100
Н	-5.67907500	-0.16479400	-1.36387900
N	0.07666400	-1 73076900	-0.84530000
N	2 49506100	0.00007000	1 22222500
IN G	-2.48300100	-0.8808/000	-1.52522500
C	2.20102200	-0.//855600	-0.212/3800
Н	3.04304500	-1.15862500	0.39511500
0	-4.04111800	-1.38360900	1.75381000
C	-3 70676400	-0.60750300	-0 53086000
ц Ц	3 74205700	0.00730300	0.21373000
11	-3.74203700	0.44234600	-0.213/3000
IN	1.33506000	0.15698600	0.53/04100
С	1.96473800	1.48861900	0.45232500
Н	1.19347700	2.24946500	0.65119300
Ν	-2.71684800	-2 53775300	0 25134300
N	2.68846700	0.08862000	-1 27666000
IN C	2.000+0700	1.05254000	-1.27000000
C	-4.3222/200	-1.05254000	-2.8665/900
Н	-4.36200300	-2.08/48500	-3.23225800
С	-2.87093200	-0.57396400	-2.72090400
Н	-2.80409700	0.51597800	-2.83938800
н	-2 16259000	-1 04048900	-3 42034800
	-2.10257000	0.17064000	0 49629700
0	-0.003/3200	0.1/004000	-0.48038/00
С	-3.9/362100	-6.5386/900	-0.55135300
С	-3.62891400	-5.23776300	-0.27157400
С	-2.69033500	-4.94515300	0.75584200
С	-2 13413500	-6.01792300	1 51317600
Č	-2 51178800	-7 35173600	1 19592200
C	2.01170000	7.070000	0.19200600
C	-3.40284800	-/.60/99600	0.18309600
Н	-4./0439100	-6./5334900	-1.33211400
Н	-4.10582700	-4.41883200	-0.81336700
С	-2.26833700	-3.61962500	1.06747400
С	-1 22983800	-5 73000100	2 57213300
с ц	2.08506000	8 17024200	1 77832200
11	-2.08300000	-0.17024200	1.//032200
Н	-3.68//9200	-8.63435000	-0.04980100
С	-0.87764000	-4.43602100	2.86935600
С	-1.39140100	-3.36786700	2.09687300
Н	-0.82443900	-6.56029400	3.15315100
H	-0 10380500	_4 22853500	3 69281100
и П	1 10261600	1 22 400000	2 20050700
п	-1.10301000	-2.33409800	2.29030/00
Н	1.18263600	-0.15012000	1.499/3300
С	3.14018800	1.74571300	1.37644000
С	3.68068500	3.03849800	1.38310500
С	3,67359600	0.78811000	2.24069400
č	1 77662600	3 36020000	2.21000400
с П	7.72003000 2.26710000	2 2027220000	2.23/00100
п	5.20/18000	5.805/8200	0./1983000
C	4.72961800	1.11584200	3.09481600
Н	3.27207100	-0.22678400	2.27924800

С	5.25367100	2.40509000	3.09947100
Н	5.12686400	4.38384600	2.23937900
Н	5.13693600	0.35607700	3.76344800
Н	6.06717000	2.66336200	3.77886100
С	2.32738400	1.48373400	-1.05093100
Н	3.18485400	2.14114500	-1.25541300
Ĉ	1.15274500	1.92395900	-1.91048700
Č	0.70219200	3.24828800	-1.81909400
Č	0 54727100	1 05688200	-2.83039100
Č	-0 32736700	3 70328200	-2 63450200
Ĥ	1 18761400	3 93955300	-1 12499700
C	-0.48756200	1 52409900	-3 65342300
Ĥ	0.96488400	0.05768600	-2 97553600
C	-0 92944600	2 83968600	-3 55396500
н	-0.64323100	4 74622900	-2 57571100
Н	-0.91032500	0.86409100	-4 41178300
H	-1 71518100	3 20486400	-4 21678200
S	4 11764000	-0.30975800	-2 08557300
0	3 97825400	-173127400	-2 33966700
0	4 22059500	0 68740500	-3 12507500
C	5 40962700	-0.08000600	-0.90719700
C	5.96296500	1 19212500	-0 74516200
C	5.83565700	-1 16409400	-0.13981600
C	6 93 5 20 7 00	1 37635600	0.22948400
н	5 65721700	2 01210400	-1 39760100
C	6 81412300	-0.95723200	0.82861500
н	5 43083700	-2 15949400	-0 32787300
C C	7 37201000	0.31111500	1 03231200
н	7 37814100	2 36520300	0 36446900
H	7 16437500	-1 80013400	1 42731600
C	8 44457900	0.52813100	2 06170000
н	8 44027500	-0.26246500	2.00170000
H	9 43612100	0.52551900	1 58365000
Н	8 32513800	1 50069600	2 55832000
Н	-4 86647900	-0 44095400	-3 59598600
C	-5 37879600	6 98525000	1 76639800
C	-4 65885600	5 80629900	1.67391500
C	-3 95860900	5 49497100	0.48571000
C	-4 00483700	6 39914700	-0 59796900
C	-4 72744200	7 57974200	-0.50079900
C	-5 41323500	7 87116200	0.50079900
н	-5 91915600	7 22590300	2 68203900
H	-4 63660400	5 12142700	2 52243900
Н	-3 46634500	6 16017600	-151748400
Н	-4 76101900	8 27527100	-1 33938400
H	-5 98266600	8 79857600	0 76072700
C	-3 19708600	4 28791500	0.33095800
C	-3 02737000	3 28221200	1 25029800
н	-2 69188400	4 14902600	-0.63229900
Ĥ	-3 47687500	3 29949800	2 24195200
C	-2 23602900	2 1 5 6 5 3 5 0 0	0.90580800
ŏ	-1 65632700	1 96277400	-0 17993100
č	-2.04585200	1 01744500	1 92068800
ŏ	-1 35248200	0.06555000	1 58491800
ŏ	-2.62875500	1.16536000	3.05563500
č	-2.52109600	0.10425500	4.03445400
й	-3 06363400	0 46358000	4 91117100
Ĥ	-2.98314600	-0.79881800	3.61797100
Ĥ	-1.46196400	-0.05816200	4.26787500

References

- X.-B. Wang, Y. Tian, L. Zhou, M.-S. Xie, G.-R. Qu and H.-M. Guo, Rational Design of Chiral Tridentate Ligands: Bifunctional Cobalt(II) Complex/Hydrogen Bond for Enantioselective Michael Reactions, *Org. Lett.*, 2022, 24, 3861-3866.
- 2 B.-Y. Xue, C.-Y. Hou, X.-B. Wang, M.-S. Xie and H.-M. Guo, Asymmetric synthesis of 7membered-ring-bridged 3,4-fused tricyclic indoles *via* Friedel–Crafts alkylatio/annulation, *Org. Chem. Front.*, 2023, **10**, 1910-1914.
- 3 H.-X. Wang, C. Yang, B.-Y. Xue, M.-S. Xie, Y. Tian, C. Peng and H.-M. Guo, Design of C_1 -symmetric tridentate ligands for enantioselective dearomative [3 + 2] annulation of indoles with aminocyclopropanes, *Nat. Commun.*, 2023, **14**, 2270.
- 4 X.-Y. Wang, X.-B. Wang, Y. Tian, C. Peng, M.-S. Xie and H.-M. Guo, Cobalt-Catalyzed Asymmetric Dearomative [3 + 2] Annulation of Quinolines, Isoquinolines, and Pyridines, *ACS Catal.*, 2023, **13**, 11528-11540.
- 5 Y.-P. Wang, X.-P. Zhang, M.-S. Xie and H.-M. Guo, Cobalt(II)-Catalyzed Enantioselective Propargyl Claisen Rearrangement: Access to Allenyl-Substituted Quaternary β-Ketoesters, Org. Lett., 2023, 25, 7105-7109.
- 6 (a) J. H. Feng, X. Fu, Z. L. Chen, L. L. Lin, X. H. Liu and X. M. Feng, Efficient Enantioselective Synthesis of Dihydropyrans Using a Chiral *N*,*N'*-Dioxide as Organocatalyst, *Org. Lett.*, 2013, 15, 2640-2643; (b) D. Belmessieri, L. C. Morrill, C. Simal, A. M. Z. Slawin and A. D. Smith, Organocatalytic Functionalization of Carboxylic Acids: Isothiourea-Catalyzed Asymmetric Intra- and Intermolecular Michael Addition–Lactonizations, *J. Am. Chem. Soc.*, 2011, 133, 2714-2720.
- 7 Y. Huang, Y. Li, J. Sun, J. Li, Z. Zha and Z. Wang, Enantioselective Hetero-Diels–Alder Reaction and the Synthesis of Spiropyrrolidone Derivatives, *J. Org. Chem.*, 2018, **83**, 8464-8472.
- 8 (a) V. L. Reddy, P. S. Prathima, V. J. Rao and R. Bikshapathi, An efficient synthesis of versatile synthon 3-chlorooxindoles with NaCl/oxone, *New J. Chem.*, 2018, 42, 20152-20155; (b) Y. Jian, P. Liang, X. Li, H. Shao and X. Ma, Controllable transformation of indoles using iodine(III) reagent, *Org. Biomol. Chem.*, 2023, 21, 179-186.
- 9 Y. L. Kuang, B. Shen, L. Dai, Q. Yao, X. H. Liu, L. L. Lin and X. M. Feng, Diastereodivergent asymmetric Michael-alkylation reactions using chiral *N*,*N*'-dioxide/metal complexes, *Chem. Sci.*, 2018, 9, 688-692.
- 10 J.-B. Wen and D.-M. Du, Squaramide-catalysed asymmetric cascade reactions of 2,3dioxopyrrolidines with 3-chlorooxindoles, *Org. Biomol. Chem.*, 2020, **18**, 1647-1656.
- 11 (a) P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136, B864-B871; (b) W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, *Phys. Rev.*, 1965, 140, A1133-A1138.
- 12 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J.

Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov,
J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A.
Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang,
M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. J.
Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi,
J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J.
M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O.
Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, revision B.01, Gaussian, Inc.: Wallingford, CT, 2016.

- 13 (a) Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theor. Chem. Acc.*, 2008, **120**, 215-241; (b) S. Grimme, Antony, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.*, 2010, **132**, 154104.
- 14 F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297-3305.