Supporting Information

Photo-induced Synthesis of Fluoroalkylated Quinolinone during Iron-Catalyzed LMCT Decarboxylation Process

Zhuoheng Song,^a Lin Guo,^a Chao Yang,^{a,*} and Wujiong Xia ^{a,b,*}

^b School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China

Table Content

1. General Information	S 2
2. General Synthetic Procedure	S3
3. Optimization of Reaction Conditions	S6
4. Reaction of Other Radical Acceptors	S9
5. Substrate Characterization	S11
6. Product Characterization	S14
7. References	S20
8. Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra for Substrates	S21
9. Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra for Products	S33

^a State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China E-mail: xyyang@hit.edu.cn; xiawj@hit.edu.cn

General Information

Unless otherwise mentioned, all reagents were purchased from commercial sources and used as received. The visible-light mediated reactions were performed on WPTEC-1020L instruments which are purchased from WATTCAS, China. All yields of products refer to the isolated yields after chromatography. ¹H NMR (400 MHz), ¹³C NMR (101 MHz) and ¹⁹F NMR (376 MHz) spectra were recorded on a Bruker AV-400 spectrometer or a Quantum-I Plus 400 in CDCl₃. For ¹H NMR, CDCl₃ (δ = 7.26 ppm) or tetramethylsilane (TMS, δ = 0 ppm) serves as the internal standard; for ¹³C NMR, CDCl₃ (δ = 77.16 ppm) serves as the internal standard; for ¹³C NMR, CDCl₃ (δ = 77.16 ppm) serves as the internal standard. Data are reported as follows: chemical shift (in ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = quintet, hept = heptet, m = multiplet, br = broad), coupling constant (in Hz), and integration. GC analysis was performed on a 7890B/Agilent, while GC-MS analysis was performed on a 7890A-5975C/Agilent. HRMS spectra were recorded on a Waters Xevo G2QTOF/UPLC mass spectrometer using electrospray ionization. NMR yields of the screening part were calculated using 1,3,5-trimethoxybenzene as the internal standard. All yields of products refer to the isolated yields after chromatography.

2 General Synthetic Procedure

2.1 General procedure for synthesis of N-(2-cyanophenyl)-N-acrylamide

N-(2-cyanophenyl)-N-acrylamides were prepared on gram-scale in 1 or 2 steps according to the procedure disclosed by Feng et al. from inexpensive commercial reagent 2-aminobenzonitriles.^[1] We here took synthetic pathway of **1a** for example.

Scheme S1. Synthesis of N-(2-cyanophenyl)methacrylamide

To a 100 mL round bottom flask equipped with a magnetic stirring bar were added with 2aminobenzonitrile (1.18g, 10 mmol, 1.0 equiv.), dry triethylamine (1,52g, 15 mmol, 1.5 equiv.), DCM (40 mL), then cooled to 0 $^{\circ}$ C in the ice water bath. Methacryloyl chloride (1.14 g, 11 mmol, 1.1 equiv.) was slowly added to the solution at 0 $^{\circ}$ C and then the mixture was stirred at room temperature for 12 h. The solution was concentrated under reduced pressure, and the mixture was purified by flash column chromatography over silica gel (1:20 to 1:5 EtOAc:PE) to afford the N-(2-cyanophenyl)methacrylamide (1.67 g, 9 mmol, 90% yield) as a white solid.

Scheme S2. Synthesis of N-(2-cyanophenyl)-N-methylmethacrylamide

To a solution of N-(2-cyanophenyl)methacrylamide (1.67 g, 9 mmol) in THF (30.0 mL) was added a magnetic stirring bar and 60% NaH (540 mg, 13.5 mmol, 1.5 equiv.) at 0 °C and stirred for 30 min. Then methyl iodide (1.92 g, 13.5 mmol, 1.5 equiv.) was added and the reaction was warmed to room temperature. After stirring for 8 h, the reaction was quenched by water and the aqueous layer was extracted with EtOAc (10 mL x 3). The combined organic layers were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography over silica gel (1:10 to 1:3 EtOAc:PE) to afford **1a** N-(2-cyanophenyl)-N-methylmethacrylamide (1.40 g, 7 mmoL, 78% yield) as a yellow solid. Most substrates followed the reaction pathway of **1a**.

2.2 General procedure for preparation of fluoroalkylated quinoline-2,4-dione

Scheme S3. Procedure for preparation of 3-(2,2-difluoroethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione

To an oven-dried 10 mL quartz reaction tube equipped with a magnetic stir bar were sequentially added the corresponding N-(2-cyanophenyl)-N-acrylamide **1a** (40mg, 0.2 mmol, 1.0 equiv.), Fe(OH)(OAc)₂ (3.8 mg, 10 mol%), Na₂CO₃ (2.2 mg, 10 mol%). The tube was degassed three times and was added the solvent MeCN/H₂O (2.0mL), then the reactant difluoroacetic acid **2a** (96mg, 1.0 mmol, 5.0 equiv.). The tube was then put into the reactor and was irradiated under 10 W 390 nm blue LED chip irradiation and stirred for 12 h at room temperature. After the reaction was complete, all reactants were filtered through a short silica gel column, washed with EtOAc, and the crude product was concentrated under reduced pressure, then purified by column chromatography (1:10 to 1:3 EtOAc : petroleum ether). Combined organic layers were washed with brine twice, dried with Na₂SO₄, concentrated and purified by column chromatography.

Figure S1. Photo reactor device and 390nm 10W blue LED chip

2.3 General procedure for gram-scale flow reaction

Figure S2. Example figure of gram scale flow reactor of photoreactions

The construction of the photoreaction device followed Qi, et al^[2]. An oven dried 200 mL round bottom flask was charged with a stir bar. Substrate **1a** (1.0 g, 5 mmol, 1.0 equiv.), **2a** (2.4 g, 25 mmol, 5.0 equiv.), Fe(OH)(OAc)₂ (76mg, 10 mol%) and Na₂CO₃ (55mg, 10 mol%) was added with 40 mL MeCN and 10 mL water. The reaction mixture was pumped into PTFE transparent coil and irradiated with commercially available 390 nm blue light bulbs and flow pump for 12 hours. After the reaction was complete, all reactants were filtered through a short silica gel column, washed with EtOAc, and the crude product was concentrated under reduced pressure, then purified by column chromatography (1:10 to 1:3 EtOAc : petroleum ether). Affording product γ -lactam **3aa** (0.834g, 66% yield) as a yellow oil.

2.4 Typical unsuccessful reaction samples

Scheme S4. Typical unsuccessful reaction samples

3 Optimization of Reaction Conditions

Entry	Solvent	Yield (%)
1	dry MeCN	N.R.
2	MeCN	28
3	MeCN:Water=2:1	45
4	THF:Water=2:1	trace
5	DMSO:Water=2:1	25
6	MeCN:Water=4:1	50
7	MeCN:Water=9:1	36
8	DMSO	trace
9	DMSO:MeCN=1:1	trace

Table 1S. Optimization of solvent.^[a]

^{a)} Reaction conditions: substrate **1a** (0.2mmol), difluoroacetic acid (**2a**) (10 equiv.), Fe(acac)₃ (10 mol%), DBU (0.5 equiv.), 10 W 390 nm LEDs at room temperature for 12 hours under N₂ atmosphere.

Entry	Possible Oxidant	Atmosphere	Yield (%)
1	None	N ₂	50
2	Open to air	Air	40
3	$Na_2S_2O_8$	N ₂	<30
4	$K_2S_2O_8$	N ₂	<30
5	$(\mathrm{NH}_4)_2\mathrm{S}_2\mathrm{O}_8$	N_2	<30

Table 2S. Optimization of Oxidant.^[a]

^{a)} Reaction conditions: substrate **1a** (0.2mmol), difluoroacetic acid (**2a**) (10 equiv.), Fe(acac)₃ (10 mol%), DBU (0.5 equiv.), MeCN:Water=4:1 (2mL, 0.1M), 10 W 390 nm LEDs at room temperature for 12 hours.

Entry	Photocatalyst	Yield (%)
1	Fe(acac) ₃	50
2	Fe(OH)(OAc) ₂	72
3	Fe(OH) (OAc) ₂ +LiCl	70
4	FeCl ₃	63
5	$Fe(NO_3)_3$	56
6	FeCl ₂	41
7	FeBr ₃	36
8	Mes-Acr ⁺ ClO ₄ ⁻	n.d.

Table 3S.	Optimization	of photo	catalyst.[4	a]
-----------	--------------	----------	-------------	----

^{a)} Reaction conditions: substrate **1a** (0.2mmol), difluoroacetic acid (**2a**) (10 equiv.), DBU (0.5 equiv.), MeCN:Water=4:1 (2mL, 0.1M), 10 W 390 nm LEDs at room temperature for 12 hours under N₂ atmosphere.

Table 4S. Optimization of reactant dosage.^[a]

Entry	Acid (equiv.)	Yield (%)
1	3	54
2	5	72
3	10	72

^{a)} Reaction conditions: substrate **1a** (0.2mmol), difluoroacetic acid (**2a**) (5 equiv.), $Fe(OH)(OAc)_2$ (10 mol%), DBU (0.5 equiv.), MeCN:Water=4:1 (2mL, 0.1M), 10 W 390 nm LEDs at room temperature for 12 hours under N₂ atmosphere.

Entry	Base	Yield (%)
1	None	N.R.
2	DBU	72
3	DABCO	48
4	Quinuclidine	34
5	Et ₃ N	trace
6	LDA	trace
7	Na ₂ CO ₃	87
8	Cs_2CO_3	80
9	K_2HPO_4	45

Table 5S. Optimization of base.^[a]

^{a)} Reaction conditions: substrate **1a** (0.2mmol), difluoroacetic acid (**2a**) (5 equiv.), $Fe(OH)(OAc)_2$ (10 mol%), MeCN:Water=4:1 (2mL, 0.1M), 10 W 390 nm LEDs at room temperature for 12 hours under N₂ atmosphere.

Table 7S. Optimization of base dosage.^[a]

Entry	Na ₂ CO ₃ (equiv.)	Yield (%)
1	0.1	87
2	0.2	86
3	0.5	87

^{a)} Reaction conditions: substrate **1a** (0.2mmol), difluoroacetic acid (**2a**) (5 equiv.), $Fe(OH)(OAc)_2$ (10 mol%), MeCN:Water=4:1 (2mL, 0.1M), 10 W 390 nm LEDs at room temperature for 12 hours under N₂ atmosphere.

Entry	Light Source	Yield (%)
1	380nm	71
2	390nm	87
3	400nm	64
4	405nm	56
5	410nm	58
6	460nm	n.d.

Table 6S. Optimization of light resourse.^[a]

^{a)} Reaction conditions: substrate **1a** (0.2mmol), difluoroacetic acid (**2a**) (5 equiv.), $Fe(OH)(OAc)_2$ (10 mol%), Na_2CO_3 (10 mol%), MeCN:Water=4:1 (2mL, 0.1M), 10 W 390 nm LEDs at room temperature for 12 hours under N₂ atmosphere.

Entry	Other changes	Yield (%)
1	8h react time	66
2	12h react time	87
3	16h react time	80
4	20h react time	59
5	24h react time	33
6	Add 5% HCl	70
7	60°C temp	60
8	5W radiation strength	54

Table 7S. Optimization of react time and additives.^[a]

^{a)} Standard reaction conditions: substrate **1a** (0.2mmol), difluoroacetic acid (**2a**) (5 equiv.), Fe(OH)(OAc)₂ (10 mol%), Na₂CO₃ (10 mol%), MeCN:Water=4:1 (2mL, 0.1M), 10 W 390 nm LEDs at room temperature for 12 hours under N₂ atmosphere. Each entry only changed the conditions represented.

Entry	Variation from standard conditions ^[a]	Yield (%)
1	None	87
2	FeCl₃ as photo catalyst	68
3	FeCl ₂ as photo catalyst	52
4	Fe(acac)₃ as photo catalyst	70
5	380 nm LED	71
6	405 nm LED	56
7	DMSO/H ₂ O as solvent	40
8	Dry MeCN	trace
9	DBU as base	35
10	Cs ₂ CO ₃ as base	80
11	3 equiv. 2a	54 ^[d]
12	10 equiv. 2a	86
13	Open to air	63
14	No Photo Catalyst	N.R.
15	React in dark	N.R.

Table 8S. Verifying of optimalized conditions.^[a]

^{a)} Standard reaction conditions: substrate **1a** (0.2mmol), difluoroacetic acid (**2a**) (5 equiv.), $Fe(OH)(OAc)_2$ (10 mol%), Na_2CO_3 (10 mol%), MeCN:Water=4:1 (2mL, 0.1M), 10 W 390 nm LEDs at room temperature for 12 hours under N₂ atmosphere. Each entry only changed the conditions represented.

¹³C NMR Spectrum

¹⁹F NMR Spectrum

5 Substrate Characterization

N-(2-cyanophenyl)-N-methylmethacrylamide (1a)

1a was prepared following the above mentioned procedure. The spectroscopic data of 1a matched well those reported in literature.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.35 (m, 2H), 7.21 – 7.08 (m, 2H), 4.74 (d, *J* = 48.5 Hz, 2H), 3.07 (s, 3H), 1.58 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.19, 147.10, 139.78, 134.23, 133.52, 128.65, 128.02, 116.24, 111.54, 19.86. calcd for [M+H]⁺ 201.1022, found 201.1024.

N-(2-cyanophenyl)-N-ethylmethacrylamide (1b)

1b was prepared following the above mentioned procedure. The spectroscopic data of 1b matched well those reported in literature.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 (dd, J = 7.6, 1.8 Hz, 1H), 7.65 (dd, J = 8.8, 6.7 Hz, 1H), 7.44 (td, J = 7.7, 2.1 Hz, 1H), 7.29 (dd, J = 5.7, 3.7 Hz, 1H), 5.06 (d, J = 40.2 Hz, 2H), 3.91 (s, 2H), 1.90 (s, 3H), 1.19 (td, J = 7.1, 2.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.25, 145.73, 140.30, 133.84, 132.21, 129.71, 128.01, 116.55, 113.07, 45.20, 20.20, 12.96. calcd for [M+H]⁺ 215.1179, found 215.1180.

N-benzyl-N-(2-cyanophenyl)methacrylamide (1c)

1c was prepared following the above mentioned procedure. The spectroscopic data of 1c matched well those reported in literature.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, J = 7.7 Hz, 1H), 7.46 (td, J = 7.8, 1.6 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.26 (d, J = 3.9 Hz, 3H), 7.20 (dd, J = 6.9, 2.9 Hz, 2H), 6.97 (d, J = 8.1 Hz, 1H), 5.06 (d, J = 40.5 Hz, 2H), 1.91 (s, 3H).¹³C NMR (101 MHz, Chloroform-*d*) δ 145.40, 140.09, 136.19, 133.79, 133.51, 129.91, 129.09, 128.62, 127.97, 127.91, 116.43, 112.83, 53.07, 20.30. HRMS (ESI, m/z): calcd for [M+H]⁺ 277.1335, found 277.1335.

N-(2-cyano-6-methylphenyl)-N-methylmethacrylamide (1d)

1d was prepared following the above mentioned procedure. The spectroscopic data of 1d matched well those reported in literature.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 5.00 (dd, *J* = 3.5, 1.8 Hz, 2H), 4.45 (d, *J* = 2.5 Hz, 2H), 2.86 (p, *J* = 6.9 Hz, 1H), 2.16 (t, *J* = 2.5 Hz, 1H), 1.70 (s, 3H), 1.20 (d, *J* = 7.0 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.37, 148.25, 140.05, 139.97, 127.13, 127.10, 119.82, 79.12, 72.00, 39.10, 33.58, 23.82, 20.12. HRMS (ESI, m/z): calcd for [M+H]⁺ 242.1539, found 242.1542.

N-(2-cyano-5-methylphenyl)-N-methylmethacrylamide (1e)

1e was prepared following the above mentioned procedure. The spectroscopic data of 1e matched well those reported in literature.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.4 Hz, 2H), 5.00 (dd, J = 3.5, 1.8 Hz, 2H), 4.45 (d, J = 2.5 Hz, 2H), 2.86 (p, J = 6.9 Hz, 1H), 2.16 (t, J = 2.5 Hz, 1H), 1.70 (s, 3H), 1.20 (d, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.37, 148.25, 140.05, 139.97, 127.13, 127.10, 119.82, 79.12, 72.00, 39.10, 33.58, 23.82, 20.12. HRMS (ESI, m/z): calcd for [M+H]⁺ 242.1539, found 242.1540.

1-methacryloylindoline-7-carbonitrile (1f)

If was prepared following the above mentioned procedure. The spectroscopic data of **If** matched well those reported in literature.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.17 – 7.08 (m, 1H), 6.75 – 6.63 (m, 3H), 4.93 (td, J = 3.6, 1.8 Hz, 2H), 4.37 (d, J = 2.6 Hz, 2H), 3.64 (d, J = 2.8 Hz, 3H), 2.15 (t, J = 2.4 Hz, 1H), 1.65 (q, J = 1.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.69, 139.94, 139.87, 130.68, 129.90, 129.77, 129.36, 129.31, 120.61, 120.55, 118.17, 111.67, 79.23, 71.96, 55.42, 55.37, 37.25, 19.80, 19.72. HRMS (ESI, m/z): calcd for [M+H]⁺ 230.1176, found 230.1173.

N-(2-cyano-5-methoxyphenyl)-N-methylmethacrylamide (1g)

1g was prepared following the above mentioned procedure. The spectroscopic data of 1g matched well those reported in literature.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (dd, J = 8.7, 2.2 Hz, 1H), 6.88 (dt, J = 8.7, 2.4 Hz, 1H), 6.72 (d, J = 2.5 Hz, 1H), 5.08 (d, J = 24.6 Hz, 2H), 3.85 (d, J = 2.2 Hz, 3H), 3.36 (d, J = 2.2 Hz, 3H), 1.89 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.73, 163.69, 149.29, 140.02, 135.11, 116.65, 114.76, 113.50, 103.49, 55.95, 20.18. HRMS (ESI, m/z): calcd for [M+H]⁺ 231.1128, found 231.1132.

N-(2-cyano-4-methoxyphenyl)-N-methylmethacrylamide (1h)

1h was prepared following the above mentioned procedure. The spectroscopic data of **1h** matched well those reported in literature.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.18 – 7.09 (m, 3H), 5.04 (d, *J* = 34.4 Hz, 2H), 3.85 (d, *J* = 1.0 Hz, 3H), 3.35 (s, 3H), 1.97 – 1.76 (m, 3H). HRMS (ESI, m/z): calcd for [M+H]⁺ 231.1128, found 231.1126.

N-(5-chloro-2-cyanophenyl)-N-methylmethacrylamide (1i)

1i was prepared following the above mentioned procedure. The spectroscopic data of 1i matched well those reported in literature.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (dd, J = 8.3, 1.7 Hz, 1H), 7.43 (dt, J = 8.3, 2.0 Hz, 1H), 7.32 (t, J = 1.9 Hz, 1H), 5.16 (d, J = 62.7 Hz, 2H), 3.45 – 3.40 (m, 3H), 1.97 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.55, 148.63, 140.18, 139.71, 134.53, 129.15, 128.40, 115.59, 110.45, 37.90, 20.08. HRMS (ESI, m/z): calcd for [M+H]⁺ 235.0633, found 235.0633.

N-(4-chloro-2-cyanophenyl)-N-methylmethacrylamide (1j)

1j was prepared following the above mentioned procedure. The spectroscopic data of 1j matched well those reported in literature.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (t, J = 2.4 Hz, 1H), 7.61 (dt, J = 8.6, 2.4 Hz, 1H), 7.24 (dd, J = 8.6, 2.3 Hz, 1H), 5.13 (d, J = 61.3 Hz, 2H), 3.40 (d, J = 2.3 Hz, 3H), 1.94 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.58, 146.59, 139.75, 137.26, 136.27, 130.11, 121.13, 114.92, 113.70, 37.83, 20.10. HRMS (ESI, m/z): calcd for [M+H]⁺ 235.0633, found 235.0630.

N-(3-chloro-2-cyanophenyl)-N-methylmethacrylamide (1k)

1k was prepared following the above mentioned procedure. The spectroscopic data of 1k matched well those reported in literature.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 (td, J = 8.1, 1.3 Hz, 1H), 7.46 (dt, J = 8.2, 1.2 Hz, 1H), 7.17 (d, J = 7.9 Hz, 1H), 5.11 (d, J = 52.8 Hz, 2H), 3.39 (d, J = 1.3 Hz, 3H), 1.92 (s, 3H). HRMS (ESI, m/z): calcd for [M+H]⁺ 235.0633, found 235.0635.

N-(2-cyano-4-nitrophenyl)-N-methylmethacrylamide (11)

11 was prepared following the above mentioned procedure. The spectroscopic data of 11 matched well those reported in literature.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.55 (d, *J* = 2.6 Hz, 1H), 8.45 (dd, *J* = 8.8, 2.6 Hz, 1H), 7.47 (d, *J* = 8.8 Hz, 1H), 5.27 (d, *J* = 2.1 Hz, 1H), 5.03 (s, 1H), 3.46 (s, 3H), 1.98 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.37, 152.97, 145.87, 139.50, 129.27, 129.17, 128.72, 121.44, 114.48, 112.91, 38.13, 19.88. HRMS (ESI, m/z): calcd for [M+H]⁺ 246.0873, found 246.0871.

N-(3-cyanopyridin-2-yl)-N-methylmethacrylamide (1m)

1m was prepared following the above mentioned procedure. The spectroscopic data of **1m** matched well those reported in literature.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.62 (d, J = 2.6 Hz, 1H), δ 8.43 (d, J = 2.6 Hz, 1H), 7.58 – 7.38 (m, 1H), 5.27 (d, J = 2.1 Hz, 1H), 5.03 (s, 1H), 3.46 (s, 3H), 1.98 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.21, 143.81, 139.69, 130.79, 130.56, 130.41, 126.21, 122.53, 120.64, 78.66, 72.76, 39.15, 20.23. HRMS (ESI, m/z): calcd for [M+H]⁺ 202.0275, found 202.0271.

6 Substrate Characterization

3-(2,2-difluoroethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3aa)

Colorless solid, 44.0mg (87% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (dt, *J* = 7.7, 1.6 Hz, 1H), 7.66 (ddt, *J* = 8.6, 7.4, 1.5 Hz, 1H), 7.24 – 7.16 (m, 2H), 5.91 (ttd, *J* = 57.0, 5.1, 1.2 Hz, 1H), 3.49 (s, 3H), 2.78 – 2.67 (m, 2H), 1.49 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.60, 172.53, 143.11, 136.53, 128.61, 123.44, 119.40, 117.77, 115.39, 115.02, 113.00, 53.20, 39.79, 39.57, 39.34, 29.99, 26.90. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.15 (dq, *J* = 57.0, 14.8 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 254.0987, found 254.0986.

1,3-dimethyl-3-(2,2,2-trifluoroethyl)quinoline-2,4(1H,3H)-dione (3ab)

Sab

Colorless solid, 29.8mg (55% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (d, J = 8.0 Hz, 1H), 7.68 (t, J = 7.8 Hz, 1H), 7.22 (t, J = 7.4 Hz, 2H), 3.51 (s, 3H), 3.07 (q, J = 10.2 Hz, 2H), 1.50 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.49, 171.70, 143.18, 136.78, 128.73, 126.75, 123.51, 119.15, 115.11, 52.41, 41.07, 40.78, 40.50, 30.00, 29.77, 27.06. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -60.64 (t, J = 10.3 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 271.0785, found 271.0785.

1,3-dimethyl-3-(2,2,3,3,3-pentafluoropropyl)quinoline-2,4(1H,3H)-dione (**3ac**)

Colorless solid, 45.2mg (71% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (d, J = 9.5 Hz, 1H), 7.68 (ddd, J = 8.6, 7.3, 1.7 Hz, 1H), 7.25 – 7.19 (m, 2H), 3.51 (s, 3H), 3.09 – 2.97 (m, 2H), 1.53 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.42, 171.74, 143.18, 136.80, 128.77, 123.50, 118.98, 115.13, 51.78, 37.53, 37.32, 37.12, 30.01, 27.51. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -86.27, -110.23 – -113.93 (m). HRMS (ESI, m/z): calcd for [M+H]⁺ 322.0861, found 322.0864.

3-(2,2,3,3,4,4,4-heptafluorobutyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3ad)

Colorless solid, 43.9mg (59% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (dd, J = 7.9, 1.7 Hz, 1H), 7.70 – 7.65 (m, 1H), 7.21 (dt, J = 7.5, 3.2 Hz, 2H), 3.50 (s, 3H), 3.13 – 3.00 (m, 2H), 1.53 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.37, 171.73, 143.19, 136.78, 128.77, 123.48, 118.95, 115.12, 51.64, 37.62, 37.42, 37.22, 29.97, 27.54. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -80.33 (t, J = 9.8 Hz), -107.21 – -110.63 (m), -128.05. HRMS (ESI, m/z): calcd for [M+H]⁺ 372.0829, found 372.0830.

3-(2-chloro-2,2-difluoroethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (**3ae**)

Colorless solid, 42.9mg (75% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (dt, J = 8.0, 1.3 Hz, 1H), 7.67 (ddt, J = 8.3, 7.2, 1.3 Hz, 1H), 7.24 – 7.18 (m, 2H), 3.50 (s, 3H), 3.38 – 3.27 (m, 2H), 1.50 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.50, 171.71, 143.19, 136.76, 128.70, 127.59, 123.47, 119.28, 115.11, 53.00, 49.21, 48.98, 48.74, 29.98, 27.14. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -45.19 – -45.34 (m), -45.69 (dd, J = 16.6, 11.1 Hz), -46.61 (dd, J = 16.4, 11.2 Hz), -47.04 (t, J = 13.9 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 288.0597, found 288.0593.

3-(2-bromo-2,2-difluoroethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3af)

Colorless solid, 57.2mg (82% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (dt, *J* = 8.0, 1.8 Hz, 1H), 7.70 – 7.64 (m, 1H), 7.24 – 7.18 (m, 2H), 3.50 (s, 3H), 3.49 – 3.39 (m, 2H), 1.49 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.41, 171.65, 143.18, 136.76, 128.72, 123.47, 122.61, 119.55, 119.28, 116.50, 115.11, 53.38, 51.79, 51.58, 51.37, 29.99, 27.06. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -39.08 – -39.24 (m), -39.58 (dd, *J* = 20.3, 9.7 Hz), -40.93 (dd, *J* = 20.4, 10.1 Hz), -41.26 – -41.42 (m). HRMS (ESI, m/z): calcd for [M+H]⁺ 332.0092, found 332.0092.

3-(2,2-difluoro-2-phenylethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (**3ag**)

Colorless solid, 44.1mg (67% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (ddd, *J* = 7.8, 6.2, 1.7 Hz, 1H), 7.64 (ddt, *J* = 9.5, 7.6, 3.8 Hz, 1H), 7.39 – 7.28 (m, 5H), 7.18 (ddd, *J* = 13.0, 7.7, 1.9 Hz, 2H), 3.44 (s, 3H), 3.14 – 3.00 (m, 2H), 1.50 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.72, 172.75, 143.37, 136.45, 133.74, 130.23, 129.96, 128.55, 128.35, 124.99, 124.93, 124.87, 123.20, 119.55, 114.99, 52.21, 48.09, 47.83, 47.57, 29.86, 27.19. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -88.56 – -88.73 (m), -89.29 (dd, *J* = 24.1, 9.4 Hz), -92.64 (dd, *J* = 24.2, 10.8 Hz), -93.21 – -93.38 (m). HRMS (ESI, m/z): calcd for [M+H]⁺ 330.1300, found 330.1301.

3-(2,2-difluoropent-4-en-1-yl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (**3ah**)

Colorless solid, 38.1mg (65% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (dd, J = 8.0, 1.7 Hz, 1H), 7.64 (ddd, J = 8.7, 7.3, 1.7 Hz, 1H), 7.19 (dt, J = 7.5, 3.2 Hz, 2H), 5.73 (ddt, J = 16.0, 10.9, 7.2 Hz, 1H), 5.25 – 5.15 (m, 2H), 3.49 (s, 3H), 2.92 – 2.72 (m, 2H), 2.55 (ddd, J = 17.7, 15.6, 7.1 Hz, 2H), 1.47 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.87, 172.98, 143.36, 136.38, 129.06, 129.01, 128.55, 123.16, 122.91, 120.86, 119.41, 114.98, 52.13, 44.46, 44.23, 44.00, 42.92, 42.67, 42.41, 29.88, 26.95. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -90.29 (dt, J = 33.7, 16.5 Hz), -90.80 – -91.07 (m), -93.01 (ddd, J = 27.2, 22.0, 14.0 Hz), -93.65 (dt, J = 32.7, 16.2 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 294.1300, found 294.1296.

3-(2,2-difluoropropyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (**3ai**)

Colorless solid, 29.9mg (56% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (dd, *J* = 8.0, 1.7 Hz, 1H), 7.64 (ddd, *J* = 8.6, 7.3, 1.7 Hz, 1H), 7.22 – 7.15 (m, 2H), 3.49 (s, 3H), 2.89 – 2.77 (m, 2H), 1.55 (t, *J* = 18.7 Hz, 3H), 1.46 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.86, 172.97, 143.33, 136.39, 128.53, 123.18, 122.98, 119.45, 114.98, 52.34, 46.13, 45.89, 45.65, 29.87, 26.95, 25.40, 25.13, 24.86. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -83.66 – -83.87 (m), -84.41 (td, *J* = 19.2, 12.3 Hz), -86.32 (td, *J* = 19.1, 12.0 Hz), -86.96 (dd, *J* = 34.2, 17.4 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 268.1144, found 268.1144.

3-(2-fluoropropyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3aj)

Colorless oil, 28.4mg (57% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (dd, J = 8.0, 1.7 Hz, 1H), 7.64 (ddd, J = 8.8, 7.3, 1.7 Hz, 1H), 7.21 – 7.15 (m, 2H), 4.74 – 4.52 (m, 1H), 3.47 (s, 3H), 2.64 (ddd, J = 14.1, 10.6, 7.9 Hz, 1H), 2.22 (ddd, J = 38.3, 14.1, 2.9 Hz, 1H), 1.48 (s, 3H), 1.27 (dd, J = 24.3, 6.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.37, 173.76, 143.76, 136.46, 128.23, 122.97, 119.80, 114.94, 89.18, 87.54, 54.17, 45.27, 45.08, 29.88, 26.21, 21.55, 21.33. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -175.33 (ddtd, J = 62.7, 48.2, 23.9, 7.7 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 250.1238, found 250.1242.

3-(2-fluoro-2-methylpropyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3ak)

Colorless oil, 42.6mg (81% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (dd, J = 8.0, 1.7 Hz, 1H), 7.62 (ddd, J = 8.6, 7.4, 1.7 Hz, 1H), 7.17 (dt, J = 7.4, 3.1 Hz, 2H), 3.48 (s, 3H), 2.64 (dd, J = 15.4, 2.1 Hz, 2H), 1.43 (s, 3H), 1.28 (dd, J = 22.0, 14.0 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.82, 173.85, 143.29, 136.15, 128.47, 123.04, 119.65, 114.87, 95.89, 94.22, 53.82, 53.76, 48.71, 48.51, 29.79, 29.66, 29.41, 29.09, 28.84, 27.61. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -134.85 (ddd, J = 22.0, 15.6, 6.9 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 264.1394, found 264.1391.

3-((1-fluorocyclopropyl)methyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (3al)

Colorless oil, 43.8mg (84% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (dd, J = 8.0, 1.7 Hz, 1H), 7.63 (ddd, J = 8.7, 7.4, 1.7 Hz, 1H), 7.20 – 7.14 (m, 2H), 3.48 (s, 3H), 2.56 (d, J = 21.2 Hz, 2H), 1.53 (s, 3H), 0.87 – 0.67 (m, 2H), 0.58 – 0.41 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.19, 173.59, 143.48, 136.19, 128.21, 123.02, 120.06, 114.82, 76.20, 54.17, 45.57, 45.38, 29.76, 25.31, 11.27, 11.15, 10.94, 10.82. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 177.99 (tt, J = 19.8, 9.7 Hz).HRMS (ESI, m/z): calcd for [M+H]⁺ 262.1238, found 262.1239.

3-(2,2-difluoroethyl)-1-ethyl-3-methylquinoline-2,4(1H,3H)-dione (**3ba**)

Colorless solid, 46.4mg (87% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.65 (ddd, *J* = 8.7, 7.4, 1.7 Hz, 1H), 7.18 (dt, *J* = 7.4, 3.2 Hz, 2H), 5.91 (tt, *J* = 57.0, 5.1 Hz, 1H), 4.12 (ddt, *J* = 16.8, 14.4, 7.2 Hz, 2H), 2.79 – 2.67 (m, 2H), 1.48 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.77, 172.11, 142.03, 136.56, 128.92, 123.22, 119.62, 117.81, 115.42, 114.90, 113.03, 53.02, 39.80, 39.58, 39.36, 37.55, 26.75, 12.22. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.11 (dq, *J* = 57.1, 14.8 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 268.1144, found 268.1145.

1-benzyl-3-(2,2-difluoroethyl)-3-methylquinoline-2,4(1H,3H)-dione (3ca)

Colorless solid, 59.9mg (91% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.49 (td, *J* = 8.0, 7.5, 1.7 Hz, 1H), 7.33 (t, *J* = 7.4 Hz, 2H), 7.27 (d, *J* = 7.0 Hz, 1H), 7.22 (d, *J* = 7.6 Hz, 2H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 6.00 (tt, *J* = 57.1, 5.1 Hz, 1H), 5.32 (d, *J* = 5.0 Hz, 2H), 2.83 (td, *J* = 15.9, 5.1 Hz, 2H),

1.59 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.46, 172.95, 142.35, 136.45, 135.80, 129.09, 128.71, 127.59, 126.26, 123.53, 119.58, 116.02, 115.49, 46.27, 39.48, 39.26, 39.04, 27.30. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 115.16 (dq, J = 57.2, 15.3 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 330.1300, found 330.1301.

3-(2,2-difluoroethyl)-1,3,8-trimethylquinoline-2,4(1H,3H)-dione (3da)

Colorless solid, 44.2mg (83% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.44 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.09 (tt, *J* = 57.2, 5.0 Hz, 1H), 3.44 (s, 3H), 2.57 (td, *J* = 16.0, 5.0 Hz, 2H), 2.50 (s, 3H), 1.44 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.93, 173.36, 143.74, 139.68, 127.18, 125.87, 124.59, 123.13, 118.02, 115.64, 113.25, 54.01, 38.90, 38.67, 38.44, 37.48, 24.29, 21.97. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.69 (t, *J* = 16.1 Hz), -113.84 (t, *J* = 16.1 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 268.1144, found 268.1140.

3-(2,2-difluoroethyl)-1,3,7-trimethylquinoline-2,4(1H,3H)-dione (3ea)

Colorless solid, 43.6mg (82% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 – 7.90 (m, 1H), 7.04 – 6.96 (m, 2H), 5.88 (ttd, *J* = 57.0, 5.1, 1.2 Hz, 1H), 3.47 (s, 3H), 2.77 – 2.64 (m, 2H), 2.46 (s, 3H), 1.46 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.20, 172.82, 148.12, 143.17, 128.64, 124.50, 117.83, 117.19, 115.52, 115.44, 113.06, 52.96, 52.90, 39.86, 39.63, 39.41, 29.93, 27.06, 22.52. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.03 – -115.44 (m). HRMS (ESI, m/z): calcd for [M+H]⁺ 268.1144, found 268.1143.

5-(2,2-difluoroethyl)-5-methyl-1,2-dihydro-4H-pyrrolo[3,2,1-ij]quinoline-4,6(5H)-dione (**3fa**)

Colorless solid, 28.9mg (55% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 7.9 Hz, 1H), 7.46 (d, *J* = 7.3 Hz, 1H), 7.09 (td, *J* = 7.7, 1.7 Hz, 1H), 6.01 – 5.68 (m, 1H), 4.25 – 4.13 (m, 2H), 3.32 (t, *J* = 8.5 Hz, 2H), 2.79 – 2.65 (m, 2H), 1.49 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.91, 170.75, 145.84, 132.04, 130.97, 124.77, 124.05, 116.09, 115.36, 45.99, 40.04, 39.82, 39.60, 26.99, 26.81. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.35 (dtd, *J* = 56.7, 16.1, 7.8 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 266.0987, found 266.0983.

3-(2,2-difluoroethyl)-7-methoxy-1,3-dimethylquinoline-2,4(1H,3H)-dione (**3ga**)

3ga

Colorless solid, 44.3mg (79% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (d, *J* = 8.7 Hz, 1H), 6.72 (dd, *J* = 8.8, 2.2 Hz, 1H), 6.62 (d, *J* = 2.2 Hz, 1H), 5.87 (tt, *J* = 57.0, 5.1 Hz, 1H), 3.92 (s, 3H), 3.46 (s, 3H), 2.76 – 2.65 (m, 2H), 1.47 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.02, 173.10, 166.34, 145.12, 131.12, 117.83, 115.45, 113.21, 113.06, 108.63, 101.04, 55.89, 52.59, 40.06, 39.84, 39.62, 29.93, 27.18. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.05 – -115.52 (m).HRMS (ESI, m/z): calcd for [M+H]⁺ 284.1093, found 284.1097.

3-(2,2-difluoroethyl)-6-methoxy-1,3-dimethylquinoline-2,4(1H,3H)-dione (3ha)

Colorless solid, 36.6mg (65% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 3.1 Hz, 1H), 7.27 (dd, *J* = 9.0, 3.1 Hz, 1H), 7.17 (d, *J* = 9.0 Hz, 1H), 5.93 (tt, *J* = 57.0, 5.1 Hz, 1H), 3.89 (s, 3H), 3.50 (s, 3H), 2.82 – 2.70 (m, 2H), 1.52 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.68, 172.07, 155.68, 137.24, 124.54, 119.99, 117.81, 116.62, 115.43, 113.04, 110.07, 55.86, 52.93, 39.87, 39.65, 39.43, 30.05, 27.06. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.13 (t, *J* = 16.1 Hz), -115.29 (t, *J* = 16.1 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 284.1093, found 284.1088.

7-chloro-3-(2,2-difluoroethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (**3ia**)

Yellow solid, 51.0mg (88% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.3 Hz, 1H), 7.21 – 7.12 (m, 2H), 5.86 (tt, J = 56.9, 5.0 Hz, 1H), 3.48 – 3.43 (m, 3H), 2.70 (tt, J = 16.2, 4.5 Hz, 2H), 1.46 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.45, 172.53, 144.04, 142.90, 129.98, 123.70, 117.70, 117.64, 115.39, 115.25, 112.86, 53.17, 39.81, 39.59, 39.37, 30.09, 26.91. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.15 (dt, J = 57.0, 16.1 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 288.0597, found 288.0593.

6-chloro-3-(2,2-difluoroethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (**3ja**)

Yellow solid, 46.4mg (81% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (d, *J* = 2.6 Hz, 1H), 7.60 (dd, *J* = 8.8, 2.6 Hz, 1H), 7.14 (d, *J* = 8.9 Hz, 1H), 5.89 (tt, *J* = 56.9, 5.0 Hz, 1H), 3.47 (s, 3H), 2.73 (tt, *J* = 16.3, 3.9 Hz, 2H), 1.48 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.54, 172.19, 141.61, 136.13, 129.30, 128.04, 120.37, 117.62, 116.69, 115.23, 112.84, 53.21, 39.78, 39.56, 39.34, 30.17, 26.87. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.11 (t, *J* = 16.1 Hz), -115.26 (t, *J* = 16.1 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 288.0597, found 288.0601.

5-chloro-3-(2,2-difluoroethyl)-1,3-dimethylquinoline-2,4(1H,3H)-dione (**3ka**)

Yellow solid, 43.3mg (76% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 – 7.45 (m, 1H), 7.23 (dd, *J* = 7.8, 1.9 Hz, 1H), 7.12 (d, *J* = 8.4 Hz, 1H), 6.23 – 5.89 (m, 1H), 3.46 (s, 3H), 2.63 (dddd, *J* = 18.7, 9.5, 4.9, 2.3 Hz, 2H), 1.48 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.89, 171.37, 144.40, 135.70, 134.69, 126.76, 118.06, 117.72, 115.34, 113.87, 112.95, 54.76, 38.81, 38.58, 38.35, 30.96, 24.38. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.09 (dt, *J* = 57.0, 15.2 Hz), -113.86 (ddd, *J* = 57.0, 19.5, 10.8 Hz), -114.60 (ddd, *J* = 57.1, 21.6, 11.7 Hz), -115.21 – -115.54 (m). HRMS (ESI, m/z): calcd for [M+H]⁺ 288.0597, found 288.0597.

3-(2,2-difluoroethyl)-1,3-dimethyl-6-nitroquinoline-2,4(1H,3H)-dione (**3la**)

Yellow solid, 46.5mg (78% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.88 (d, J = 2.7 Hz, 1H), 8.49 (dd, J = 9.2, 2.7 Hz, 1H), 7.34 (d, J = 9.2 Hz, 1H), 5.91 (tt, J = 56.8, 4.9 Hz, 1H), 3.57 (s, 3H), 2.78 (tt, J = 16.3, 4.7 Hz, 2H), 1.52 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.64, 172.48, 147.34, 143.26, 130.81, 124.61, 119.24, 117.39, 115.99, 115.00, 112.61, 53.49, 39.91, 39.69, 39.47, 30.67, 26.79. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -114.99 (t, J = 15.9 Hz), -115.14 (t, J = 16.1 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 299.0838, found 299.0838.

3-(2,2-difluoroethyl)-1,3-dimethyl-1,8-naphthyridine-2,4(1H,3H)-dione (3ma)

Colorless solid, 32.4mg (64% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.67 – 8.57 (m, 1H), 8.29 (dt, *J* = 7.7, 1.3 Hz, 1H), 7.19 – 7.13 (m, 1H), 5.90 (tt, *J* = 56.8, 5.0 Hz, 1H), 3.61 (s, 3H), 2.85 – 2.67 (m, 2H), 1.51 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.07, 173.14, 154.67, 154.09, 137.14, 119.17, 117.60, 115.21, 114.59, 112.82, 53.31, 39.91, 39.69, 39.46, 28.87, 26.99. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -114.99 – -115.41 (m). HRMS (ESI, m/z): calcd for [M+H]⁺ 255.0490, found 255.0487.

1-ethyl-3-methyl-3-(2,2,2-trifluoroethyl)quinoline-2,4(1H,3H)-dione (**3bb**)

Colorless solid, 34.0mg (60% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (dd, *J* = 7.9, 1.8 Hz, 1H), 7.66 (td, *J* = 7.8, 7.4, 1.8 Hz, 1H), 7.19 (t, *J* = 7.7 Hz, 2H), 4.13 (ddq, *J* = 76.4, 14.3, 7.1 Hz, 2H), 3.06 (qd, *J* = 10.3, 1.7 Hz, 2H), 1.49 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.62, 171.27, 142.10, 136.82, 129.04, 123.29, 119.38, 115.02, 52.16, 52.14, 41.12, 40.83, 40.54, 40.26, 37.54, 26.96, 12.05. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -60.60 (t, *J* = 10.3 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 286.1049, found 286.1053.

1,3,7-trimethyl-3-(2,2,2-trifluoroethyl)quinoline-2,4(1H,3H)-dione (3cb)

Colorless solid, 41.5g (73% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 7.97 (d, J = 7.9 Hz, 1H), 7.04 – 6.99 (m, 2H), 3.49 (s, 3H), 3.05 (q, J = 10.3 Hz, 2H), 2.47 (s, 3H), 1.48 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.03, 171.98, 148.37, 143.22, 128.76, 124.57, 124.00, 116.99, 115.58, 52.15, 41.09, 40.81, 40.52, 40.23, 29.93, 27.14, 22.53. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -60.75 (t, J = 10.3 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 286.1049, found 286.1049.

7-methoxy-1,3-dimethyl-3-(2,2,2-trifluoroethyl)quinoline-2,4(1H,3H)-dione (3db)

Colorless solid, 20.9mg (80% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 – 8.01 (m, 1H), 6.73 (dq, *J* = 8.8, 2.0 Hz, 1H), 6.64 (q, *J* = 2.1 Hz, 1H), 3.92 (s, 3H), 3.47 (s, 3H), 3.08 – 2.95 (m, 2H), 1.48 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 192.82, 172.24, 166.50, 145.14, 131.26, 113.02, 108.74, 101.12, 55.90, 51.79, 40.86, 40.57, 40.29, 29.94, 27.27. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -60.93 (t, *J* = 10.3 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 302.0999, found 302.1001.

7-chloro-1,3-dimethyl-3-(2,2,2-trifluoroethyl)quinoline-2,4(1H,3H)-dione (3eb)

Yellow solid, 45.5mg (75% yield), ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 (dd, J = 8.3, 1.7 Hz, 1H), 7.22 – 7.16 (m, 2H), 3.48 (s, 3H), 3.06 (qd, J = 10.3, 1.7 Hz, 2H), 1.49 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.40, 171.70, 144.09, 143.24, 130.11, 126.65, 123.83, 117.48, 115.50, 52.38, 41.16, 40.87, 40.59, 40.30, 30.13, 27.05. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -60.71 (t, J = 10.2 Hz). HRMS (ESI, m/z): calcd for [M+H]⁺ 306.0503, found 306.0505.

7 References

- [1] S. Arai, Y. Koike, A. Nishida, Advanced Synthesis & Catalysis 2010, 352, 893-900.
- [2] D. Qi, J. Bai, H. Zhang, B. Li, Z. Song, N. Ma, L. Guo, L. Song, W. Xia, Green Chemistry 2022, 24, 5046-5051.

8 Copies of ¹H, ¹³C and ¹⁹F NMR Spectra for Substrates

¹³C NMR Spectrum of Compound 1a

¹³C NMR Spectrum of Compound 1b

¹³C NMR Spectrum of Compound 1c

¹³C NMR Spectrum of Compound 1d

¹³C NMR Spectrum of Compound 1e

¹³C NMR Spectrum of Compound 1f

9 Copies of ¹H, ¹³C and ¹⁹F NMR Spectra for Products

¹³C NMR Spectrum of Compound 3aa

¹H NMR Spectrum of Compound 3ab

¹⁹F NMR Spectrum of Compound 3ab

¹³C NMR Spectrum of Compound 3ac

¹H NMR Spectrum of Compound 3ad

¹⁹F NMR Spectrum of Compound 3ad

²³⁰ ²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ¹³C NMR Spectrum of Compound 3ae

¹H NMR Spectrum of Compound 3af

²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻²⁰ ⁻³⁰ ⁻⁴⁰ ⁻⁵⁰ ⁻⁶⁰ ⁻⁷⁰ ⁻⁸⁰ ⁻⁹⁰ ⁻¹⁰⁰ ⁻¹¹⁰ ⁻¹²⁰ ⁻¹³⁰ ⁻¹⁴⁰ ⁻¹⁵⁰ ⁻¹⁶⁰ ⁻¹⁷⁰ ⁻¹⁸⁰ ⁻¹⁹⁰ ⁻²⁰⁰ ⁻²¹⁰ ⁻²²⁰ ^{f1} ^(ppm) ¹⁹F NMR Spectrum of Compound 3af

¹³C NMR Spectrum of Compound 3ag

¹H NMR Spectrum of Compound 3ah

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

¹⁹F NMR Spectrum of Compound 3ah

¹³C NMR Spectrum of Compound 3ai

¹H NMR Spectrum of Compound 3aj

¹⁹F NMR Spectrum of Compound 3aj

¹³C NMR Spectrum of Compound 3ak

¹H NMR Spectrum of Compound 3al

$\begin{array}{c} - 197.19 \\ - 173.59 \\ - 173.69 \\ - 124.49 \\ - 136.10 \\ - 136.10 \\ - 136.10 \\ - 134.02 \\ - 114.82 \\ - 114.82 \\ - 114.82 \\ - 114.82 \\ - 114.82 \\ - 25.11 \\ - 25.1$

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F NMR Spectrum of Compound 3al

¹³C NMR Spectrum of Compound 3ba

¹H NMR Spectrum of Compound 3ca

²⁰ 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 ¹⁹F NMR Spectrum of Compound 3ca

-113.65 -113.69 -113.80 -113.80 -113.84

¹H NMR Spectrum of Compound 3ea

¹⁹F NMR Spectrum of Compound 3ea

¹³C NMR Spectrum of Compound 3fa

¹H NMR Spectrum of Compound 3ga

¹⁹F NMR Spectrum of Compound 3ga

¹³C NMR Spectrum of Compound 3ha

¹H NMR Spectrum of Compound 3ia

¹⁹F NMR Spectrum of Compound 3ia

-115.07 -115.11 -115.15 -115.25 -115.26 -115.26

¹H NMR Spectrum of Compound 3ka

¹⁹F NMR Spectrum of Compound 3ka

¹³C NMR Spectrum of Compound 3la

¹H NMR Spectrum of Compound 3ma

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

¹⁹F NMR Spectrum of Compound 3ma

 $\bigwedge^{-60,\,57}_{-60,\,62}$

¹H NMR Spectrum of Compound 3cb

²⁰ 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 ¹⁹F NMR Spectrum of Compound 3cb

140 130 120 110 100 90 80 70 f1 (ppm) 50 40 -10 -20 -30 ¹³C NMR Spectrum of Compound 3db

 $\bigwedge_{-60, 93}^{-60, 91}$

¹H NMR Spectrum of Compound 3eb

²⁰ 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 ¹⁹F NMR Spectrum of Compound 3eb