Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

One-Pot Multistep Synthesis of 1-Fluoroalkylisoquinolines and Fused Fluoroalkylpyridines from *N*-Fluoroalkyl-1,2,3-triazoles

Anna Kubíčková,^{a,b} Svatava Voltrová,^a Adam Kleman,^a Blanka Klepetářová,^a and Petr Beier^{*,a}

A. Kubičková, Dr. S. Voltrová, A. Kleman, Dr. B. Klepetářová, Dr. P. Beier
 The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences
 Flemingovo nam. 2, 16610 Prague 6 (Czech Republic)
 E-mail: beier@uochb.cas.cz

A. Kubíčková
 University of Chemistry and Technology,
 Technická 5, 166 28 Prague 6 (Czech Republic)

Contents

1 General information	S2
2 Synthesis of starting triazoles 1	S3
3 Preparation of azadienes 4 and 6 (General procedure)	S4
4 Isomerisation of 4a with CsF	S5
5 Synthesis of isoquinolines 2 (General procedure)	S6
6 Synthesis of 3-substituted 1-trifluoromethylisoquinolines 7a-7k (General procedure)	S10
7 Synthesis of N-(isoquinolin-3-yl)benzenesulfonamides 8a-8i (General procedure)	S13
8 Suzuki coupling of 2q (General procedure)	S15
9 Heck coupling of 2q with Jefferey's conditions (General procedure)	S16
10 Sonogashira coupling of 2q (General procedure)	S16
11 Buchwald-Hartwig coupling of 2r (General procedure)	S16
12 Synthesis of Valiglurax analogue 12	S17
13 Crystallographic data	S18
14 References	S20
15 Copies of NMR spectra	S21

1 General information

All commercially available chemicals were used as received unless stated otherwise, column chromatography was performed using silica gel 60 (0.040-0.063 mm). Automated flash column chromatography was performed on Teledyne ISCO CombiFlash Rf+ Lumen Automated Flash Chromatography System with UV/Vis detection. ¹H, ¹³C, and ¹⁹F NMR spectra were measured at ambient temperature using 5 mm diameter NMR tubes. ¹³C NMR spectra were proton decoupled. The chemical shift values (δ) are reported in ppm relative to internal Me₄Si (0 ppm for ¹H and ¹³C NMR) or residual solvents and internal CFCl₃ (0 ppm for ¹⁹F NMR). Coupling constants (J) are reported in Hertz. Structural elucidation was aided by additional acquisition of ¹³C APT, 1D ¹H NOESY and/or various 2D spectra (¹H-¹H COSY, ¹H-¹³C HSQC, ¹H-¹³C HMBC, ¹³C-¹⁹F HMBC, ¹H-¹H ROESY). High resolution mass spectra (HRMS) were recorded on a Waters Micromass AutoSpec Ultima or Agilent 7890A GC coupled with Waters GCT Premier orthogonal acceleration time-of-flight detector using electron impact (EI) ionization, on an LTQ Orbitrap XL using electrospray ionization (ESI), and on a Bruker solariX 94 ESI/MALDI-FT-ICR using dual ESI/MALDI ionization. Microwave experiments were done on CEM Focused MicrowaveTM Synthesis System, Model Discover. The method was set-up to 300 W, temperature 100-185 °C, hold time 20-180 min. LRMS spectra were recorded on Agilent 7890A GC (column HP-5MS, 30 $m \times 0.25 \text{ mm} \times 0.25 \text{ \mu}\text{m}$, 5% phenyl methylpolysiloxane) coupled with 5975C quadrupole mass selective electron impact (EI) detector (70 eV). IR spectra (CHCl₃ film) were measured on Bruker IFS 55 Equinox or Bruker Alpha-P spectrometer.

2 Synthesis of starting triazoles 1

Procedure A: Triazoles 1f, 1i, 1j, 1m, 1o were prepared according to the literature.¹

OMe

4-(4-Ethynylphenyl)-1-(perfluoroethyl)-1H-1,2,3-triazole (1f) Product 1f was a side product in the synthesis of 10. Yield: 30%, white solid, m.p. 108-109 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 -8.13 (m, 1H), 7.85 (d, J = 8.6 Hz, 2H), 7.60 (d, J = 8.6 Hz, 2H), 3.17 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 148.1, 133.0, 128.9, 126.1, 123.3, 118.3, 117.1 (qt, *J* = 287.6 Hz, J = 40.6 Hz), 110.3 (td, J = 271.3, 43.2 Hz), 83.1, 78.9; ¹⁹F NMR (376) MHz, CDCl₃) δ -84.4 (s, 3F), -99.2 (s, 2F); HRMS (ESI⁺) *m/z* calcd for C₁₂H₇N₃F₅: 288.05546, found 288.05554.

4-(3-Methoxyphenyl)-1-(perfluoroethyl)-1H-1,2,3-triazole (1i) Yield: 87%, off-white solid, m.p. 35-37 °C; ¹H NMR (400 MHz, $CDCl_3$) δ 8.16 – 8.11 (m, 1H), 7.49 – 7.45 (m, 1H), 7.44 – 7.32 (m, 2H), 7.00 - 6.92 (m, 1H), 3.88 - 3.87 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.3, 148.7, 130.3, 129.8, 118.6, 118.1, 117.1 (qt, *J* = 287.2, 41.3 Hz), 115.5, 111.5, 110.3 $(tq, J = 271.6, 42.9 \text{ Hz}), 55.5; {}^{19}\text{F} \text{ NMR} (376 \text{ MHz}, \text{CDCl}_3) \delta -84.4 (s, 3F), -99.2 (s, 3F))$ 2F); HRMS (ESI⁺) *m/z* calcd for C₁₁H₉F₅N₃O: 294.06603, found 294.06577.

4-(3-Bromophenyl)-1-(perfluoroethyl)-1H-1,2,3-triazole (1) Yield: 99%, white solid, m.p. 59-60 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 - 8.14 (m, 1H), 8.06 - 8.01 (m, 1H), 7.86 - 7.77 (m, 1H), 7.57 – 7.49 (m, 1H), 7.39 – 7.31 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.5, 132.5, 130.8, 130.6, 129.3, 124.9, 123.3, 118.4, 117.1 (qt, *J* = 287.6, 41.1 Hz), 110.3 (qt, *J* = 271.8, 43.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.4 (s, 3F), -99.2 (s, 2F); HRMS (ESI^{+}) m/z calcd for C₁₀H₆BrF₅N₃: 341.96598, found 341.96612.

4-(Thiophen-2-yl)-1-(trifluoromethyl)-1H-1,2,3-triazole (1m) Yield: 86%, brown solid, m.p. 61-63 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 8.01 (m, 1H), 7.52 (dd, J = 3.6, 1.2 Hz, 1H), 7.41 $(dd, J = 5.1, 1.2 Hz, 1H), 7.13 (dd, J = 5.1, 3.6 Hz, 1H); {}^{13}C NMR (101 MHz, CDCl_3)$ δ 144.0, 130.4, 128.1, 126.8, 126.1, 117.1, 117.1 (qt, *J* = 287.6, 41.3 Hz), 110.3 (tq, *J* = 271.1 Hz, 42.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -84.4 (s, 3F), -99.2 (s, 2F); HRMS (ESI^+) m/z calcd for C₈H₅N₃F₅S: 270.01189, found 270.01209.

1,4-Bis(1-(perfluoroethyl)-1H-1,2,3-triazol-4-yl)benzene (10) Compound 10 is poorly soluble in CHCl₃ acetone, toluene, or DMSO, therefore only partial ¹³C NMR could be interpreted. Yield: 35%, off-white solid, m.p. 238-241 °C; ¹H NMR (400 MHz, CDCl₃) & 8.23 - 8.18 (m, 2H), 8.01 (s, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 148.1, 129.6, 127.0, 118.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.3 (s, 6F), -99.2 (s, 4F); HRMS (ESI⁺) *m/z* calcd for C₁₄H₇N₆F₁₀: 449.05670, found 449.05663.

3 Preparation of azadienes 4 and 6 (General procedure)

A 10 ml MW tube was charged with triazole **1** (0.5 mmol) and under inert atmosphere CDCl₃ was added (3 ml). The reaction mixture was heated under MW irradiation to 165 °C for 1 h. CsF (2 equiv.; 152 mg; 1 mmol) or AcONa (2 equiv.; 82 mg; 1 mmol) was then added to the reaction mixture and that was then stirred at RT for 1-2 hours. After completion of the reaction the crude reaction mixture was filtered on a PTFE filter and was used for characterization, or was concentrated on vacuo and purified by column chromatography (silica gel, pentane).

Ethyl 2,2-difluoro-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)acetate ((Z,E)-4a) ¹⁹F NMR yield: 89%; ¹H NMR (401 MHz, CDCl₃) δ 7.70 – 7.61 (m, 2H), 7.43 – 7.28 (m, 3H), 6.24 (dd, J = 10.1, 2.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 146.0 (dd, J = 286.1, 11.4 Hz), 134.7 (dqd, J = 368.9, 45.3, 5.9 Hz), 131.6 (dd, J = 7.7, 2.1 Hz), 129.9 (dd, J = 4.0, 1.6 Hz), 129.1 (dd, J = 2.2, 0.6 Hz), 128.8, 115.6 (qdd, J = 275.5, 63.3, 3.5 Hz), 114.2 (dd, J = 35.4, 8.6 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -44.0 (dqd, J = 20.0, 5.5, 2.5 Hz, 1F), -72.8 (d, J = 5.5 Hz, 3F), -89.3 (dd, J= 20.0, 10.1 Hz, 1F); HRMS (EI) *m/z* calcd for C₁₀H₆F₅N: 235.0415, found 235.0412.

(Z)-2,2,2-trifluoro-N-((E)-1-fluoro-2-(phenanthren-9-yl)vinyl)acetimidoyl fluoride ((Z,E)-4m) Yield: 29%;

¹H NMR (400 MHz, CDCl₃) δ 8.79 – 8.71 (m, 1H), 8.71 – 8.64 (m, 1H), 8.05 – 8.01 (m, 1H), 8.00 (s, 1H), 7.92 – 7.86 (m, 1H), 7.75 – 7.59 (m, 4H), 6.97 (dd, J = 9.2, 2.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 147.8 (dd, J = 286.7, 10.8 Hz), 135.7 (dqd, J = 369.7, 45.4, 5.9 Hz), 131.3, 130.6, 130.5, 130.4 (dd, J = 2.3, 0.6 Hz), 129.3, 127.6, 127.1, 126.9, 124.3, 123.4, 122.6, 115.5 (qdd, J = 275.5, 63.4, 3.3 Hz), 111.1 (dd, J = 35.2, 7.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -42.3 (dm, J = 20.6 Hz, 1F), -72.8 (d, J = 5.1 Hz, 3F), -88.1 (dd, J = 20.6, 9.2 Hz, 1F); HRMS (APCl⁺) m/z calcd for C₁₈H₁₁NF₅: 336.08082, found 336.08062. For crystal structure, see section 13.

Ethyl 2,2-difluoro-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)acetate (6a) ¹⁹F NMR yield: 93%; ¹H NMR (500 MHz, CDCl₃) δ 7.76 – 7.68 (m, 2H), 7.45 – 7.31 (m, 4H), 6.27 (d, *J* = 2.2 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.0, 136.5 (d, *J* = 11.5 Hz), 132.8 (dq, *J* = 367.6, 45.3 Hz), 132.3 (d, *J* = 1.8 Hz), 130.5 (d, *J* = 1.4 Hz), 129.5, 128.7, 125.4 (d, *J* = 7.8 Hz), 115.6 (qd, *J* = 275.4, 66.6 Hz), 20.6; ¹⁹F NMR (377 MHz, CDCl₃) δ -50.2 (qd, *J* = 5.7, 2.2 Hz, 1F), -72.7 (d, *J* = 5.7 Hz, 3F); HRMS (EI) *m/z* calcd for C₁₂H₉F₄NO₂: 275.0564, found 275.0554.

4 Isomerisation of 4a with CsF

A high-pressure NMR tube was charged with CsF (2 equiv.; 25 mg; 0.167 mmol) and then solution of (*Z*,*E*)-4a in CDCl₃ (0.167M; 0.5 ml) was added. PhCF₃ was used as an internal standard. The sample was then heated in the NMR machine to 70 °C. ¹⁹F NMR data were collected and further fitted (Figure S1).

Figure S1. Conversion of (Z,E)-4a to (Z,Z)-4a at 70 °C followed by ¹⁹F NMR.

5 Synthesis of isoquinolines 2 (General procedure)

A 10 ml MW vial was charged with triazole **1** and KF (1.1 equiv), the reaction mixture was then heated in DCE (1.5 or 3 ml) or neat under MW irradiation to 165-185 °C under the conditions given in Table S1. After reaction completion the solution was filtered on a pad of cotton and the solvent was evaporated under reduced pressure. The product was obtained by purification using flash chromatography (silica gel, cyclohexane to DCM).

Table S1. Reaction conditions in the synthesis of isoquinolines 2.

N Ar	=N N−C	F ₂ R <u>KF (</u> M 165-1	1.1 equiv.) ₩, DCE 185 °C, 1-2 h	R	R N +	R	
	1			2	~	5	
	Entry	1 (mmol)	Temp. (°C)	Time (h)	Product	Yield of 2^{a} (%)	
	1	0.5	165	1	2a	87	
	2	0.5	185	1	2b	74	
	3	0.5	185	1	2c	73	
	4	0.5	185	1	2d	72	
	5	0.5	165	1	2e	78 (12)	
	6	0.5	165	1	2f	25	
	7	0.5	185	1.5	2g	64	
	8	0.5	185	2.5	2h	50	
	9	0.5	185	1.5	2i	69	
	10	0.44	175	2	2ј	75	
	11	0.5	165	1.5	2k	69	
	12	0.28	165	1	21	74	
	13	0.37	165	1	2m	49	
	14	0.5	165	1	2n	0	
	15	0.01	185	2	20	19	
	16	0.5	165	1	2p	66	
	17	0.5	175	2	2q	58	
	18	0.5	165	1	2r	41	
	19	0.7	165	11	2s	47	
	20	0.5	185	3.5	2t	77 (18)	
	21	0.5	165	3	2u	68	
	22	0.5	165	3	2v	70 (18)	
	23	0.5	185	5	2w	83	
	24	1.9	170	3	2x	12 ^b	

^a Yield of isolated product 2 (in parentheses yield of 5); ^b Neat (no solvent).

3-Fluoro-1-(trifluoromethyl)isoquinoline (2a): Yield: 87%; white solid, m.p. 49-50 °C; ¹H NMR (400 MHz,

CDCl₃) δ 8.36 – 8.27 (m, 1H), 7.96 – 7.89 (m, 1H), 7.83 – 7.74 (m, 1H), 7.71 – 7.63 (m, 1H), 7.51 – 7.47 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 158.7 (d, J = 238.1 Hz), 145.3 (qd, J = 34.8, 13.5 Hz), 141.6 (d, J = 7.4 Hz), 131.8 (d, J = 1.2 Hz), 128.2 (d, J = 2.3 Hz), 127.3 (d, J = 6.3 Hz), 125.0 (q, J = 3.1 Hz), 123.5 (d, J = 2.9 Hz), 121.5 (q, J = 276.2 Hz), 107.3 (d, J = 34.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.3 ("d", J = 2.1 Hz, 3F), -78.3 (s, 1F).; IR (cm⁻¹, CHCl₃)

1367s (CF₃), 3081m, 3023m, 1634m, 1597m, 1569m, 1001m, 945m, 720m (isoquinoline); HRMS (APCI⁺) m/z calcd for C₁₀H₆F₄N: 216.04309, found 216.04299. For crystal structure, see section 13.

3-Fluoro-7-methyl-1-(trifluoromethyl)isoquinoline (2b): Yield: 74%; white solid, m.p. 68-70 °C; ¹H NMR (400 ÇF₃

MHz, CDCl₃) δ 8.13 – 7.95 (m, 1H), 7.82 (dm, J = 8.5 Hz, 1H), 7.61 (dm, J = 8.5, 1H), 7.46 – 7.41 (m, 1H), 2.59 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.3 (d, J = 236.7 Hz), 144.2 (qd, J = 34.6, 13.5 Hz), 140.0 (d, J = 7.3 Hz), 138.5 (d, J = 2.9 Hz), 134.3, 126.9 (d, J = 6.2 Hz), 123.8 (d, J = 2.8 Hz), 123.5 (q, J = 3.0 Hz), 121.6 (q, J = 276.2 Hz), 107.1 (d, J = 34.4 Hz), 22.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 ("d", J = 1.4 Hz, 3F), -79.5 (s,

1F).; HRMS (EI) *m/z* calcd for C₁₁H₈F₄N: 229.0509, found 229.0508.

 CF_3 MeO

3-Fluoro-7-methoxy-1-(trifluoromethyl)isoquinoline (2c): Yield: 73%; white solid, m.p. 65-67 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.78 (m, 1H), 7.51 – 7.40 (m, 3H), 3.97 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.9 (d, J = 2.4 Hz), 157.7 (d, J = 235.5 Hz), 142.7 (qd, J = 34.5, 13.2 Hz), 137.6 (d, J = 7.0 Hz), 128.5 (d, J = 6.0 Hz), 126.0, 124.9 (d, J = 2.9 Hz), 121.8 $(q, J = 275.8 \text{ Hz}), 107.5 (d, J = 35.1 \text{ Hz}), 101.7 (q, J = 3.2 \text{ Hz}), 55.7; {}^{19}\text{F} \text{ NMR} (376 \text{ MHz}), 101.7 (q, J = 3.2 \text{ Hz}), 55.7; {}^{10}\text{F} \text{ NMR} (376 \text{ MHz}), 101.7 (q, J = 3.2 \text{ Hz}), 55.7; {}^{10}\text{F} \text{ NMR} (376 \text{ MHz}), 101.7 (q, J = 3.2 \text{ Hz}), 55.7; {}^{10}\text{F} \text{ NMR} (376 \text{ MHz}), 101.7 (q, J = 3.2 \text{ Hz}), 55.7; {}^{10}\text{F} \text{ NMR} (376 \text{ MHz}), 101.7 (q, J = 3.2 \text{ Hz}), 55.7; {}^{10}\text{F} \text{ NMR} (376 \text{ MHz}), 101.7 (q, J = 3.2 \text{ Hz}), 55.7; {}^{10}\text{F} \text{ NMR} (376 \text{ MHz}), 101.7 (q, J = 3.2 \text{ Hz}), 55.7; {}^{10}\text{F} \text{ NMR} (376 \text{ MHz}), 101.7 (q, J = 3.2 \text{ Hz}), 101.7 (q, J = 3.2$ CDCl₃) δ -64.1 (s, 3F), -81.1 (s, 1F).; HRMS (EI) *m/z* calcd for C₁₁H₇F₄NO: 245.0458,

found 245.0457.

ÇF₃ Br

7-Bromo-3-fluoro-1-(trifluoromethyl)isoquinoline (2d): Yield: 72%; white solid, m.p. 101-102 °C; ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.56 - 8.37 \text{ (m, 1H)}, 7.86 \text{ (dm, } J = 8.9, 1\text{H}), 7.81 \text{ (dm, } J = 8.9, 1\text{H}),$ 7.52 - 7.39 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 158.8 (d, J = 239.6 Hz), 144.4 (qd, J= 35.3, 13.8 Hz), 140.0 (d, J = 7.4 Hz), 135.5, 128.7 (d, J = 6.3 Hz), 127.1 (q, J = 3.3 Hz), 124.2 (d, J = 2.9 Hz), 122.6, 121.2 (d, J = 277.7 Hz), 107.5 (d, J = 34.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 (s, 3F), -76.9 (s, 1F); HRMS (EI) *m/z* calcd for C₁₀H₄BrF₄N:

292.9458, found 292.9462.

3,7-Difluoro-1-(trifluoromethyl)isoquinoline (2e): Yield: 78% white solid, m.p. 70-71 °C; ¹H NMR (401 MHz, CDCl₃) δ 8.00 – 7.88 (m, 2H), 7.65 – 7.56 (m, 1H), 7.54 – 7.49 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 161.1 (dd, J = 252.0, 3.0 Hz), 158.1 (dd, J = 238.1, 2.6 Hz), 144.6 (qdd, J = 35.3, 13.5, 6.9 Hz), 138.7 (d, J = 7.3 Hz), 129.8 (dd, J = 9.0, 6.4 Hz), 124.1 (dd, J = 9.5, 3.0 Hz), 123.3 (d, J = 26.3 Hz), 121.3 (q, J = 276.2 Hz), 108.7 (dq, J = 23.8, 3.2 Hz), 107.6 (d, J = 35.0 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -63.9 ("d", J = 1.8 Hz, 3F), -78.9 – -79.0 (m,

1F), -108.6 - -108.7 (m, 1F); HRMS (EI) m/z calcd for C₁₀H₄F₅N: 233.0264, found 233.0259.

CF₃

(Z)-2,2,2-Trifluoro-N-(1-fluoro-2-(4-fluorophenyl)vinyl)acetamide (5e): Was isolated as a side product when the reaction was done without the addition of KF. Yield: 12%; colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.45 – 7.39 (m, 2H), 7.07 – 7.00 (m, 2H), 6.34 (d, J = 36.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 162.2 (dd, J = 248.2, 3.4 Hz), 154.0 (qd, J = 39.3, 3.0 Hz), 143.1 (dd, J = 262.0, 2.2 Hz), 130.4 (dd, J = 7.7, 7.7 Hz), 127.7

(dd, J = 4.0, 4.0 Hz), 115.8 (d, J = 21.6 Hz), 115.3 (qd, J = 288.0, 4.0 Hz), 99.2 (d, J = 8.5 Hz); ¹⁹F NMR (376)MHz, CDCl₃) δ -76.2 (s, 3F), -99.9 (dt, *J* = 36.5, 2.3 Hz, 1F), -113.7 - -113.9 (m, 1F); HRMS (EI) *m/z* calcd for $C_{10}H_6F_5NO: 251.0370$, found 251.0375.

7-Ethynyl-3-fluoro-1-(trifluoromethyl)isoquinoline (2f): Yield: 25%; white solid, m.p. 75-76 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.57 - 8.34 (m, 1H), 7.97 - 7.84 (m, 1H), 7.83 - 7.75 (m, 1H), 7.52 -7.44 (m, 1H), 3.29 (s, 1H); 13 C NMR (101 MHz, CDCl₃) δ 159.2 (d, J = 240.1 Hz), 145.2 (qd, J = 35.0, 13.5 Hz), 141.0 (d, J = 7.6 Hz), 134.4, 129.0 (q, J = 3.1 Hz), 127.4 (d, J6.3 Hz), 123.1 (d, J = 3.1 Hz), 122.4 (m), 121.2 (q, J = 276.6 Hz), 107.4 (d, J = 34.6 Hz), 82.4, 80.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.3 ("d", J = 1.3 Hz, 3F), -76.5 (s, 1F);

HRMS (APCI⁺) *m/z* calcd for C₁₂H₆NF₄: 240.04309, found 240.04320.

3-Fluoro-1,7-bis(trifluoromethyl)isoquinoline (2g): Yield: 64%; white solid, m.p. 76-77 °C; ¹H NMR (400

MHz, CDCl₃) & 8.66 - 8.56 (m, 1H), 8.15 - 8.02 (m, 1H), 7.99 - 7.91 (m, 1H), 7.65 - 7.48 (m, 1H); ${}^{13}C$ NMR (101 MHz, CDCl₃) δ 160.0 (d, J = 242.1 Hz), 146.9 (qd, J = 35.4, 13.7 Hz), 142.8 (d, J = 7.8 Hz), 130.3 (qd, J = 33.4, 2.7 Hz), 128.7 (d, J = 6.3 Hz), 127.6 (q, J = 3.3 Hz), 123.4 (q, J = 272.5 Hz), 123.0 (m), 122.4 (d, J = 4.0 Hz), 121.1 (q, J = 276.5 Hz), 107.5 (d, J = 34.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1 (s, 3F), -63.7 (s, 3F), -

74.5 (s, 1F).; HRMS (EI) *m/z* calcd for C₁₁H₄F₇N: 283.0226, found 283.0226.

3-Fluoro-7-nitro-1-(trifluoromethyl)isoquinoline (2h): Yield: 50%; white solid, m.p. 90-92 °C; ¹H NMR (400

3-Fluoro-6-methoxy-1-(trifluoromethyl)isoquinoline (2i): Yield: 69%, 2i:2i' 95:5; white solid; ¹H NMR (400

MHz, $CDCl_3$) δ 9.30 – 9.23 (m, 1H), 8.63 – 8.50 (m, 1H), 8.16 – 8.07 (m, 1H), 7.65 – 7.62 (m, 1H); 13 C NMR (101 MHz, CDCl₃) δ 160.8 (d, J = 244.8 Hz), 148.3 (qd, J = 35.9, 13.9 Hz), 146.7, 143.7 (d, *J* = 8.2 Hz), 129.3 (d, *J* = 6.4 Hz), 125.3, 122.1 (d, *J* = 3.1 Hz), 122.0 (q, J = 3.5 Hz), 120.9 (d, J = 276.6 Hz), 107.7 (d, J = 34.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0 (s, 3F), -72.3 (s, 1F); HRMS (EI) *m/z* calcd for C₁₀H₄F₄N₂O₂:

260.0203, found 260.0203. For crystal structure, see section 13.

۶N

MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.14 (m, 1H), 7.35 – 7.31 (m, 1H), 7.29 – 7.25 (m, 1H), 7.12 – 7.09 (m, 1H), 3.98 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.9, 159.4 (d, *J* = 237.2 Hz), 144.7 (qd, *J* = 34.4, 14.5 Hz), 144.2 (d, *J* = 8.1 Hz), 126.6 (q, J = 3.1 Hz), 122.1 (d, J = 2.4 Hz), 121.6 (q, J = 276.0 Hz), 119.3 (d, J = 2.6 Hz), 106.0 $(d, J = 35.3 \text{ Hz}), 104.2 (d, J = 6.2 \text{ Hz}), 55.8; {}^{19}\text{F} \text{ NMR} (376 \text{ MHz}, \text{CDCl}_3) \delta -63.3 ("d", J$ = 1.3 Hz, 3F), -78.2 (s, 1F).; HRMS (EI) m/z calcd for C₁₁H₇F₄NO: 245.0458, found

245.0458.

3-Fluoro-6-methoxy-1-(trifluoromethyl)isoquinoline (2i'): ¹H NMR (400 MHz, CDCl₃) & 7.71 – 7.62 (m, 1H), 7.48 - 7.41 (m, 1H), 7.42 - 7.38 (m, 1H), 7.00 - 6.94 (m, 1H), 4.04 (s, 3H); ¹⁹F NMR (376 MHz, QMe CF₃ CDCl₃) δ -63.2 (s, 3F), -78.4 (s, 1F).

6-Bromo-3-fluoro-1-(trifluoromethyl)isoquinoline (2j): Yield: 75%, white solid, m.p. 90-92 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 - 8.10 (m, 1H), 8.12 - 8.06 (m, 1H), 7.77 - 7.63 (m, 1H), 7.43 - 7.34 ÇF₃ (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.3 (d, J = 240.0 Hz), 145.8 (qd, J = 35.2, 13.8 ≥N Hz), 142.5 (d, J = 7.7 Hz), 131.9 (d, J = 2.9 Hz), 129.3 (d, J = 6.4 Hz), 127.5, 126.4 (q, J = 3.2 Hz), 121.9 (d, *J* = 3.1 Hz), 121.2 (q, *J* = 276.2 Hz), 106.3 (d, *J* = 35.0 Hz); ¹⁹F NMR Br $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -63.3 ("d", J = 1.3 Hz, 3F), -76.2 (s, 1F); HRMS (EI) m/z calcd for

C₁₀H₄BrF₄N: 292.9458, found 292.9455.

3-Fluoro-5-methoxy-1-(trifluoromethyl)isoquinoline (2k): Yield: 69%, white solid, m.p. 132-133 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 – 7.82 (m, 1H), 7.85 – 7.77 (m, 1H), 7.58 – 7.48 (m, 1H), 7.07 – 6.96 CF_3 (m, 1H), 4.03 (s, 3H); ${}^{13}C$ NMR (101 MHz, CDCl₃) δ 158.6 (d, J = 237.0 Hz), 154.6 (d, J = 5.8Hz), 144.5 (qd, J = 34.8, 13.2 Hz), 134.8 (d, J = 7.4 Hz), 128.3 (d, J = 2.4 Hz), 124.3 (d, J = 3.0 Hz), 121.6 (q, J = 276.0 Hz), 116.4 (q, J = 3.2 Hz), 108.1, 102.9 (d, J = 36.4 Hz), 56.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 ("d", J = 1.5 Hz, 3F), -77.8 (s, 1F).; HRMS (EI) m/z calcd for ÓМе C₁₁H₇F₄NO: 245.0458, found 245.0457. 3-Fluoro-1-(trifluoromethyl)dibenzo[f,h]isoquinoline (2l): Yield: 74%, white solid, m.p. 154-156 °C; ¹H NMR

(400 MHz, CDCl₃) δ 8.50 - 8.45 (m, 1H), 8.45 - 8.42 (m, 1H), 8.40 - 8.34 (m, 1H), 8.31 -8.24 (m, 1H), 7.96 – 7.90 (m, 1H), 7.77 – 7.66 (m, 2H), 7.64 – 7.54 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 160.1 (d, J = 239.8 Hz), 144.0 (d, J = 7.2 Hz), 142.2 (qd, J = 35.1, 13.1 Hz), 131.8, 131.0, 130.6, 129.3 (q, *J* = 6.9 Hz), 129.3, 128.2, 127.1, 126.5 (d, *J* = 4.0 Hz), 125.8, 124.1, 124.0 (d, *J* = 3.9 Hz), 123.5, 123.4, 122.1 (q, *J* = 275.5 Hz), 103.6 (d, *J* = 37.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -60.5 (s, 3F), -73.3 (s, 1F); HRMS (EI) *m/z* calcd for

C₁₈H₉F₄N: 315.0666, found 315.0666.

5-Fluoro-7-(trifluoromethyl)thieno[2,3-c]pyridine (2m): Yield: 49%, white solid, m.p. 73-74 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.63 (m, 2H), 7.62 – 7.61 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 158.84 (d, *J* = 237.8 Hz), 154.31 (d, *J* = 8.7 Hz), 139.67 (qd, *J* = 36.9, 14.8 Hz), 130.88 (d, *J* = 2.9 Hz), 130.24 (q, *J* = 3.2 Hz), 121.22 (q, *J* = 274.7 Hz), 120.74 (q, *J* = 2.9 Hz), 105.47 (d, *J* = 40.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -65.6 (s, 3F), -77.2 (s, 1F); HRMS (EI) *m/z* calcd for C₈H₃F₄NS: 220.9917, found 220.9912.

3,8-difluoro-1,6-bis(trifluoromethyl)pyrido[3,4-g]isoquinoline (20): Yield: 19%, brown solid, m.p. 182-185 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 2H), 7.48 – 7.44 (m, 2H); ¹³C NMR (126 MHz, CFa CDCl₃) δ 160.9 (d, J = 246.7 Hz), 146.3 – 145.0 (m), 143.9 (d, J = 8.0 Hz), 130.4 (d, J =3.7 Hz, 120.8 (q, J = 277.9, 277.0 Hz), 117.9, 107.1 (d, J = 36.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.3 (s, 6F), -70.6 (m, 2F); HRMS (APCl⁺) *m/z* calcd for C₁₄H₅F₈N₂: 353.03195, ĊF3 found 353.03211.

4-Chloro-3-fluoro-1-(trifluoromethyl)isoquinoline (2p): Yield: 66%, white solid, m.p. 95-96 °C; ¹H NMR (401 MHz, CDCl₃) δ 8.37 - 8.30 (m, 2H), 7.96 - 7.88 (m, 1H), 7.81 - 7.69 (m, 1H); ¹³C NMR (101 QF_3 MHz, CDCl₃) δ 154.2 (d, J = 236.6 Hz), 142.7 (qd, J = 35.4, 1 2.5 Hz), 138.5 (d, J = 1.7 Hz), 132.7, 128.7 (d, J = 2.6 Hz), 125.3 (qd, J = 3.3, 1.0 Hz), 124.4 (d, J = 3.0 Hz), 124.2 (d, J = 6.8Hz), 121.3 (q, J = 275.8 Hz), 115.1 (d, J = 31.5 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -62.9 ("d", J = 1.9 Hz, 3F), -79.0 (s, 1F).; HRMS (EI) m/z calcd for C₁₀H₄ClF₃N: 248.9963, found 248.9964. CI

4-Bromo-3-fluoro-1-(trifluoromethyl)isoquinoline (2q): Yield: 58%, white solid, m.p. 108-110 °C; ¹H NMR

(401 MHz, CDCl₃) δ 8.38 - 8.27 (m, 2H), 7.95 - 7.87 (m, 1H), 7.78 - 7.71 (m, 1H); ¹³C NMR $(101 \text{ MHz}, \text{CDCl}_3) \delta 155.4 \text{ (d}, J = 234.6 \text{ Hz}), 143.8 \text{ (qd}, J = 35.4, 12.7 \text{ Hz}), 140.0 \text{ (d}, J = 2.2 \text{ Hz})$ Hz), 133.0, 128.8 (d, J = 2.7 Hz), 126.7 (d, J = 6.7 Hz), 125.34 (qd, J = 3.4, 1.0 Hz), 124.4 (d, J = 2.9 Hz), 121.3 (q, J = 276.3 Hz), 105.7 (d, J = 34.8 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -63.0 ("d", J = 2.0 Hz, 3F), -71.9 (s, 1F); HRMS (APCI⁺) m/z calcd for C₁₀H₅BrF₄N: 293.95360, found 293.95391.

3-Fluoro-4-iodo-1-(trifluoromethyl)isoquinoline (2r): Yield: 41%, white solid, m.p. 84-86 °C; ¹H NMR (401

MHz, CDCl₃) δ 8.34 – 8.26 (m, 1H), 8.25 – 8.20 (m, 1H), 7.93 – 7.83 (m, 1H), 7.77 – 7.70 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 158.4 (d, *J* = 232.4 Hz), 145.4 (qd, *J* = 35.0, 13.0 Hz), 142.6 (d, J = 3.0 Hz), 133.3, 131.4 (d, J = 6.7 Hz), 128.8 (d, J = 2.8 Hz), 125.3 (q, J = 3.0 Hz), 123.8 (d, J = 2.9 Hz), 121.1 (q, J = 276.4 Hz), 82.1 (d, J = 40.0 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -60.2 (s, 1F), -63.0 ("d", J = 2.1 Hz, 3F); HRMS (APCl⁺) m/z calcd for C₁₀H₃F₄IN: 341.93967, found 341.93973.

3-Fluoro-4-propyl-1-(trifluoromethyl)isoquinoline (2s): Yield: 47%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.37 - 8.28 (m, 1H), 8.16 - 8.08 (m, 1H), 7.87 - 7.77 (m, 1H), 7.71 - 7.62 (m, 1H), 3.14 -3.05 (m, 2H), 1.85 – 1.70 (m, 2H), 1.07 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.7 (d, J = 234.7 Hz), 142.6 (qd, J = 34.6, 14.0 Hz), 140.1 (d, J = 5.5 Hz), 131.3, 127.4 (d, J = 2.4 Hz), 125.5 (q, J = 3.1 Hz), 123.9 (d, J = 6.9 Hz), 123.7 (d, J = 2.6 Hz), 121.7 (q, J = 275.8 Hz), 120.1, 26.7, 23.3, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.4 ("d", J = 2.1 Hz, 3F), -81.8 (s, 1F); HRMS (ESI⁺) *m/z* calcd for C₁₃H₁₁F₄N: 257.0822, found 257.0823.

1-(Difluoromethyl)-3-fluoroisoquinoline (2t): Yield: 77%, off-white solid, m.p. 31-32 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 - 8.44 (m, 1H), 7.93 - 7.85 (m, 1H), 7.80 - 7.71 (m, 1H), 7.67 - 7.58 (m, 1H), CF₂H 7.47 – 7.37 (m, 1H), 6.91 (t, J = 54.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 159.33 (d, J =237.0 Hz), 150.31 (td, J = 27.2, 13.3 Hz), 141.36 (d, J = 7.5 Hz), 131.68, 127.62 - 127.48 (m), 127.10 (d, J = 6.3 Hz), 125.58 (t, J = 3.6 Hz), 123.99 - 123.88 (m), 116.61 (t, J = 242.2 Hz),105.93 (d, J = 34.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -79.6 (s, 1F), -110.5 (d, J = 54.0 Hz,

2F); HRMS (EI) *m/z* calcd for C₁₀H₆F₃N: 197.0447, found 197.0449.

(Z)-2,2-Difluoro-N-(1-fluoro-2-phenylvinyl)acetamide (5t): Was isolated as a side product when the reaction was done without the addition of KF. Yield: 18%; colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (br d, J = 8.3 Hz, 1H), 7.51 – 7.47 (m, 2H), 7.42 – 7.34 (m, 3H), 7.08 CF₂H $(ddt, J = 27.0, 10.5, 0.8 Hz, 1H), 6.04 (t, J = 54.1 Hz, 1H); {}^{13}C NMR (101 MHz, CDCl_3)$ δ 159.3 (t, J = 25.7 Hz), 149.6 (d, J = 245.1 Hz), 130.0 (d, J = 24.8 Hz), 129.3, 128.9

(d, J = 2.2 Hz), 123.4 (d, J = 6.8 Hz), 108.3 (t, J = 252.9 Hz), 101.3 (d, J = 11.9 Hz); ¹⁹F NMR (376 MHz, CDCl₃)δ -126.8 (dd, J = 53.9, 1.9 Hz, 2F), -131.5 (dd, J = 27.1, 2.3 Hz, 1F); HRMS (EI) m/z calcd for C₁₀H₈F₃NO: 215.0552, found 215.0555.

1-(Difluoro(phenoxy)methyl)-3-fluoro-7-methoxyisoquinoline (2u): Yield: 68%, white solid, m.p. 54-55 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.61 – 8.54 (m, 1H), 7.92 – 7.86 (m, 1H), 7.79 – 7.71 (m, 1H), CF₂OPh 7.69 – 7.60 (m, 1H), 7.47 – 7.33 (m, 5H), 7.31 – 7.19 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 158.8 (d, *J* = 236.9 Hz), 150.3 (t, *J* = 1.8 Hz), 148.5 (td, *J* = 33.7, 13.4 Hz), 141.6 (d, *J* = 7.3 Hz), 131.5, 129.7, 127.6 (d, J = 2.4 Hz), 127.1 (d, J = 6.4 Hz), 126.1, 126.1 (t, J = 3.0 Hz), 123.8 (d, J = 2.9 Hz), 121.8, 119.9 (t, J = 265.7 Hz), 106.3 (d, J = 34.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -66.8 (s, 2F), -78.5 (s, 1F).; HRMS (ESI⁺) m/z calcd for C₁₆H₁₁F₃NO: 290.07873, found 290.07871.

1-(Difluoro(phenylthio)methyl)-3-fluoroisoquinoline (2v): Yield: 70%, white solid, m.p. 74-76 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.57 - 8.49 (m, 1H), 7.91 - 7.84 (m, 1H), 7.78 - 7.70 (m, 3H), 7.65 -CF₂SPh 7.55 (m, 1H), 7.51 - 7.37 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 158.5 (d, J = 237.5 Hz), 150.4 (td, J = 27.8, 12.6 Hz), 141.6 (d, J = 7.2 Hz), 137.1, 131.5, 130.3, 129.2, 127.6, 127.4,

127.1 (d, *J* = 6.2 Hz), 126.5, 126.2 (t, *J* = 4.7 Hz), 126.1 (t, *J* = 272.8 Hz), 106.3 (d, *J* = 34.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -67.7 ("d", J = 2.1 Hz, 2F), -78.8 ("d", J = 2.3 Hz, 1F);

HRMS (EI) *m/z* calcd for C₁₆H₁₀F₃NS: 305.0481, found 305.0484.

2,2-Difluoro-N-(2-phenylacetyl)-2-(phenylthio)acetamide (5v'): Was isolated as a side product when the reaction was done without the addition of KF. Yield: 18%; yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (bs, 1H), 7.58 – 7.52 (m, 2H), 7.51 – 7.46 (m, 1H), 7.40 – CF₂SPh 7.32 (m, 5H), 7.27 – 7.24 (m, 2H), 4.09 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 171.7 (d, J = 2.2 Hz), 159.9 (t, J = 30.8 Hz), 136.9, 132.4, 131.1, 129.7, 129.7, 128.8, 127.7,

123.8 (t, J = 2.6 Hz), 121.4 (t, J = 290.2 Hz), 43.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -84.6 (s, 2F); HRMS (EI) m/zcalcd for C₁₆H₁₃F₂NO₂S: 321.0630, found 321.0628.

Ethyl 3-fluoroisoquinoline-1-carboxylate (2w): Yield: 83%, yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.79 – COOEt 8.64 (m, 1H), 7.87 - 7.76 (m, 1H), 7.72 - 7.65 (m, 1H), 7.63 - 7.54 (m, 1H), 7.44 - 7.38 (m, 1H), 4.55 (q, J = 7.2 Hz, 2H), 1.48 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.9, 159.2 (d, *J* = 236.7 Hz), 147.5 (d, *J* = 13.5 Hz), 141.2 (d, *J* = 7.5 Hz), 131.4 (d, *J* = 1.1 Hz), 127.9 (d, J = 2.4 Hz), 126.8 (d, J = 3.0 Hz), 126.8 (d, J = 3.0 Hz), 125.5 (d, J = 2.7 Hz), 106.9 $(d, J = 34.9 \text{ Hz}), 62.5, 14.4; {}^{19}\text{F} \text{ NMR} (376 \text{ MHz}, \text{CDCl}_3) \delta -77.4 (s, 1F); \text{HRMS} (\text{ESI}^+) m/z$

calcd for C₁₂H₁₁O₂NF: 220.07683, found 220.07692.

1,3-Difluoroisoquinoline (2x): Yield: 12%, white solid, m.p. 62-63 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.19 – 8.11 (m, 1H), 7.88 – 7.81 (m, 1H), 7.81 – 7.72 (m, 1H), 7.63 – 7.54 (m, 1H), 7.15 – 7.10 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 158.7 (d, J = 254.3 Hz), 157.7 (dd, J = 240.8, 15.2 Hz), 142.5 (d, J = 5.7 Hz), 132.6, 127.0, 126.3 (dd, J = 6.6, 3.6 Hz), 123.6, 115.6 (d, J = 26.0 Hz), 100.2(dd, J = 33.3, 6.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -70.3 (d, J = 11.4 Hz, 1F), -79.7 (d, J = 1.4 Hz, -79.7 (d, 11.4 Hz, 1F); HRMS (EI) *m/z* calcd for C₉H₅F₂N: 165.0385, found 165.0387.

6 Synthesis of 3-substituted 1-trifluoromethylisoquinolines 7a-7k (General procedure)

Isoquinoline 2 (0.1-0.2 mmol) was dissolved in the solvent given in Table S2 (2.5 ml) and the corresponding nucleophile was added. The reaction mixture was stirred at ambient temperature or heated (MW irradiation) under the conditions given in Table S2. After complete conversion of 3-fluoroisoquinoline (monitoring by UPLC-MS) the solvent was evaporated under reduced pressure and the residue was chromatographed (silica gel, cyclohexaneethyl acetate or hexane-DCM).

Table S2. S_NAr of 3-fluoroisoquinolines

$ \begin{array}{c} $								
Entry	Nucleophile (equiv.)	Х	Solvent	Temp. (°C)	7, Yield (%)			
1	NaOH (15)	Н	H ₂ O	155	7 a , 88			
2	EtONa (12)	Н	EtOH	80	7b , 96			
3	EtONa (12)	Cl	EtOH	155	7c, 99			
4	<i>t</i> -BuOK (1.2)	Н	t-BuOH	80	7d , 80			
5	PhONa (1.5)	Н	DMA	80	7e, 89			
6	MeSNa (5)	Н	DMA	20	7 f , 85			
7	MeSNa (2)	Ph	DMF	20	7g , 91			
8	p-Tol-SNa (1)	Н	DMA	80	7h , 91			
9	<i>p</i> -Tol-SO ₂ Li (2.5)	Н	DMSO	155	7i , 58			
10	NH ₂ NH ₂ (20)	Н	<i>i</i> -PrOH	100	7 j , 95			
11	p-Tol-CH ₂ NH ₂ (2)	Н	DMSO	155	7k , 42			

1-(Trifluoromethyl)isoquinolin-3-ol (7a): Yield: 88%; white solid, m.p. 162-163 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 8.22 – 8.17 (m, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.70 – 7.61 (m, 1H), 7.53 – 7.44 (m, 1H), 7.30 (s, 1H).; ¹³C NMR (101 MHz, CDCl₃) δ 157.7, 144.3 (q, J = 33.7 Hz), 141.8, 131.3, 126.7, 126.25, 124.8 (q, J = 2.9 Hz), 121.9 (q, J = 276.3 Hz), 121.2, 106.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 ("d", J = 2.1 Hz, 3F); IR (cm⁻¹, CHCl₃) 1250m, 1140s (CF₃); 3549m, 3100m, 1320m (OH); 1635m, 1606m, 1564m, 1508m, 1453m, 949s, 692m

(isoquinoline); HRMS (ESI⁺) m/z calcd for C₁₀H₇F₃NO: 214.04743, found 214.04732.

3-Ethoxy-1-(trifluoromethyl)isoquinoline (7b): Yield: 96%; white solid, m.p. 50-52 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.15 (m, 1H), 7.78 – 7.74 (m, 1H), 7.66 – 7.56 (m, 1H), 7.51 – 7.40 (m, 1H), 7.21 – 7.16 (m, 1H), 4.46 (q, *J* = 7.0 Hz, 2H), 1.47 (t, *J* = 7.0 Hz, 3H);; ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 144.5 (q, *J* = 33.7 Hz), 141.1, 130.7, 126.6, 126.0, 124.7 (q, *J* = 3.0 Hz), 122.1 (q, *J* = 276.2 Hz), 121.1, 106.2, 63.1, 14.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 ("d", *J* = 2.1 Hz, 3F); HRMS (EI) *m/z* calcd for C₁₂H₁₀F₃NO: 241.0709, found 241.0704.

4-Chloro-3-ethoxy-1-(trifluoromethyl)isoquinoline (7c): Yield: 99%; white solid, m.p. 95-96 °C¹H NMR (400 MHz, CDCl₃) δ 8.26 – 8.14 (m, 2H), 7.79 – 7.70 (m, 1H), 7.57 – 7.47 (m, 1H), 4.63 (q, J = 7.0 Hz, 2H), 1.50 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.0, 141.5 (q, J = 34.0 Hz), 137.8, 131.5, 126.3, 124.8 (q, J = 3.0 Hz), 123.5, 122.0 (q, J = 275.9 Hz), 121.8, 114.3, 63.9, 14.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 ("d", J = 1.7 Hz, 3F); HRMS (APCI⁺) m/z calcd for C₁₂H₁₀ONClF₃: 276.03975, found 276.03995.

3-(*tert*-Butoxy)-1-(trifluoromethyl)isoquinoline (7d): Yield: 80%; colourless oil; ¹H NMR (400 MHz, CDCl₃) δ **CF**₃ **8**.23 - 8.12 (m, 1H), 7.78 - 7.69 (m, 1H), 7.62 - 7.55 (m, 1H), 7.47 - 7.41 (m, 1H), 7.20 -7.18 (m, 1H), 1.63 (s, 9H).; ¹³C NMR (101 MHz, CDCl₃) δ 158.5, 143.5 (d, *J* = 33.6 Hz), 141.0, 130.4, 126.6, 126.0, 124.5 (q, *J* = 2.9 Hz), 122.3 (q, *J* = 276.0 Hz) 120.9, 80.9, 29.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 ("d", J = 2.2 Hz, 3F); HRMS (EI) m/z calcd for C₁₄H₁₄F₃NO: 269.1022, found 269.1021.

3-Phenoxy-1-(trifluoromethyl)isoquinoline (7e): Yield: 89%; white solid, m.p. 62-64 °C; ¹H NMR (400 MHz,

CDCl₃) $\delta 8.30 - 8.22$ (m, 1H), 7.78 - 7.73 (m, 1H), 7.72 - 7.63 (m, 1H), 7.61 - 7.52 (m, 1H), 7.49 - 7.40 (m, 2H), 7.30 - 7.21 (m, 1H), 7.22 - 7.19 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 154.7, 145.7 (d, *J* = 34.2 Hz), 141.0, 131.3, 130.2, 127.1, 127.0, 125.1, 124.9 (q, *J* = 3.1 Hz), 122.1, 121.8 (d, *J* = 276.2 Hz), 120.8, 107.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.3 ("d", *J* = 2.1 Hz, 3F); HRMS (EI) *m/z* calcd for C₁₆H₁₀F₃NO: 289.0707, found 289.0709.

3-(Methylthio)-1-(trifluoromethyl)isoquinoline (7f): Yield: 85%; light yellow solid, m.p. 60-62 °C; ¹H NMR (400 MHz, CDCl₃) 8.24 - 8.16 (m, 1H), 7.79 - 7.72 (m, 1H), 7.71 - 7.66 (m, 2H), 7.61 - 7.53 (m, 1H), 2.69 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 152.1, 146.1 (q, J = 33.6 Hz), 138.2, 131.3, 127.6, 126.5, 124.8 (q, J = 3.1 Hz), 122.3, 122.1 (q, J = 276.6 Hz), 120.0, 14.2¹⁹F NMR (377 MHz, CDCl₃) δ -63.4 ("d", J = 2.1 Hz, 3F). HRMS (EI) *m/z* calcd for C₁₁H₈F₃NS: 243.0324, found 243.0326.

3-(Methylthio)-4-phenyl-1-(trifluoromethyl)isoquinoline (**7g**): Yield: 91%; white solid, m.p. 110-111 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.31 – 8.23 (m, 1H), 7.64 – 7.48 (m, 6H), 7.50 – 7.41 (m, 1H), 7.39 – 7.30 (m, 2H), 2.62 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 145.1 (q, *J* = 33.5 Hz), 137.1, 135.4, 133.0, 130.9, 130.2, 129.1, 128.9, 127.1, 125.2, 124.5 (q, *J* = 3.0 Hz), 122.4 (q, *J* = 276.4 Hz), 122.1, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 ("d", *J* = 2.3 Hz, 3F).; HRMS (ESI⁺) *m/z* calcd for C₁₇H₁₃NF₃S: 320.07153, found 320.07181.

3-(*p***-Tolylthio)-1-(trifluoromethyl)isoquinoline (7h**): Yield: 91%; white solid, m.p. 96-97 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.15 (m, 1H), 7.68 – 7.59 (m, 2H), 7.60 – 7.54 (m, 3H), 7.32 – 7.26 (m, 2H), 7.26 (s, 1H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 154.4, 146.2 (q, *J* = 33.6 Hz), 140.0, 138.5, 135.4, 131.2, 130.9, 127.8, 127.2, 126.7, 124.8 (q, *J* = 3.0 Hz), 122.4, 121.9 (q, *J* = 276.9 Hz), 120.1, 21.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.4 ("d", *J* = 2.1 Hz, 3F); HRMS (EI) *m/z* calcd for C₁₇H₁₂F₃NS: 319.0637, found 319.0629.

3-Tosyl-1-(trifluoromethyl)isoquinoline (7i): Yield: 58%; white solid, m.p. 195-197 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.36 – 8.30 (m, 1H), 8.15 – 8.10 (m, 1H), 8.08 – 8.02 (m, 2H), 7.97 – 7.84 (m, 2H), 7.38 – 7.30 (m, 2H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 150.7, 147.6 (q, J = 34.8 Hz), 145.2, 137.2, 135.7, 132.5, 131.7, 129.9, 129.4, 129.4, 125.6, 125.2 (q, J = 3.1 Hz), 124.1, 121.4 (q, J = 277.0 Hz), 21.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.8 ("d", J = 2.1 Hz, 3F); HRMS (ESI⁺) *m/z* calcd for C₁₇H₁₃F₃NO₂S: 352.06136, found 352.06122.

3-Hydrazineyl-1-(trifluoromethyl)isoquinoline (7**j**): Yield: 95%; white solid, m.p. 96-98 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.07 (m, 1H), 7.73 – 7.68 (m, 1H), 7.60 – 7.54 (m, 1H), 7.39 – 7.32 (m, 1H), 7.22 (s, 1H), 6.07 (s, 1H), 3.84 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 156.4, 145.2 (q, *J* = 33.2 Hz), 140.6, 130.8, 126.3, 124.8 (q, *J* = 2.9 Hz), 124.8, 122.2 (q, *J* = 276.5 Hz), 120.1, 101.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.5 ("d", *J* = 2.2 Hz, 3F); HRMS (EI) *m/z* calcd for C₁₀H₈F₃N₃: 227.0665, found 227.0668.

7 Synthesis of *N*-(isoquinolin-3-yl)benzenesulfonamides **8a-8i** (General procedure)

Sodium hydride (60-70% suspension in mineral oil; 10.4 mg, 0.26 mmol, 1.3 eq) was suspended in DMA (1 ml) and the starting benzenesulfonamide (0.27 mmol, 1.35 eq) was added. The suspension was heated to 50 °C for 10 min to dissolve the amide salt. Fluoroisoquinoline 2 (0.2 mmol) was added and the reaction mixture was heated (MW irradiation) under the conditions given in the text. The reaction was monitored with UPLC-MS. After reaching the maximal conversion, the solvent was evaporated under reduced pressure and the residue was chromatographed (silica gel, cyclohexane-ethyl acetate or hexane-DCM).

4-Methyl-N-(4-methylbenzyl)-N-(1-(trifluoromethyl)isoquinolin-3-yl)benzenesulfonamide (8a): Yield: 51%;

Senzy1)-V-(1-(triffuoromethy))isoquinolin-3-y1)benzenesulfonamide (8a): Y1eld: 51%; conditions of MW irradiation: 155 °C, 1.5 h; white solid, m.p. 144-145 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.16 (m, 1H), 8.03 (s, 1H), 7.91 – 7.84 (m, 1H), 7.73 – 7.67 (m, 1H), 7.67 – 7.59 (m, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.28 – 7.20 (m, 4H), 7.00 (d, J = 8.1 Hz, 2H), 5.01 (s, 2H), 2.42 (s, 3H), 2.22 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) 144.9 (q, J = 34.1 Hz), 144.8, 144.0, 139.0, 137.3, 135.6, 133.2, 131.1, 129.7, 129.1, 128.9, 128.8, 128.1, 127.7, 124.4 (q, J = 3.0 Hz), 123.3, 123.1, 121.8 (q, J = 276.6 Hz), 51.5, 21.7, 21.2; DCl) δ 2.6 ("4", J = 2.1 Hz, 2F), 128.9 (5E) m/c color for C, H, E, N, O, S; 470 1270

¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 ("d", J = 2.1 Hz, 3F); HRMS (EI) m/z calcd for C₂₅H₂₁F₃N₂O₂S: 470.1270, found 470.1266.

4-Methyl-N-(7-methyl-1-(trifluoromethyl)isoquinolin-3-yl)-N-(4-methylbenzyl)benzenesulfonamide (8b):

For the formation of MW irradiation: 145 °C, 1 h; white solid, m.p. 114-115 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.93 (s, 1H), 7.78 (d, *J* = 8.5 Hz, 1H), 7.58 – 7.51 (m, 1H), 7.50 (d, *J* = 8.2 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 4H), 6.99 (d, *J* = 7.9 Hz, 2H), 4.97 (s, 2H), 2.55 (s, 3H), 2.41 (s, 3H), 2.21 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.1 (q, *J* = 10.3 Hz), 143.9, 139.3, 137.4, 135.6, 133.5, 132.8, 129.6, 129.1, 128.9, 127.9, 127.8, 123.7, 123.3, 123.1 (q, *J* = 2.9 Hz), 121.9 (q, *J* = 276.6 Hz), 51.6, 22.4, NH

21.7, 21.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.7 ("d", J = 2.0 Hz, 3F); HRMS (ESI⁺) m/z calcd for C₂₆H₂₄F₃N₂O₂S: 485.15051, found 485.15018.

4-Methyl-N-(4-methylbenzyl)-*N*-(7-nitro-1-(trifluoromethyl)isoquinolin-3-yl)benzenesulfonamide (8c): Yield: 65%; conditions of MW irradiation: 100 °C, 1 h; white solid, m.p. 118-120 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.13 – 9.07 (m, 1H), 8.49 – 8.42 (m, 1H), 8.17 (s, 1H), 8.02 (d, *J* = 9.2 Hz, 1H), 7.58 – 7.50 (m, 2H), 7.30 – 7.22 (m, 4H), 7.02 (d, *J* = 7.9 Hz, 2H), 5.09 (s, 2H), 2.42 (s, 3H), 2.23 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) 148.1, 147.0 (q, *J* = 34.9 Hz), 146.7, 144.6, 141.2, 137.6, 135.5, 132.8, 129.9, 129.3, 128.8, 128.3, 127.6, 124.5, 121.5 (q, *J* = 3.5 Hz), 121.3, 121.2 (q, *J* = 276.7 Hz), 120.2, 51.3, 21.7, 21.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 ("d", *J* = 1.5 Hz, 3F); HRMS (ESI⁺) *m/z* calcd for

C₂₅H₂₁F₃N₃O₄S: 516.11994, found 516.11954.

Yield: 38%; conditions of MW irradiation: 150 °C, 1 h; white solid, m.p. 57-58 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.80 – 7.70 (m, 1H), 7.53 – 7.46 (m, 2H), 7.40 – 7.32 (m, 2H), 7.27 – 7.15 (m, 4H), 7.02 – 6.95 (m, 2H), 4.93 (s, 2H), 3.94 (s, 3H), 2.42 (s, 3H), 2.21 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.6, 143.9, 143.2, 142.8 (q, *J* = 33.7 Hz), 137.3, 135.5, 134.8, 133.2, 129.6, 129.1, 128.9, 127.8, 127.7, 125.0, 124.8, 123.8, 122.0 (q, *J* = 276.6 Hz), 101.7 (q, *J* = 3.4 Hz), 55.7, 51.7, 21.7, CDCl) δ (42 ("4") *L* = 1.6 Hz, 2F); HPMS (FD) m(*c* colled for *C*. H. F. N.O. St

21.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3 ("d", J = 1.6 Hz, 3F); HRMS (EI) m/z calcd for C₂₆H₂₃F₃N₂O₃S: 500.1376, found 500.1369.

54.4 Hz, 2F); HRMS (ESI⁺) m/z calcd for C₂₅H₂₃F₂N₂O₂S: 453.14428, found 453.14405.

N-(4-(*tert*-Butyl)benzyl)-4-methyl-*N*-(1-(trifluoromethyl)isoquinolin-3-yl)benzenesulfonamide (8f): Yield: 56%; conditions of MW irradiation: 155 °C, 1 h; white solid, m.p. 142-143 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.25 – 8.16 (m, 1H), 8.07 (s, 1H), 7.90 – 7.84 (m, 1H), 7.75 – 7.65 (m, 1H), 7.68 – 7.58 (m, 1H), 7.57 – 7.50 (m, 2H), 7.34 – 7.29 (m, 2H), 7.29 – 7.22 (m, 4H), 5.06 (s, 2H), 2.42 (s, 3H), 1.24 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 150.5, 144.9, 144.9 (q, *J* = 34.1 Hz), 144.0, 139.0, 135.7, 133.3, 131.1, 129.6, 128.7, 128.5, 128.1, 127.7, 125.4, 124.5 (q, *J* = 3.1 Hz), 123.3, 122.9, 121.8 (q, *J* = 276.6 Hz), 51.4, 34.5, 31.4, 21.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 ("d", *J* = 2.1 Hz, 3F); HRMS (ESI⁺) *m/z* calcd

for $C_{28}H_{28}F_3N_2O_2S$: 513.18181, found 513.18170.

N-(4-(tert-Butyl)benzyl)-N-(7-methoxy-1-(trifluoromethyl)isoquinolin-3-yl)-4-methylbenzenesulfonamide

(8g): Yield: 46%; conditions of MW irradiation: 155 °C, 1 h; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.79 (d, J = 9.0 Hz, 1H), 7.52 – 7.44 (m, 2H), 7.41 – 7.31 (m, 2H), 7.27 – 7.24 (m, 2H), 7.23 – 7.19 (m, 4H), 4.96 (s, 2H), 3.94 (s, 3H), 2.41 (s, 3H), 1.22 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 150.3, 143.7, 143.2, 142.8 (q, J = 33.7 Hz), 135.5, 134.7, 133.2, 129.7, 129.5, 128.4, 128.1, 127.7, 125.2, 124.7, 123.5, 121.9 (q, J = 276.3 Hz), 101.6 (q, J = 3.3 Hz), 55.5, 51.4, 34.4, 31.3, 21.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -64.3 ("d", J = 1.7 Hz, 3F); HRMS (ESI⁺) m/z

calcd for C₂₉H₃₀F₃N₂O₃S: 543.19237, found 543.19223.

N-(3-Methoxybenzyl)-4-methyl-*N*-(1-(trifluoromethyl)isoquinolin-3-yl)benzenesulfonamide (8h): Yield: 38%; conditions of MW irradiation: 155 °C, 1 h; white solid, m.p. 114-115 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.15 (m, 1H), 8.05 (s, 1H), 7.94 – 7.85 (m, 1H), 7.76 – 7.67 (m, 1H), 7.68 – 7.56 (m, 1H), 7.57 – 7.47 (m, 2H), 7.29 – 7.20 (m, 2H), 7.11 (t, *J* = 7.8 Hz, 1H), 7.00 – 6.88 (m, 2H), 6.74 – 6.65 (m, 1H), 5.02 (s, 2H), 3.70 (s, 3H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 144.9 (q, *J* = 34.0 Hz), 144.8, 144.1, 139.0, 137.9, 135.5, 131.2, 129.7, 129.4, 128.9, 128.2, 127.7, 124.5 (q, *J* = 3.1 Hz), 123.3, 123.0,

121.8 (d, J = 276.6 Hz), 121.2, 114.0, 113.7, 55.2, 51.8, 21.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 ("d", J = 2.0 Hz, 3F); HRMS (ESI⁺) m/z calcd for C₂₅H₂₂F₃N₂O₃S: 487.12977, found 487.12970.

4-Fluoro-*N*-(4-methylbenzyl)-*N*-(1-(trifluoromethyl)isoquinolin-3-yl)benzenesulfonamide (8i): Yield: 44%; conditions of MW irradiation: 150 °C, 1 h; white solid, m.p. 131-133 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.23 – 8.18 (m, 1H), 7.97 (s, 1H), 7.90 – 7.85 (m, 1H), 7.77 – 7.68 (m, 1H), 7.69 – 7.63 (m, 2H), 7.25 – 7.18 (m, 2H), 7.16 – 7.09 (m, 2H), 7.03 – 6.97 (m, 2H), 4.97 (s, 2H), 2.22 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.5 (d, *J* = 255.3 Hz), 145.1 (q, *J* = 34.1 Hz), 144.6, 139.0, 137.5, 134.6 (d, *J* = 3.4 Hz), 132.8, 131.3, 130.5 (d, *J* = 9.5 Hz), 129.2, 129.1, 128.9, 128.2, 124.5 (q, *J* = 3.1 Hz), 123.6, 123.5, 121.7 (q, *J* = 9.5 Hz), 129.2, 129.1 Hz

276.7 Hz), 116.3 (d, J = 22.6 Hz), 52.0, 21.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.6 (s, 3F), -105.2 - -105.3 (m, 1 F); HRMS (EI) *m/z* calcd for C₂₄H₁₉F4N₂O₂S: 475.10979, found 475.10965.

8 Suzuki coupling of 2q (General procedure)

A 10 ml MW tube was charged with isoquinoline **2q** (50 mg; 0.2 mmol), boronic acid (0.3 mmol), Pd(OAc)₂ (0.7 mg; 0.004 mmol), PPh₃ (5mg; 0.02 mmol) and Na₂CO₃ (64 mg; 0.6 mmol). Under inert atmosphere degassed THF/water (1:1) solution was added (1 ml) and the reaction mixture was heated under MW irradiation to 120 °C for 40 min. The mixture was then diluted with DCM (15 ml) and extracted with brine (20 ml). The aqueous phase was extracted with DCM (10 ml), the combined organic layers were then washed with brine (2 × 20 ml) and water (20 ml), and dried over MgSO₄. The crude product was then concentrated and purified with gradient column chromatography (silica gel, cyclohexane to DCM).

3-Fluoro-4-phenyl-1-(trifluoromethyl)isoquinoline (9a): Yield: 98%; white solid, m.p. 61-62 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.40 – 8.34 (m, 1H), 7.89 – 7.82 (m, 1H), 7.74 – 7.64 (m, 2H), 7.61 – 7.50 (m, 3H), 7.50 – 7.42 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 155.3 (d, J = 236.2 Hz), 144.1 (qd, J = 34.8, 13.6 Hz), 140.4 (d, J = 4.0 Hz), 131.6, 131.0 (d, J = 3.2 Hz), 130.6 (d, J = 1.4 Hz), 129.1, 128.9, 127.8 (d, J = 2.5 Hz), 125.9 (d, J = 7.0 Hz), 124.9 (q, J = 3.1 Hz), 123.8 (d, J = 2.7 Hz), 121.6 (q, J = 276.2 Hz), 120.8 (d, J = 28.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1 ("d", J = 2.1 Hz, 3F), -79.8 (s, 1F).; HRMS (ESI⁺) m/z calcd for C₁₆H₁₀F₄N: 292.07439, found 292.07429.

3-Fluoro-4-(4-methoxyphenyl)-1-(trifluoromethyl)isoquinoline (9b): Yield: 87%: white solid, m.p. 111-112 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.40 – 8.30 (m, 1H), 7.94 – 7.86 (m, 1H), 7.75 – 7.61 (m, 2H), 7.44 – 7.31 (m, 2H), 7.14 – 7.04 (m, 2H), 3.91 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 155.5 (d, *J* = 235.5 Hz), 143.6 (qd, *J* = 34.7, 13.5 Hz), 140.5 (d, *J* = 4.0 Hz), 131.9 (d, *J* = 1.4 Hz), 131.5, 127.7 (d, *J* = 2.5 Hz), 126.0 (d, *J* = 6.9 Hz), 124.9 (q, *J* = 3.1 Hz), 123.8 (d, *J* = 2.7 Hz), 122.9 (d, *J* = 3.3 Hz), 121.6 (q, *J* = 275.8 Hz), 120.7 (d, *J* = 28.5 Hz), 114.4, 55.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0 ("d", *J* = 1.4 Hz, 3F), -80.1 (s, 1F).; HRMS (EI) *m/z* calcd for C₁₇H₁₁F₄NO: 321.0771, found 321.0766.

3-Fluoro-4-(4-nitrophenyl)-1-(trifluoromethyl)isoquinoline (9c): Yield: 91%; white solid, m.p. 131-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.46 – 8.39 (m, 3H), 7.84 – 7.72 (m, 3H), 7.71 – 7.66 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 155.1 (d, *J* = 237.2 Hz), 148.3, 145.5 (qd, *J* = 34.9, 13.7 Hz), 139.7 (d, *J* = 3.4 Hz), 137.9 (d, *J* = 3.4 Hz), 132.5, 131.8, 128.3 (d, *J* = 2.5 Hz), 125.4 (q, *J* = 3.2 Hz), 125.1 (d, *J* = 6.9 Hz), 124.1, 123.7 (d, *J* = 2.8 Hz), 121.4 (q, *J* = 276.3 Hz), 118.4 (d, *J* = 28.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.2 ("d", *J* = 1.6 Hz, 3F), -79.1 (s, 1F); HRMS (EI) *m/z* calcd for C₁₆H₈F₂N₂O₂: 335.0516, found 335.0515.

NO₂

9 Heck coupling of **2q** with Jeffery's conditions² (General procedure)

A 10 ml MW tube was charged with isoquinoline 2q (20 mg; 0.07 mmol), methyl acrylate (18 mg; 0.2 mmol), Pd(OAc)₂ (0.7 mg; 0.003 mmol), NBu₄+Cl⁻ (11 mg; 0.07 mmol) and K₂CO₃ (28 mg; 0.14 mmol). Under inert atmosphere degassed DMF was added (0.5 ml) and the mixture was heated under MW irradiation to 120 °C for 2 h. The mixture was then diluted with DCM (15 ml) and extracted with brine (20 ml). Water phase was extracted with DCM (10 ml), the combined organic layers were then washed with brine (2×20 ml) and water (20 ml), and dried over MgSO₄. The crude product was then concentrated and purified with gradient column chromatography (silica gel, cyclohexane to DCM).

(E)-3-(3-Fluoro-1-(trifluoromethyl)isoquinolin-4-yl)acrylate (10a): Yield: 59%; white solid, m.p. 116-119 °C;

¹H NMR (400 MHz, CDCl₃) δ 8.40 – 8.31 (m, 1H), 8.31 – 8.25 (m, 1H), 8.18 (d, J = 16.2 Hz, 1H), 7.94 - 7.80 (m, 1H), 7.77 - 7.64 (m, 1H), 6.84 (dd, J = 16.2, 1.2 Hz, 1H), 3.89 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 166.8, 156.5 (d, J = 243.2 Hz), 145.1 (qd, J = 34.9, 14.4 Hz), 139.3 (d, J = 3.7 Hz), 132.5 (m, 2C), 128.2 (d, J = 2.4 Hz), 128.0 (d, J = 11.7 Hz), 125.6 (q, J = 3.0 Hz),123.8 (d, *J* = 6.8 Hz), 123.6 (d, *J* = 2.9 Hz), 121.3 (q, *J* = 276.2 Hz), 113.5 (d, *J* = 24.4 Hz), 52.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1 ("d", J = 1.3 Hz, 3F), -73.5 (s, 1F); HRMS (ESI⁺) m/z calcd for C₁₄H₁₀F₄NO₂: 300.06422, found 300.06406.

10 Sonogashira coupling of **2q** (General procedure)

A 10 ml MW tube was charged with isoquinoline 2q (50 mg; 0.17 mmol), phenylacetylene (36 mg; 0.34 mmol), Pd(OAc)₂ (0.7 mg; 0.003 mmol), PPh₃ (4 mg; 0.014 mmol), CuI (2 mg; 0.009 mmol) and K₂CO₃ (47 mg; 0.34 mmol). Under inert atmosphere degassed THF was added (1 ml) and the mixture was heated under MW irradiation to 120 °C for 1 h. The mixture was then filtered, crude product was then concentrated and purified with gradient column chromatography (silica gel, cyclohexane to DCM).

3-Fluoro-4-(phenylethynyl)-1-(trifluoromethyl)isoquinoline (10b): Yield: 75%; off-white solid, m.p. 96-98 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.50 – 8.43 (m, 1H), 8.37 – 8.31 (m, 1H), 7.94 – 7.85 (m, 1H), 7.77 ÇF₃ -7.66 (m, 3H), 7.50 - 7.39 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.5 (d, J = 241.7 Hz), 143.2 (qd, *J* = 35.1, 13.0 Hz), 140.9 (d, *J* = 2.7 Hz), 132.3, 132.1, 129.8, 128.7, 128.5 (d, *J* = 2.4 Hz), 126.0 (d, J = 6.8 Hz), 125.3 (q, J = 3.1 Hz), 123.0 (d, J = 2.9 Hz), 122.1, 121.4 (q, J = 276.2 Hz), 104.6 (d, J = 29.1 Hz), 103.1 (d, J = 3.3 Hz), 79.1 (d, J = 5.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0 ("d", J = 1.7 Hz, 3F), -72.4 (s, 1F).; HRMS (EI) m/z calcd for C₁₈H₉F₄N: 315.0669, found 315.0666.

11 Buchwald-Hartwig coupling of **2r** (General procedure)

A 10 ml MW tube was charged with isoquinoline 2r (50 mg; 0.17 mmol), 4-methylbenzylamine (41 mg; 0.34 mmol), Pd(OAc)₂ (2 mg; 0.009 mmol), XantPhos (5 mg; 0.0009 mmol) and tBuONa (33 mg; 0.34 mmol). Under inert atmosphere degassed toluene was added (1 ml) and the mixture was heated under MW irradiation to 110 °C for 30 min. The mixture was then filtered, crude product was then concentrated and purified with gradient column chromatography (silica gel, cyclohexane to DCM).

335.11679.

12 Synthesis of Valiglurax analogue 12

Preparation of 11

A 10 ml MW tube was charged with isoquinoline **2j** (20 mg; 0.07 mmol), 1-(4-methoxybenzyl)-1*H*-pyrazolo[3,4*b*]pyridin-3-amine (20 mg; 0.08 mmol), Pd(OAc)₂ (1 mg; 0.003 mmol), XantPhos (2 mg; 0.0003 mmol) and *t*BuONa (10 mg; 0.1 mmol). Under inert atmosphere degassed toluene was added (0.5 ml) and the mixture was heated under MW irradiation to 110 °C for 30 min. The mixture was then filtered, the crude product was then concentrated and purified with gradient column chromatography (silica gel, cyclohexane/EtOAc/Et₃N, 99.5:0:0.5 to 0:95:5).

3-Fluoro-N-(1-(4-methoxybenzyl)-1H-pyrazolo[3,4-b]pyridin-3-yl)-1-(trifluoromethyl)isoquinolin-6-amine

(11): Yield: 94%; yellow solid, m.p. 193-194 °C ¹H NMR (401 MHz, acetone- d_6) δ 9.28 (s, 1H), 8.62 (dm, J = 2.1 Hz, 1H), 8.58 (dd, J = 4.5, 1.6 Hz, 1H), 8.31 (ddm, J = 8.1, 1.5 Hz, 1H), 8.15 (dq, J = 9.4, 2.2 Hz, 1H), 7.73 (dd, J = 9.4, 2.2 Hz, 1H), 7.51 (s, 1H), 7.48 – 7.37 (m, 2H), 7.15 (dd, J = 8.1, 4.5 Hz, 1H), 6.93 – 6.83 (m, 2H), 5.62 (s, 2H), 3.74 (s, 3H); ¹³C NMR (101 MHz, acetone- d_6) δ 160.3 (d, J = 8.1, 4.5 Hz, 1H), 8.16 (d, J = 8.1, 4.5 Hz, 1H), 6.93 – 6.83 (m, 2H), 5.62 (s, 2H), 3.74 (s, 3H); ¹³C NMR (101 MHz, acetone- d_6) δ 160.3 (d, J = 8.1, 4.5 Hz, 1H), 8.16 (d, J = 8.1, 4.5 Hz, 1H), 6.93 – 6.83 (m, 2H), 5.62 (s, 2H), 3.74 (s, 3H); ¹³C NMR (101 MHz, acetone- d_6) δ 160.3 (d, J = 8.1, 4.5 Hz, 1H), 8.16 (d, J = 8.1, 4.5 Hz, 1H), 8.16 (d, J = 8.1, 4.5 Hz, 1H), 6.93 – 6.83 (m, 2H), 5.62 (s, 2H), 3.74 (s, 3H); ¹³C NMR (101 MHz, acetone- d_6) δ 160.3 (d, J = 8.1, 4.5 Hz, 1H), 6.93 – 6.83 (m, 2H), 5.62 (s, 2H), 3.74 (s, 3H); ¹³C NMR (101 MHz, acetone- d_6) δ 160.3 (d, J = 8.1, 4.5 Hz, 1H), 6.93 – 6.83 (m, 2H), 5.62 (s, 2H), 3.74 (s, 3H); ¹³C NMR (101 MHz, acetone- d_6) δ 160.3 (d, J = 8.1, 4.5 Hz, 1H), 6.93 – 6.83 (m, 2H), 5.62 (s, 2H), 3.74 (s, 3H); ¹³C NMR (101 MHz, acetone- d_6) δ 160.3 (d, J = 8.1, 4.5 Hz, 1H), 6.93 – 6.83 (m, 2H), 5.62 (s, 2H), 3.74 (s, 3H); ¹³C NMR (101 MHz, acetone- d_6) δ 160.3 (d, J = 8.1, 4.5 Hz, 1H), 6.93 – 6.83 (m, 2H), 5.62 (s, 2H), 3.74 (s, 3H); ¹³C NMR (s, 2H), 5.62 (s, 2H), 3.74 (s, 3H); ¹³C NMR (s, 2H), ¹³C NMR (s

233.7 Hz), 160.2, 150.8, 150.7, 145.5 (d, J = 11.9 Hz), 145.2 (d, J = 8.4 Hz), 144.2 (qd, J = 34.1, 15.1 Hz), 142.5 (d, J = 6.9 Hz), 130.7, 130.4, 129.9, 125.8 (q, J = 3.1 Hz), 123.11 – 122.52 (m, 2C), 122.7 (q, J = 275.5 Hz), 119.1 (d, J = 2.3 Hz), 116.5, 114.7, 108.7 – 108.4 (m, 2C), 106.4 (d, J = 35.6 Hz), 55.5, 50.4; ¹⁹F NMR (377 MHz, acetone- d_6) δ -62.3 ("d", J = 2.1 Hz, 3F), -79.0 – -79.7 (m, 1F).; HRMS (ESI⁺) m/z calcd for C₂₄H₁₈F₄N₅O: 468.14420, found 468.14372.

Preparation of 12

A 10 ml MW tube was charged with isoquinoline **10** (29 mg; 0.06 mmol), then solution of TFA (0.3 ml) and toluene (0.3 ml) were added and the reaction mixture was heated under MW irradiation to 120 °C for 30 min. The mixture was then concentrated and saturated solution of NaHCO₃ (2ml) was added. EtOAc was then added (20 ml) and the aqueous phase was extracted with EtOAc (2×20 ml) and dried over MgSO₄. The crude product was then concentrated and purified with gradient column chromatography (silica gel, cyclohexane/EtOAc/Et₃N, 90:9.5:0.5 to 0:95:5).

3-Fluoro-*N*-(1*H*-pyrazolo[3,4-*b*]pyridin-3-yl)-1-(trifluoromethyl)isoquinolin-6-amine (12): Yield: 88%;

yellow solid, m.p. 282-283 °C; ¹H NMR (401 MHz, methanol- d_4) δ 8.51 (d, J = 2.3 Hz, 1H), 8.50 (s, 1H), 8.39 (dd, J = 8.1, 1.5 Hz, 1H), 8.16 (dd, J = 9.5, 2.2 Hz, 1H), 7.70 (dd, J = 9.4, 2.3 Hz, 1H), 7.46 (s, 1H), 7.19 (dd, J = 8.1, 4.6 Hz, 1H); ¹H NMR (401 MHz, acetone- d_6) δ 12.19 (s, 1H), 9.27 (s, 1H), 8.63 (d, J = 2.3 Hz, 1H), 8.55 (dd, J = 4.5, 1.6 Hz, 1H), 8.35 (dd, J = 8.1, 1.6 Hz, 1H), 8.18 (dq, J = 9.4, 2.2 Hz,

1H), 7.77 (dd, J = 9.4, 2.3 Hz, 1H), 7.58 (s, 1H), 7.17 (dd, J = 8.1, 4.5 Hz, 1H); ¹³C NMR (126 MHz, acetone- d_6) δ 160.3 (d, J = 233.7 Hz), 153.0, 150.8, 145.8, 145.3 (d, J = 8.5 Hz), 144.2 (qd, J = 34.0, 15.3 Hz), 143.8, 129.6, 125.9 (q, J = 3.0 Hz), 123.0 – 122.7 (m), 122.8 (q, J = 275.7 Hz), 119.1 (d, J = 2.3 Hz), 116.6, 108.5 (d, J = 6.0 Hz), 107.9, 106.5 (d, J = 35.7 Hz); ¹⁹F NMR (377 MHz, acetone- d_6) δ -62.3 ("d", J = 2.2 Hz, 3F), -79.3 (s, 1F).; HRMS (ESI⁺) *m/z* calcd for C₁₆H₁₀F₄N₅: 348.08668, found 348.08663.

13 Crystallographic data

Single-crystal diffraction data of all structures were collected using MicroMax-007 HF Microfocus Cu rotating anode ($\lambda = 1.54178$ Å) X-ray generator equipped with a Hybrid Pixel Array Detector (Rigaku) (**2a**) or using Bruker D8 VENTURE system equipped with a Photon 100 CMOS detector, a multilayer monochromator, and a Cu-K α Incoatec microfocus sealed tube ($\lambda = 1.54178$ Å) (**2h** and (**Z**,**E**)-**4m**) at 180 K. The frames were integrated with CrysAlisPro³ (**2a**) or Bruker SAINT⁴ software package (**2h** and (**Z**,**E**)-**4m**). The structures were solved by chargeflipping methods using Superflip⁵ (**2a**) or by direct methods with SIR92⁶ (**2h** and (**Z**,**E**)-**4m**) and were refined by full-matrix least-squares on F with CRYSTALS.⁷ The positional and anisotropic thermal parameters of all nonhydrogen atoms were refined. All hydrogen atoms were located in a difference Fourier map and then they were repositioned geometrically. They were initially refined with soft restraints on the bond lengths and angles to regularise their geometry, then their positions were refined with riding constraints.

Crystal data for 2a (light yellow, 0.036 x 0.078 x 0.212 mm):

 $C_{10}H_5F_4N_1$, monoclinic, space group P_{21}/c , a = 8.18502(15) Å, b = 13.51475(17) Å, c = 8.59865(14) Å, $\beta = 117.183(2)^\circ$, V = 846.117(14) Å³, Z = 4, M = 215.15, 8064 reflections measured, 1847 independent reflections. Final R = 0.030, wR = 0.039, GoF = 1.008 for 1814 reflections with $I > 2\sigma(I)$ and 137 parameters. CCDC 2336080.

Crystal data for 2h (light yellow, 0. 0.070 x 0.084 x 0.336 mm):

 $C_{10}H_4F_4N_2O_2$, monoclinic, space group $P2_1/c$, a = 13.5573(4) Å, b = 16.3320(5) Å, c = 8.8755(3) Å, $\beta = 99.9980(14)^\circ$, V = 1935.35(11) Å³, Z = 8, M = 520.29, 38767 reflections measured, 3554 independent reflections. Final R = 0.033, wR = 0.044, GoF = 1.027 for 2993 reflections with $I > 2\sigma(I)$ and 326 parameters. CCDC 2336081.

Crystal data for (*Z*,*E*)-4m (light yellow, 0.052 x 0.065 x 0.410 mm):

 $C_{18}H_{10}F_5N_1$, monoclinic, space group $P2_1/c$, a = 20993 Å, b = 5.2160(3) Å, c = 24.2707(16) Å, $\beta = 90.344(4)^\circ$, V = 1470.42(16) Å³, Z = 4, M = 335.27, 20993 reflections measured, 2706 independent reflections. Final R = 0.094, wR = 0.081, GoF = 0.937 for 2993 reflections with $I > 2\sigma(I)$ and 217 parameters. CCDC 2336082.

14 References

- Blastik, Z. E.; Voltrová, S.; Matoušek, V.; Jurásek, B.; Manley, D. W.; Klepetářová, B.; Beier, P. Angew. Chem., Int. Ed. 2017, 56, 346.
- (2) Jeffery, T. *Tetrahedron*. **1996**, *52*, 10113.
- (3) CrysAlisPro, Oxford Diffraction, 2021.
- (4) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA, 2015.
- (5) Palatinus L., Chapuis G. J. Appl. Cryst. 2007, 40, 786-790.
- (6) Altomare, A.; Cascarano, G.; Giacovazzo G.; Guagliardi A.; Burla M. C.; Polidori, G.; Camalli, M. J. Appl. Cryst. 1994, 27, 435.
- (7) Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K., Watkin, D. J. J. Appl. Cryst. 2003, 36, 1487.

¹³C NMR spectrum of **1i** (CDCl₃, 101 MHz)

N-N-CF2CF3 <u>III</u> 1.00± 1.003 1.005 1.00± 1.00± f1 (ppm) ¹³C NMR spectrum of **1j** (CDCl₃, 101 MHz) N^{-N}N-CF₂CF₃ 132.52 130.80 129.30 129.30 129.33 129.33 129.33 129.30 129.30 118.11 118.13 118.13 118.13 118.13 118.13 118.13 118.13 118.13 116.07 110.09 100.06 100.06 . 147.46

¹H NMR spectrum of **1**j (CDCl₃, 400 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

S25

¹³C NMR spectrum of **1m** (CDCl₃, 101 MHz)

¹H NMR spectrum of **10** (CDCl₃, 400 MHz)

¹⁹F NMR spectrum of **10** (CDCl₃, 376 MHz)

S29

¹H NMR spectrum of (*Z*,*Z*)-4a (CDCl₃, 400 MHz)

¹H NMR spectrum of (*Z*,*E*)-4m (CDCl₃, 400 MHz)

¹³C NMR spectrum of 6a (CDCl₃, 101 MHz)

¹H NMR spectrum of **2a** (CDCl₃, 400 MHz)

S35

¹³C NMR spectrum of **2b** (CDCl₃, 101 MHz)

¹H NMR spectrum of **2c** (CDCl₃, 400 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 4C 30 20 10 (f1 (ppm)

¹³C NMR spectrum of **2d** (CDCl₃, 101 MHz)

¹H NMR spectrum of **2e** (CDCl₃, 400 MHz)

¹⁹F NMR spectrum of **2e** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2f** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2g** (CDCl₃, 101 MHz)

¹H NMR spectrum of **2h** (CDCl₃, 400 MHz)

¹H NMR spectrum of **2j** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **2k** (CDCl₃, 101 MHz)

¹H NMR spectrum of **2l** (CDCl₃, 400 MHz)

¹H NMR spectrum of **20** (CDCl₃, 400 MHz)

¹⁹F NMR spectrum of **20** (CDCl₃, 376 MHz)

¹³C NMR spectrum of **2p** (CDCl₃, 101 MHz)

¹H NMR spectrum of **2q** (CDCl₃, 400 MHz)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

¹³C NMR spectrum of **2r** (CDCl₃, 101 MHz)

¹H NMR spectrum of **2s** (CDCl₃, 400 MHz)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

¹⁹F NMR spectrum of **2s** (CDCl₃, 376 MHz)

¹H NMR spectrum of **2t** (CDCl₃, 400 MHz)

¹H NMR spectrum of **5t** (CDCl₃, 400 MHz)

¹⁹F NMR spectrum of **5t** (CDCl₃, 376 MHz)

S66

¹H NMR spectrum of **2v** (CDCl₃, 400 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm))

¹⁹F NMR spectrum of 7a (CDCl₃, 376 MHz)

¹H NMR spectrum of **7c** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **7d** (CDCl₃, 101 MHz)

¹H NMR spectrum of 7e (CDCl₃, 400 MHz)

¹³C NMR spectrum of **7f** (CDCl₃, 101 MHz)

¹H NMR spectrum of **7g** (CDCl₃, 400 MHz)

¹⁹F NMR spectrum of **7g** (CDCl₃, 376 MHz)

¹³C NMR spectrum of **7h** (CDCl₃, 101 MHz)

¹H NMR spectrum of 7i (CDCl₃, 400 MHz)

220 210 200 190 180 170 160 150 140 13C 120 110 100 90 80 70 60 50 40 30 20 10 C f1 (ppm)

¹⁹F NMR spectrum of 7i (CDCl₃, 376 MHz)

¹³C NMR spectrum of **7j** (CDCl₃, 101 MHz)

¹H NMR spectrum of 7k (CDCl₃, 400 MHz)

 $^{19}\mathrm{F}$ NMR spectrum of 7k (CDCl₃, 376 MHz)

¹³C NMR spectrum of 8a (CDCl₃, 101 MHz)

¹H NMR spectrum of **8b** (CDCl₃, 400 MHz)

¹⁹F NMR spectrum of **8b** (CDCl₃, 376 MHz)

¹³C NMR spectrum of 8c (CDCl₃, 101 MHz)

¹H NMR spectrum of **8d** (CDCl₃, 400 MHz)

 $^{19}\mathrm{F}$ NMR spectrum of 8d (CDCl₃, 376 MHz)

¹³C NMR spectrum of 8e (CDCl₃, 101 MHz)

¹H NMR spectrum of **8f** (CDCl₃, 400 MHz)

¹⁹F NMR spectrum of **8f** (CDCl₃, 376 MHz)

S99

¹H NMR spectrum of **8h** (CDCl₃, 400 MHz)

¹⁹F NMR spectrum of **8h** (CDCl₃, 376 MHz)

¹³C NMR spectrum of **8i** (CDCl₃, 101 MHz)

¹H NMR spectrum of **9a** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **9b** (CDCl₃, 101 MHz)

¹H NMR spectrum of **9c** (CDCl₃, 400 MHz)

¹³C NMR spectrum of **10a** (CDCl₃, 101 MHz)

¹H NMR spectrum of **10b** (CDCl₃, 400 MHz)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

¹³C NMR spectrum of **10c** (CDCl₃, 101 MHz)

¹H NMR spectrum of **11** (Acetone- d_6 , 400 MHz)

190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm) 220 210 200

¹⁹F NMR spectrum of **11** (Acetone-*d*₆, 376 MHz)

¹³C NMR spectrum of **12** (Acetone- d_6 , 101 MHz)

