Supporting Information

For the article entitled

Stereo-selective synthesis of complex dienes and eneynes by sequential hydroarylation and olefinic C–H functionalization

Yuhang Zhu, Xiaoli Li, Cheng Zhang, Xiuying Liu, Linzhi Huang, Yongbo Zhang,

Chao Shen,* Liyuan Ding, Guofu Zhong,* and Jian Zhang*

shenchaozju@zjsru.edu.cn; gzhong@eitech.edu.cn; zhangjian@hznu.edu.cn

Table of Contents

1. General Methods	2
2. General Procedure for Substrate Synthesis	3
3. General Procedure for C-H Functionalization	16
4. Deuterium-Labelled Experiments	51
5. KIE Experiments	55
6. Synthetic Applications	58
7. Photophysical properties of the products	62
8. References	64
9. NMR Spectra	65
10. X-Ray Crystal Data	183

1. General Methods

Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate. Flash column chromatography was performed using Merck aluminium oxide 90 active neutral with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on Bruker AMX 400 spectrophotometer (CDCl₃ as solvent), and Bruker AMX 500 spectrophotometer (CDCl₃ as solvent). Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-*d* (δ 7.26, singlet). Multiplicities were given as: s (singlet), d (doublet), t (triplet), q (quartets), dd (doublets of doublet) or m (multiplets). The number of protons (n) for a given resonance is indicated by nH. Coupling constants are reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 77.0, triplet). Mass spectrometry was performed by Waters Q-Tof Premier Micromass instrument, using Electro Spray Ionization (ESI) mode. IR spectra were recorded as thin films on KBr plates on a Bio-Rad FTS 165 FTIR spectrometer and are reported in frequency of absorption (cm⁻¹). Pd(OAc)₂ and [Rh(cod)Cl]₂ were purchased from TCI and used directly. Other reagents, unless otherwise noted below, are commercially available from TCI, Energy Chemical, Alfa Aesar (China) Chemical Co. Ltd. and used without further purification. The corresponding alkenes were prepared from the bromides by the reported methods.

2. General Procedure for Substrate Synthesis

2.1 General Procedure A for Substrate Synthesis

General Procedure for Benzonitrile Reduction^[1]: To a solution of substituted benzonitrile (S₁) in Et₂O (0.2 M) was added LiAlH₄ (2.5 equiv, 2.5 M in Et₂O) dropwisely over 30 min at 0°C and stirred for 3 h at room temperature. After the reaction was completed (monitored by TLC), NaOH (2 N, aq.) was added slowly until a clear solution was obtained. The Et₂O layer was separated and the aqueous phase was extracted with Et₂O (20 mL × 3). The organic layer was combined and dried over anhydrous Na₂SO₄. After removing the solvent under reduced pressure, the resulting benzylamine (S₂) was used in the next step without further purification.

General Procedure for Amide Preparation^[2]. A 50 mL round-bottomed flask immersed in a 0 °C bath (ice and water) was charged with 2-pyrazinecarboxylic acid (5.0 mmol, 1.0 equiv) and CH₂Cl₂ (10 mL). The stirred suspension was added oxalyl chloride (5.50 mmol, 1.10 equiv, 2.0 mol/L in DCM) dropwisely over a 15 minute period followed by the addition of DMF (0.1 mL, catalytic amount) in one portion, producing a yellow solution with gas evolution. The mixture was kept in the cooling bath for 1 h and then allowed to warm to room temperature. After gas evolution ceased, the mixture was again cooled to 0°C and NEt₃ (10.0 mmol, 2.0 equiv) was added dropwisely over a 15 minute period followed by dropwise addition of benzylamine (S₂) (5.50 mmol, 1.10 equiv) over a 15 minute period. The brown mixture was kept in a cooling bath for 30 minutes and then allowed to warm to room temperature. Stirring was continued at room temperature for 6-8 h. The reaction mixture was quenched with water and extracted with CH₂Cl₂ (10 mL× 3). The organic phase was combined and dried over anhydrous Na₂SO₄ and filtered. The solvent was removed in vacuo, and the resulting residue was purified by silica gel column chromatography (PE/EA mixtures) to obtain the corresponding amide **1**.

N-(2-Fluorobenzyl) pyrazine-2-carboxamide (1a) Following the general procedure A from 2-Fluorobenzylamine, 1a was obtained as a white solid (89% yield, m.p. = 105.2 °C). <u>¹H</u>

<u>NMR</u> (500 MHz, CDCl₃) δ 9.42 (s, 1H), 8.82 – 8.68 (m, 1H), 8.51 (s, 1H), 8.20 (s, 1H), 7.41 (t, J = 7.3 Hz, 1H), 7.28 (d, J = 19.2 Hz, 1H), 7.12 (t, J = 7.4 Hz, 1H), 7.07 (t, J = 9.2 Hz, 1H), 4.73 (d, J = 6.1 Hz, 2H). ^{<u>13</u>C NMR</sub> (125 MHz, CDCl₃) δ 161.93, 161.02, 159.06, 146.32, 143.38 (d, $J_{CF} = 21.9$ Hz), 141.52, 129.25 (d, $J_{CF} = 4.1$ Hz), 128.50 (d, $J_{CF} = 8.1$ Hz), 123.72 (d, $J_{CF} = 14.8$ Hz), 123.34 (d, $J_{CF} = 3.6$ Hz), 114.45 (d, $J_{CF} = 21.2$ Hz), 36.46 (d, $J_{CF} = 4.0$ Hz). ^{<u>19</u>F NMR</mark> (471 MHz, CDCl₃) δ -118.74. **HRMS (ESI)** calcd for C₁₂H₁₀FN₃ONa [M+Na]⁺: 254.0700, found: 254.0703. **<u>FTIR</u>** (KBr, cm⁻¹) 2965.42, 2836.45, 2710.28, 1605.61, 1358.88, 1070.09, 775.70.}}

N-(Furan-2-ylmethyl)pyrazine-2-carboxamide (1j) Following the general procedure A from 2-Furfurylamine, 1j was obtained as a white solid (68% yield, m.p. = 116.7 °C). ¹H NMR

(500 MHz, CDCl₃) δ 9.43 (s, 1H), 8.75 (d, J = 2.4 Hz, 1H), 8.60 – 8.50 (m, 1H), 8.13 (s, 1H), 7.38 (s, 1H), 6.38 – 6.23 (m, 2H), 4.68 (d, J = 5.9 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.77, 149.71, 146.35, 143.49, 143.25, 141.53, 141.41, 109.47, 106.78, 35.37. <u>HRMS (ESI)</u> calcd for C₁₀H₉N₃O₂Na [M+Na]⁺: 226.0587, found: 226.0596. <u>FTIR</u> (KBr, cm⁻¹) 2968.22, 271308, 1602.80, 1361.68, 1078.50, 778.50.

N-(Thiophen-2-ylmethyl)pyrazine-2-carboxamide (1k)

Following the general procedure A from

2-Thiophenemethylamine, **1k** was obtained as a white solid (89% yield, m.p. = 114.8 °C). <u>**1H NMR**</u> (500 MHz, CDCl₃) δ 9.48 – 9.38 (m, 1H), 8.75 (d, *J* = 2.3 Hz, 1H), 8.60 – 8.47 (m, 1H), 8.17 (s, 1H), 7.27 – 7.22 (m, 1H), 7.07 (d, *J* = 2.9

Hz, 1H), 6.98 (dd, J = 5.0, 3.6 Hz, 1H), 4.85 (d, J = 6.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.70, 147.42, 144.53, 144.22, 142.59, 140.16, 127.01, 126.42, 125.49, 38.17. <u>HRMS (ESI)</u> calcd for C₁₀H₉N₃OSNa [M+Na]⁺: 242.0359, found: 242.0367. **FTIR** (KBr, cm⁻¹) 2954.21, 2833.64, 2713.08, 1597.20, 1361.68, 1081.31, 775.70.

N-(2-Chlorobenzyl)pyrazine-2-carboxamide (11) Following the general procedure A from 2-Chlorobenzylamine, 11 was obtained as a white solid (88% yield, m.p. = $103.3 \,^{\circ}$ C). ¹H NMR

(500 MHz, CDCl₃) δ 9.42 (s, 1H), 8.75 (s, 1H), 8.52 (s, 1H), 8.27 (s, 1H), 7.43 (d, J = 33.8 Hz, 2H), 7.30 – 7.15 (m, 2H), 4.77 (d, J = 5.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.93, 146.34, 143.48, 143.30, 141.55, 134.16, 132.74, 129.19, 128.60, 128.12, 126.13, 40.42. **HRMS (ESI)** calcd for C₁₂H₁₀ClN₃ONa [M+Na]⁺: 270.0405, found: 270.0408. **FTIR** (KBr, cm⁻¹) 2830.84, 2713.08, 1597.20, 1361.68, 1067.29, 775.70.

N-(2-Bromobenzyl)pyrazine-2-carboxamide (1m) Following the general procedure A from 2-Bromobenzylamine, 1m was obtained as a white solid (86% yield, m.p. = 104.5 °C). ¹H NMR

(500 MHz, CDCl₃) δ 9.42 (d, J = 1.4 Hz, 1H), 8.75 (d, J = 2.4 Hz, 1H), 8.55 – 8.50 (m, 1H), 8.30 (s, 1H), 7.61 – 7.53 (m, 1H), 7.46 (dd, J = 7.6, 1.5 Hz, 1H), 7.32 – 7.28 (m, 1H), 7.20 – 7.12 (m, 1H), 4.76 (d, J = 6.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.90, 146.34, 143.48, 143.29, 141.56, 135.81, 131.88, 129.34, 128.35, 126.77, 122.82, 42.75. **HRMS (ESI)** calcd for C₁₂H₁₀BrN₃ONa [M+Na]⁺: 313.9899, found: 313.9902. **FTIR** (KBr, cm⁻¹) 2954.21, 2833.64, 2724.30, 2354.21, 1605.61, 1364.49, 1072.90, 772.90.

N-(2-Methylbenzyl)pyrazine-2-carboxamide (1n) Following the general procedure A from 2-Methylbenzylamine, 1n was obtained as a white solid (64% yield, m.p. = 102.0 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.37 (d, *J* = 1.4 Hz, 1H), 8.66 (d, *J* = 2.4 Hz, 1H), 8.44 – 8.39 (m, 1H), 7.89 (s, 1H), 7.23 (d, *J* = 7.3 Hz, 1H), 7.17 – 7.09 (m, 3H), 4.60 (d, *J* = 5.8 Hz, 2H), 2.30 (s, 3H). <u>¹³C NMR</u> (125 MHz, CDCl₃) δ 161.68, 146.28, 143.47, 143.35, 141.48, 135.46, 134.34, 129.59, 127.59, 126.92, 125.27, 40.65, 18.07. <u>HRMS (ESI)</u> calcd for C₁₃H₁₃N₃ONa [M+Na]⁺: 250.0951, found: 250.0956. <u>FTIR</u> (KBr, cm⁻¹) 2965.42, 2833.64, 2713.08, 2357.01, 1611.21, 1364.49, 1067.29, 775.70, 565.42.

N-(2-Methoxybenzyl)pyrazine-2-carboxamide (10) Following the general procedure A from 2-Methoxybenzylamine, 10 was obtained as a white solid (73% yield, m.p. = 114.8 °C). 1 H

<u>NMR</u> (500 MHz, CDCl₃) δ 9.41 (d, J = 1.4 Hz, 1H), 8.71 (d, J = 2.4 Hz, 1H), 8.51 – 8.46 (m, 1H), 8.26 (s, 1H), 7.34 (dd, J = 7.4, 1.4 Hz, 1H), 7.31 – 7.25 (m, 2H), 6.98 – 6.87 (m, 2H), 4.68 (d, J = 6.2 Hz, 2H), 3.89 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.64, 156.61, 146.04, 143.73, 143.47, 141.48, 128.71, 128.02, 124.76, 119.65, 109.38, 54.39, 38.22. <u>HRMS (ESI)</u> calcd for C₁₃H₁₃N₃O₂Na [M+Na]⁺: 266.0900, found: 266.0892. <u>FTIR</u> (KBr, cm⁻¹) 2965.42, 2828.04, 2718.69, 1591.59, 1367.29, 1067.29, 775.70, 559.81.

 $\begin{array}{c} \begin{array}{c} \text{F}_{3} \\ \text{H} \\ \text{general procedure A from 2-(Trifluoromethyl)benzylamine, 1p was obtained as a white solid (71% yield, m.p. = 117.8 °C). } \\ \begin{array}{c} \text{H} \\ H$

[M+Na]⁺: 304.0668, found: 304.0672. **<u>FTIR</u>** (KBr, cm⁻¹) 2959.81, 2830.84, 2721.50, 1591.59, 1361.68, 1078.50, 775.70.

(62% yield for two steps, m.p. = 106.4 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.46 (d, J = 1.1 Hz, 1H), 8.74 (d, J = 2.4 Hz, 1H), 8.50 (s, 1H), 8.11 (s, 1H), 7.42 – 7.25 (m, 3H), 7.19 (d, J = 7.3 Hz, 1H), 4.68 (d, J = 6.0 Hz, 2H), 1.32 (s, 9H). <u>¹³C NMR</u> (125 MHz, CDCl₃) δ 161.77, 150.75, 146.24, 143.49, 143.42, 141.50, 136.24, 127.53, 124.00, 123.72, 42.82, 33.66, 30.30. <u>HRMS (ESI)</u> calcd for C₁₆H₁₉N₃ONa [M+Na]⁺: 292.1420, found: 292.1422. <u>FTIR</u> (KBr, cm⁻¹) 2959.81, 2830.84, 2713.08, 2351.40, 1597.20, 1358.88, 1070.09, 778.50.

N-(2-Fluoro

N-(2-Fluoro-4-methoxybenzyl)pyrazine-2-carboxamide
(1s) Following the general procedure A from
2-fluoro-4-methoxybenzonitrile, 1s was obtained as a white

solid (65% yield for two steps, m.p. = 110.8 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.42 (s, 1H), 8.74 (d, J = 2.3 Hz, 1H), 8.52 – 8.46 (m, 1H), 8.12 (s, 1H), 7.32 (t, J = 8.6 Hz, 1H), 6.71 – 6.60 (m, 2H), 4.65 (d, J = 6.1 Hz, 2H), 3.79 (s, 3H). <u>¹³C NMR</u> (125 MHz, CDCl₃) δ 162.85, 161.62 (d, $J_{CF} = 259.5$ Hz), 160.68 (d, $J_{CF} = 2.3$ Hz), 147.28, 144.46, 144.40, 142.53, 131.01 (d, $J_{CF} = 6.2$ Hz), 116.64 (d, $J_{CF} = 15.5$ Hz), 109.90 (d, $J_{CF} = 3.1$ Hz), 101.80 (d, $J_{CF} = 25.0$ Hz), 55.59, 37.13 (d, $J_{CF} = 3.3$ Hz). <u>¹⁹F NMR</u> (471 MHz, CDCl₃) δ -116.65. <u>HRMS (ESI)</u> calcd for C₁₃H₁₂FN₃O₂Na [M+Na]⁺: 284.0806, found: 284.0808. <u>FTIR</u> (KBr, cm⁻¹) 2962.62, 2830.84, 2710.28, 1600.00, 1367.29, 1070.09, 781.31.

N-(2,5-Difluorobenzyl)pyrazine-2-carboxamide(1t)FollowingthegeneralprocedureAfrom2,5-difluorobenzonitrile,1twas obtained as a white solid (60%)yield for two steps,m.p. = 132.7 °C).1HNMR (500MHz,

CDCl₃) δ 9.43 (s, 1H), 8.77 (d, J = 2.4 Hz, 1H), 8.58 – 8.51 (m, 1H), 8.22 (s, 1H), 7.16 – 7.09 (m, 1H), 7.07 – 7.00 (m, 1H), 7.00 – 6.91 (m, 1H), 4.71 (d, J = 6.3 Hz, 2H). <u>¹³C NMR</u> (125 MHz, CDCl₃) δ 162.11, 157.69 (dd, $J_{CF} = 230.1, 2.4$ Hz), 155.76 (dd, $J_{CF} = 229.2, 2.4$ Hz), 146.50, 143.51, 143.09, 141.57, 125.49 (dd, $J_{CF} = 17.5, 7.5$ Hz), 115.46 (dd, $J_{CF} = 24.4, 14.4$ Hz), 115.44 (dd, $J_{CF} = 24.4, 1.0$ Hz), 114.67 (dd, $J_{CF} = 24.1, 8.6$ Hz), 36.14 (d, $J_{CF} = 3.2$ Hz). <u>¹⁹F NMR</u> (471 MHz, CDCl₃) δ -118.31 (d, $J_{FF} = 17.8$ Hz), -124.84 (d, $J_{FF} = 17.8$ Hz). <u>HRMS (ESI)</u> calcd for C₁₂H₉F₂N₃ONa [M+Na]⁺: 272.0606, found: 272.0599. <u>FTIR</u> (KBr, cm⁻¹) 2957.01, 2828.04, 2718.69, 2357.01, 1597.20, 1361.68, 1070.09, 781.31.

N-(4-Chloro-2-fluorobenzyl)pyrazine-2-carboxamide(1u) Following the general procedure A from

(4-chloro-2-fluorophenyl)methanamine, **1u** was obtained as a white solid (89% yield, m.p. = 128.6 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.42 (s, 1H), 8.76 (d, *J* = 2.3 Hz, 1H), 8.52 (s, 1H), 8.19 (s, 1H), 7.37 (t, *J* = 8.2 Hz, 1H), 7.16 – 7.07 (m, 2H), 4.69 (d, *J* = 6.3 Hz, 2H). <u>¹³C NMR</u> (125 MHz, CDCl₃) δ 163.08, 160.76 (d, *J*_{CF} = 250.1 Hz), 147.48, 144.50, 144.16, 142.58, 134.42 (d, *J*_{CF} = 10.3 Hz), 131.06 (d, *J*_{CF} = 5.1 Hz), 124.75 (d, *J*_{CF} = 3.6 Hz), 123.56 (d, *J*_{CF} = 15.0 Hz), 116.33 (d, *J*_{CF} = 24.8 Hz), 36.99 (d, *J*_{CF} = 3.6 Hz). <u>¹⁹F NMR</u> (471 MHz, CDCl₃) δ -116.10. **HRMS (ESI)** calcd for C₁₂H₉ClFN₃ONa [M+Na]⁺: 288.0310, found: 288.0303. **FTIR** (KBr, cm⁻¹) 2965.55, 2833.78, 2721.63, 1605.75, 1361.83, 1067.44, 773.05.

2,4-difluorobenzonitrile, **1v** was obtained as a white solid (63% yield for two steps, m.p. = 131.7 °C). <u>**1H NMR**</u> (500 MHz, CDCl₃) δ 9.42 (s, 1H), 9.42 (d, *J* = 1.4 Hz, 1H), 8.76 (d, *J* = 2.3 Hz, 1H), 8.57 – 8.47 (m, 1H), 8.18 (s, 1H), 7.41 (q, *J* = 8.3 Hz, 1H), 6.91 – 6.74 (m, 2H), 4.69 (d, *J* = 6.2 Hz, 2H). <u>**13C NMR**</u> (125 MHz, CDCl₃) 162.00, 161.52 (dd, *J*_{CF} = 249.0, 12.0 Hz), 160.04 (dd, *J*_{CF} = 249.1, 12.0 Hz), 146.42, 143.47, 143.18, 141.54, 130.21 (dd, *J*_{CF} = 9.7, 5.8 Hz), 119.81 (dd, *J*_{CF} = 15.1, 3.8 Hz), 110.43 (dd, *J*_{CF} = 21.2, 3.7 Hz), 102.98 (t, *J*_{CF} = 25.4 Hz), 35.95 (d, *J*_{CF} = 3.4 Hz). <u>**19F NMR** (471 MHz, CDCl₃) δ -110.42 (d, *J*_{FF} = 7.4 Hz), -114.52 (d, *J*_{FF} = 7.4 Hz). **HRMS (ESI)** calcd for C₁₂H₉F₂N₃ONa [M+Na]⁺: 272.0606, found: 272.0611. **FTIR** (KBr, cm⁻¹) 2959.81, 2833.64, 2713.08, 2357.01, 1608.41, 1370.09, 1075.70, 778.50.</u>

N-(5-Chloro-2,4-difluorobenzyl)pyrazine-2-carboxami
de (1w) Following the general procedure A from (5-chloro-2,4-difluorophenyl)methanamine, 1w was

obtained as a white solid (92% yield, m.p. = 142.1 °C). ¹H NMR (500 MHz, CDCl₃) δ 9.43 (s, 1H), 8.78 (d, J = 2.4 Hz, 1H), 8.62 – 8.48 (m, 1H), 8.21 (s, 1H), 7.48 (t, J =7.8 Hz, 1H), 6.94 (t, J = 9.1 Hz, 1H), 4.67 (d, J = 6.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.14, 158.15 (dd, $J_{CF} = 249.5$, 10.4 Hz), 156.49 (dd, $J_{CF} = 251.5$, 12.3 Hz), 146.57, 143.50, 142.98, 141.58, 130.21 (d, $J_{CF} = 5.4$ Hz), 121.19 (dd, $J_{CF} = 16.4$, 4.2 Hz), 115.61 (dd, $J_{CF} = 17.8$, 4.2 Hz), 104.18 (dd, $J_{CF} = 26.8$, 25.0 Hz), 35.57 (d, $J_{CF} = 3.3$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -111.44 (d, $J_{FF} = 7.2$ Hz), -116.07 (d, $J_{FF} = 7.4$ Hz). HRMS (ESI) calcd for C₁₂H₈ClF₂N₃ONa [M+Na]⁺: 287.0232, found: 287.0240. FTIR (KBr, cm⁻¹) 2962.75, 2830.97, 2716.02, 1602.95, 1361.83, 1064.64, 773.05.

$\begin{array}{c} & & N-(2-Fluorophenethyl)pyrazine-2-carboxamide \\ & (1x) \\ & Following the general procedure A from \\ & 2-Fluorophenethylamine, 1x was obtained as a white solid \\ & (84\% yield, m.p. = 99.0 \ ^{\circ}C). \ \underline{^{1}H NMR} (500 \text{ MHz}, CDCl_3) \delta 9.40 (d, J = 1.4 \text{ Hz}, 1\text{H}), \end{array}$

8.73 (d, J = 2.4 Hz, 1H), 8.49 (dd, J = 2.4, 1.5 Hz, 1H), 7.94 (s, 1H), 7.27 – 7.19 (m, 2H), 7.12 – 6.99 (m, 2H), 3.76 (q, J = 6.9 Hz, 2H), 3.00 (t, J = 7.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.01, 160.26 (d, $J_{CF} = 245.1$ Hz), 146.20, 143.40, 143.33, 141.50, 130.03 (d, $J_{CF} = 4.8$ Hz), 127.41 (d, $J_{CF} = 8.1$ Hz), 124.53 (d, $J_{CF} = 15.9$ Hz), 123.21 (d, $J_{CF} = 3.6$ Hz), 114.38 (d, $J_{CF} = 22.0$ Hz), 38.51, 28.23 (d, $J_{CF} = 1.7$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) ¹⁹F NMR (471 MHz, CDCl₃) δ -118.51. HRMS (ESI) calcd for C₁₃H₁₂FN₃ONa [M+Na]⁺: 268.0852, found: 268.0857. FTIR (KBr, cm⁻¹) 2957.01, 2833.64, 2718.69, 1602.80, 1367.29, 1078.50, 770.09.

N-(2-Fluorophenyl)pyrazine-2-carboxamide Following the general procedure A from 2-fluoroaniline, N-(2-Fluorophenyl)pyrazine-2-carboxamide was obtained as

a white solid (71% yield, m.p. = 104.8 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.98 (s, 1H), 9.51 (s, 1H), 8.82 (d, J = 2.2 Hz, 1H), 8.62 (s, 1H), 8.54 (t, J = 7.9 Hz, 1H), 7.24 – 7.05 (m, 3H). <u>¹³C NMR</u> (125 MHz, CDCl₃) δ 159.72, 151.79 (d, $J_{CF} = 244.6$ Hz), 146.68, 143.58, 143.15, 141.53, 124.88, 123.89 (d, $J_{CF} = 7.6$ Hz), 123.68 (d, $J_{CF} = 3.7$ Hz), 120.36, 113.99 (d, $J_{CF} = 19.0$ Hz). <u>¹⁹F NMR</u> (471 MHz, CDCl₃) δ -130.70. HRMS (ESI) calcd for C₁₁H₈FN₃ONa [M+Na]⁺: 254.0700, found: 254.0705. FTIR (KBr, cm⁻¹) 2957.01, 2828.04, 2721.50, 1591.59, 1364.49, 1078.50, 772.90.

F O NH N

N-(2-Fluorobenzyl)picolinamide (1aa) Following the general procedure A from 2-Fluorobenzylamine and 1-picolinic acid,
1aa was obtained as a white solid (87% yield, m.p. = 75.8 °C).

¹<u>H NMR</u> (500 MHz, CDCl₃): δ 8.53 (d, J = 4.2 Hz, 1H), 8.42 (s, 1H), 8.22 (d, J = 7.8 Hz, 1H), 7.88 – 7.80 (m, 1H), 7.42 (t, J = 6.7 Hz, 2H), 7.30 – 7.22 (m, 1H), 7.14 – 7.03 (m, 2H), 4.73 (d, J = 6.2 Hz, 2H). ¹³<u>C NMR</u> (125 MHz, CDCl₃) δ 163.28, 160.00 (d, $J_{CF} = 246.4$ Hz), 148.70, 147.07, 136.31, 129.14 (d, $J_{CF} = 4.3$ Hz), 128.22 (d, $J_{CF} = 8.1$ Hz), 125.21, 124.18 (d, $J_{CF} = 14.8$ Hz), 123.25 (d, $J_{CF} = 3.6$ Hz), 121.30, 114.36 (d, $J_{CF} = 21.3$ Hz), 36.32 (d, $J_{CF} = 4.2$ Hz). ¹⁹<u>F NMR</u> (471 MHz, CDCl₃) δ -118.80.

HRMS (ESI) calcd for C₁₃H₁₁FN₂ONa [M+Na]⁺: 253.0748, found: 253.0739. FTIR (KBr, cm⁻¹) 2951.40, 2836.45, 2721.50, 1594.39, 1367.29, 1064.49, 781.31.

N-(2-Fluorobenzyl)pyrimidine-4-carboxamide (1bb)Following the general procedure A from 2-Fluorobenzylamine and 1-pyrimidine-4-carboxylic acid, 1bb was obtained as a yellow solid (70% yield, m.p. = 96.8 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.15 (d, J = 1.1 Hz, 1H), 8.90 (d, J = 5.0 Hz, 1H), 8.30 (s, 1H), 8.06 (dd, J = 5.0, 1.3 Hz, 1H), 7.36 - 7.29 (m, 1H), 7.26 - 7.17 (m, 1H), 7.10 - 6.95 (m, 2H), 4.65 (d, J = 6.2 Hz, 2H). $\frac{^{13}C \text{ NMR}}{(125 \text{ MHz}, \text{ CDCl}_3) \delta}$ 162.60, 161.06 (d, $J_{CF} = 246.6 \text{ Hz}$), 159.25, 157.78, 156.07, 130.25 (d, $J_{CF} = 4.1$ Hz), 129.61 (d, $J_{CF} = 8.2$ Hz), 124.51 (d, $J_{CF} =$ 14.9 Hz), 124.38 (d, J_{CF} = 3.6 Hz), 118.61, 115.53 (d, J_{CF} = 21.2 Hz), 37.65 (d, J_{CF} = 4.0 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -118.63. HRMS (ESI) calcd for C₁₂H₁₀FN₃ONa [M+Na]⁺: 254.0700, found: 254.0705. FTIR (KBr, cm⁻¹) 2948.60, 2715.89, 1597.20, 1361.68, 1070.09, 772.90.

N-(2-Fluorobenzyl)pyrimidine-2-carboxamide (1cc)

Following the general procedure A from 2-Fluorobenzylamine and 1-pyrimidine-2-carboxylic acid, 1cc was obtained as a yellow liquid (27% yield). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 8.80 (d, J = 4.7 Hz, 2H), 8.30 (s, 1H), 7.37 (q, J = 8.6, 6.7 Hz, 2H), 7.20 (q, J = 6.4 Hz, 1H), 7.08 - 6.93 (m, 2H), 4.69 (d, J = 6.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.17, 161.03 (d, J_{CF} = 246.4 Hz), 157.48, 130.36 (d, J_{CF} = 4.1 Hz), 129.47 (d, J_{CF} = 8.1 Hz), 124.81, 124.66, 124.37 (d, J_{CF} = 3.6 Hz), 122.63, 115.41 (d, J_{CF} = 21.2 Hz), 37.77 (d, J_{CF} = 4.0 Hz). ¹⁹F NMR (471 MHz, CDCl₃)δ -118.75. HRMS (ESI) calcd for C₁₂H₁₀FN₃O [M+ H]⁺: 232.0886, found: 232.0889. **FTIR** (KBr, cm⁻¹) 2953.62, 2720.83, 1600.41,

2-Fluoro-*N***-(quinolin-8-yl)benzamide** (1dd) was performed according to previous literature^[3] with 90% yield and the NMR data is consistent with the literature reports.

2.2 Procedure for the Synthesis of 1q

Benzonitrile Reduction^[4]: A round bottom flask equipped with a stirring bar was charged with NaBH₄ (25.0 mmol, 5 equiv) and anhydrous THF (12.5 mL) was added via a syringe. The flask was submerged into an ice/water bath and cooled to 0 °C. The suspension was slowly added trifluoroacetic acid (25 mmol, 5.0 equiv) (Caution: gas evolution observed). A solution of 2-nitrobenzonitrile (5 mmol, 1 equiv) in THF (4 mL) was added. The ice bath was removed and the reaction mixture was stirred at room temperature overnight. After the reaction completed (monitored by TLC), the reaction mixture was poured into an aqueous solution of 1N sodium hydroxide (35 mL), then EtOAc (25 mL) was added and the biphasic mixture was stirred for 1.5 h. The layers were separated and the aqueous layer was extracted with EtOAc (12.5 mL×3). The organic layers were combined and washed with saturated brine. Then, the organic layers were dried over anhydrous Na₂SO₄ and filtered. The solvent was removed under reduced pressure, and the resulting residue was flushed through a short silica pad, eluting with CH₂Cl₂: MeOH (10:1, ν/ν) to obtain the corresponding crude benzylamine which was used in the next step without further purification.

Amide Preparation was performed following the general procedure A

N-(2-Nitrobenzyl)pyrazine-2-carboxamide (1q) Following the general procedure B, 1q was obtained as a yellow solid (41% yield for two steps, m.p. = 125.5 °C). ¹H NMR (500

MHz, CDCl₃) δ 9.39 (d, J = 1.2 Hz, 1H), 8.76 (d, J = 2.4 Hz, 1H), 8.62 (s, 1H), 8.58 – 8.49 (m, 1H), 8.11 (d, J = 8.8 Hz, 1H), 7.74 (d, J = 6.9 Hz, 1H), 7.65 (t, J = 8.0 Hz, 1H), 7.49 (t, J = 8.4 Hz, 1H), 4.95 (d, J = 6.7 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 163.23, 148.30, 147.47, 144.43, 144.19, 142.73, 134.21, 133.15, 132.27, 128.98, 125.28, 41.21. **HRMS (ESI)** calcd for C₁₂H₁₀N₄O₃Na [M+Na]⁺: 281.0645, found: 281.0640. **FTIR** (KBr, cm⁻¹) 2951.40, 2833.64, 2718.69, 1605.61, 1367.29, 1070.09, 778.50.

2.3 Procedure for the Synthesis of 1a-d

Preparation of deuterobenzoic acid^[5]: A oven-dried Schlenk tube was sequentially added 2-fluorobenzoic acid (2.80 g, 20 mmol, 1 equiv), $[Ru(p-cymene)Cl_2]_2$ (490.0 mg, 0.8 mmol, 0.04 equiv), and K₂CO₃ (829.2 mg, 6 mmol, 0.03 equiv) in an open air. After being evacuated and backfilled with nitrogen three times, CH₃OD (10 mL) and D₂O (5 mL) were added. Then, the reaction tube was heated to 50 °C with stirring for 28 hours. After 28 hours, 2 N HCl (10 mL) was added, and extracted with ethyl acetate (20 mL × 3). The organic layers were combined and dried over anhydrous Na₂SO₄. After filtration and concentration in vacuo, the crude residue was purified by chromatography on silica gel (eluent: PE/EA= 10/1 to 5/1) to obtain deuterated

benzoic acid S2 as a white solid (2.36 g, 84% yield, 91% deuterium).

Carboxyl reduction^[6]: To a solution of substituted deuterated benzoic acid **S2** in Et₂O (0.1 M) was added dropwise LiAlH₄ (3.0 equiv, 2.5 M in Et₂O) over 30 min at 0°C and then the solvent was heated to reflux with stirring for 3h. After the reaction was completed (monitored by TLC), 1N HCl was added slowly under 0°C until a clear solution was obtained. The Et₂O layer was separated and the aqueous phase was extracted with Et₂O (20 mL × 3). The organic layers were combined and dried over Na₂SO₄. After filtrating and removing the solvent under reduced pressure, the crude residual was purified by chromatography on silica gel (eluent: PE/EA= 50/1 to 20/1) to obtain alcohol **S3** as a colorless liquid (70% yield, 91% deuterium).

Mitsunobu reaction^[7]: Alcohol **(S3)** (1.0 equiv) and diethyl azodicarboxylate (DEAD, 1.1 equiv) were added to a solution of triphenylphosphine (1.1 equiv) and phthalimide (1.1 equiv) in dry THF (0.2 M) at 0 °C under a nitrogen atmosphere. The solution was stirred at 0 °C for 10 min and then at room temperature for an additional 6 h. After filtrating and removing the solvent under reduced pressure, the crude residue was purified by silica gel chromatography (eluent: PE/EA = 100:1) to obtain the product **(S4)** as a white solid (86% yield, 91% deuterium).

Hydrazinolysis^[7]: A solution of **S4** (1.0 equiv) and N₂H₄·H₂O (4.0 equiv) in EtOH (0.2 M) was heated to reflux with stirring for 3 h. The reaction was acidified with 1N HCl to pH = 3 and washed with Et₂O (10 mL × 3). The aqueous phase was treated with 1 N NaOH solution to pH = 12 and extracted with DCM (10 mL × 3). The organic layers were combined and dried over Na₂SO₄, and the following filteration and concentration gave the product benzylamine (**S5**) as a yellow liquid (83% yield, 91% deuterium), which was used in the next step without further purification.

Amide preparation was performed following **the general procedure A** to obtained amide product **1a**-*d* as a white solid (86% yield, 91% deuterium).

N-((2-Fluorocyclohexa-1,3-dien-1-yl-6-d)methyl)pyrazine-2carboxamide (1a-d) Following the procedure C, 1a-d was obtained as a white solid (36% yield for four steps, 91%

deuterium). $\frac{1}{H}$ NMR (500 MHz, CDCl₃) δ 9.43 (d, J = 1.4 Hz, 1H), 8.75 (d, J = 2.4 Hz, 1H), 8.52 (dd, J = 2.4, 1.5 Hz, 1H), 8.17 (s, 1H), 7.33 – 7.27 (m, 1H), 7.13 (d, J = 7.3 Hz, 1H), 7.10 – 7.05 (m, 1H), 4.74 (d, J = 6.2 Hz, 2H).

2.4 Procedure for the Synthesis of 3a-d

A screw-cap vial was charged with $[Rh(cod)Cl]_2$ (1.5 mg, 0.003 mmol, 2 mol%), AgSbF₆ (2.6 mg, 0.0075 mmol, 0.05 equiv), NaOAc (12.3 mg, 0.15 mmol, 1.00 equiv), amide **1** (0.15 mmol, 1.0 equiv), diphenylacetylene **2** (53.3 mg, 0.30 mmol, 2.00 equiv), DCE (1.5 mL) and D₂O (7.5 mmol, 50 equiv) in sequence. The vial was sealed under argon and heated to 120 °C with stirring for 48 h. After cooling down, the mixture was concentrated and directly applied to a flash column chromatography (PE/EA mixtures) to obtain the corresponding product **3a**-*d* as a white solid (93% yield, 91% deuterium).

(*E*)-*N*-(2-(1,2-Diphenylvinyl-2-d)-6-fluorobenzyl)pyrazine-2-car boxamide (3a-*d*) Following the procedure D, 3a-*d* was obtained as a white solid (93% yield, 91% deuterium). ¹H NMR (500 MHz, CDCl₃) δ 9.24 (d, *J* = 1.4 Hz, 1H), 8.62 (d, *J* = 2.4 Hz, 1H), 8.34

(dd, *J* = 2.4, 1.5 Hz, 1H), 7.48 (s, 1H), 7.29 – 7.21 (m, 1H), 7.15 – 7.07 (m, 8H), 7.07 – 6.98 (m, 4H), 4.50 (d, *J* = 6.6 Hz, 2H).

3. General Procedure for C-H Functionalization

3.1 General Procedure 1 for Hydroarylation

A screw-cap vial was charged with $[Rh(cod)Cl]_2$ (1.5 mg, 0.003 mmol, 2 mol%), AgSbF₆ (2.6 mg, 0.0075 mmol, 0.05 equiv), NaOAc (12.3 mg, 0.15 mmol, 1.0 equiv), amide **1** (1.0 equiv, 0.15 mmol), diphenylacetylene **2** (53.3 mg, 0.30 mmol, 2.0 equiv) and DCE (1.5 mL) in sequence. The vial was sealed under argon and heated to 120 °C with stirring for 48 h. After cooling down, the mixture was concentrated and directly applied to a flash column chromatography (PE/EA mixtures) to obtain product **3**.

(*E*)-*N*-(2-(2-(Cyclohexa-1,3-dien-1-yl)-1-phenylvinyl)-6-fluorob enzyl)pyrazine-2-carboxamide (3a) Following the general procedure 1, 3a was obtained as a white solid (58.3 mg, 95% yield, m.p. = 111.1 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.32 (d, *J* = 1.3

Hz, 1H), 8.69 (d, J = 2.4 Hz, 1H), 8.45 – 8.38 (m, 1H), 7.56 (s, 1H), 7.36 – 7.29 (m, 1H), 7.23 – 7.15 (m, 8H), 7.14 – 7.05 (m, 4H), 6.71 (s, 1H), 4.58 (d, J= 5.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.04, 161.82 (d, $J_{CF} = 248.0$ Hz), 147.01, 146.79 (d, $J_{CF} = 3.4$ Hz), 144.44, 144.34, 142.28, 140.54 (d, $J_{CF} = 2.6$ Hz), 139.57, 136.61, 131.68, 129.74, 129.42, 129.23 (d, $J_{CF} = 9.4$ Hz), 128.61, 128.13, 127.66, 127.31, 126.54 (d, $J_{CF} = 2.9$ Hz), 122.77 (d, $J_{CF} = 14.9$ Hz), 114.98 (d, $J_{CF} =$ 22.7 Hz), 35.04 (d, $J_{CF} = 4.8$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -115.69. HRMS (ESI) calcd for C₂₆H₂₀FN₃ONa [M+Na]⁺: 432.1483, found: 432.1482. FTIR (KBr, cm⁻¹) 2962.62, 2830.84, 2718.69, 2348.60, 1605.61, 1361.68, 1067.29, 772.90.

(*E*)-*N*-(2-(1,2-Bis(4-methoxyphenyl)vinyl)-6-fluorobenzyl)pyra zine-2-carboxamide (3b) Following the general procedure 1 at the conditions of 140°C, 3b was obtained as a yellow liquid (53.5 mg, 76% yield). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.31 (d, *J* = 1.3

Hz, 1H), 8.68 (d, J = 2.4 Hz, 1H), 8.41 (dd, J = 2.4, 1.5 Hz, 1H), 7.43 (s, 1H), 7.35 – 7.28 (m, 1H), 7.18 (d, J = 6.8 Hz, 1H), 7.10 (dd, J = 11.9, 8.7 Hz, 4H), 7.08 – 7.02 (m, 1H), 6.76 – 6.69 (m, 4H), 6.57 (s, 4H), 4.55 (d, J = 6.5 Hz, 2H), 3.77 (s, 3H), 3.66 (s, 3H). <u>¹³C NMR</u> (125 MHz, CDCl₃) δ 162.02, 161.77 (d, $J_{CF} = 247.9$ Hz), 158.90, 158.66, 147.42 (d, $J_{CF} = 3.3$ Hz), 146.95, 144.44, 144.26, 142.34, 138.43 (d, $J_{CF} = 2.6$ Hz), 132.23, 130.98, 130.62, 130.18, 129.41, 129.20 (d, $J_{CF} = 9.5$ Hz), 126.51 (d, J_{CF} = 2.8 Hz), 122.60 (d, $J_{CF} = 14.8$ Hz), 114.78 (d, $J_{CF} = 22.7$ Hz), 114.06, 113.55, 55.19, 55.03, 35.04 (d, $J_{CF} = 4.9$ Hz). <u>¹⁹F NMR</u> (471 MHz, CDCl₃) δ -115.84. <u>HRMS (ESI)</u> calcd for C₂₈H₂₄FN₃O₃Na [M+Na]⁺: 492.1694, found: 492.1680. <u>FTIR</u> (KBr, cm⁻¹) 2962.62, 2828.04, 2724.30, 1611.21, 1361.68, 1067.29, 775.70.

(Z)-N-(2-(1,2-Bis(2-fluorophenyl)vinyl)-6-fluorobenzyl)pyrazin e-2-carboxamide (3c) Following the general procedure 1 at the conditions of 140°C, 3c was obtained as a white solid (34.7 mg, 52% yield, m.p. = 143.9 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.34 (d, J =

1.2 Hz, 1H), 8.70 (d, J = 2.4 Hz, 1H), 8.51 – 8.39 (m, 1H), 7.75 (s, 1H), 7.35 – 7.28 (m, 1H), 7.21 – 7.14 (m, 4H), 7.09 (t, J = 8.9 Hz, 1H), 7.05 – 6.97 (m, 2H), 6.97 – 6.91 (m, 2H), 6.89 (s, 1H), 6.85 (t, J = 7.5 Hz, 1H), 4.71 (d, J = 6.2 Hz, 2H). ¹³C <u>NMR</u> (125 MHz, CDCl₃) 162.16, 161.86 (d, $J_{CF} = 247.9$ Hz), 160.59 (d, $J_{CF} = 249.0$ Hz), 159.65 (d, $J_{CF} = 249.1$ Hz), 147.05, 145.44 (d, J = 3.4 Hz), 144.42, 144.30, 142.39, 135.89, 131.57 (d, $J_{CF} = 3.3$ Hz), 129.96 (d, $J_{CF} = 8.2$ Hz), 129.52 (d, $J_{CF} = 3.0$ Hz), 129.32 (dd, $J_{CF} = 22.8$, 8.9 Hz), 127.29 (d, $J_{CF} = 14.6$ Hz), 127.28 (d, $J_{CF} = 4.1$ Hz), 126.22 (d, $J_{CF} = 3.0$ Hz), 124.48, 124.45, 124.36, 123.57 (d, $J_{CF} = 3.5$ Hz), 122.61 (d, $J_{CF} = 15.1$ Hz), 116.26 (d, $J_{CF} = 22.0$ Hz), 115.43 (d, $J_{CF} = 21.9$ Hz), 115.09 (d, $J_{CF} = 22.6$ Hz), 35.00 (d, $J_{CF} = 4.7$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ

-111.98, -115.24, -115.46. <u>**HRMS** (ESI)</u> calcd for C₂₆H₁₈F₃N₃ONa [M+Na]⁺: 468.1294, found: 468.1301. <u>**FTIR**</u> (KBr, cm⁻¹) 2959.81, 2828.04, 271308, 1602.80, 1364.49, 1070.09, 778.50.

(*E*)-*N*-(2-(1,2-Bis(4-butylphenyl)vinyl)-6-fluorobenzyl)pyrazin e-2-carboxamide (3d) Following the general procedure 1, 3d was obtained as a yellow liquid (69.6 mg, 89% yield). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.37 – 9.27 (m, 1H), 8.68 (d, *J* = 2.4 Hz, 1H), 8.47 – 8.34 (m, 1H), 7.55 (s, 1H), 7.34 – 7.28 (m, 1H), 7.19

(d, J = 6.9 Hz, 1H), 7.11 (d, J = 8.1 Hz, 2H), 7.08 – 7.02 (m, 3H), 6.99 (dd, J = 8.1, 4.4 Hz, 4H), 6.63 (s, 1H), 4.56 (d, J = 4.9 Hz, 2H), 2.55 (t, 2H), 2.44 (t, 2H), 1.60 – 1.52 (m, 2H), 1.49 – 1.41 (m, 2H), 1.38 – 1.31 (m, 2H), 1.30 – 1.22 (m, 2H), 0.91 (t, J= 7.4 Hz, 3H), 0.87 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 161.99, 161.77 (d, $J_{CF} = 247.9$ Hz), 147.26 (d, $J_{CF} = 3.3$ Hz), 146.94, 144.52, 144.43, 142.43, 142.28, 142.13, 139.72 (d, $J_{CF} = 2.5$ Hz), 137.00, 134.08, 131.21, 129.54, 129.29, 129.13 (d, $J_{CF} = 9.3$ Hz), 128.57, 128.14, 126.51 (d, $J_{CF} = 2.9$ Hz), 122.76 (d, $J_{CF} =$ 14.7 Hz), 114.77 (d, $J_{CF} = 22.7$ Hz), 35.39, 35.30, 35.03 (d, $J_{CF} = 4.7$ Hz), 33.44, 33.25, 22.37, 22.37, 13.96, 13.94. ¹⁹F NMR (471 MHz, CDCl₃) δ -115.89. HRMS (ESI) calcd for C₃₄H₃₆FN₃ONa [M+Na]⁺:544.2735, found: 544.2732. FTIR (KBr, cm⁻¹) 2965.42, 2833.64, 2715.89, 1597.20, 1364.49, 1064.49, 772.90.

(*E*)-*N*-(2-(1,2-bis(4-bromophenyl)vinyl)-6-fluorobenzyl)pyra
zine-2-carboxamide (3e) Following the general procedure 1,
3e was obtained as a white solid (64.4 mg, 76% yield, m.p. = 155.7 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.32 (s, 1H), 8.71 (s, 1H), 8.47 (s, 1H), 7.39 (s, 1H), 7.36 – 7.26 (m, 5H), 7.17 (d, *J* = 10.17 (d)

7.5 Hz, 1H), 7.11 (t, J = 8.9 Hz, 1H), 7.06 – 7.01 (m, 2H), 7.02 – 6.96 (m, 2H), 6.64 (s, 1H), 4.56 (d, J = 4.7 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.02, 162.02 (d, $J_{CF} = 248.6$ Hz), 147.18, 146.03 (d, $J_{CF} = 3.5$ Hz), 144.35, 144.14, 142.49, 140.14 (d, $J_{CF} = 2.4$ Hz), 138.37, 135.17, 131.99, 131.51, 131.39, 130.91, 130.87, 129.50 (d, $J_{CF} = 9.2$ Hz), 126.41 (d, $J_{CF} = 2.7$ Hz), 122.67 (d, $J_{CF} = 15.1$ Hz), 122.16, 121.54, 115.40 (d, $J_{CF} = 22.5$ Hz), 35.15 (d, $J_{CF} = 4.5$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -115.29. HRMS (ESI) calcd for C₂₆H₁₈Br₂FN₃ONa [M+Na]⁺: 587.9693, found: 587.9701. FTIR (KBr, cm⁻¹) 2965.55, 2830.97, 2713.22, 2357.15, 1611.36, 1361.83, 1070.24, 775.85.

(*E*)-N-(2-(1,2-Bis (3-bromophenyl)vinyl)-6-fluorobenzyl) pyrazine-2-carboxamide (3f) Following the general procedure 1 at the conditions of 140°C, 3f was obtained as a yellow solid (72.0 mg, 85% yield, m.p. = 48.3 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.33 (s, 1H), 8.77 – 8.65 (m, 1H), 8.49 (s,

1H), 7.59 (s, 1H), 7.38 – 7.29 (m, 2H), 7.27 (s, 1H), 7.24 (d, J = 7.1 Hz, 2H), 7.17 – 7.09 (m, 3H), 7.08 – 6.98 (m, 3H), 6.66 (s, 1H), 4.59 (d, J = 5.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.03, 161.91 (d, $J_{CF} = 248.4$ Hz), 147.21, 145.43 (d, $J_{CF} = 3.3$ Hz), 144.33, 144.19, 142.41, 141.16, 140.44 (d, $J_{CF} = 2.6$ Hz), 138.19, 132.33 (d, $J_{CF} = 2.3$ Hz), 131.11, 131.02, 130.57, 130.12, 129.76, 129.57, 129.49, 128.51, 127.84, 126.44 (d, $J_{CF} = 3.0$ Hz), 122.83, 122.71, 122.30, 115.52 (d, $J_{CF} = 22.6$ Hz), 34.97 (d, $J_{CF} = 4.8$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -115.30. HRMS (ESI) calcd for C₂₆H₁₈Br₂FN₃ONa [M+Na]⁺: 587.9693, found: 587.9700. FTIR (KBr, cm⁻¹) 2965.42, 2828.04, 2713.08, 1600.00, 1370.09, 1075.70, 781.31.

(*E*)-N-(2-(Dec-5-en-5-yl)-6-fluorobenzyl)pyrazine-2-carboxamid e (3g) Following the general procedure 1 with the [Rh(cod)Cl]₂ (4 mol %), AgSbF₆ (10 mol %) under O₂ at 140 °C for 48 h, 3g was obtained as a yellow liquid (37.1 mg, 67% yield). ¹H NMR (500

MHz, CDCl₃) δ 9.42 (s, 1H), 8.72 (d, *J* = 2.4 Hz, 1H), 8.47 (dd, *J* = 2.3, 1.5 Hz, 1H), 7.91 (s, 1H), 7.26 – 7.20 (m, 1H), 6.99 (t, *J* = 8.6 Hz, 1H), 6.94 (d, *J* = 7.6 Hz, 1H), 5.32 (t, *J* = 7.2 Hz, 1H), 4.71 (d, *J* = 6.3 Hz, 2H), 2.40 – 2.34 (m, 2H), 2.19 (q, *J* = 7.2 Hz, 2H), 1.41 - 1.30 (m, 4H), 1.30 - 1.21 (m, 4H), 0.87 (t, J = 7.1 Hz, 3H), 0.82 (t, J = 6.9 Hz, 3H). $\frac{1^3C \text{ NMR}}{I25}$ (125 MHz, CDCl₃) δ 162.15, 161.91 (d, $J_{CF} = 247.1$ Hz), 147.54, 147.12, 144.54, 144.43, 142.45, 138.29 (d, $J_{CF} = 2.2$ Hz), 131.93, 128.77 (d, $J_{CF} = 9.3$ Hz), 125.22 (d, $J_{CF} = 2.9$ Hz), 121.97 (d, $J_{CF} = 14.3$ Hz), 113.59 (d, $J_{CF} = 2.2$ Hz), 35.49 (d, $J_{CF} = 3.9$ Hz), 32.06, 31.84, 30.35, 27.85, 22.78, 22.44, 13.97, 13.89. $\frac{19F \text{ NMR}}{19F \text{ NMR}}$ (471 MHz, CDCl₃) δ -116.21. HRMS (ESI) calcd for C₂₂H₂₈FN₃ONa [M+Na]⁺: 392.2109, found: 392.2114. FTIR (KBr, cm⁻¹) 2951.40, 2836.45, 2715.89, 1588.79, 1364.49, 1072.90, 781.31.

HN^{_PC} (E)-N-(2-fluoro-6-(tetradec-7-en-7-yl)benzyl)pyrazine-2-carboxa mide (3h) Following the general procedure 1 with the [Rh(cod)Cl]₂ (4 mol %), AgSbF₆ (10 mol %) under O₂ at 140 °C for 'n-hexvl 48 h,, **3h** was obtained as a yellow liquid (48.4 mg, 67% yield). ¹H NMR (500 MHz, $CDCl_3$) δ 9.45 – 9.40 (m, 1H), 8.74 – 8.70 (m, 1H), 8.47 (dd, J = 2.3, 1.5 Hz, 1H), 7.91 (s, 1H), 7.26 - 7.20 (m, 1H), 6.99 (t, J = 9.0 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 5.32 (t, J = 7.2 Hz, 1H), 4.71 (d, J = 4.8 Hz, 2H), 2.37 (t, J = 7.1 Hz, 2H), 2.18 (q, J = 7.1 Hz, 2H), 2 7.3 Hz, 2H), 1.43 – 1.36 (m, 2H), 1.35 – 1.29 (m, 2H), 1.28 – 1.15 (m, 12H), 0.86 (t, J = 6.9 Hz, 3H), 0.82 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.13, 161.91 (d, $J_{CF} = 247.1$ Hz), 147.52 (d, $J_{CF} = 3.3$ Hz), 147.12, 144.53, 144.44, 142.43, 138.30 (d, $J_{CF} = 2.1$ Hz), 131.96, 128.76 (d, $J_{CF} = 9.4$ Hz), 125.21 (d, $J_{CF} = 2.9$ Hz), 121.97 (d, $J_{CF} = 14.2$ Hz), 113.58 (d, $J_{CF} = 22.2$ Hz), 35.48 (d, $J_{CF} = 3.9$ Hz), 32.32, 31.73, 31.64, 29.64, 29.37, 29.07, 28.16, 28.13, 22.60, 22.56, 14.07, 14.02. ¹⁹F NMR (471 MHz, CDCl₃) δ -116.19. HRMS (ESI) calcd for C₂₆H₃₆FN₃ONa [M+Na]⁺: 448.2735, found: 448.2736. FTIR (KBr, cm⁻¹) 2962.62, 2828.04, 2713.08, 1594.39, 1375.70, 1084.11, 778.50.

(E)-N-(2-Fluoro-6-(1-phenylprop-1-en-2-yl)benzyl)pyrazine-2-ca
rboxamide (3i) Following the general procedure 1 at the
conditions of 140°C, 3i was obtained as a yellow solid (27.1 mg, 52%)

yield, m.p. = 79.6 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.41 – 9.37 (m, 1H), 8.70 (d, *J* = 2.4 Hz, 1H), 8.45 (d, *J* = 2.3 Hz, 1H), 8.10 (s, 1H), 7.42 – 7.34 (m, 4H), 7.32 – 7.27 (m, 1H), 7.27 – 7.23 (m, 1H), 7.08 (d, *J* = 7.6 Hz, 1H), 7.04 (t, *J* = 9.1 Hz, 1H), 6.43 (s, 1H), 4.83 (d, *J* = 5.1 Hz, 2H), 2.24 (s, 3H). <u>¹³C NMR</u> (125 MHz, CDCl₃) δ 162.31, 161.90 (d, *J_{CF}* = 247.1 Hz), 148.36 (d, *J_{CF}* = 3.5 Hz), 147.18, 144.46, 144.42, 142.49, 137.20, 136.56 (d, *J_{CF}* = 2.3 Hz), 130.81, 129.24 (d, *J_{CF}* = 9.4 Hz), 128.99, 128.27, 126.88, 124.42 (d, *J_{CF}* = 3.0 Hz), 121.80 (d, *J_{CF}* = 14.4 Hz), 114.06 (d, *J_{CF}* = 22.3 Hz), 35.32 (d, *J_{CF}* = 4.1 Hz), 20.49. <u>¹⁹F NMR</u> (471 MHz, CDCl₃) δ -116.12. <u>HRMS (ESI)</u> calcd for C₂₁H₁₈FN₃ONa [M+Na]⁺: 370.1326, found: 370.1335. <u>FTIR</u> (KBr, cm⁻¹) 2959.81, 2833.64, 2715.89, 1597.20, 1364.49, 1072.90, 781.31.

^{Ph} (*E*)-*N*-((3-(1,2-Diphenylvinyl)furan-2-yl)methyl)pyrazine-2-carb oxamide (3j) Following the general procedure 1, 3j was obtained as a yellow solid (30.3 mg, 53% yield, m.p. = 143.2 °C). ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 9.37 (d, *J* = 1.1 Hz, 1H), 8.72 (d, *J* = 2.4 Hz, 1H), 8.53 – 8.47 (m, 1H), 7.78 (s, 1H), 7.36 (d, *J* = 1.9 Hz, 1H), 7.35 – 7.30 (m, 3H), 7.29 – 7.26 (m, 2H), 7.14 – 7.08 (m, 3H), 7.03 – 7.00 (m, 2H), 6.80 (s, 1H), 6.41 (d, *J* = 1.9 Hz, 1H), 4.31 (d, *J* = 5.8 Hz, 2H). ¹³<u>C NMR</u> (125 MHz, CDCl₃) δ 162.49, 147.39, 147.25, 144.51, 144.33, 142.49, 141.75, 139.85, 136.73, 133.85, 129.67, 129.38, 128.88, 128.78, 128.00, 127.88, 126.87, 126.37, 111.45, 35.55. <u>HRMS (ESI)</u> calcd for C₂₄H₁₉N₃O₂Na [M+Na]⁺: 404.1369, found: 404.1366. <u>FTIR</u> (KBr, cm⁻¹) 2957.01, 2830.84, 2718.69, 1602.80, 1367.29, 1070.09, 784.11.

(E)-N-((3-(1,2-Diphenylvinyl)thiophen-2-yl)methyl)pyrazine-2-carboxamide (3k) Following the general procedure 1,

3k was obtained as a yellow solid (48.8 mg, 82% yield, m.p. = 50.3 °C). <u>**HNMR**</u> (500 MHz, CDCl₃) δ 9.38 (d, *J* = 1.4 Hz, 1H), 8.73 (d, *J* = 2.4 Hz, 1H), 8.50 (dd, *J* = 2.4, 1.5 Hz, 1H), 7.85 (s, 1H), 7.32 – 7.26 (m, 3H), 7.25 – 7.21 (m, 2H), 7.19 – 7.12 (m, 4H), 7.07 (dd, *J* = 7.3, 2.0 Hz, 2H), 6.90 (d, *J* = 5.2 Hz, 1H), 6.75 (s,

1H), 4.64 (d, J = 6.0 Hz, 2H). <u>13C NMR</u> (125 MHz, CDCl₃) δ 162.53, 147.30, 144.48, 144.25, 142.74, 142.51, 140.24, 136.82, 136.71, 136.23, 130.59, 129.77, 129.44, 128.72, 128.08, 127.71, 127.05, 123.64, 36.93. <u>HRMS (ESI)</u> calcd for C₂₄H₁₉N₃OSNa [M+Na]⁺: 420.1141, found: 420.1145. <u>FTIR</u> (KBr, cm⁻¹) 2951.40, 2825.23, 2718.69, 1602.80, 1372.90, 1199.07, 1075.70, 778.50, 551.40.

(*E*)-*N*-(2-Chloro-6-(1,2-diphenylvinyl)benzyl)pyrazine-2-carboxam ide (3l) Following the general procedure 1, 3l was obtained as a white solid (47.2 mg, 74% yield, m.p. = 151.7 °C). <u>¹H NMR</u> (500

MHz, CDCl₃) δ 9.30 (s, 1H), 8.67 (d, J = 2.1 Hz, 1H), 8.40 (s, 1H),

7.41 (d, J = 7.7 Hz, 1H), 7.37 (s, 1H), 7.36 – 7.28 (m, 2H), 7.20 – 7.10 (m, 9H), 7.03 (t, J = 7.1 Hz, 1H), 6.69 (s, 1H), 4.70 (d, J = 5.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.99, 147.24, 147.00, 144.37, 144.30, 142.23, 141.03, 139.61, 136.59, 136.03, 132.96, 131.60, 129.76, 129.56, 129.40, 129.29, 129.08, 128.59, 128.15, 127.60, 127.33, 39.33. **HRMS (ESI)** calcd for C₂₆H₂₀ClN₃ONa [M+Na]⁺: 448.1187, found: 448.1190. **FTIR** (KBr, cm⁻¹) 2959.95, 2830.97, 2716.02, 1605.75, 1359.03, 1078.65, 778.66.

(*E*)-*N*-(2-Bromo-6-(1,2-diphenylvinyl)benzyl)pyrazine-2-carboxami de (3m) Following the general procedure 1, 3m was obtained as a white solid (35.2 mg, 50% yield, m.p. = 143.6° C). <u>¹H NMR</u> (500 MHz,

CDCl₃) δ 9.30 (s, 1H), 8.68 (d, J = 2.4 Hz, 1H), 8.45 – 8.34 (m, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 7.4 Hz, 1H), 7.34 (s, 1H), 7.25 – 7.21 (m, 1H), 7.19 – 7.09 (m, 9H), 7.01 (t, J = 7.1 Hz, 1H), 6.67 (s, 1H), 4.70 (d, J = 5.2 Hz, 2H). $\frac{1^3$ C NMR (125 MHz, CDCl₃) δ 161.95, 147.42, 146.99, 144.34, 144.29, 142.22, 141.17, 139.56, 136.55, 134.49, 132.71, 131.57, 130.23, 129.75, 129.41, 129.38, 128.56, 128.14, 127.57, 127.33, 126.52, 41.94. **HRMS (ESI)** calcd for C₂₆H₂0BrN₃ONa [M+Na]⁺: 492.0682, found: 492.0700. **FTIR** (KBr, cm⁻¹) 2959.95, 2830.97, 2716.02, 1605.75, 1359.03, 1078.65, 778.66.

(E)-N-(2-(1,2-Diphenylvinyl)-6-methylbenzyl)pyrazine-2-carboxami de (3n) Following the general procedure 1, 3n was obtained as a

white solid (35.9 mg, 59% yield, m.p. = 154.7 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.29 (s, 1H), 8.67 (d, J = 2.4 Hz, 1H), 8.37 (dd, J = 2.3, 1.6 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.23 – 7.09 (m, 11H), 7.04 – 6.99 (m, 1H), 6.70 (s, 1H), 4.56 (d, J = 5.4 Hz, 2H), 2.37 (s, 3H). <u>¹³C NMR</u> (125 MHz, CDCl₃) δ 162.08, 146.95, 145.67, 144.35, 144.20, 142.47, 142.17, 140.31, 138.59, 136.96, 133.15, 130.73, 130.33, 129.71, 129.37, 128.79, 128.55, 128.09, 127.99, 127.37, 127.08, 38.94, 19.60. <u>HRMS (ESI)</u> calcd for C₂₇H₂₃N₃ONa [M+Na]⁺: 428.1733, found: 428.1732. <u>FTIR</u> (KBr, cm⁻¹) 2954.21, 2828.04, 2713.08, 1611.21, 1370.09, 1075.70, 778.50.

(*E*)-*N*-(2-(1,2-diphenylvinyl)-6-methoxybenzyl)pyrazine-2-carboxa mide (30) Following the general procedure 1, 30 was obtained as a yellow solid (53.7 mg, 85% yield, m.p. = 123.9 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.31 (d, *J* = 1.3 Hz, 1H), 8.67 (d, *J* = 2.4 Hz, 1H),

8.45 – 8.38 (m, 1H), 7.62 (s, 1H), 7.31 (t, J = 8.0 Hz, 1H), 7.18 (t, J = 7.8 Hz, 3H), 7.13 (t, J = 8.1 Hz, 6H), 7.03 (t, J = 7.3 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 6.91 (d, J = 8.2 Hz, 1H), 6.66 (s, 1H), 4.64 (d, J = 5.4 Hz, 2H), 3.87 (s, 3H). $\frac{13}{C}$ NMR (125 MHz, CDCl₃) δ 161.90, 158.56, 146.74, 146.27, 144.88, 144.31, 142.25, 141.36, 140.14, 136.97, 131.07, 129.77, 129.41, 128.69, 128.37, 128.04, 127.25, 127.01, 123.55, 123.07, 109.93, 55.80, 36.32. HRMS (ESI) calcd for C₂₇H₂₃N₃O₂Na [M+Na]⁺: 444.1682, found: 444.1688. FTIR (KBr, cm⁻¹) 2954.21, 2828.04, 2713.08, 1602.80, 1370.09, 1070.09, 775.70.

(*E*)-*N*-(2-(1,2-Diphenylvinyl)-6-(trifluoromethyl)benzyl)pyrazine -2-carboxamide (3p) Following the general procedure 1, 3p was obtained as a yellow solid (28.9 mg, 42% yield, m.p. = 121.1°C). $\frac{1}{\text{H}}$ <u>NMR</u> (500 MHz, CDCl₃) δ 9.28 (d, *J* = 1.2 Hz, 1H), 8.69 (d, *J* = 2.4 Hz, 1H), 8.39 (dd, J = 2.3, 1.5 Hz, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.66 (d, J = 7.3 Hz, 1H), 7.52 (t, J = 7.7 Hz, 2H), 7.18 – 7.13 (m, 5H), 7.12 – 7.04 (m, 4H), 6.98 (t, J = 7.3Hz, 1H), 6.66 (s, 1H), 4.72 (d, J = 5.0 Hz, 2H). $\frac{13}{C}$ NMR (125 MHz, CDCl₃) δ 161.68, 147.51, 147.03, 144.27, 142.24, 140.50, 138.78, 136.41, 134.98, 133.14, 132.08, 130.56 (q, $J_{CF} = 30.1$ Hz), 129.59, 129.30, 128.46, 128.27, 128.14, 127.62, 127.41, 125.86 (q, $J_{CF} = 5.9$ Hz), 124.21 (d, $J_{CF} = 274.3$ Hz), 38.11. ¹⁹F NMR (471 MHz, CDCl₃) δ -58.66. HRMS (ESI) calcd for C₂₇H₂₀F₃N₃ONa [M+Na]⁺: 482.1451, found: 482.1457. **FTIR** (KBr, cm⁻¹) 2963.28,2831.62, 2725.18, 1601.88, 1360.98, 1192.91, 1078.05, 775.52, 565.43.

(E)-N-(2-(1,2-Diphenylvinyl)-6-nitrobenzyl)pyrazine-2-carboxami de (3q) Following the general procedure 1, 3q was obtained as a yellow solid (28.1 mg, 43% yield, m.p. = 80.6 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.29 (d, J = 1.3 Hz, 1H), 8.71 (d, J = 2.4 Hz, 1H), 8.52 - 8.43 (m, 1H), 8.05 (s, 1H), 7.85 (dd, J = 8.1, 1.2 Hz, 1H), 7.62 (dd, J = 7.7, 1.2

Hz, 1H), 7.48 (t, J = 7.9 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.21 – 7.15 (m, 5H), 7.15 – 7.08 (m, 3H), 6.66 (s, 1H), 4.80 (d, J = 5.8 Hz, 2H). $\frac{13}{C}$ NMR (125 MHz, CDCl₃) δ 162.21, 151.33, 147.68, 147.19, 144.29, 144.21, 142.51, 139.38, 138.91, 136.26, 135.45, 133.02, 130.03, 129.82, 129.41, 128.60, 128.52, 128.20, 127.85, 127.58, 123.86, 37.96. **HRMS (ESI)** calcd for C₂₆H₂₀N₄O₃Na [M+Na]⁺: 459.1428, found: 459.1426. FTIR (KBr, cm⁻¹) 2954.21, 2833.64, 2715.89, 1600.00, 1361.8, 1081.31, 775.70, 573.83.

(E)-N-(5-(Tert-butyl)-2-(1,2-diphenylvinyl)benzyl)pyrazine-2carboxamide (3r) Following the general procedure 1 at the conditions of 140°C, 3r was obtained as a white solid (61.0 mg, 91% yield, m.p. = 138.7 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.34

(s, 1H), 8.72 - 8.65 (m, 1H), 8.43 (s, 1H), 7.69 (s, 1H), 7.40 (s, 1H), 7.34 (q, J = 8.2Hz, 2H), 7.22 – 7.13 (m, 8H), 7.11 (d, J = 7.7 Hz, 2H), 6.71 (s, 1H), 4.44 (d, J = 5.8 Hz, 2H), 1.33 (s, 9H). <u>¹³C NMR</u> (125 MHz, CDCl₃) δ 162.30, 151.22, 147.02, 144.61, 144.38, 142.31, 141.88, 141.14, 139.95, 137.08, 134.96, 130.92, 130.63, 129.78, 129.41, 128.51, 128.06, 127.49, 127.07, 127.01, 124.81, 42.19, 34.60, 31.36. <u>HRMS</u> (ESI) calcd for C₃₀H₂₉N₃ONa [M+Na]⁺: 470.2203, found: 470.2196. <u>FTIR</u> (KBr, cm⁻¹) 2965.42, 2836.45, 2721.50, 1591.59, 1364.49, 1070.09, 775.70.

MeO Ph th

(*E*)-*N*-(2-(1,2-Diphenylvinyl)-6-fluoro-4-methoxybenzyl)pyra zine-2-carboxamide (3s) Following the general procedure 1 at the conditions of 140°C, 3s was obtained as a white solid (42.2 mg, 65% yield, m.p. = 152.9 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ

9.30 (s, 1H), 8.68 (d, J = 2.4 Hz, 1H), 8.44 – 8.37 (m, 1H), 7.44 (s, 1H), 7.23 – 7.14 (m, 7H), 7.14 – 7.06 (m, 3H), 6.78 (d, J = 2.0 Hz, 1H), 6.72 (s, 1H), 6.65 (dd, J = 11.4, 2.5 Hz, 1H), 4.49 (d, J = 4.5 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.44 (d, $J_{CF} = 247.2$ Hz), 161.97, 160.04 (d, $J_{CF} = 12.4$ Hz), 147.26 (d, $J_{CF} = 5.3$ Hz), 146.95, 144.48, 144.28, 142.26, 140.75 (d, $J_{CF} = 3.0$ Hz), 139.35, 136.54, 131.46, 129.68, 129.41, 128.61, 128.13, 127.67, 127.33, 114.74 (d, $J_{CF} = 15.6$ Hz), 112.51 (d, $J_{CF} = 2.4$ Hz), 100.95 (d, $J_{CF} = 26.5$ Hz), 55.67, 34.68 (d, $J_{CF} = 4.4$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -113.59. HRMS (ESI) calcd for C₂₇H₂₂FN₃O₂Na [M+Na]⁺: 462.1588, found: 462.1585. FTIR (KBr, cm⁻¹) 2954.21, 2828.04, 2718.69, 1600.00, 1364.49, 1072.90, 775.70.

(*E*)-*N*-(2-(1,2-Diphenylvinyl)-3,6-difluorobenzyl)pyrazine-2-carbo xamide (3t) Following the general procedure 1 at the conditions of 140°C, 3t was obtained as a white solid (59.6 mg, 93% yield, m.p. = 125.1 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.33 (d, *J* = 1.3 Hz, 1H),

8.70 (d, J = 2.4 Hz, 1H), 8.41 (dd, J = 2.3, 1.6 Hz, 1H), 7.71 (s, 1H), 7.24 – 7.21 (m, 2H), 7.20 – 7.11 (m, 8H), 7.11 – 7.03 (m, 2H), 6.71 (s, 1H), 4.69 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.13, 157.60 (dd, $J_{CF} = 244.4$, 2.4 Hz), 156.29 (dd, $J_{CF} = 241.5$, 2.3 Hz), 147.17, 144.40, 144.29, 142.30, 138.63, 136.10, 133.73, 133.45 (dd,

 $J_{CF} = 19.0, 3.5 \text{ Hz}), 133.02 \text{ (d, } J_{CF} = 1.6 \text{ Hz}), 129.43, 129.36, 128.54, 128.17, 127.69, 127.57, 124.65 \text{ (dd, } J_{CF} = 16.7, 2.2 \text{ Hz}), 116.30 \text{ (dd, } J_{CF} = 26.0, 9.3 \text{ Hz}), 115.67 \text{ (dd, } J_{CF} = 25.2, 8.7 \text{ Hz}), 35.02 \text{ (d, } J_{CF} = 5.4 \text{ Hz}). <u>19 F NMR</u> (471 MHz, CDCl₃) <math>\delta$ -118.83 (d, $J_{FF} = 17.5 \text{ Hz}), -120.62 \text{ (d, } J_{FF} = 17.5 \text{ Hz}). <u>HRMS (ESI)</u> calcd for C₂₆H₁₉F₂N₃ONa [M+Na]⁺: 450.1388, found: 450.1381. <u>FTIR</u> (KBr, cm⁻¹) 2957.01, 2839.25, 2715.89, 1608.41, 1358.88, 1078.50, 775.70.$

(E)-N-(4-Chloro-2-(1,2-diphenylvinyl)-6-fluorobenzyl)pyrazine-

2-carboxamide (3u) Following the general procedure 1 at the

^{c12} C12 C12 C13 C19^h conditions of 140°C, **3u** was obtained as a white solid (54.5 mg, 82%) yield, m.p. = 224.7 °C). ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 9.31 (s, 1H), 8.70 (d, J = 2.4Hz, 1H), 8.45 – 8.40 (m, 1H), 7.52 (s, 1H), 7.24 – 7.17 (m, 8H), 7.16 – 7.09 (m, 4H), 6.71 (s, 1H), 4.52 (d, J = 5.6 Hz, 2H). ¹³<u>C NMR</u> (125 MHz, CDCl₃) δ 162.08, 161.61 (d, $J_{CF} = 251.4$ Hz), 147.68 (d, $J_{CF} = 4.2$ Hz), 147.14, 144.36, 144.27, 142.27, 139.46 (d, $J_{CF} = 2.7$ Hz), 138.92, 136.20, 134.26 (d, $J_{CF} = 12.0$ Hz), 132.35, 129.69, 129.43, 128.77, 128.19, 127.94, 127.58, 126.69 (d, $J_{CF} = 3.1$ Hz), 121.69 (d, $J_{CF} = 15.0$ Hz), 115.67 (d, $J_{CF} = 26.4$ Hz), 34.61 (d, $J_{CF} = 4.4$ Hz). ¹⁹<u>F NMR</u> (471 MHz, CDCl₃) δ -112.92. <u>HRMS (ESI)</u> calcd for C₂₆H₁₉ClFN₃ONa [M+Na]⁺: 466.1093, found: 466.1088. <u>FTIR</u> (KBr, cm⁻¹) 2968.22, 2830.84, 2715.89, 1594.39, 1367.29, 1081.31, 778.50.

(*E*)-*N*-(2-(1,2-Diphenylvinyl)-4,6-difluorobenzyl)pyrazine-2-carb oxamide (3v) Following the general procedure 1 at the conditions of 140°C, 3v was obtained as a white solid (46.1 mg, 72% yield, m.p. = 139.7 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.32 (s, 1H), 8.70

(d, J = 2.3 Hz, 1H), 8.42 (s, 1H), 7.51 (s, 1H), 7.22 – 7.16 (m, 7H), 7.15 – 7.09 (m, 3H), 6.96 (d, J = 8.8 Hz, 1H), 6.87 – 6.81 (m, 1H), 6.71 (s, 1H), 4.53 (d, J = 5.0 Hz, 2H). <u>¹³C NMR</u> (125 MHz, CDCl₃) 162.05, 162.03 (dd, $J_{CF} = 250.1$, 8.0 Hz), 161.92 (dd, $J_{CF} = 250.1$, 7.0 Hz), 147.86 (dd, $J_{CF} = 9.1$, 4.9 Hz), 147.09, 144.35, 144.30,

142.25, 139.69, 138.97, 136.19, 132.20, 129.65, 129.41, 128.73, 128.17, 127.90, 127.55, 119.00 (dd, $J_{CF} = 15.1$, 3.9 Hz), 113.68 (dd, $J_{CF} = 21.3$, 3.2 Hz), 103.29 (dd, $J_{CF} = 26.5$, 25.4 Hz), 34.56 (d, $J_{CF} = 4.4$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -110.38 (d, $J_{FF} = 8.2$ Hz), -111.18 (d, $J_{FF} = 8.1$ Hz). HRMS (ESI) calcd for C₂₆H₁₉F₂N₃ONa [M+Na]⁺: 450.1388, found: 450.1381. FTIR (KBr, cm⁻¹) 2965.42, 2828.04, 2713.08, 1600.00, 1361.68, 1075.70, 772.90.

(*E*)-*N*-(3-chloro-2-(1,2-diphenylvinyl)-4,6-difluorobenzyl)pyrazi ne-2-carboxamide (3w) Following the general procedure 1 at the conditions of 140°C, 3w was obtained as a white solid (48.4 mg, 70% yield, m.p. = 161.1 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.32 (d, *J* =

1.2 Hz, 1H), 8.70 (d, J = 2.4 Hz, 1H), 8.45 – 8.33 (m, 1H), 7.61 (s, 1H), 7.24 – 7.18 (m, 7H), 7.18 – 7.10 (m, 3H), 6.99 (t, J = 8.9 Hz, 1H), 6.68 (s, 1H), 4.73 – 4.59 (m, 2H). <u>¹³C NMR</u> (125 MHz, CDCl₃) δ 162.10, 159.92 (dd, $J_{CF} = 236.0$, 11.9 Hz), 157.92 (dd, $J_{CF} = 238.0$, 12.8 Hz), 147.20, 145.99 (d, $J_{CF} = 4.6$ Hz), 144.34, 144.17, 142.28, 137.43, 135.99, 135.58 (t, $J_{CF} = 2.1$ Hz), 133.79, 129.42, 129.38, 128.55, 128.30, 127.94, 127.78, 120.76 (dd, $J_{CF} = 15.7$, 4.1 Hz), 117.67 (dd, $J_{CF} = 16.9$, 4.2 Hz), 104.35 (dd, $J_{CF} = 27.8$, 25.4 Hz), 35.00 (d, $J_{CF} = 3.7$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -107.72 (d, $J_{FF} = 8.0$ Hz), -112.71 (d, $J_{FF} = 8.0$ Hz). HRMS (ESI) calcd for C₂₆H₁₈ClF₂N₃ONa [M+Na]⁺: 484.0999, found: 484.0992. FTIR (KBr, cm⁻¹) 2957.01, 2828.04, 2724.30, 1608.41, 1370.09, 1207.48, 1070.09, 772.90, 565.42.

(E)-N-(2-(1,2-Diphenylvinyl)-6-fluorophenethyl)pyrazine-2-carboxamide (3x)Following the general procedure 1 atthe conditions of 140°C, 3x was obtained as a yellow liquid (17.1 mg,27% yield). 1 H NMR (500 MHz, CDCl₃) δ 9.34 (s, 1H), 8.71 (d, J =

2.3 Hz, 1H), 8.48 (s, 1H), 7.67 (s, 1H), 7.28 – 7.20 (m, 4H), 7.20 – 7.13 (m, 6H), 7.09 – 7.00 (m, 3H), 6.65 (s, 1H), 3.38 (q, J = 6.8 Hz, 2H), 2.87 (t, J = 6.8 Hz, 2H). <u>NMR</u> (125 MHz, CDCl₃) δ 162.71, 161.84 (d, $J_{CF} = 245.2$ Hz), 147.06, 146.53 (d, J_{CF} = 4.1 Hz), 144.53, 144.37, 142.47, 141.33 (d, J_{CF} = 2.5 Hz), 139.79, 136.72, 131.20, 129.80, 129.38, 128.47, 128.11, 127.80 (d, J_{CF} = 9.2 Hz), 127.69, 127.16, 126.54 (d, J_{CF} = 2.9 Hz), 124.36 (d, J_{CF} = 15.5 Hz), 114.66 (d, J_{CF} = 23.1 Hz), 38.94, 26.62 (d, J_{CF} = 2.1 Hz). <u>19</u>**F** NMR (471 MHz, CDCl₃) δ -116.34. <u>HRMS (ESI)</u> calcd for C₂₇H₂₂FN₃ONa [M+Na]⁺: 446.1639, found: 446.1634. <u>FTIR</u> (KBr, cm⁻¹) 2959.81, 2833.64, 2724.30,1600.00, 1370.09, 1070.09, 775.70.

(E)-N-(2-(1,2-Diphenylvinyl)-6-fluorobenzyl)picolinamide(3aa) Following the general procedure 1, 3aa was obtained as ayellow solid (59.4 mg, 97% yield, m.p. = 45.3 °C). 1 H NMR(500MHz, CDCl₃) δ 8.45 (d, J = 4.1 Hz, 1H), 8.12 (d, J = 7.3 Hz, 1H),

7.93 (s, 1H), 7.76 (t, J = 7.7 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.32 – 7.26 (m, 1H), 7.24 – 7.10 (m, 11H), 7.05 (t, J = 8.9 Hz, 1H), 6.71 (s, 1H), 4.58 (d, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 163.46, 161.83 (d, $J_{CF} = 247.9$ Hz), 149.87, 147.85, 146.76 (d, $J_{CF} =$ 3.4 Hz), 140.67 (d, $J_{CF} = 2.5$ Hz), 139.55, 137.16, 136.77, 131.62, 129.78, 129.49, 128.99 (d, $J_{CF} = 9.3$ Hz), 128.58, 128.09, 127.65, 127.20, 126.48 (d, $J_{CF} = 2.9$ Hz), 125.97, 123.29 (d, $J_{CF} = 14.8$ Hz), 122.16, 114.91 (d, $J_{CF} = 22.8$ Hz), 34.95 (d, $J_{CF} =$ 4.8 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -115.60. HRMS (ESI) calcd for C₂₇H₂₁FN₂ONa [M+Na]⁺: 431.1530, found: 431.1531. FTIR (KBr, cm⁻¹) 2957.01, 2828.04, 2718.69, 1600.00, 1364.49, 1210.28, 1078.50, 778.50, 576.64.

(*E*)-*N*-(2-(1,2-Diphenylvinyl)-6-fluorobenzyl)pyrimidine-4-carb oxamide (3bb) Following the general procedure 1, 3bb was obtained as a yellow liquid (54.6 mg, 89% yield). ¹H NMR (500

MHz, CDCl₃) δ 9.06 – 9.01 (m, 1H), 8.81 (d, J = 5.0 Hz, 1H), 7.94 (dd, J = 5.0, 1.4 Hz, 1H), 7.68 (s, 1H), 7.27 – 7.19 (m, 1H), 7.13 – 7.09 (m, 5H), 7.09 – 7.06 (m, 3H), 7.05 – 7.02 (m, 3H), 6.99 (t, J = 8.9 Hz, 1H), 6.62 (s, 1H), 4.48 (d, J = 6.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.78 (d, $J_{CF} = 248.1$ Hz), 161.68, 159.05, 157.52, 156.15, 146.78 (d, $J_{CF} = 3.3$ Hz), 140.52 (d, $J_{CF} = 2.6$ Hz), 139.52, 136.60, 131.73, 129.73, 129.44, 129.31 (d, $J_{CF} = 9.4$ Hz), 128.66, 128.15, 127.76, 127.34, 126.58 (d, $J_{CF} = 3.0$ Hz), 122.58 (d, $J_{CF} = 14.8$ Hz), 118.49, 115.00 (d, $J_{CF} = 22.7$ Hz), 35.12 (d, $J_{CF} = 4.9$ Hz). ¹⁹**F NMR** (471 MHz, CDCl₃) δ -115.66. <u>**HRMS** (**ESI**</u>) calcd for C₂₆H₂₀FN₃ONa [M+Na]⁺: 432.1483, found: 432.1480. <u>**FTIR**</u> (KBr, cm⁻¹) 2962.62, 2828.04, 2721.50, 1600.00, 1370.09, 1075.70, 772.90.

(*E*)-2-(1,2-diphenylvinyl)-6-fluoro-*N*-(quinolin-8-yl)benzami de (3dd) Following the general procedure 1, 3dd was obtained as a white solid (40.3 mg, 91% yield, m.p. = 89.4 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.95 (s, 1H), 8.74 (dd, *J* = 4.2, 1.7 Hz, 1H),

8.60 (dd, J = 6.2, 2.7 Hz, 1H), 8.12 (dd, J = 8.3, 1.7 Hz, 1H), 7.47 – 7.39 (m, 4H), 7.25 (d, J = 1.0 Hz, 1H), 7.18 – 7.14 (m, 1H), 7.15 – 7.08 (m, 2H), 7.04 – 6.96 (m, 7H), 6.94 – 6.89 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 162.81, 159.66 (d, $J_{CF} =$ 249.6 Hz), 147.99, 144.95 (d, $J_{CF} = 2.9$ Hz), 140.47 (d, $J_{CF} = 2.2$ Hz), 139.14, 138.31, 136.88, 136.19, 134.27, 131.54, 130.68 (d, $J_{CF} = 8.9$ Hz), 130.45, 129.36, 128.07, 127.80, 127.76, 127.27, 126.96, 126.21 (d, $J_{CF} = 3.0$ Hz), 125.53, 125.40, 121.67, 121.49, 116.66, 115.20 (d, $J_{CF} = 22.2$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -115.37. HRMS (ESI) calcd for C₃₀H₂₁FN₂ONa [M+Na]⁺: 467.1530, found: 467.1531. FTIR (KBr, cm⁻¹) 3453.27, 2954.21, 2833.64, 2713.08, 2345.79, 1605.61, 1347.66, 1067.29, 772.90.

3.2 General Procedure 2 for Olefinic C-H Alkenylation

A screw-cap vial was charged with Pd(OAc)₂ (5.1 mg, 0.0225 mmol, 15 mol%), MnO₂ (39.1 mg, 0.45 mmol, 3.0 equiv), BQ (1.6 mg, 0.015 mmol, 10 mol%), amide **3** (0.15 mmol, 1.0 equiv), EtOH (1.0 mL). Then, pivalic acid (23.0 mg, 0.18 mmol, 1.5

equiv), and olefin **2** (48.1 mg, 0.375 mmol, 2.5 equiv) were added into the solution in sequence. The vial was sealed under air and heated to 80 °C with stirring for 24 h. After cooling down, the mixture was concentrated and directly applied to a flash column chromatography (PE/EA mixtures) to obtain the diene product **5**.

Tert-butyl(2*E*,4*E*)-5-(3-fluoro-2-((pyrazine-2-carboxamid o) methyl)phenyl)-4,5-diphenylpenta-2,4-dienoate (5a) Following the general procedure 2, 5a was obtained as a white solid (73.9 mg, 92% yield, E/Z > 99:1, m.p. = 81.3 °C).

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 9.33 (d, J = 1.3 Hz, 1H), 8.67 (d, J = 2.4 Hz, 1H), 8.42 – 8.37 (m, 1H), 7.59 (s, 1H), 7.44 – 7.38 (m, 1H), 7.28 (d, J = 5.7 Hz, 2H), 7.26 – 7.23 (m, 2H), 7.20 – 7.14 (m, 4H), 7.00 – 6.91 (m, 5H), 5.47 (d, J = 15.5 Hz, 1H), 4.68 – 4.54 (m, 2H), 1.33 (s, 9H). ¹³<u>C NMR</u> (125 MHz, CDCl₃) δ 166.24, 162.18 (d, $J_{CF} = 248.6$ Hz), 162.05, 146.98, 145.11 (d, $J_{CF} = 2.3$ Hz), 144.36, 144.26, 143.83, 143.33 (d, $J_{CF} = 3.6$ Hz), 142.29, 140.02, 139.22, 138.02, 130.84, 130.35, 129.55 (d, $J_{CF} = 9.3$ Hz), 128.40, 127.72, 127.42, 127.34, 127.21 (d, $J_{CF} = 3.0$ Hz), 124.49, 123.43 (d, $J_{CF} = 15.1$ Hz), 115.60 (d, $J_{CF} = 22.3$ Hz), 80.21, 35.00 (d, $J_{CF} = 4.1$ Hz), 28.04. ¹⁹<u>F NMR</u> (471 MHz, CDCl₃) δ -115.70. <u>HRMS (ESI)</u> calcd for C₃₃H₃₀FN₃O₃Na [M+Na]⁺: 558.2163, found: 558.2164. <u>FTIR</u> (KBr, cm⁻¹) 2957.01, 2825.23, 2713.08, 1605.61, 1364.49, 1067.29, 778.50.

CO₂^tBu

Ρh

Butyl (2*E*,4*E*)-5-(3-fluoro-2-((pyrazine-2-carboxamido) methyl) phenyl)-4,5-diphenylpenta-2,4-dienoate (5b) Following the general procedure 2, 5b was obtained as a yellow solid (70.6 mg, 88% yield, E/Z > 99:1, m.p. = 63.9 °C).

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 9.33 (s, 1H), 8.70 – 8.63 (m, 1H), 8.39 (s, 1H), 7.61 (s, 1H), 7.43 – 7.38 (m, 1H), 7.35 (d, J = 15.5 Hz, 1H), 7.30 – 7.23 (m, 3H), 7.21 – 7.13 (m, 4H), 7.01 – 6.94 (m, 3H), 6.94 – 6.91 (m, 2H), 5.55 (d, J = 15.6 Hz, 1H), 4.62 (d, J = 5.6 Hz, 2H), 4.01 – 3.91 (m, 2H), 1.53 – 1.44 (m, 2H), 1.30 – 1.20 (m, 2H), 0.86 (t, J = 15.6 Hz, 2H), 4.01 – 3.91 (m, 2H), 1.53 – 1.44 (m, 2H), 1.30 – 1.20 (m, 2H), 0.86 (t, J = 15.6 Hz, 2H), 4.01 – 3.91 (m, 2H), 1.53 – 1.44 (m, 2H), 1.30 – 1.20 (m, 2H), 0.86 (t, J = 15.6 Hz, 2H), 4.01 – 3.91 (m, 2H), 1.53 – 1.44 (m, 2H), 1.30 – 1.20 (m, 2H), 0.86 (t, J = 15.6 Hz, 2H), 4.01 – 3.91 (m, 2H), 1.53 – 1.44 (m, 2H), 1.30 – 1.20 (m, 2H), 0.86 (t, J = 15.6 Hz, 2H), 4.01 – 3.91 (m, 2H), 1.53 – 1.44 (m, 2H), 1.30 – 1.20 (m, 2H), 0.86 (t, J = 15.6 Hz, 2H), 4.01 – 3.91 (m, 2H), 1.53 – 1.44 (m, 2H), 1.30 – 1.20 (m, 2H), 0.86 (t, J = 15.6 Hz, 2H), 4.01 – 3.91 (m, 2H), 1.53 – 1.44 (m, 2H), 1.30 – 1.20 (m, 2H), 0.86 (t, J = 15.6 Hz, 2H), 4.01 – 3.91 (m, 2H), 1.53 – 1.44 (m, 2H), 1.30 – 1.20 (m, 2H), 0.86 (t, J = 15.6 Hz, 2H), 4.01 – 3.91 (m, 2H), 1.53 – 1.44 (m, 2H), 1.30 – 1.20 (m, 2H), 0.86 (t, J = 15.6 Hz, 2H), 4.01 – 3.91 (m, 2H), 1.53 – 1.44 (m, 2H), 1.30 – 1.20 (m, 2H), 0.86 (t, J = 15.6 Hz, 1.41 (m, 2H), 1.53 – 1.44 (m, 2H), 1.50 – 1.20 (m, 2H), 0.86 (t, J = 15.6 Hz, 1.41 (m, 2H), 1.53 – 1.44 (m, 2H), 1.50 – 1.20 (m, 2H), 0.86 (t, J = 15.6 Hz, 1.41 (m, 2H), 1.51 – 1.51 (m, 2H), 1.51 – 1.5

 $J = 7.4 \text{ Hz}, 3\text{H}. \frac{13}{\text{C NMR}} (125 \text{ MHz}, \text{CDCl}_3) \delta 165.89, 161.15 \text{ (d, } J_{CF} = 248.8 \text{ Hz}), 161.02, 145.96, 144.51 \text{ (d, } J_{CF} = 2.2 \text{ Hz}), 143.78, 143.28, 143.23, 142.24 \text{ (d, } J_{CF} = 3.6 \text{ Hz}), 141.22, 138.87, 138.13, 136.82, 129.79, 129.32, 128.54 \text{ (d, } J_{CF} = 9.3 \text{ Hz}), 127.42, 126.72, 126.49, 126.45, 126.14 \text{ (d, } J_{CF} = 3.0 \text{ Hz}), 122.47 \text{ (d, } J_{CF} = 15.2 \text{ Hz}), 121.61, 114.60 \text{ (d, } J_{CF} = 22.4 \text{ Hz}), 63.10, 33.98 \text{ (d, } J_{CF} = 4.1 \text{ Hz}), 29.52, 18.06, 12.63. \frac{19}{\text{F}} \text{ NMR} \text{ (471 MHz, CDCl}_3) \delta -115.54. \text{ HRMS (ESI)} calcd for C_{33}H_{30}FN_3O_3Na [M+Na]^+: 558.2163, found: 558.2169. \text{FTIR} (KBr, cm^{-1}) 2968.22, 2830.84, 2718.69, 1585.98, 1356.07, 1070.09, 784.11.$

Methyl(2E,4E)-5-(3-fluoro-2-((pyrazine-2-carboxamido))methyl)phenyl)-4,5-diphenylpenta-2,4-dienoate(5c)Following the general procedure 2, 5c was obtained as awhite solid (66.6 mg, 90% yield, E/Z=97:3, m.p. = 57.1 °C). ^{1}H

<u>NMR</u> (500 MHz, CDCl₃) δ 9.25 (d, J = 1.3 Hz, 1H), 8.60 (d, J = 2.4 Hz, 1H), 8.33 – 8.30 (m, 1H), 7.52 (s, 1H), 7.38 – 7.30 (m, 1H), 7.26 (d, J = 15.6 Hz, 1H), 7.23 – 7.19 (m, 1H), 7.19 – 7.15 (m, 2H), 7.13 – 7.08 (m, 3H), 7.06 (d, J = 7.4 Hz, 1H), 6.94 – 6.87 (m, 3H), 6.86 – 6.82 (m, 2H), 5.47 (d, J = 15.6 Hz, 1H), 4.59 – 4.47 (m, 2H), 3.48 (s, 3H). <u>¹³C NMR</u> (125 MHz, CDCl₃) δ 166.25, 161.16 (d, $J_{CF} = 248.8$ Hz), 161.02, 145.97, 144.66 (d, $J_{CF} = 2.3$ Hz), 143.93, 143.29, 143.26, 142.15 (d, $J_{CF} = 3.5$ Hz), 141.20, 138.91, 138.13, 136.85, 129.81, 129.31, 128.59 (d, $J_{CF} = 9.3$ Hz), 127.41, 126.73, 126.51, 126.46, 126.18 (d, $J_{CF} = 3.1$ Hz), 122.48 (d, $J_{CF} = 15.2$ Hz), 121.33, 114.71 (d, $J_{CF} = 22.3$ Hz), 50.40, 33.97 (d, $J_{CF} = 4.2$ Hz). <u>¹⁹F NMR</u> (471 MHz, CDCl₃) δ -115.47. <u>HRMS (ESI)</u> calcd for C₃₀H₂₄FN₃O₃Na [M+Na]⁺: 516.1694, found: 516.1704. <u>FTIR</u> (KBr, cm⁻¹) 2954.34, 2836.58, 2718.83, 1600.15, 1373.04, 1073.05, 778.66.

N-(2-((1E,3E)-1,2-Diphenyl-4-(phenylsulfonyl)buta-1,3-dien1-yl)-6-fluorobenzyl)pyrazine-2-carboxamide (5d) Following
the general procedure 1, 5d was obtained as a white solid

(64.7 mg, 75% yield, E/Z=99:1, m.p. = 62.3 °C). ¹H NMR (500 MHz, CDCl₃) δ 9.34 (s, 1H), 8.71 (d, J = 2.4 Hz, 1H), 8.51 – 8.42 (m, 1H), 7.67 (d, J = 7.3 Hz, 3H), 7.57 (t, J = 7.5 Hz, 1H), 7.49 – 7.39 (m, 3H), 7.25 (dd, J = 12.1, 2.3 Hz, 3H), 7.20 (d, J = 8.8 Hz, 1H), 7.13 – 7.08 (m, 3H), 6.98 (d, J = 7.1 Hz, 3H), 6.93 – 6.87 (m, 2H), 6.05 (d, J = 15.0 Hz, 1H), 4.55 – 4.46 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.20 (d, $J_{CF} = 249.1$ Hz), 161.11, 146.93 (d, $J_{CF} = 2.3$ Hz), 146.22, 143.21, 143.14, 141.70, 141.53 (d, $J_{CF} = 3.6$ Hz), 141.47, 139.46, 138.38, 136.11 (d, $J_{CF} = 6.5$ Hz), 132.23, 130.46, 129.63, 129.35, 128.60 (d, $J_{CF} = 9.2$ Hz), 128.16, 127.65, 126.88 (d, $J_{CF} = 3.7$ Hz), 126.81, 126.44, 126.21 (d, $J_{CF} = 3.0$ Hz), 122.66 (d, $J_{CF} = 15.2$ Hz), 115.19 (d, $J_{CF} = 22.4$ Hz), 33.79 (d, $J_{CF} = 4.0$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -115.15. HRMS (ESI) calcd for C₃₄H₂₆FN₃O₃SNa [M+Na]⁺: 598.1571, found: 598.1561. FTIR (KBr, cm⁻¹) 2954.21, 2833.64, 2721.50, 1597.20, 1370.09, 1072.90, 772.90.

Diethyl((1*E*,3*E*)-4-(3-fluoro-2-((pyrazine-2-carboxamido)m ethyl) phenyl)-3,4-diphenyl buta-1,3-dien-1-yl) phosphonate (5e) Following the general procedure 2, 5e was obtained as a yellow liquid (43.7 mg, 51% yield, E/Z > 99:1,). ¹H NMR (500

MHz, CDCl₃) δ 9.32 (s, 1H), 8.69 (d, J = 2.4 Hz, 1H), 8.48 – 8.41 (m, 1H), 7.59 (s, 1H), 7.44 – 7.38 (m, 1H), 7.31 – 7.27 (m, 1H), 7.27 – 7.21 (m, 2H), 7.19 – 7.14 (m, 4H), 7.09 (dd, J = 21.8, 17.1 Hz, 1H), 7.01 – 6.88 (m, 5H), 5.47 (dd, J = 19.7, 17.1 Hz, 1H), 4.56 (d, J = 5.6 Hz, 2H), 3.96 – 3.85 (m, 4H), 1.17 (t, J = 7.1 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 162.21 (d, $J_{CF} = 248.9$ Hz), 162.07, 147.64 (d, $J_{CP} = 8.1$ Hz), 147.08, 144.87, 144.27, 144.23, 143.11 (d, $J_{CF} = 3.5$ Hz), 142.39, 139.90 (d, $J_{CF} = 2.0$ Hz), 139.53 (d, $J_{CP} = 24.5$ Hz), 137.58, 130.95, 130.32, 129.49 (d, $J_{CF} = 9.3$ Hz), 128.47, 127.77, 127.52 (d, $J_{CF} = 17.2$ Hz), 127.42, 127.40, 123.57 (d, $J_{CF} = 15.1$ Hz), 119.05 (d, $J_{CP} = 190.2$ Hz), 115.70 (d, $J_{CF} = 22.4$ Hz), 61.70 (t, $J_{CP} = 6.2$ Hz), 34.93 (d, $J_{CF} = 4.1$ Hz), 16.24 (dd, $J_{CP} = 6.4$, 3.0 Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -115.38. ³¹P NMR (202 MHz, CDCl₃) δ 19.29. HRMS (ESI) calcd for C₃₂H₃₁FN₃O₄PNa [M+Na]⁺: 594.1928, found: 594.1924. FTIR (KBr, cm⁻¹) 2968.22,

N-(2-((1*E*,3*E*)-5-(Benzylamino)-5-oxo-1,2-diphenylpenta-1,3
-dien-1-yl)-6-fluorobenzyl)pyrazine-2-carboxamide (5f)
Following the general procedure 2 use methanol instead of ethanol, 5f was obtained as a white solid (77.6 mg, 91% yield,

E/Z=96:4, m.p. = 81.0 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.26 (d, *J* = 1.2 Hz, 1H), 8.57 (d, *J* = 2.4 Hz, 1H), 8.35 – 8.27 (m, 1H), 7.63 (s, 1H), 7.42 – 7.37 (m, 1H), 7.35 (d, *J* = 15.1 Hz, 1H), 7.30 – 7.26 (m, 2H), 7.26 – 7.20 (m, 4H), 7.20 – 7.11 (m, 6H), 6.99 – 6.88 (m, 5H), 5.67 (s, 1H), 5.46 (d, *J* = 15.1 Hz, 1H), 4.67 (dd, *J* = 14.3, 6.3 Hz, 1H), 4.55 (dd, *J* = 14.4, 4.6 Hz, 1H), 4.37 – 4.27 (m, 2H). <u>1³C NMR</u> (125 MHz, CDCl₃) δ 165.46, 162.25 (d, *J_{CF}* = 248.5 Hz), 162.10, 146.88, 144.60 (d, *J_{CF}* = 2.1 Hz), 144.38, 144.10, 143.28 (d, *J_{CF}* = 3.6 Hz), 142.37, 141.74, 140.21, 139.10, 138.42, 138.09, 130.88, 130.31, 129.67 (d, *J_{CF}* = 9.3 Hz), 128.68, 128.35, 127.95, 127.68, 127.28 (d, *J_{CF}* = 14.5 Hz), 127.20, 127.17, 124.98, 123.37 (d, *J_{CF}* = 15.0 Hz), 115.59 (d, *J_{CF}* = 22.3 Hz), 43.68, 35.15 (d, *J_{CF}* = 3.8 Hz). <u>19</u>F NMR (471 MHz, CDCl₃) δ -115.65. <u>HRMS (ESI)</u> calcd for C₃₆H₂₉FN₄O₂Na [M+Na]⁺: 591.2167, found: 591.2165. <u>FTIR</u> (KBr, cm⁻¹) 2954.21, 2830.84, 2715.89, 1600.00, 1361.68, 1075.70, 778.50.

Ethyl(2E,4E)-5-(3-fluoro-2-((pyrazine-2-carboxamido)methyl)phenyl)-4,5-diphenylpenta-2,4-dienoate(5g)Followingthe general procedure 2, 5g was obtained as ayellow liquid (54.0 mg, 71% yield, E/Z=98:2).1H NMR(500

MHz, CDCl₃) δ 9.32 (s, 1H), 8.67 (d, J = 2.3 Hz, 1H), 8.42 – 8.37 (m, 1H), 7.61 (s, 1H), 7.44 – 7.38 (m, 1H), 7.35 (d, J = 15.5 Hz, 1H), 7.30 – 7.22 (m, 3H), 7.21 – 7.13 (m, 4H), 7.01 – 6.90 (m, 5H), 5.55 (d, J = 15.5 Hz, 1H), 4.68 – 4.55 (m, 2H), 4.07 – 3.95 (m, 2H), 1.14 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.90, 162.19 (d, $J_{CF} = 248.7$ Hz), 162.06, 146.97, 145.57 (d, $J_{CF} = 2.3$ Hz), 144.81, 144.33,

144.24, 143.21 (d, $J_{CF} = 3.5$ Hz), 142.27, 139.96, 139.18, 137.92, 130.83, 130.35, 129.59 (d, $J_{CF} = 9.3$ Hz), 128.44, 127.75, 127.51, 127.46, 127.22 (d, $J_{CF} = 3.0$ Hz), 123.48 (d, $J_{CF} = 15.2$ Hz), 122.69, 115.69 (d, $J_{CF} = 22.3$ Hz), 60.24, 53.45, 35.02 (d, $J_{CF} = 4.1$ Hz), 14.13. **<u>19F</u> NMR** (471 MHz, CDCl₃) δ -115.54. **<u>HRMS (ESI)</u>** calcd for C₃₁H₂₆FN₃O₃Na [M+Na]⁺: 530.1850, found: 530.1856. **<u>FTIR</u>** (KBr, cm⁻¹) 2965.42, 2830.84, 2724.30, 2351.40, 1608.41, 1372.90, 1061.68, 770.09, 568.22.

Butyl(2*E*,4*E*)-4,5-bis(4-bromophenyl)-5-(3-fluoro-2-(((p hosphaneylmethyl)amino)methyl)phenyl)penta-2,4-dien oate (5h) Following the general procedure 2 at the conditions of 110 °C, 5h was obtained as a white solid (71.5 mg, 69% yield, E/Z=96:4, m.p. = 58.3 °C). ¹H NMR

(500 MHz, CDCl₃) δ 9.31 (s, 1H), 8.69 (d, J = 2.4 Hz, 1H), 8.46 – 8.39 (m, 1H), 7.52 (s, 1H), 7.45 (d, J = 8.5 Hz, 2H), 7.43 – 7.39 (m, 1H), 7.28 (d, J = 15.6 Hz, 1H), 7.19 (t, J = 8.9 Hz, 1H), 7.14 (d, J = 8.6 Hz, 2H), 7.09 (t, J = 7.3 Hz, 3H), 6.79 (d, J = 8.6 Hz, 2H), 5.51 (d, J = 15.6 Hz, 1H), 4.65 (dd, J = 14.3, 6.3 Hz, 1H), 4.50 (dd, J = 14.4, 4.9 Hz, 1H), 4.01 – 3.92 (m, 2H), 1.54 – 1.46 (m, 2H), 1.31 – 1.22 (m, 2H), 0.87 (t, J = 7.4 Hz, 3H). $\frac{13}{C}$ **NMR** (125 MHz, CDCl₃) δ 166.65, 162.32 (d, $J_{CF} = 249.1$ Hz), 162.04, 147.16, 144.62 (d, $J_{CF} = 2.2$ Hz), 144.16 (d, $J_{CF} = 14.9$ Hz), 144.06, 142.53, 142.48, 138.72, 138.41, 136.52, 132.44, 131.94, 131.91, 131.21, 129.81 (d, $J_{CF} = 9.3$ Hz), 127.09 (d, $J_{CF} = 2.9$ Hz), 123.49 (d, $J_{CF} = 15.3$ Hz), 123.15, 122.11 (d, $J_{CF} = 22.6$ Hz), 116.02 (d, $J_{CF} = 22.3$ Hz), 64.31, 34.95 (d, $J_{CF} = 3.8$ Hz), 30.53, 19.09, 13.66. $\frac{19}{F}$ **NMR** (471 MHz, CDCl₃) δ -115.19. **HRMS (ESI)** calcd for C₃₃H₂₈Br₂FN₃O₃ [M+Na]⁺: 714.0374, found: 714.0371. **FTIR** (KBr, cm⁻¹) 2948.60, 2828.04, 2718.69, 2357.01, 1597.20, 1361.68, 1084.11, 784.11.

Ttert-butyl(2*E*,4*E*)-4,5-bis(3-bromophenyl)-5-(3-fluoro-2-((pyrazine-2-carboxamido)methyl)phenyl)penta-2,4-d ienoate (5i) Following the general procedure 2 at the conditions of 110 °C, 5i was obtained as a white solid (78.8 mg, 76% yield, E/Z=93:7, m.p. = 56.5 °C). <u>¹H NMR</u> (500

MHz, CDCl₃) δ 9.34 (s, 1H), 8.69 (d, J = 2.3 Hz, 1H), 8.46 – 8.43 (m, 1H), 7.64 (s, 1H), 7.45 – 7.40 (m, 2H), 7.36 (s, 1H), 7.22 – 7.13 (m, 4H), 7.10 (d, J = 7.0 Hz, 1H), 7.09 – 7.06 (m, 1H), 7.03 (t, J = 1.7 Hz, 1H), 6.91 – 6.87 (m, 1H), 6.84 (t, J = 7.8 Hz, 1H), 5.45 (d, J = 15.6 Hz, 1H), 4.67 – 4.51 (m, 2H), 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 165.81, 162.22 (d, $J_{CF} = 249.0$ Hz), 162.04, 147.14, 144.26, 144.14, 144.03 (d, $J_{CF} = 2.2$ Hz), 142.81, 142.38, 142.05 (d, $J_{CF} = 3.5$ Hz), 141.67, 139.73, 138.74, 133.38, 132.95, 130.90, 130.64, 130.16, 129.86 (d, $J_{CF} = 9.3$ Hz), 129.53, 129.30, 128.97, 127.09 (d, $J_{CF} = 3.2$ Hz), 125.42, 123.48 (d, $J_{CF} = 15.3$ Hz), 122.44, 122.06, 116.09 (d, $J_{CF} = 22.4$ Hz), 80.58, 34.82 (d, $J_{CF} = 4.3$ Hz), 28.01. ¹⁹F NMR (471 MHz, CDCl₃) δ -115.36. <u>HRMS (ESI)</u> calcd for C₃₃H₂₈Br₂FN₃O₃Na [M+Na]⁺: 714.0374, found: 714.0373. **FTIR** (KBr, cm⁻¹) 2965.42, 2833.64, 2715.89, 1602.80, 1356.07, 1072.90, 781.31.

Tert-butyl(2*E*,4*E*)-5-(3-fluoro-2-((pyrazine-2-carboxa mido) methyl) phenyl)-4,5-bis(4-methoxyphenyl) penta-2,4-dienoate (5j) Following the general procedure 2 at the conditions of 110°C, 5j was obtained as a white solid (59.8 mg, 67% yield, E/Z=98:2, m.p. =

116.6 °C). <u>**1H NMR**</u> (500 MHz, CDCl₃) δ 9.31 (s, 1H), 8.66 (d, J = 2.3 Hz, 1H), 8.40 – 8.37 (m, 1H), 7.45 (s, 1H), 7.42 – 7.37 (m, 1H), 7.25 (d, J = 15.4 Hz, 1H), 7.14 – 7.08 (m, 4H), 6.84 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 8.9 Hz, 2H), 6.51 (d, J = 8.9 Hz, 2H), 5.48 (d, J = 15.4 Hz, 1H), 4.62 (dd, J = 14.3, 6.2 Hz, 1H), 4.51 (dd, J = 13.7, 4.6 Hz, 1H), 3.81 (s, 3H), 3.59 (s, 3H), 1.34 (s, 9H). <u>**13C NMR**</u> (125 MHz, CDCl₃) δ 166.45, 162.15 (d, $J_{CF} = 248.8$ Hz), 161.99, 158.71 (d, $J_{CF} = 12.3$ Hz), 146.90, 144.53,
144.37, 144.21, 143.91 (d, $J_{CF} = 3.5$ Hz), 142.31, 137.50, 132.65, 131.97, 131.87, 130.97, 130.61, 130.50, 129.50 (d, $J_{CF} = 9.2$ Hz), 127.24 (d, $J_{CF} = 3.0$ Hz), 123.53, 123.31 (d, $J_{CF} = 15.1$ Hz), 115.48 (d, $J_{CF} = 22.4$ Hz), 113.98, 113.22, 80.06, 55.19, 54.95, 34.98 (d, J = 4.1 Hz), 28.05. ¹⁹F NMR (471 MHz, CDCl₃) δ -115.71. HRMS (ESI) calcd for C₃₅H₃₄FN₃O₅Na [M+Na]⁺: 618.2375, found: 618.2382. FTIR (KBr, cm⁻¹) 2957.14, 2828.17, 2718.83, 1600.15, 1359.03, 1078.65, 778.66, 568.38.

Tert-butyl(2*E*,4*E*)-4,5-bis(4-butylphenyl)-5-(3-fluoro-2-((pyrazine-2-carboxamido)methyl)phenyl)penta-2,4-dien oate (5k) Following the general procedure 2 at the conditions of 110°C, 5k was obtained as a yellow liquid (54.4 mg, 56% yield, E/Z=98:2). ¹H NMR (500 MHz,

CDCl₃) δ 9.33 (s, 1H), 8.66 (d, J = 2.1 Hz, 1H), 8.39 (s, 1H), 7.58 (s, 1H), 7.43 – 7.37 (m, 1H), 7.26 (d, J = 15.4 Hz, 1H), 7.15 (t, J = 7.5 Hz, 2H), 7.10 – 7.03 (m, 4H), 6.77 (s, 4H), 5.50 (d, J = 15.5 Hz, 1H), 4.57 (d, J = 5.4 Hz, 2H), 2.59 (t, J = 7.6 Hz, 2H), 2.37 – 2.31 (m, 2H), 1.59 (p, J = 7.6 Hz, 2H), 1.41 – 1.34 (m, 3H), 1.33 (s, 9H), 1.24 – 1.16 (m, 3H), 0.92 (t, J = 7.4 Hz, 3H), 0.83 (t, J = 7.3 Hz, 3H). $\frac{13C \text{ NMR}}{13C \text{ NMR}}$ (125 MHz, CDCl₃) δ 166.41, 162.12 (d, $J_{CF} = 248.5$ Hz), 162.02, 146.91, 145.00 (d, $J_{CF} = 2.3$ Hz), 144.42, 144.31, 144.22, 143.71 (d, $J_{CF} = 3.4$ Hz), 142.30, 142.23, 141.99, 138.64, 137.34, 135.33, 130.63, 130.29, 129.45 (d, $J_{CF} = 9.3$ Hz), 128.45, 127.61, 127.24 (d, $J_{CF} = 3.0$ Hz), 123.91, 123.39 (d, $J_{CF} = 15.0$ Hz), 115.43 (d, $J_{CF} = 22.3$ Hz), 80.06, 35.33, 35.14, 35.03 (d, $J_{CF} = 4.0$ Hz), 33.43, 33.06, 28.04, 22.24, 22.17, 13.98, 13.88. $\frac{19F \text{ NMR}}{19F \text{ NMR}}$ (471 MHz, CDCl₃) δ -115.86. **HRMS (ESI)** calcd for C₄₁H₄₆FN₃O₃Na [M+Na]⁺: 670.3415, found: 670.3419. **FTIR** (KBr, cm⁻¹) 2954.21, 2825.23, 2729.91, 1594.39, 1364.49, 1078.50, 778.50.

Tert-butyl(2*E*,4*Z*)-4-butyl-5-(3-fluoro-2-((pyrazine-2-carbox amido)methyl) phenyl)nona-2,4-dienoate (5l) Following the general procedure 2 at the conditions of 110°C, 5l was obtained as a yellow liquid (41.6 mg, 56% yield, E/Z=96:4). ¹H NMR (500 MHz, CDCl₃) δ 9.36 (s, 1H), 8.69 (d, J = 2.1 Hz, 1H), 8.44 (s, 1H), 7.86 (s, 1H), 7.33 – 7.28 (m, 1H), 7.07 (t, J = 9.0 Hz, 1H), 6.88 – 6.82 (m, 2H), 5.69 (d, J = 15.8 Hz, 1H), 4.72 (dd, J =14.2, 6.0 Hz, 1H), 4.43 (dd, J = 14.2, 4.9 Hz, 1H), 2.64 – 2.56 (m, 1H), 2.43 – 2.30 (m, 3H), 1.56 – 1.39 (m, 5H), 1.38 – 1.19 (m, 12H), 0.96 (t, J = 6.8 Hz, 3H), 0.83 (t, J =6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.51, 162.16, 162.04 (d, $J_{CF} = 248.0$ Hz), 147.01, 146.21 (d, $J_{CF} = 1.8$ Hz), 144.43, 144.29, 143.90 (d, $J_{CF} = 3.4$ Hz), 142.52 (d, $J_{CF} = 10.7$ Hz), 135.39, 129.22 (d, $J_{CF} = 9.3$ Hz), 125.37 (d, $J_{CF} = 3.0$ Hz), 122.34 (d, $J_{CF} = 14.6$ Hz), 119.09, 114.54 (d, $J_{CF} = 22.1$ Hz), 79.88, 35.21 (d, $J_{CF} =$ 3.4 Hz), 35.09, 31.37, 30.15, 28.04, 27.67, 23.16, 23.01, 13.95, 13.83.¹⁹F NMR (471 MHz, CDCl₃) δ -115.96. HRMS (ESI) calcd for C₂₉H₃₈FN₃O₃Na [M+Na]⁺: 518.2789, found: 518.2795. FTIR (KBr, cm⁻¹) 2965.42, 2830.84, 2715.89, 2365.42, 1311.21, 1367.29, 1086.92, 786.92, 565.42.

Tert-butyl (2*E*,4*Z*)-5-(3-fluoro-2-((pyrazine-2-carboxamido) methyl)phenyl)-4-hexylundeca-2,4-dienoate (5m) Following the general procedure 2 at the conditions of 110°C, 5m was obtained as a yellow liquid (49.2 mg, 54% yield, *E*/*Z*=97:3).

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 9.36 (s, 1H), 8.69 (s, 1H), 8.44 (s, 1H), 7.84 (s, 1H), 7.33 – 7.25 (m, 1H), 7.06 (t, J = 9.0 Hz, 1H), 6.91 – 6.82 (m, 2H), 5.69 (d, J = 15.8Hz, 1H), 4.72 (dd, J = 14.2, 6.1 Hz, 1H), 4.42 (dd, J = 14.5, 4.7 Hz, 1H), 2.62 – 2.53 (m, 1H), 2.38 (t, J = 7.9 Hz, 2H), 2.35 – 2.28 (m, 1H), 1.53 – 1.36 (m, 5H), 1.33 (s, 9H), 1.30 – 1.10 (m, 11H), 0.91 (t, J = 6.8 Hz, 3H), 0.82 (t, J = 7.0 Hz, 3H). ¹³<u>C</u> <u>NMR</u> (125 MHz, CDCl₃) δ 166.50, 162.14, 162.03 (d, $J_{CF} = 248.0$ Hz), 147.01, 146.23 (d, $J_{CF} = 1.8$ Hz), 144.44, 144.31, 143.91 (d, $J_{CF} = 3.4$ Hz), 142.56, 142.46, 135.43, 129.21 (d, $J_{CF} = 9.4$ Hz), 125.35 (d, $J_{CF} = 2.9$ Hz), 122.35 (d, $J_{CF} = 14.7$ Hz), 119.11, 114.53 (d, $J_{CF} = 22.1$ Hz), 79.87, 35.36, 35.19 (d, $J_{CF} = 3.4$ Hz), 31.62, 31.57, 29.76, 29.58, 29.21, 28.04, 27.97, 27.11, 22.65, 22.52, 14.08, 14.00. ¹⁹<u>F NMR</u> (471 MHz, CDCl₃) δ -115.96. <u>HRMS (ESI)</u> calcd for C₃₃H₄₆FN₃O₃Na [M+Na]⁺: 574.3415, found: 574.3418. **FTIR** (KBr, cm⁻¹) 2959.81, 2836.45, 2721.50, 2351.40, 1614.02, 1358.88, 1084.11, 770.09.

59.0 °C). ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 9.38 (s, 1H), 8.68 (s, 1H), 8.45 (s, 1H), 8.06 (s, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.39 – 7.34 (m, 2H), 7.30 (d, J = 6.9 Hz, 2H), 7.14 – 7.08 (m, 2H), 7.02 (d, J = 7.6 Hz, 1H), 5.16 (d, J = 15.4 Hz, 1H), 4.85 (dd, J = 14.4, 6.1 Hz, 1H), 4.63 (dd, J = 14.2, 5.6 Hz, 1H), 1.93 (s, 3H), 1.29 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 166.35, 162.27, 162.07 (d, $J_{CF} = 247.7$ Hz), 147.11, 144.38, 144.33, 144.29, 142.84 (d, $J_{CF} = 2.1$ Hz), 142.72, 142.52, 138.32, 137.81, 129.84 (d, $J_{CF} = 9.4$ Hz), 129.58, 128.66, 127.39, 124.49 (d, $J_{CF} = 3.1$ Hz), 122.80, 122.28 (d, $J_{CF} = 14.8$ Hz), 114.81 (d, $J_{CF} = 22.1$ Hz), 79.98, 34.95 (d, $J_{CF} = 3.5$ Hz), 28.01, 24.08. ¹⁹F NMR (471 MHz, CDCl₃) δ -116.16. <u>HRMS (ESI)</u> calcd for C₂₈H₂₈FN₃O₃Na [M+Na]⁺: 496.2007, found: 496.2006. <u>FTIR</u> (KBr, cm⁻¹) 2945.79, 2833.64, 2713.08, 1594.39, 1361.68, 1067.29, 778.50.

obtained as a yellow solid (65.4 mg, 76% yield, *E*/*Z*=96:4, m.p. = 131.5 °C). ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 9.36 (s, 1H), 8.68 (d, *J* = 2.4 Hz, 1H), 8.43 – 8.38 (m, 1H), 7.63 (s, 1H), 7.46 (d, *J* = 1.9 Hz, 1H), 7.42 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.37 (d, *J* = 15.6 Hz, 1H), 7.28 – 7.22 (m, 4H), 7.13 (d, *J* = 6.4 Hz, 2H), 7.00 – 6.95 (m, 3H), 6.91 (dd, *J* = 7.5, 2.1 Hz, 2H), 5.47 (d, *J* = 15.6 Hz, 1H), 4.51 – 4.42 (m, 2H), 1.36 (s, 9H), 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 166.46, 162.30, 151.83, 147.10, 146.98, 144.52,

144.49, 144.28, 142.32, 140.54, 138.62, 138.45, 137.65, 135.39, 131.37, 130.90, 130.41, 128.30, 127.60, 127.21, 127.18, 127.17, 124.94, 123.88, 80.01, 42.06, 34.71, 31.34, 28.06. **HRMS (ESI)** calcd for C₃₇H₃₉N₃O₃Na [M+Na]⁺: 596.2884, found: 296.2875. **FTIR** (KBr, cm⁻¹) 2645.79, 2836.45, 2718.69, 2368.22, 1597.20, 1386.92, 1199.07, 1075.70, 767.29, 599.07.

Tert-butyl(2*E*,4*E*)-5-(3-methyl-2-((pyrazine-2-carboxami do) methyl) phenyl)-4,5-diphenylpenta-2,4-dienoate (5p) Following the general procedure 2 at the conditions of 110°C, 5p was obtained as a Orange solid (36.7 mg, 46%

yield, E/Z=93:7, m.p. = 130.6 °C). ¹H NMR (500 MHz, CDCl₃) δ 9.29 (d, J = 1.4 Hz, 1H), 8.63 (d, J = 2.4 Hz, 1H), 8.31 (dd, J = 2.4, 1.5 Hz, 1H), 7.39 – 7.34 (m, 2H), 7.28 – 7.22 (m, 5H), 7.14 (d, J = 6.5 Hz, 2H), 7.08 (s, 1H), 6.97 – 6.92 (m, 2H), 6.92 – 6.85 (m, 3H), 5.48 (d, J = 15.5 Hz, 1H), 4.62 (dd, J = 14.2, 6.4 Hz, 1H), 4.48 (dd, J = 14.2, 4.3 Hz, 1H), 2.40 (s, 3H), 1.35 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 166.45, 162.12, 147.52, 146.89, 144.45, 144.26, 144.10, 142.15, 141.98, 140.68, 138.92, 138.49, 138.31, 133.47, 130.94, 130.86, 130.35, 129.42, 128.36, 128.11, 127.69, 127.29, 127.12, 123.81, 80.10, 39.00, 28.07, 19.55. HRMS (ESI) calcd for C₃₄H₃₃N₃O₃Na [M+Na]⁺: 554.2414, found: 554.2407. FTIR (KBr, cm⁻¹) 2951.40, 2836.45, 2718.69, 2368.22, 1597.2, 1358.88, 1199.07, 1070.09, 778.50, 756.64.

Butyl (2*E*,4*E*)-5-(3-methoxy-2-(((phosphaneyl methyl)amino)methyl)phenyl)-4,5-diphenylpenta-2,4-die noate (5q) Following the general procedure 2 at the conditions of 110°C, 5q was obtained as a yellow solid

(64.8 mg, 79% yield, E/Z>99:1, m.p. = 103.0 °C). ¹H NMR (500 MHz, CDCl₃) δ 9.31 (s, 1H), 8.65 (s, 1H), 8.39 (s, 1H), 7.73 (s, 1H), 7.40 – 7.34 (m, 2H), 7.30 – 7.20 (m, 5H), 7.00 – 6.88 (m, 7H), 5.51 (d, J = 15.6 Hz, 1H), 4.70 – 4.58 (m, 2H), 3.98 – 3.85 (m, 5H), 1.51 – 1.42 (m, 2H), 1.29 – 1.20 (m, 2H), 0.85 (t, J = 7.4 Hz, 3H). ¹³C NMR

(125 MHz, CDCl₃) δ 166.13, 160.88, 157.69, 145.84, 145.67, 144.33, 143.77, 143.23, 141.41, 141.22, 139.38, 137.60, 137.16, 129.90, 129.32, 128.01, 127.32, 126.50, 126.25, 126.09, 123.15, 122.29, 120.82, 109.34, 62.93, 54.68, 35.20, 29.53, 18.05, 12.65. <u>HRMS (ESI)</u> calcd for C₃₄H₃₃N₃O₃Na [M+Na]⁺: 570.2363, found: 570.2362.
<u>FTIR</u> (KBr, cm⁻¹) 2959.81, 2836.45, 2365.42, 1316.82, 1358.88, 1207.48, 1081.31, 778.50.

Tert-butyl (2E,4E)-5-(3-nitro-2-((pyrazine-2-carboxamido)methyl)phenyl)-4,5-diphenylpenta-2,4-dienoate(5r)Following the general procedure 2 at the conditions of110°C, 5r was obtained as a yellow solid (64.1 mg, 76% yield,

E/*Z*>99:1, m.p. = 147.0 °C). **<u>¹H NMR</u>** (500 MHz, CDCl₃) δ 9.37 (s, 1H), 8.68 (d, *J* = 2.4 Hz, 1H), 8.49 – 8.43 (m, 1H), 8.25 (dd, *J* = 7.3, 3.7 Hz, 1H), 7.99 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.68 – 7.57 (m, 2H), 7.34 – 7.22 (m, 5H), 7.10 (d, *J* = 15.4 Hz, 1H), 7.03 – 6.96 (m, 5H), 5.40 (d, *J* = 15.4 Hz, 1H), 4.99 (dd, *J* = 14.1, 7.8 Hz, 1H), 4.48 (dd, *J* = 14.1, 4.0 Hz, 1H), 1.27 (s, 9H). **<u>¹³C NMR</u>** (125 MHz, CDCl₃) δ 165.86, 162.05, 151.51, 147.02, 144.39, 144.34, 144.20, 143.92, 143.24, 142.57, 140.33, 139.23, 137.65, 136.16, 130.87, 130.50, 130.43, 129.01, 128.40, 127.76, 127.56, 127.53, 124.92, 124.54, 80.24, 37.51, 27.96. **<u>HRMS (ESI)</u>** calcd for C₃₃H₃₀N₄O₅Na [M+Na]⁺: 585.2108, found: 585.2110. **<u>FTIR</u>** (KBr, cm⁻¹) 2957.01, 2825.23, 2715.89, 2359.81, 1602.80, 1364.49, 1210.28, 1072.90, 778.50, 576.64.

Tert-butyl(2*E*,4*E*)-5-(3,5-difluoro-2-((pyrazine-2-carboxa mido) methyl) phenyl)-4,5-diphenylpenta-2,4-dienoate (5s) Following the general procedure 2, 5s was obtained as a yellow solid (59.7 mg, 72% yield, E/Z=96:4, m.p. = 60.1 °C).

¹<u>H NMR</u> (500 MHz, CDCl₃) δ 9.33 (s, 1H), 8.68 (d, J = 2.4 Hz, 1H), 8.43 – 8.37 (m, 1H), 7.59 (s, 1H), 7.31 – 7.26 (m, 3H), 7.23 (d, J = 15.5 Hz, 1H), 7.20 – 7.16 (m, 2H), 7.03 – 6.96 (m, 3H), 6.95 – 6.90 (m, 4H), 5.49 (d, J = 15.5 Hz, 1H), 4.65 – 4.51 (m,

2H), 1.34 (s, 9H). $\frac{^{13}C \text{ NMR}}{(125 \text{ MHz}, \text{CDCl}_3) \delta}$ 166.05, 162.35 (dd, $J_{CF} = 251.2$, 12.8 Hz), 162.16 (dd, $J_{CF} = 251.4$, 13.6 Hz), 162.08, 147.06, 144.50 (dd, $J_{CF} = 9.1$, 4.9 Hz), 144.26, 144.25, 143.83, 143.24, 142.31, 139.56, 139.36, 137.66, 130.75, 130.24, 128.46, 127.85, 127.59, 127.58, 125.17, 119.74 (dd, $J_{CF} = 15.4$, 3.9 Hz), 114.26 (dd, $J_{CF} = 21.1$, 3.4 Hz), 104.05 (t, $J_{CF} = 25.2$ Hz), 80.39, 34.51 (d, $J_{CF} = 3.6$ Hz), 28.02.

¹⁹**F NMR** (471 MHz, CDCl₃) δ -109.40 (d, $J_{FF} = 8.5$ Hz), -111.03 (d, $J_{FF} = 8.6$ Hz). **HRMS (ESI)** calcd for C₃₃H₂₉F₂N₃O₃ [M+Na]⁺: 576.2069, found: 576.2065. **FTIR** (KBr, cm⁻¹) 2962.75, 2833.78, 2721.63, 2357.15, 1616.97, 1375.85, 1196.41, 1064.64, 781.46, 562.77.

Ρh

phenyl)-4,5-diphenylpenta-2,4-dienoate (5t) Following the

^H general procedure 2 at the conditions of 110°C, 5t was obtained as a yellow solid (64.9 mg, 76% yield, *E*/Z=96:4, m.p. = 105.5 °C). ¹H NMR (500 MHz, CDCl₃) δ 9.33 (s, 1H), 8.68 (d, *J* = 2.4 Hz, 1H), 8.41 (dd, *J* = 2.3, 1.5 Hz, 1H), 7.63 (s, 1H), 7.31 – 7.25 (m, 3H), 7.24 – 7.15 (m, 5H), 7.02 – 6.96 (m, 3H), 6.94 – 6.90 (m, 2H), 5.50 (d, *J* = 15.5 Hz, 1H), 4.65 – 4.54 (m, 2H), 1.34 (s, 9H). ¹³C <u>NMR</u> (125 MHz, CDCl₃) δ 166.04, 162.10, 161.97 (d, *J*_{CF} = 252.1 Hz), 147.09, 144.34 (d, *J*_{CF} = 4.4 Hz), 144.27, 144.21, 143.56 (d, *J*_{CF} = 2.3 Hz), 143.21, 142.34, 139.73, 139.37, 137.66, 134.70 (d, *J*_{CF} = 11.8 Hz), 130.75, 130.29, 128.46, 127.86, 127.60, 127.07 (d, *J*_{CF} = 3.2 Hz), 125.26, 122.40 (d, *J*_{CF} = 15.2 Hz), 116.33 (d, *J*_{CF} = 25.9 Hz), 80.40, 34.58 (d, *J*_{CF} = 3.5 Hz), 28.02. ¹⁹F NMR (471 MHz, CDCl₃) δ -112.84. HRMS (ESI) calcd for C₃₃H₂₉ClF₂N₃O₃Na [M+Na]⁺: 592.1774, found: 592.1768. FTIR (KBr, cm⁻¹) 2959.81, 2836.45, 2365.42, 1616.82, 1358.88, 1207.48, 1081.31, 778.50.

Tert-butyl(2E,4E)-5-(3-fluoro-5-methoxy-2-((pyrazine-2-carboxamido)methyl)

phenyl)-4,5-diphenylpenta-2,4-dienoate (5u) Following the general procedure 2 at the conditions of 110°C, 5u was

obtained as a yellow solid (55.4 mg, 68% yield, E/Z = 94:6, m.p. = 50.9 °C). ¹H NMR (500 MHz, CDCl₃) δ 9.33 (s, 1H), 8.66 (d, J = 2.0 Hz, 1H), 8.41 – 8.35 (m, 1H), 7.52 (s, 1H), 7.32 (d, J = 15.5 Hz, 1H), 7.30 – 7.23 (m, 3H), 7.18 (d, J = 6.7 Hz, 2H), 6.95 (q, J = 5.3 Hz, 5H), 6.74 – 6.68 (m, 2H), 5.47 (d, J = 15.5 Hz, 1H), 4.63 – 4.45 (m, 2H), 3.83 (s, 3H), 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 166.25, 162.83 (d, J_{CF} = 247.8 Hz), 161.97, 160.21 (d, $J_{CF} = 12.2$ Hz), 146.92, 145.13 (d, $J_{CF} = 2.7$ Hz), 144.39, 144.19, 143.86, 143.73 (d, $J_{CF} = 5.4$ Hz), 142.31, 139.70, 139.04, 137.95, 130.82, 130.27, 128.40, 127.71, 127.39 (d, $J_{CF} = 7.0$ Hz), 124.43, 115.33 (d, $J_{CF} =$ 15.8 Hz), 113.17 (d, $J_{CF} = 2.5$ Hz), 101.39 (d, $J_{CF} = 26.2$ Hz), 80.20, 55.75, 34.61 (d, $J_{CF} = 3.6$ Hz), 28.05. ¹⁹F NMR (471 MHz, CDCl₃) δ -113.54. HRMS (ESI) calcd for C₃₄H₃₂FN₃O₄Na [M+ H]⁺: 566.2455, found: 566.2452.

Tert-butyl(2*E*,4*E*)-5-(3,6-difluoro-2-((pyrazine-2-carboxami do) methyl) phenyl)-4,5-diphenylpenta-2,4-dienoate (5v) Following the general procedure 2 at the conditions of 110°C,

5v was obtained as a yellow solid (52.3 mg, 63% yield, E/Z=93:7, m.p. = 145.6 °C). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.35 (s, 1H), 8.67 (d, J =2.3 Hz, 1H), 8.40 (s, 1H), 7.68 (s, 1H), 7.33 – 7.26 (m, 3H), 7.23 – 7.20 (m, 2H), 7.20 – 7.12 (m, 3H), 7.02 – 6.94 (m, 5H), 5.48 (d, J = 15.4 Hz, 1H), 4.70 (dd, J = 14.2, 7.9 Hz, 1H), 4.57 (dd, J = 14.2, 4.5 Hz, 1H), 1.31 (s, 9H). <u>¹³C NMR</u> (125 MHz, CDCl₃) δ 166.03, 162.09, 157.93 (dd, $J_{CF} = 245.1$, 2.3 Hz), 155.83 (dd, $J_{CF} = 242.2$, 2.1 Hz), 147.08, 144.26, 144.22, 142.85, 142.34, 141.15, 139.02, 138.01 (d, $J_{CF} = 1.3$ Hz), 137.56, 130.75, 130.25 (dd, $J_{CF} = 19.7$, 3.6 Hz), 129.95, 128.40, 127.80, 127.56, 127.46, 125.36, 124.77 (dd, $J_{CF} = 17.1$, 2.1 Hz), 116.69 (dd, J = 25.3, 16.6 Hz), 116.69 (d, J = 25.1 Hz), 80.29, 34.80, 28.01. <u>¹⁹F NMR</u> (471 MHz, CDCl₃) δ -118.18 (d, $J_{FF} = 17.6$ Hz), -120.73 (d, $J_{FF} = 17.6$ Hz). <u>**HRMS** (ESI)</u> calcd for $C_{33}H_{29}F_2N_3O_3Na$ [M+Na]⁺: 576.2069, found: 576.2065. <u>FTIR</u> (KBr, cm⁻¹) 2951.40, 2836.45, 2718.69, 2368.22, 1597.20, 1358.88, 1199.07, 1070.09, 778.50, 576.64.

Tert-butyl(2*E*,4*E*)-5-(2-chloro-3,5-difluoro-6-((pyrazine-2-carboxamido)methyl)phenyl)-4,5-diphenylpenta-2,4-di enoate (5w) Following the general procedure 2 at the conditions of 110°C, 5w was obtained as a yellow solid

(65.2 mg, 74% yield, *E*/Z=95:5, m.p. = 103.3 °C). ¹H NMR (500 MHz, CDCl₃) δ 9.33 (s, 1H), 8.67 (d, *J* = 2.4 Hz, 1H), 8.38 (dd, *J* = 2.4, 1.5 Hz, 1H), 7.60 (s, 1H), 7.34 – 7.28 (m, 3H), 7.27 – 7.23 (m, 2H), 7.08 (d, *J* = 8.8 Hz, 1H), 7.04 (d, *J* = 15.4 Hz, 1H), 7.02 – 6.98 (m, 3H), 6.97 – 6.94 (m, 2H), 5.48 (d, *J* = 15.4 Hz, 1H), 4.70 (dd, *J* = 14.4, 6.9 Hz, 1H), 4.53 (dd, *J* = 14.9, 5.1 Hz, 1H), 1.31 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 165.88, 162.05, 160.19 (dd, *J*_{CF} = 252.8, 12.7 Hz), 158.18 (dd, *J*_{CF} = 253.7, 13.6 Hz), 147.09, 144.21, 144.11, 143.10 (d, *J*_{CF} = 4.7 Hz), 142.31, 140.68, 139.98, 137.80, 137.48, 130.64, 130.01, 128.54, 127.91, 127.78, 127.75, 125.90, 120.83 (dd, *J*_{CF} = 16.1, 4.1 Hz), 117.74 (dd, *J*_{CF} = 17.1, 4.0 Hz), 105.10 (dd, *J*_{CF} = 27.6, 25.3 Hz), 80.43, 34.77 (d, *J*_{CF} = 3.4 Hz), 28.01. ¹⁹F NMR (471 MHz, CDCl₃) δ -107.19 (d, *J*_{FF} = 8.4 Hz), -112.61 (d, *J*_{FF} = 8.3 Hz). **HRMS (ESI)** calcd for C₃₃H₂₈ClF₂N₃O₃Na [M+Na]⁺: 610.1679, found: 610.1684. **FTIR** (KBr, cm⁻¹) 2951.53, 2836.58, 2713.22, 2354.34, 1594.54, 1364.63, 1207.63, 1070.24, 784.27, 487.07.

(3*S*,8*R*,9*R*,10*S*,13*S*,14*R*,17*S*)-17-((2*S*,5*S*)-5-ethyl-6 -methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10, 11,12,13,14,15,16,17-tetradecahydro-1H-cyclopen ta[a]phenanthren-3-yl(2*E*,4*E*)-5-(3-fluoro-2-((pyr azine-2-carboxamido)methyl)phenyl)-4,5-dipheny

lpenta-2,4-dienoate (5x) Following the general procedure 2 at 110 °C, 5x was obtained as a yellow solid (68.3 mg, 52% yield, E/Z > 99:1, m.p. = 72.1 °C). ¹H NMR

 $(500 \text{ MHz}, \text{CDCl}_3) \delta 9.32 \text{ (s, 1H)}, 8.66 \text{ (s, 1H)}, 8.39 \text{ (s, 1H)}, 7.60 \text{ (s, 1H)}, 7.43 - 7.38$ (m, 1H), 7.35 (d, J = 15.5 Hz, 1H), 7.31 – 7.21 (m, 3H), 7.21 – 7.12 (m, 4H), 7.01 – 6.86 (m, 5H), 5.53 (d, J = 15.5 Hz, 1H), 5.33 (d, J = 18.7 Hz, 1H), 4.71 – 4.54 (m, 2H), 4.47 (tt, J = 10.1, 4.3 Hz, 1H), 2.26 – 2.11 (m, 2H), 2.08 – 1.90 (m, 3H), 1.89 – 1.78 (m, 2H), 1.77 – 1.62 (m, 2H), 1.61 – 1.38 (m, 7H), 10.9, 10.5, 4.9 Hz, 7H), 1.37 -0.89 (m, 20H), 0.88 - 0.75 (m, 8H), 0.68 (d, J = 9.1 Hz, 3H). $\frac{13C \text{ NMR}}{125}$ (125 MHz, CDCl₃) δ 166.35, 162.20 (d, J_{CF} = 248.8 Hz), 162.05, 146.97 (d, J_{CF} = 3.6 Hz), 145.53, 144.75 (d, *J_{CF}* = 3.7 Hz), 144.34, 144.25, 143.23 (d, *J_{CF}* = 3.1 Hz), 142.28, 139.99 (d, $J_{CF} = 3.0$ Hz), 139.62 (d, $J_{CF} = 6.4$ Hz), 139.21, 137.95 (d, $J_{CF} = 1.4$ Hz), 130.84, 130.36, 129.57 (d, *J_{CF}* = 8.5 Hz), 128.44, 127.74, 127.49, 127.44, 127.24 (d, *J_{CF}* = 2.9 Hz), 123.49 (d, J_{CF} = 15.2 Hz), 122.98 (d, J_{CF} = 6.1 Hz), 122.62, 115.67 (d, J_{CF} = 22.3 Hz), 73.99, 56.69, 56.04, 49.99, 45.84, 42.31, 39.72, 38.05 (d, *J*_{CF} = 5.3 Hz), 36.95 (d, $J_{CF} = 3.2$ Hz), 36.58, 36.15, 35.04, 33.95, 31.87 (d, $J_{CF} = 5.9$ Hz), 29.16, 28.25, 27.70 (d, *J_{CF}* = 2.6 Hz), 26.08, 24.30, 23.08, 21.02, 19.84, 19.27, 19.06, 18.79, 18.28, 12.00, 11.86. ¹⁹F NMR (471 MHz, CDCl₃) δ -115.56. HRMS (ESI) calcd for C₅₈H₇₀FN₃O₃Na [M+Na]⁺: 898.2593, found: 898.2595.

(*E*)-3,7-dimethylocta-2,6-dien-1-yl (2*E*,4*E*)-5-(3fluoro -2-((pyrazine-2-carboxamido) methyl) phenyl)-4,5-diphenylpenta-2,4-dienoate (5y) Following the general procedure 2 at 110 °C, 5y

was obtained as a yellow liquid (69.7 mg, 53% yield, E/Z = 96:4). ¹H NMR (500 MHz, CDCl₃) δ 9.32 (d, J = 1.3 Hz, 1H), 8.67 – 8.64 (m, 1H), 8.41 – 8.35 (m, 1H), 7.58 (t, J = 5.2 Hz, 1H), 7.44 – 7.38 (m, 1H), 7.36 (d, J = 15.5 Hz, 1H), 7.29 – 7.22 (m, 3H), 7.16 (dd, J = 15.2, 7.5 Hz, 4H), 7.00 – 6.89 (m, 5H), 5.57 (d, J = 15.5 Hz, 1H), 5.23 (t, J = 7.0 Hz, 1H), 5.05 (t, J = 6.8 Hz, 1H), 4.66 – 4.56 (m, 2H), 4.55 – 4.44 (m, 2H), 2.10 – 2.03 (m, 2H), 2.03 – 1.97 (m, 2H), 1.66 (s, 3H), 1.63 (s, 3H), 1.58 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 166.93, 162.19 (d, $J_{CF} = 248.8$ Hz), 162.05, 146.97, 145.58 (d, $J_{CF} = 2.3$ Hz), 144.89, 144.32, 144.27, 143.24 (d, J = 3.5

Hz), 142.41, 142.26, 139.97, 139.21, 137.92, 131.84, 130.82, 130.35, 129.59 (d, $J_{CF} =$ 9.3 Hz), 128.43, 127.74, 127.50, 127.45, 127.23 (d, $J_{CF} =$ 3.1 Hz), 123.69, 123.48 (d, $J_{CF} =$ 15.1 Hz), 122.70, 118.09, 115.69 (d, $J_{CF} =$ 22.2 Hz), 61.18, 39.51, 35.03 (d, $J_{CF} =$ 4.0 Hz), 26.28, 25.68, 17.69, 16.45. ¹⁹F NMR (471 MHz, CDCl₃) δ -115.49. HRMS (ESI) calcd for C₃₉H₃₈FN₃O₃Na [M+Na]⁺: 638.2789, found: 638.2788.

N-(2-fluoro-6-((1*E*,3*E*)-5-((((1*S*,4a*R*,10a*S*)-7-isopr opyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydro phenanthren-1-yl)methyl)amino)-5-oxo-1,2-diphe nylpenta-1,3-dien-1-yl)benzyl)pyrazine-2-carboxa mide (5z) Following the general procedure 2 at

110 °C, 5z was obtained as a yellow solid (79.6 mg, 71% yield, E/Z > 99:1, m.p. = 193.9 °C). <u>**H NMR**</u> (500 MHz, CDCl₃) δ 9.28 (s, 1H), 8.61 (d, *J* = 12.6 Hz, 1H), 8.37 (d, J = 14.9 Hz, 1H), 7.66 – 7.53 (m, 1H), 7.41 – 7.05 (m, 10H), 7.02 – 6.85 (m, 7H), 5.45 (dd, J = 15.1, 10.6 Hz, 1H), 5.38 - 5.31 (m, 1H), 4.64 (dd, J = 14.1, 5.8 Hz, 1H),4.57 - 4.49 (m, 1H), 3.18 - 2.95 (m, 2H), 2.93 - 2.69 (m, 3H), 2.24 (d, J = 12.6 Hz, 1H), 1.86 – 1.75 (m, 1H), 1.73 – 1.52 (m, 3H), 1.35 – 1.11 (m, 13H), 0.86 (s, 3H). ¹³C <u>NMR</u> (125 MHz, CDCl₃) δ 166.00, 165.85, 162.24 (dd, J_{CF} = 248.4, 2.4 Hz), 162.09, 147.15, 146.90, 145.69 (d, $J_{CF} = 9.2$ Hz), 144.42, 144.15, 143.30, 142.35, 141.38 (d, $J_{CF} = 18.7$ Hz), 140.33, 139.15 (d, $J_{CF} = 5.0$ Hz), 138.41 (d, $J_{CF} = 3.9$ Hz), 134.82 (d, $J_{CF} = 10.8$ Hz), 130.94, 130.34 (d, $J_{CF} = 2.1$ Hz), 129.56 (t, $J_{CF} = 9.4$ Hz), 128.40, 127.68, 127.33 (d, J_{CF} = 2.8 Hz), 127.26 (d, J_{CF} = 2.9 Hz), 127.16, 126.93 (d, J_{CF} = 3.5 Hz), 125.39 (d, *J_{CF}* = 16.2 Hz), 124.16, 123.87, 123.39 (d, *J_{CF}* = 15.0 Hz), 115.56 (dd, $J_{CF} = 22.2, 2.7$ Hz), 49.76 (d, $J_{CF} = 3.1$ Hz), 45.03 (d, $J_{CF} = 15.5$ Hz), 38.22 (d, $J_{CF} = 15.5$ Hz), 38.25 Hz), 38.25 Hz), 38.25 Hz), 38.25 Hz), 38.25 Hz), 38.25 3.2 Hz), 37.50 (d, $J_{CF} = 19.4$ Hz), 36.10, 35.20 (dd, $J_{CF} = 6.1, 4.4$ Hz), 33.45, 29.91 (d, $J_{CF} = 47.9$ Hz), 29.53 (d, $J_{CF} = 37.5$ Hz), 25.30 (d, $J_{CF} = 6.9$ Hz), 24.02, 18.89 (d, J_{CF} = 4.2 Hz), 18.80 (d, J_{CF} = 1.7 Hz), 18.55. <u>¹⁹F NMR</u> (471 MHz, CDCl₃) δ -115.64. HRMS (ESI) calcd for C₄₉H₅₁FN₄O₂Na [M+Na]⁺: 769.3888, found: 769.3890.

Tert-butyl(2*E*,4*E*)-5-(3-fluoro-2-((pyrimidine-4-carboxami do) methyl) phenyl)-4,5-diphenylpenta-2,4-dienoate (5bb) Following the general procedure 2 at the conditions of 110°C, 5bb was obtained as a yellow solid (61.0 mg, 76% yield, E/Z=96:4, m.p. = 63.8 °C). <u>¹H NMR</u> (500 MHz, CDCl₃)

δ 9.11 (s, 1H), 8.90 (d, J = 5.0 Hz, 1H), 8.05 (d, J = 6.1 Hz, 1H), 7.78 (s, 1H), 7.45 – 7.38 (m, 1H), 7.31 – 7.23 (m, 4H), 7.21 – 7.14 (m, 4H), 7.01 – 6.94 (m, 3H), 6.94 – 6.90 (m, 2H), 5.49 (d, J = 15.5 Hz, 1H), 4.66 – 4.54 (m, 2H), 1.33 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 166.23, 162.15 (d, $J_{CF} = 248.8$ Hz), 161.69, 158.95, 157.49, 156.07, 145.07 (d, $J_{CF} = 2.2$ Hz), 143.80, 143.31 (d, $J_{CF} = 3.4$ Hz), 139.99, 139.24, 138.03, 131.98, 130.84, 130.32, 129.63 (d, $J_{CF} = 9.3$ Hz), 128.39, 127.76, 127.43, 127.25 (d, $J_{CF} = 3.1$ Hz), 124.55, 123.20 (d, $J_{CF} = 15.1$ Hz), 118.43, 115.64 (d, $J_{CF} =$ 22.4 Hz), 80.28, 35.13 (d, $J_{CF} = 4.2$ Hz), 28.03. ¹⁹F NMR (471 MHz, CDCl₃) δ -115.59. **HRMS (ESI)** calcd for C₃₃H₃₀FN₃O₃Na [M+Na]⁺: 558.2163, found: 558.2162. **FTIR** (KBr, cm⁻¹) 2948.60, 2833.64, 2713.08, 2348.60, 1616.82, 1367.29, 1204.67, 1078.50, 778.50, 565.42.

Tert-butyl(2*E*,4*E*)-5-(3-fluoro-2-(quinolin-8-ylcarbamoyl)p henyl)-4,5-diphenylpenta-2,4-dienoate (5dd) Following the general procedure 2, 5dd was obtained as a colorless liquid (26.6 mg, 47% yield, E/Z > 99:1). ¹H NMR (500 MHz, CDCl₃) δ 10.12 (s, 1H), 8.75 (dd, J = 4.2, 1.6 Hz, 1H), 8.68 (dd, J =

5.2, 3.8 Hz, 1H), 8.12 (dd, J = 8.3, 1.6 Hz, 1H), 7.61 (d, J = 15.5 Hz, 1H), 7.53 – 7.47 (m, 3H), 7.42 (dd, J = 8.2, 4.2 Hz, 1H), 7.27 – 7.23 (m, 1H), 7.19 (d, J = 8.4 Hz, 1H), 7.17 – 7.12 (m, 3H), 7.11 – 7.07 (m, 2H), 6.95 – 6.81 (m, 5H), 5.44 (d, J = 15.5 Hz, 1H), 1.23 (s, 9H). $\frac{13}{C}$ NMR (125 MHz, CDCl₃) δ 166.36, 161.89, 159.52 (d, $J_{CF} = 250.1$ Hz), 148.12, 146.03 (d, $J_{CF} = 1.9$ Hz), 143.92, 142.70 (d, $J_{CF} = 2.7$ Hz), 140.61, 138.68, 138.36, 138.05, 136.07, 134.47, 131.00 (d, $J_{CF} = 10.7$ Hz), 130.90 (d, $J_{CF} = 2.7$ Hz), 140.61, 138.68, 138.36, 138.05, 136.07, 134.47, 131.00 (d, $J_{CF} = 10.7$ Hz), 130.90 (d, $J_{CF} = 2.7$ Hz), 140.61, 138.68, 138.36, 138.05, 136.07, 134.47, 131.00 (d, $J_{CF} = 10.7$ Hz), 130.90 (d, $J_{CF} = 1.9$ Hz), 143.92, 142.70 (d, $J_{CF} = 2.7$ Hz), 140.61, 138.68, 138.36, 138.05, 136.07, 134.47, 131.00 (d, $J_{CF} = 10.7$ Hz), 130.90 (d, $J_{CF} = 10.7$ Hz), 130.90 (d, $J_{CF} = 1.9$ Hz), 143.92, 143.92, 142.70 (d, $J_{CF} = 2.7$ Hz), 140.61, 138.68, 138.36, 138.05, 136.07, 134.47, 131.00 (d, $J_{CF} = 10.7$ Hz), 130.90 (d, $J_{CF} = 1.9$ Hz), 143.92, 143.92, 142.70 (d, $J_{CF} = 2.7$ Hz), 140.61, 138.68, 138.36, 138.05, 136.07, 134.47, 131.00 (d, $J_{CF} = 10.7$ Hz), 130.90 (d, $J_{CF} = 10.7$ Hz), 130.90 (d, $J_{CF} = 1.9$ Hz), 140.61, 138.68, 138.36, 138.05, 136.07, 134.47, 131.00 (d, $J_{CF} = 10.7$ Hz), 130.90 (d, $J_{CF} = 1.9$ Hz), 140.61, 138.68, 138.36, 138.05, 136.07, 134.47, 131.00 (d, $J_{CF} = 10.7$ Hz), 130.90 (d, $J_{CF} = 1.9$ Hz), 140.61, 140.51,

15.1 Hz), 128.04, 127.78, 127.61 (d, $J_{CF} = 3.0$ Hz), 127.32, 127.30, 127.07, 127.04, 126.52, 126.39, 124.04, 121.72, 121.50, 116.53, 115.97 (d, $J_{CF} = 22.4$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -114.03. <u>HRMS (ESI)</u> calcd for C₃₇H₃₁FN₂O₃Na [M+Na]⁺: 593.2211 found: 593.2214. <u>FTIR</u> (KBr, cm⁻¹) 3450.47, 2962.62, 2830.84, 2721.50, 2348.60, 1605.61, 1356.07, 1058.88, 767.29.

3.3 General Procedure 3 for Olefinic C-H Alkynylation

A screw-cap vial was charged with $Pd(OAc)_2$ (2.3 mg, 0.01 mmol, 10 mol%), K_2CO_3 (27.6 mg, 0.2 mmol, 2.0 equiv), amide **3** (0.1 mmol, 1.0 equiv), MeCN (1.0 mL). Then, pivalic acid (2.1 mg, 0.02 mmol, 20 mol%), and alkyne **6** (52.3 mg, 0.2 mmol, 2.0 equiv) were added into the solution in sequence. The vial was sealed under air and heated to 100 °C with stirring for 8 h. After cooling down, the mixture was concentrated and directly applied to a flash column chromatography (PE/EA mixtures) for separation to obtain the diene product **7**.

(Z)-N-(2-(1,2-diphenyl-4-(triisopropylsilyl)but-1-en-3-yn-1-yl)-6-fluorobenzyl)pyrazine-2-carboxamide (7a) Following the

general procedure 3, 7a was obtained as a yellow oil (42.5 mg, 72% yield, Z/E > 99:1). ¹H NMR (500 MHz, CDCl₃) δ 9.35 (s,

1H), 8.70 (d, J = 2.3 Hz, 1H), 8.42 (s, 1H), 7.71 (s, 1H), 7.38 (dd, J = 6.5, 3.1 Hz, 2H), 7.36 – 7.30 (m, 1H), 7.25 (d, J = 7.6 Hz, 1H), 7.23 – 7.19 (m, 3H), 7.09 – 7.04 (m, 1H), 7.06 – 6.97 (m, 5H), 4.83 (dd, J = 14.3, 5.5 Hz, 1H), 4.56 (dd, J = 14.2, 4.7 Hz, 1H), 0.92 – 0.83 (m, 21H). ¹³C NMR (125 MHz, CDCl₃) δ 162.13, 162.07 (d, $J_{CF} =$ 247.4 Hz), 146.95, 146.18 (d, $J_{CF} = 2.1$ Hz), 145.54 (d, $J_{CF} = 3.6$ Hz), 144.56, 144.40, 142.22, 139.41, 138.08, 130.28, 129.95, 129.36, 129.28, 128.00, 127.55 (d, $J_{CF} = 5.3$ Hz), 126.73 (d, $J_{CF} = 2.9$ Hz), 124.85, 123.13, 123.02, 114.86 (d, $J_{CF} = 22.5$ Hz), 107.71, 97.67, 35.05 (d, $J_{CF} = 4.5$ Hz), 18.47, 11.15. <u>¹⁹F NMR</u> (471 MHz, CDCl₃) δ -116.52. <u>HRMS (ESI)</u> calcd for C₃₇H₄₀FN₃OSiNa [M+Na]⁺: 612.2817, found: 612.2819.

CDCl₃) δ 9.35 (s, 1H), 8.67 (d, J = 2.3 Hz, 1H), 8.41 (s, 1H), 7.84 (s, 1H), 7.42 – 7.38 (m, 2H), 7.30 (t, J = 8.0 Hz, 1H), 7.19 (q, J = 5.8 Hz, 3H), 7.02 – 6.93 (m, 6H), 6.87 (d, J = 8.2 Hz, 1H), 4.92 (dd, J = 14.0, 6.3 Hz, 1H), 4.56 (dd, J = 14.0, 4.8 Hz, 1H), 3.88 (s, 3H), 0.86 (d, J = 3.1 Hz, 21H). ¹³C NMR (125 MHz, CDCl₃) δ 161.96, 158.63, 147.46, 146.68, 145.06, 144.82, 144.41, 142.22, 139.93, 138.40, 130.31, 130.02, 128.81, 127.92, 127.79, 127.29, 127.18, 124.32, 123.87, 122.91, 109.84, 108.03, 96.62, 55.67, 36.27, 18.49, 11.18. **HRMS (ESI)** calcd for C₃₈H₄₄N₃O₂Si [M+H]⁺: 602.3197, found: 602.3194.

(Z)-N-(2-(1,2-bis (4-bromophenyl)-4-(triisopropylsilyl) but-1-en-3-yn-1-yl)-6-fluorobenzyl)pyrazine-2-carboxamid e (7c) Following the general procedure 3 at 110 °C for 12 h, 7c was obtained as a yellow oil (24.6 mg, 33% yield, Z/E >99:1). ¹H NMR (500 MHz, CDCl₃) δ 9.35 – 9.32 (m, 1H),

8.70 (d, J = 2.4 Hz, 1H), 8.44 (dd, J = 2.3, 1.5 Hz, 1H), 7.59 (s, 1H), 7.37 (d, J = 8.5 Hz, 2H), 7.34 – 7.30 (m, 1H), 7.25 (d, J = 9.4 Hz, 2H), 7.20 – 7.15 (m, 3H), 7.08 (t, J = 8.7 Hz, 1H), 6.87 (s, 2H), 4.75 (dd, J = 14.5, 5.7 Hz, 1H), 4.59 (dd, J = 14.3, 5.3 Hz, 1H), 0.87 (s, 21H). $\frac{13}{C}$ NMR (125 MHz, CDCl₃) δ 162.22 (d, $J_{CF} = 247.4$ Hz), 162.09, 147.16, 145.27 (d, $J_{CF} = 2.3$ Hz), 144.81 (d, $J_{CF} = 3.7$ Hz), 144.34, 144.27, 142.43, 138.23, 136.81, 131.86, 131.50, 131.45, 131.43, 129.54 (d, $J_{CF} = 9.2$ Hz), 126.52 (d,

 $J_{CF} = 2.9$ Hz), 124.28, 123.15 (d, $J_{CF} = 15.3$ Hz), 122.18, 121.99, 115.21 (d, $J_{CF} = 22.2$ Hz), 106.91, 98.75, 35.04 (d, $J_{CF} = 4.2$ Hz), 18.45, 11.09. $\frac{19}{F}$ NMR (471 MHz, CDCl₃) δ -116.16. HRMS (ESI) calcd for C₃₇H₃₉Br₂FN₃OSi [M+H]⁺: 746.1208, found: 746.1207.

(Z)-N-(2-(1,2-bis (4-methoxyphenyl)-4-(triisopropylsilyl) but-1-en-3-yn-1-yl)-6-fluorobenzyl)pyrazine-2-carboxami de (7d) Following the general procedure 3, 7d was obtained as a yellow oil (37.0 mg, 57% yield, Z/E > 99:1). <u>¹H NMR</u> (500 MHz, CDCl₃) δ 9.33 (d, J = 1.2 Hz, 1H), 8.67

(d, J = 2.4 Hz, 1H), 8.41 – 8.37 (m, 1H), 7.58 (s, 1H), 7.33 (d, J = 8.8 Hz, 2H), 7.32 – 7.28 (m, 1H), 7.23 (d, J = 6.9 Hz, 1H), 7.04 (t, J = 8.7 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H), 6.75 (d, J = 8.8 Hz, 2H), 6.56 (d, J = 8.9 Hz, 2H), 4.74 (dd, J = 14.4, 5.5 Hz, 1H), 4.56 (dd, J = 14.3, 5.4 Hz, 1H), 3.78 (s, 3H), 3.62 (s, 3H), 0.87 (s, 21H). $\frac{13C NMR}{125 MHz}$ (125 MHz, CDCl₃) δ 162.08, 162.04 (d, $J_{CF} = 247.4$ Hz), 158.86 (d, $J_{CF} = 3.2$ Hz), 146.89, 146.08 (d, $J_{CF} = 3.4$ Hz), 144.64 (d, $J_{CF} = 2.2$ Hz), 144.56, 144.33, 142.24, 132.08, 131.61, 131.14, 130.61, 129.27 (d, $J_{CF} = 9.2$ Hz), 126.78 (d, $J_{CF} = 2.9$ Hz), 123.01, 122.89, 122.85, 114.69 (d, $J_{CF} = 22.5$ Hz), 113.50, 113.43, 108.18, 96.69, 55.18, 54.99, 35.03 (d, $J_{CF} = 4.5$ Hz), 18.50, 11.16. $\frac{19F}{NMR}$ (471 MHz, CDCl₃) δ -116.60. HRMS (ESI) calcd for C₃₉H₄₄FN₃O₃SiNa [M+Na]⁺: 640.3130, found: 640.3131.

(Z)-N-(2-fluoro-6-(6-((triisopropylsilyl)ethynyl)dec-5-en-5 -yl)benzyl)pyrazine-2-carboxamide (7e) Following the general procedure 3, 7e was obtained as a yellow oil (35.7 mg, 65% yield, Z/E > 99:1). <u>¹H NMR</u> (500 MHz, CDCl₃) δ

9.40 (s, 1H), 8.70 (d, *J* = 2.3 Hz, 1H), 8.44 (s, 1H), 7.93 (s, 1H), 7.25 – 7.19 (m, 1H), 6.96 (t, *J* = 9.0 Hz, 1H), 6.90 (d, *J* = 7.6 Hz, 1H), 4.87 (dd, *J* = 14.4, 6.7 Hz, 1H), 4.48 (dd, *J* = 14.4, 4.1 Hz, 1H), 2.59 – 2.50 (m, 1H), 2.38 – 2.20 (m, 3H), 1.65 – 1.57 (m, 2H), 1.44 - 1.36 (m, 2H), 1.31 - 1.22 (m, 4H), 0.91 (t, J = 7.3 Hz, 3H), 0.87 - 0.78 (m, 24H). ¹³C NMR (125 MHz, CDCl₃) δ 162.26, 162.12 (d, $J_{CF} = 246.7$ Hz), 147.01, 146.07 (d, $J_{CF} = 2.1$ Hz), 145.94 (d, $J_{CF} = 3.6$ Hz), 144.67, 144.48, 142.38, 128.97 (d, $J_{CF} = 9.4$ Hz), 125.23 (d, $J_{CF} = 2.9$ Hz), 123.67, 121.99 (d, $J_{CF} = 14.4$ Hz), 113.86 (d, $J_{CF} = 22.1$ Hz), 107.10, 93.85, 35.43 (d, $J_{CF} = 3.5$ Hz), 33.76, 31.37, 30.77, 30.20, 22.88, 22.38, 18.42 (d, J = 3.9 Hz), 14.02, 13.85, 11.11. ¹⁹F NMR (471 MHz, CDCl₃) δ -116.86. HRMS (ESI) calcd for C₃₃H₄₈FN₃OSiNa [M+Na]⁺: 572.3443, found: 572.3443.

(Z)-N-(5-(tert-butyl)-2-(1,2-diphenyl-4-(triisopropylsilyl)but-1 -en-3-yn-1-yl)benzyl)pyrazine-2-carboxamide (7f) Following the general procedure 3 for 12 h, 7f was obtained as a yellow oil (32.7 mg, 52% yield, Z/E > 99:1). ¹H NMR (500 MHz, CDCl₃) δ

9.36 (s, 1H), 8.73 – 8.66 (m, 1H), 8.48 – 8.39 (m, 1H), 7.76 (s, 1H), 7.42 – 7.38 (m, 2H), 7.37 – 7.34 (m, 3H), 7.20 – 7.16 (m, 3H), 7.05 – 7.02 (m, 3H), 7.01 – 6.98 (m, 2H), 4.61 (s, 1H), 4.41 (s, 1H), 1.32 (s, 9H), 0.87 (d, J = 4.0 Hz, 21H). ¹³C NMR (125 MHz, CDCl₃) δ 162.34, 151.04, 148.06, 146.92, 144.73, 144.38, 142.26, 139.99, 139.76, 138.43, 134.72, 130.88, 130.27, 130.00, 127.95, 127.90, 127.39, 127.33, 126.94, 124.96, 124.02, 108.23, 96.73, 42.32, 34.58, 31.36, 18.57, 11.19. **HRMS** (ESI) calcd for C₄₁H₄₉N₃OSiNa [M+Na]⁺: 650.3537, found: 650.3538.

3.4 General Procedure 4 for Olefinic C-H Allylation

A screw-cap vial was charged with $Pd(OAc)_2$ (2.3 mg, 0.01 mmol, 10 mol%), amide **3aa** (0.1 mmol, 1.0 equiv), MeOH (0.7 mL). Then, AcOH (12.0 mg, 0.2 mmol, 2.0 equiv), and Allyl acetate **8** (40.0 mg, 0.4 mmol, 4.0 equiv) were added into the solution in sequence. The vial was sealed under argon and heated to 110°C with stirring for 24 h. After cooling down, the mixture was concentrated and directly applied to a flash column chromatography (PE/EA mixtures) to obtain the diene product **9**.

F O N H Ph N Ph N

olinamide (9) Following the general procedure 4, 9 was obtained as a yellow oil (19.7 mg, 44% yield, E/Z > 99:1). ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, J = 4.4 Hz, 1H), 8.19 (d, J =

(E)-N-(2-(1,2-diphenylpenta-1,4-dien-1-yl)-6-fluorobenzyl)pic

7.8 Hz, 1H), 7.92 (s, 1H), 7.88 – 7.79 (m, 1H), 7.43 – 7.35 (m, 2H), 7.27 (d, J = 6.7 Hz, 2H), 7.21 – 7.14 (m, 4H), 7.10 (t, J = 8.9 Hz, 1H), 7.02 – 6.91 (m, 5H), 5.66 – 5.54 (m, 1H), 4.88 – 4.77 (m, 2H), 4.61 (dd, J = 14.1, 5.1 Hz, 1H), 4.48 (dd, J = 14.2, 7.5 Hz, 1H), 3.14 (dd, J = 14.9, 6.4 Hz, 1H), 3.00 (dd, J = 14.9, 6.7 Hz, 1H). ¹³C <u>NMR</u> (125 MHz, CDCl₃) δ 163.07, 162.26 (d, $J_{CF} = 292.1$ Hz), 149.92, 147.83, 144.79 (d, $J_{CF} = 3.4$ Hz), 141.18, 140.50, 140.32, 137.23, 137.14 (d, $J_{CF} = 2.4$ Hz), 135.28, 130.25, 129.76, 128.98 (d, $J_{CF} = 9.2$ Hz), 127.96, 127.68, 126.67, 126.35, 126.32, 126.02, 123.35 (d, $J_{CF} = 14.8$ Hz), 122.20, 116.08, 114.74 (d, $J_{CF} = 22.6$ Hz), 41.12, 34.74 (d, $J_{CF} = 4.5$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -115.90. HRMS (ESI) calcd for C₃₀H₂₅FN₂ONa [M+Na]⁺: 471.1843, found: 471.1843.

4. Deuterium-Labelled Experiments

4.1 Rh-Catalyzed H/D Exchange in Hydroarylation

A screw-cap vial was charged with [Rh(cod)Cl]₂ (1.0 mg, 0.002 mmol, 2 mol%), AgSbF₆ (1.7 mg, 0.0050 mmol, 0.05 equiv), NaOAc (8.2 mg, 0.10 mmol, 1.0 equiv), S51 amide **1a** (23.1 mg, 0.10 mmol, 1.0 equiv), DCE (1.0 mL) and D₂O (5 mmol, 50.0 equiv) in sequence. The vial was sealed under argon and heated to 120 °C with stirring for 12 h. After cooling down, the mixture was directly applied to a flash column chromatography (PE/EA mixtures) to obtain **1a** and **1a**-*d*. Deuterium incorporation was determined by ¹H NMR analysis.

A screw-cap vial was charged with $[Rh(cod)Cl]_2$ (1.5 mg, 0.003 mmol, 2 mol%), AgSbF₆ (2.6 mg, 0.0075 mmol, 0.05 equiv), NaOAc (12.3 mg, 0.15 mmol, 1.00 equiv), amide 1a (0.15 mmol, 1.0 equiv), 2a (53.3 mg, 0.30 mmol, 2.00 equiv), DCE (1.5 mL) and D₂O (7.5 mmol, 50.0 equiv) in sequence. The vial was sealed under Argon and heated to 120 °C with stirring for 48 h. After cooling down, the mixture was directly applied to a flash column chromatography (PE/EA mixtures) to obtain the corresponding product **3a** and **3a-d**. Deuterium incorporation was determined by ¹H NMR analysis.

4.2 Pd-Catalyzed H/D Exchange

A screw-cap vial was charged with $Pd(OAc)_2$ (3.4 mg, 0.015 mmol, 15 mol%), MnO₂ (26.1 mg, 0.3 mmol, 3.0 equiv), BQ (1.1 mg, 0.01 mmol, 10 mol%), amide **3a** (40.9 mg, 0.10 mmol, 1.0 equiv), and EtOD (0.7 mL) was added. Then, pivalic acid (15.3 mg, 0.15 mmo l, 1.5 equiv) were added into the solution in sequence. The vial was sealed under air and heated to 80 °C with stirring for 6 h. After cooling down, the mixture was directly applied to a flash column chromatography (PE/EA mixtures) to obtain the mixture **3a** and **3a-d**. Deuterium incorporation was determined by ¹H NMR analysis.

A screw-cap vial was charged with $Pd(OAc)_2$ (3.4 mg, 15 mol%, 0.015 mmol), MnO₂ (26.1 mg, 0.3 mmol, 3.0 equiv), BQ (1.1 mg, 0.01 mmol, 10 mol%), amide **3a** (40.9 mg, 0.10 mmol, 1.0 equiv) and EtOD (0.7 mL) was added. Then, pivalic acid (15.3 mg, 0.15 mmol, 1.5 equiv), and t-butyl acrylate **4a** (32.0 mg, 0.25 mmol, 2.5 equiv) were added into the solution in sequence. The vial was sealed under air and heated to 80 °C with stirring for 18 h. After cooling down, the mixture was directly applied to a flash column chromatography (PE/EA mixtures) to obtain the mixture **3a**-*d* and **5a**. To the reaction residue was added mesitylene (0.1 mmol, 13.5 µL, 12.0 mg) as the internal standard. The yield and deuterium incorporation of **3a**-*d* and **5a** were analyzed with ¹H NMR.

5. KIE Experiments

5.1 Parallel KIE experiments with 1a or 1a-d

A screw-cap vial was charged with $[Rh(cod)Cl]_2$ (1.0 mg, 0.002 mmol, 2 mol%), AgSbF₆ (1.7 mg, 0.0050 mmol, 0.05 equiv), NaOAc (8.2 mg, 0.10 mmol, 1.00 equiv), amide **1a** (23.1 mg, 0.10 mmol, 1.0 equiv) or **1a-d** (23.2 mg, 0.10 mmol, 1.0 equiv), **2a** (35.6 mg, 0.20 mmol, 2.0 equiv) and DCE (1.0 mL) in sequence. The vial was sealed under argon and heated to 120 °C with stirring for corresponding reaction time. After cooling down, the reaction mixture was filtrated through a short column of silica gel eluted with PE/EA mixtures and concentration in vacuo. To the reaction residue was added mesitylene (0.1 mmol, 13.5 µL, 12.0 mg) as the internal standard and the yield of **3a** or **3a-d** was analyzed with ¹H NMR measurement. Yields and concentrations of **3a** or **3a-d** were used to obtain reaction rate profiles. A KIE value was determined to be 2.7.

1a-d			1a						
Time(h)	5a yield (%)	Concentration [M]	Time(h)	5a yield (%)	Concentration [M]				
4	9	0.009	2	7	0.007				
8	14	0.014	4	15	0.015				
12	18	0.018	6	20	0.02				
16	21	0.021	8	26	0.026				
20	25	0.025	10	33	0.033				
(M/h)	0.0012		(M/h)	0.0032					
k _H /k _D			2.7						

5.2 Parallel KIE experiments with 3a and 3a-d

A screw-cap vial was charged with Pd(OAc)₂ (3.4 mg, 15 mol%, 0.015 mmol), MnO₂ (26.1 mg, 0.3 mmol, 3.0 equiv), BQ (1.1 mg, 0.01 mmol, 10 mol%), amide **3a**

(40.9 mg, 0.10 mmol, 1.0 equiv) or **3a**-*d* (40.9 mg, 0.10 mmol, 1.0 equiv) and EtOH (0.7 mL) was added. Then, pivalic acid (15.3 mg, 0.15 mmol, 1.5 equiv), and tertbutyl acrylate **4a** (32.0 mg, 0.25 mmol, 2.5 equiv) were added into the solution in sequence. The vial was sealed under air and heated to 80 °C with stirring for corresponding reaction time. After cooling down, the reaction mixture was filtrated through a short column of silica gel eluted with PE/EA mixtures and concentration in vacuo. To the reaction residue was added mesitylene (0.1 mmol, 13.5 μ L, 12.0 mg) as the internal standard and the yield of **5a** was analyzed with ¹H NMR measurement. Yields and concentrations of **5a** were used to obtain reaction rate profiles. A KIE value was determined to be **1.0**.

Parallel KIE in Pd-catalysed cross coupling						
	3 a	3a- <i>d</i>				
Time (h)	5	5a yield (%)				
3	4	6				
4	4	-				
6	5	7				
8	6	-				
9	-	9				
10	8	-				
12	11	13				
15	18	19				
18	26	25				
20	30	-				
21	-	33				
22	39	-				
24	73	62				
k _H /k _D		1.0				

The relevant data are listed below:

6. Synthetic Applications

6.1 Scaled-up Preparation

A screw-cap vial was charged with $[Rh(cod)Cl]_2$ (19.9 mg, 0.04 mmol, 2 mol%), AgSbF₆ (34.4 mg, 0.10 mmol, 0.05 equiv), NaOAc (164.1 mg, 2 mmol, 1.0 equiv), amide **1a** (0.46 g, 2.0 mmol, 1.0 equiv), diphenylacetylene (0.71 g, 4 mmol, 2.00 equiv) and DCE (20 mL) in sequence. The vial was sealed under Argon and heated to 120 °C with stirring for 48 h. After cooling down, the mixture was directly applied to a flash column chromatography (PE/EA mixtures) to obtain the corresponding product **3a** (0.71 g, 85% yield).

A screw-cap vial was charged with Pd(OAc)₂ (38.8 mg, 10 mol%), MnO₂ (270.6 mg, 3.0 equiv), BQ (11.1 mg, 10 mol%), amide **3a** (0.71 g, 1.73 mmol, 1.0 equiv), EtOH (11 mL). Then, pivalic acid (265.4 mg, 1.5 equiv), and olefin **4a** (332.5 mg, 2.5

equiv) were added into the solution in sequence. The vial was sealed under air and heated to 80 °C with stirring for 24 h. After cooling down, the mixture was directly applied to a flash column chromatography (PE/EA mixtures) to obtain the corresponding product **5a** (0.74 g, 80% yield, E/Z > 99:1).

6.2 DG Removal

DG removal experiment was performed according to previous literature^[8]. Boc-anhydride (327.4 mg, 15.0 equiv, 1.5 mmol) was added to a solution of 5a (53.5 mg, 0.1 mmol, 1.0 equiv) and DMAP (43.3 mg, 0.3 mmol, 3.0 equiv) in MeCN (1 mL) and the rection mixture was heated to 60 °C and stirred overnight until the reaction is completed. The reaction mixture was quenched with NH₄Cl (10 mL, sat. aq.) and extracted with CH_2Cl_2 (20 mL \times 3). The organic layers were combined and dried over Na₂SO₄. After filtration and concentration in vacuo, the crude residue was purified by chromatography on silica gel (SiO₂, PE / EA = 40:1 to 20: 1) to give N-Boc-amide as a pale yellow solid (110.9 mg, 76% yield, E/Z = 95:5). Then to a solution of N-Boc-amide in THF/EtOH (0.02 M, v:v=1:1) was added LiAlH₄ (3.0 equiv, 2.5 M in Et₂O) in dropwise over 30 min at 0°C and stirred at room temperature for 5 h, and 2 N NaOH was added slowly at 0°C until a clear solution was obtained. The organic layer was separated and the aqueous phase was extracted with Et₂O (20 mL \times 3). The organic layers were combined and dried over Na₂SO₄. After filtration and concentration in vacuo, the crude residue was purified by chromatography on silica gel with PE/EA to result N-boc benzylamine 10 as a white solid (44.0 mg, 88% yield, E/Z = 97:3, 83% yield for two steps, m.p. = 73.9 °C).

Tert-Butyl (2*E*,4*E*)-5-(2-(((tert-butoxycarbonyl) amino) methyl)-3-fluorophenyl)-4,5-diphenylpenta-2,4-dienoate (10) According to previous literature reports, 10 was obtained as a white solid (44.0 mg, 88% yield, E/Z = 97:3, 83% yield for two

steps, m.p. = 73.9 °C). ¹<u>H NMR</u> (500 MHz, CDCl₃) δ 7.31 – 7.11 (m, 7H), 7.05 – 6.98 (m, 2H), 6.97 – 6.91 (m, 3H), 6.85 – 6.78 (m, 2H), 5.44 (d, *J* = 15.5 Hz, 1H), 4.38 (s, 1H), 4.21 (d, *J* = 5.1 Hz, 2H), 1.31 (s, 9H), 1.30 (s, 9H). ¹³<u>C NMR</u> (125 MHz, CDCl₃) δ 166.48, 162.21 (d, *J*_{CF} = 248.1 Hz), 155.15, 145.23 (d, *J*_{CF} = 2.4 Hz), 144.07, 142.90 (d, *J*_{CF} = 2.6 Hz), 140.28, 138.86, 138.12, 130.87, 130.35, 129.16 (d, *J*_{CF} = 9.5 Hz), 128.34, 127.68, 127.34 (d, *J* = 2.6 Hz), 126.86, 124.68, 124.53, 124.23, 115.35 (d, *J*_{CF} = 21.5 Hz), 80.28, 79.12, 36.39 (d, *J*_{CF} = 2.8 Hz), 28.37, 28.09. ¹⁹<u>F NMR</u> (471 MHz, CDCl₃) δ -116.04. <u>HRMS (ESI)</u> calcd for C₃₃H₂FNO₄Na [M+Na]⁺: 552.2521, found: 552.2527. <u>FTIR</u> (KBr, cm⁻¹) 2959.81, 2830.84, 2718.69, 2348.60, 1608.41, 1210.28, 1064.49, 775.70, 568.22.

6.3 Epoxidation Reaction

Epoxidation experiment was performed according to previous literature^[9]. A solution of **5a** (53.6mg, 0.1 mmol, 1.0 equiv) in CH₂Cl₂ (3.3 mL, 0.03 M) at 0 °C was added *m*-CPBA (49.3 mg, 0.2 mmol, 2.0 equiv, 30% water) and Na₂HPO₄'2H₂O (71.2 mg, 0.4 mmol, 4.0 equiv). The mixture was stirred for 18 h at room temperature. After the reaction was completed (monitored by TLC), the mixture was extracted with CH₂Cl₂ (30 mL) for three times. The organic layers were combined and washed with Na₂SO₄ (20 mL, 10% aq.), NaHCO₃ (20 mL, sat. aq) and NaCl (20 mL, sat. aq), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc) to give epoxy compound **11** as

a colorless liquid (22.0 mg, 40% yield, E/Z = 97:3).

Tert-butyl(*E*)-3-((2R,3R)-3-(3-fluoro-2-((pyrazine-2-carbox amido) methyl) phenyl)-2,3-diphenyloxiran-2-yl)acrylate (11) According to previous literature reports, 11 was obtained as a colorless liquid (22.0 mg, 40 % yield, E/Z = 97:3). ¹H

<u>NMR</u> (500 MHz, CDCl₃) δ 8.76 (s, 1H), 8.26 (d, J = 4.0 Hz, 1H), 8.11 (dd, J = 4.0, 1.5 Hz, 1H), 7.54 (s, 1H), 7.46 – 7.40 (m, 1H), 7.32 – 7.23 (m, 4H), 7.21 – 7.13 (m, 4H), 7.03 – 6.95 (m, 3H), 6.93 – 6.87 (m, 2H), 5.49 (d, J = 15.5 Hz, 1H), 4.68 – 4.49 (m, 2H), 1.34 (s, 9H). ¹³<u>C NMR</u> (125 MHz, CDCl₃) δ 166.31, 162.16 (d, $J_{CF} = 248.8$ Hz), 160.06, 149.35, 145.43, 144.98 (d, $J_{CF} = 2.1$ Hz), 143.80, 143.30 (d, $J_{CF} = 3.6$ Hz), 140.00, 139.30, 137.93, 135.27, 133.57, 130.81, 130.34, 129.81, 128.45, 127.77, 127.45 (d, $J_{CF} = 11.1$ Hz), 127.28 (d, $J_{CF} = 3.0$ Hz), 124.58, 122.98 (d, $J_{CF} = 15.1$ Hz), 115.65 (d, $J_{CF} = 22.3$ Hz), 80.33, 53.47, 35.21 (d, $J_{CF} = 4.1$ Hz), 29.72, 28.02. ¹⁹<u>F</u> <u>NMR</u> (471 MHz, CDCl₃) δ -115.69. <u>HRMS (ESI)</u> calcd for C₃₃H₃₀FN₃O₄Na [M+Na]⁺: 574.2113, found: 574.2118.

6.4 Desilylated Reaction

To an oven-dried 25 mL flask was added **7a** (28.9mg, 0.05 mmol), a solution of TBAF (2.0 eq.) in THF (0.025M),. The reaction was stir at -40°C under Ar. After the reaction was completed (monitored by TLC), the reaction was quenched by saturated NaHCO₃ solution (4 mL), extracted by DCM (3 × 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, concentrated. The residue was purified by column chromatography on silica gel (PE/EA) to afford the product **12** as colorless liquid (18.4 mg, 85% yield, E/Z > 99:1).

F PC N H (E)-N-(2-(1,2-diphenylbut-1-en-3-yn-1-yl)-6-fluorobenzyl)pyrazine-2-carboxamide(12)According to previous literaturereports, 12 was obtained as a colorless liquid (18.4 mg, 85 % yield,E/Z > 99:1). 1 H NMR(500 MHz, CDCl₃) δ 9.38 (d, J = 1.2 Hz,

1H), 8.70 (d, J = 2.4 Hz, 1H), 8.48 – 8.40 (m, 1H), 7.86 (s, 1H), 7.40 – 7.34 (m, 1H), 7.34 – 7.29 (m, 2H), 7.23 – 7.18 (m, 4H), 7.11 (t, J = 9.0 Hz, 1H), 7.08 – 7.03 (m, 3H), 7.01 – 6.95 (m, 2H), 4.91 (dd, J = 14.0, 5.9 Hz, 1H), 4.52 (dd, J = 13.8, 3.7 Hz, 1H), 3.06 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 162.20, 161.98 (d, $J_{CF} = 248.0$ Hz), 147.37 (d, $J_{CF} = 2.3$ Hz), 147.02, 144.92 (d, $J_{CF} = 3.8$ Hz), 144.57, 144.43, 142.30, 139.08, 137.77, 130.19, 129.77, 129.45 (d, $J_{CF} = 9.2$ Hz), 128.21, 128.08, 127.79, 126.17 (d, $J_{CF} = 3.2$ Hz), 123.46, 123.11, 122.99, 115.16 (d, $J_{CF} = 22.3$ Hz), 84.78, 83.25, 35.28 (d, $J_{CF} = 4.2$ Hz). ¹⁹F NMR (471 MHz, CDCl₃) δ -115.72. HRMS (ESI) calcd for C₂₈H₂₀FN₃ONa [M+Na]⁺: 456.1488, found: 456.1489.

7. Photophysical properties of products

After developing a method for the synthesis of tetra-substituted olefins, we investigated their AIE performance, the corresponding results are shown in **Figure S1**. The photophysical properties of representative compounds are summarized in **Table S1** and the corresponding spectra are given.

		Dhata		
Compound	λabs	λem	Stoke's shift	imagesc
F PC H 5a	319	449	130	
PC N H CO2BU Me 5j	265	459	194	
$\begin{array}{c} CI \\ F \\ PC \\ H \\ 5t \end{array} \begin{array}{c} CO_2^{1}Bu \\ Ph \\ Ph \\ 5t \end{array}$	260	452	192	
PC N Su	260	434	174	

Supplementary Table 1. Photophysical data of representative AIE-gens^a

^a λ_{abs} and λ_{em} refer to optimal absorption wavelength and photoluminescence (PL) peak, respectively. ^b Photo images of the solid under UV light ($\lambda_{ex} = 365$ nm).

Fluorescence Behaviour of Compounds 5a in 1,4-dioxane/H₂O Mixture

Supplementary Figure S1. (a) Emission spectra and (b) emission profile of compound 5a in 1,4-dioxane /H₂O mixture with increasing f_w to 95% (c = 150 μ M, $\lambda ex = 319$ nm).

8. References

- [1] Chreib, B. S.; Carreira, E. M. J. Am. Chem. Soc. 2019, 141, 8758-8763.
- [2] Martínez, A. M.; Echavarren, J.; Alonso, I.; Rodríguez, N.; Arrayás, R. G.; Carretero, J. C. Chem. Sci. 2015, 6, 5802–5814.
- [3] Wang, J.; Hu, D.; Sun, X.; Hong, H.; Shi, Y. Org. Lett. 2023, 25, 2006–2011.
- [4] Ye, Y.; Kevlishvili, I.; Feng, S.; Liu, P.; Buchwald. S. L. J. Am. Chem. Soc. 2020, 142, 10550–10556.
- [5] Wu, X.; Fan, J.; Fu, C.; Ma. S. Chem. Sci. 2019, 10, 6316–6321.
- [6] Moghaddam, F. M.; Farimani, M. M.; Tetrahedron Lett. 2010, 51, 540-542.
- [7] Wei, W.; Liao, L.; Qin, T.; Zhao, X. Org. Lett. 2019, 21, 7846–7850.
- [8] Shen, Cong.; Zhu, Y.; Jin, S.; Xu, K.; Luo, S.; Xu, L.; Zhong, G.; Zhong, Li.; Zhang, J. Org. Chem. Front. 2022, 9, 989–994.
- [9] Zezschwitz, P.; Voigt, K.; Lansky, A.; Noltemeyer, M.; Meijere. A. J. Org. Chem.
 1999, 64, 3806–3812.

9. NMR Spectra

9.1 NMR Spectra of Substrates 1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S69

S70

S71

9.2 NMR Spectra of 3

--115.89

9.3 NMR Spectra of 5

--115.36

S160

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

9.5 NMR Spectra of 9

9.6 NMR Spectra of Synthetic Applications

10. X-Ray Crystal Data

230103_ZJ_ZYH_3aa_0m

Table 1 Crystal data and structure refinement for 230103_ZJ_ZYH_3aa_0m.

Identification code	230103_ZJ_ZYH_3aa_0m
Empirical formula	$C_{26}H_{20}FN_3O$
Formula weight	409.45
Temperature/K	170.00
Crystal system	monoclinic
Space group	P21/n
a/Å	9.4685(11)
b/Å	5.7414(7)
c/Å	37.581(4)
α/°	90

β/°	97.187(3)
$\gamma/^{\circ}$	90
Volume/Å ³	2027.0(4)
Z	4
$\rho_{calc}g/cm^3$	1.342
μ/mm^{-1}	0.461
F(000)	856.0
Crystal size/mm ³	$0.32\times0.08\times0.06$
Radiation	GaKa ($\lambda = 1.34139$)
2Θ range for data collection/°	4.124 to 121.382
Index ranges	$-12 \le h \le 12, -7 \le k \le 7, -48 \le l \le 48$
Reflections collected	34858
Independent reflections	$4663 \ [R_{int} = 0.0665, R_{sigma} = 0.0654]$
Data/restraints/parameters	4663/0/280
Goodness-of-fit on F ²	1.094
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0489, wR_2 = 0.1157$
Final R indexes [all data]	$R_1 = 0.0520, wR_2 = 0.1178$
Largest diff. peak/hole / e Å-3	0.25/-0.28

Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103)for 230103_ZJ_ZYH_3aa_0m. Ueq is defined as 1/3 of the trace of the orthogonalised UIJ tensor.

Atom	x	У	Ζ	U(eq)
F1	752.3(9)	4742.6(18)	5470.6(2)	44.4(2)
01	4314.4(10)	-1377.5(16)	5620.9(3)	33.5(2)
N1	6338.4(11)	3230.5(18)	5302.3(3)	26.1(2)
N2	8010.0(12)	-616.6(18)	5156.0(3)	28.6(2)
N3	3998.5(11)	2507.7(19)	5662.4(3)	24.8(2)
C1	7521.2(14)	3453(2)	5144.6(4)	29.3(3)
C2	8354.3(13)	1553(2)	5075.8(4)	27.5(3)
C3	6805.7(13)	-847(2)	5305.3(3)	26.4(3)
C4	5990.6(12)	1053(2)	5380.8(3)	21.7(2)
C5	4690.4(13)	628(2)	5563.4(3)	23.8(2)
C6	2813.8(13)	2107(2)	5869.4(3)	27.6(3)
C7	2220.8(12)	4290(2)	6016.5(3)	24.9(3)
C8	1150.2(13)	5510(3)	5809.7(3)	30.3(3)
C9	443.7(13)	7406(3)	5928.8(4)	36.0(3)
C10	828.0(15)	8132(3)	6276.8(4)	36.9(3)
C11	1892.7(14)	6978(3)	6495.6(4)	32.5(3)
C12	2596.8(12)	5062(2)	6370.4(3)	25.2(3)
C13	3734.1(12)	3900(2)	6621.5(3)	24.6(3)

Atom	x	У	Z	U(eq)
C14	5171.1(12)	3696(2)	6501.9(3)	22.3(2)
C15	5699.7(13)	5471(2)	6301.6(3)	25.2(3)
C16	7018.0(13)	5251(2)	6178.9(3)	28.4(3)
C17	7823.8(13)	3256(2)	6251.3(4)	30.6(3)
C18	7305.7(14)	1473(2)	6446.8(4)	31.2(3)
C19	5990.0(13)	1685(2)	6571.7(3)	26.3(3)
C20	3413.4(13)	3188(3)	6941.7(3)	29.8(3)
C21	4417.0(13)	2444(2)	7256.1(3)	28.5(3)
C22	4196.6(15)	415(3)	7445.5(4)	36.4(3)
C23	5124.0(16)	-195(3)	7746.3(4)	40.6(3)
C24	6258.1(16)	1232(3)	7867.4(4)	40.9(4)
C25	6478.8(17)	3259(3)	7684.3(4)	42.0(4)
C26	5565.1(15)	3858(3)	7379.7(4)	34.3(3)

Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103)for 230103_ZJ_ZYH_3aa_0m. Ueq is defined as 1/3 of the trace of the orthogonalised UIJ tensor.

Table 3 Anisotropic Displacement Parameters (Å2×103) for 230103_ZJ_ZYH_3aa_0m. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U ₂₂	U33	U23	U ₁₃	U ₁₂
F1	36.6(5)	63.2(6)	30.0(4)	9.1(4)	-8.8(3)	-8.5(4)
01	33.9(5)	26.2(5)	41.5(5)	5.3(4)	9.0(4)	-3.5(4)
N1	29.0(5)	18.9(5)	31.2(5)	-0.4(4)	7.7(4)	1.5(4)
N2	27.9(5)	21.3(5)	37.2(6)	1.9(4)	5.7(4)	4.7(4)
N3	23.6(5)	26.6(5)	25.1(5)	-0.3(4)	6.4(4)	-3.0(4)
C1	32.5(6)	18.2(5)	39.1(7)	0.1(5)	12.6(5)	-1.3(5)
C2	26.1(6)	23.1(6)	34.4(6)	-0.4(5)	7.6(5)	0.1(5)
C3	28.5(6)	17.9(5)	32.5(6)	2.5(5)	3.2(5)	0.5(5)
C4	22.6(5)	21.5(5)	20.2(5)	-0.2(4)	-0.5(4)	0.0(4)
C5	23.5(5)	25.9(6)	21.1(5)	2.2(4)	-0.3(4)	-1.3(5)
C6	24.7(6)	32.7(6)	26.2(6)	-1.0(5)	6.6(5)	-6.3(5)
C7	17.4(5)	32.3(6)	25.6(6)	4.4(5)	5.1(4)	-2.9(5)
C8	19.7(5)	42.2(7)	28.5(6)	10.2(5)	0.9(5)	-6.5(5)
С9	18.0(6)	43.6(8)	46.4(8)	20.6(6)	3.7(5)	3.0(5)
C10	26.9(6)	37.1(7)	49.1(8)	10.2(6)	13.6(6)	10.6(6)
C11	28.1(6)	38.0(7)	32.4(6)	1.0(5)	8.2(5)	7.3(5)

Atom	U11	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
C12	18.8(5)	31.8(6)	25.6(6)	3.2(5)	5.4(4)	3.2(5)
C13	21.8(5)	27.4(6)	24.5(6)	0.1(5)	1.9(4)	3.2(5)
C14	21.0(5)	25.8(6)	19.9(5)	-1.1(4)	1.4(4)	1.1(4)
C15	24.4(6)	25.1(6)	25.3(6)	1.7(5)	-0.5(4)	1.2(5)
C16	26.4(6)	31.8(6)	27.2(6)	2.4(5)	3.7(5)	-5.5(5)
C17	22.0(6)	39.2(7)	31.5(6)	-2.7(5)	6.8(5)	1.1(5)
C18	27.6(6)	31.0(7)	35.6(7)	0.6(5)	6.2(5)	7.7(5)
C19	27.0(6)	25.2(6)	27.2(6)	2.7(5)	5.7(5)	2.7(5)
C20	21.5(6)	41.6(7)	26.7(6)	2.8(5)	4.4(5)	3.8(5)
C21	25.6(6)	39.3(7)	21.4(6)	1.8(5)	6.2(4)	5.2(5)
C22	30.8(7)	48.0(8)	31.2(7)	7.9(6)	6.6(5)	-3.1(6)
C23	38.0(7)	51.5(9)	33.6(7)	15.6(6)	9.3(6)	6.0(7)
C24	35.9(7)	59.8(10)	26.2(6)	7.8(6)	0.4(5)	9.5(7)
C25	40.2(8)	51.4(9)	32.0(7)	-0.3(6)	-4.6(6)	-3.4(7)
C26	37.7(7)	36.1(7)	28.5(6)	1.9(5)	1.2(5)	-0.2(6)

Table 3 Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for 230103_ZJ_ZYH_3aa_0m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 4 Bond Lengths for 230103_ZJ_ZYH_3aa_0m.

Aton	n Atom	Length/Å		Atom	Atom	Length/Å
F1	C8	1.3567(16)	C11		C12	1.3977(18)
01	C5	1.2325(15)	C12		C13	1.4972(16)
N1	C1	1.3371(16)	C13		C14	1.4900(16)
N1	C4	1.3352(16)	C13		C20	1.3413(18)
N2	C2	1.3315(17)	C14		C15	1.3964(17)
N2	C3	1.3389(17)	C14		C19	1.3974(17)
N3	C5	1.3389(16)	C15		C16	1.3895(18)
N3	C6	1.4611(15)	C16		C17	1.3842(19)
C1	C2	1.3893(17)	C17		C18	1.385(2)
C3	C4	1.3859(17)	C18		C19	1.3904(18)
C4	C5	1.5024(17)	C20		C21	1.4833(17)
C6	C7	1.5067(18)	C21		C22	1.394(2)
C7	C8	1.3871(18)	C21		C26	1.389(2)
C7	C12	1.4049(18)	C22		C23	1.387(2)
C8	C9	1.382(2)	C23		C24	1.382(2)
C9	C10	1.377(2)	C24		C25	1.381(2)
C10	C11	1.3874(19)	C25		C26	1.389(2)

Table 5 Bond Angles	for 230103	ZJ Z	ZYH 3aa	a Om.
8	-		_	_

Aton	1 Aton	n Atom	Angle/°	Aton	n Atom	Atom	Angle/°
C4	N1	C1	115.51(10)	C11	C12	C7	119.47(11)
C2	N2	C3	115.63(11)	C11	C12	C13	118.29(11)
C5	N3	C6	117.12(10)	C14	C13	C12	117.18(10)
N1	C1	C2	122.29(11)	C20	C13	C12	118.41(11)
N2	C2	C1	122.11(11)	C20	C13	C14	124.37(11)
N2	C3	C4	122.24(11)	C15	C14	C13	120.51(11)
N1	C4	C3	122.18(11)	C15	C14	C19	118.45(11)
N1	C4	C5	119.46(10)	C19	C14	C13	120.97(11)
C3	C4	C5	118.36(11)	C16	C15	C14	120.66(11)
01	C5	N3	122.84(11)	C17	C16	C15	120.40(12)
01	C5	C4	120.19(11)	C16	C17	C18	119.52(12)
N3	C5	C4	116.96(10)	C17	C18	C19	120.40(12)
N3	C6	C7	114.23(10)	C18	C19	C14	120.57(12)
C8	C7	C6	119.61(12)	C13	C20	C21	127.44(11)
C8	C7	C12	116.87(12)	C22	C21	C20	121.69(13)
C12	C7	C6	123.23(11)	C26	C21	C20	119.64(12)
F1	C8	C7	117.39(13)	C26	C21	C22	118.57(12)
F1	C8	С9	118.12(12)	C23	C22	C21	120.46(14)
C9	C8	C7	124.47(13)	C24	C23	C22	120.38(14)
C10	C9	C8	117.71(12)	C25	C24	C23	119.68(13)
C9	C10	C11	120.28(13)	C24	C25	C26	120.11(15)
C10	C11	C12	121.21(13)	C25	C26	C21	120.78(14)
C7	C12	C13	122.23(11)				

Table 6 Torsion Angles for 230103_ZJ_ZYH_3aa_0m.

А	В	С	D	Angle/°	А	В	С	D	Angle/°
F1	C8	C9	C10	178.23(12)	C10	C11	C12	C13	-179.96(12)
N1	C1	C2	N2	1.4(2)	C11	C12	C13	C14	-124.09(13)
N1	C4	C5	01	176.24(11)	C11	C12	C13	C20	53.66(17)
N1	C4	C5	N3	-4.82(16)	C12	C7	C8	F1	-178.32(11)
N2	C3	C4	N1	1.50(19)	C12	C7	C8	С9	0.05(19)
N2	C3	C4	C5	-177.34(11)	C12	C13	C14	C15	36.13(16)
N3	C6	C7	C8	88.23(14)	C12	C13	C14	C19	-140.67(12)
N3	C6	C7	C12	-98.21(14)	C12	C13	C20	C21	-166.77(13)
C1	N1	C4	C3	0.28(18)	C13	C14	C15	C16	-177.73(11)
C1	N1	C4	C5	179.11(11)	C13	C14	C19	C18	177.46(12)

Table 6 Torsion Angles for 230103_ZJ_ZYH_3aa_0m.

A	В	С	D	Angle/°	А	В	С	D	Angle/°
C2	N2	C3	C4	-1.75(18)	C13	C20	C21	C22	-132.74(16)
C3	N2	C2	C1	0.36(19)	C13	C20	C21	C26	51.0(2)
C3	C4	C5	01	-4.88(17)	C14	C13	C20	C21	10.8(2)
C3	C4	C5	N3	174.06(11)	C14	C15	C16	C17	0.50(19)
C4	N1	C1	C2	-1.67(19)	C15	C14	C19	C18	0.60(18)
C5	N3	C6	C7	171.68(10)	C15	C16	C17	C18	0.1(2)
C6	N3	C5	01	4.46(17)	C16	C17	C18	C19	-0.4(2)
C6	N3	C5	C4	-174.45(10)	C17	C18	C19	C14	0.0(2)
C6	C7	C8	F1	-4.36(17)	C19	C14	C15	C16	-0.85(18)
C6	C7	C8	C9	174.01(12)	C20	C13	C14	C15	-141.47(14)
C6	C7	C12	2 C11	-173.71(11)	C20	C13	C14	C19	41.73(19)
C6	C7	C12	2 C13	6.25(18)	C20	C21	C22	C23	-177.62(13)
C7	C8	C9	C10	-0.1(2)	C20	C21	C26	C25	176.70(13)
C7	C12	2 C13	8 C14	55.96(16)	C21	C22	C23	C24	1.6(2)
C7	C12	2 C13	3 C20	-126.29(14)	C22	C21	C26	C25	0.3(2)
C8	C7	C12	2 C11	0.02(18)	C22	C23	C24	C25	-0.9(2)
C8	C7	C12	2 C13	179.97(11)	C23	C24	C25	C26	-0.1(2)
C8	C9	C10	C11	0.1(2)	C24	C25	C26	C21	0.4(2)
C9	C10)C11	C12	-0.1(2)	C26	C21	C22	C23	-1.3(2)
C10	C11	C12	2 C7	0.0(2)					

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 230103_ZJ_ZYH_3aa_0m.

Atom	x	У	Ζ	U(eq)
H3	4246.67	3923.2	5605.25	30
H1	7801.74	4962.22	5077.32	35
H2	9196.53	1809.49	4968.04	33
H3A	6499.48	-2363.82	5361.34	32
H6A	3137.55	1052.97	6071.71	33
H6B	2040.64	1305.24	5714.44	33
Н9	-282.05	8183.31	5775.91	43
H10	362.03	9429.43	6367.3	44
H11	2147.79	7497.88	6734.98	39
H15	5152.43	6842.95	6248.65	30
H16	7368.3	6477.08	6044.48	34
H17	8725.53	3111.07	6167.42	37

Atom	x	У	Z	U(eq)
H18	7852.82	97.33	6495.96	37
H19	5644.82	451.74	6705.56	32
H20	2430.91	3156.33	6970.49	36
H22	3405.59	-556.71	7367.91	44
H23	4978.7	-1601.12	7869.81	49
H24	6882.99	821.42	8075.71	49
H25	7256.85	4245.78	7766.81	50
H26	5727.29	5250.05	7254.35	41

Table 7 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 230103_ZJ_ZYH_3aa_0m.

Experimental

Single crystals of C₂₆H₂₀FN₃O [230103_ZJ_ZYH_3aa_0m] were []. A suitable crystal was selected and [] on a diffractometer. The crystal was kept at 170.00 K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.

- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [230103_ZJ_ZYH_3aa_0m]

Crystal Data for $C_{26}H_{20}FN_{3}O$ (*M* =409.45 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 9.4685(11) Å, *b* = 5.7414(7) Å, *c* = 37.581(4) Å, β = 97.187(3)°, *V* = 2027.0(4) Å³, *Z* = 4, *T* = 170.00 K, μ (GaK α) = 0.461 mm⁻¹, *Dcalc* = 1.342 g/cm³, 34858 reflections measured (4.124° ≤ 2 Θ ≤ 121.382°), 4663 unique (*R*_{int} = 0.0665, R_{sigma} = 0.0654) which were used in all calculations. The final *R*₁ was 0.0489 (I > 2 σ (I)) and *wR*₂ was 0.1178 (all data).

Refinement model description

Number of restraints0, number of constraintsunknown.

Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups, All C(H,H) groups, All N(H) groups

2.a Secondary CH2 refined with riding coordinates:

C6(H6A,H6B)

2.b Aromatic/amide H refined with riding coordinates:

N3(H3), C1(H1), C2(H2), C3(H3A), C9(H9), C10(H10), C11(H11), C15(H15),

C16(H16), C17(H17), C18(H18), C19(H19), C20(H20), C22(H22), C23(H23), C24(H24),

C25(H25), C26(H26)

230103_ZJ_ZYH_5aa_tBu_0m

Table 1 Crystal data and structure refinement for 230103_ZJ_ZYH_5aa_tBu_0m.

Identification code	230103_ZJ_ZYH_5aa_tBu_0m
Empirical formula	C33H30FN3O3
Formula weight	535.60
Temperature/K	170.00
Crystal system	triclinic
Space group	P-1
a/Å	10.3014(13)
b/Å	15.605(2)
c/Å	18.244(2)
α/°	82.729(4)
β/°	80.543(4)
γ/°	81.413(4)
Volume/Å ³	2844.7(6)
Ζ	4
$\rho_{calc}g/cm^3$	1.251
µ/mm ⁻¹	0.440
F(000)	1128.0
Crystal size/mm ³	$0.08 \times 0.05 \times 0.04$
Radiation	$GaK\alpha (\lambda = 1.34139)$
2Θ range for data collection/°	4.296 to 121.18
Index ranges	$\text{-13} \le h \le \text{13}, \text{-20} \le k \le \text{20}, \text{-23} \le \text{1} \le \text{23}$
Reflections collected	54150
Independent reflections	12693 [$R_{int} = 0.0596$, $R_{sigma} = 0.0665$]
Data/restraints/parameters	12693/0/727
Goodness-of-fit on F ²	1.092
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0502, wR_2 = 0.1294$
Final R indexes [all data]	$R_1 = 0.0549, wR_2 = 0.1329$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.29

Atom	x	У	z	U(eq)
F1	11077.9(7)	4637.6(5)	7779.0(5)	45.3(2)
01	7167.0(9)	2934.7(6)	7109.2(5)	35.64(19)
02	8866.3(10)	6938.8(7)	6099.4(5)	46.7(2)
O3	7963.0(9)	6975.3(6)	5041.1(4)	34.63(19)
N1	8831.9(12)	1710.3(7)	8536.9(7)	41.2(3)
N2	7077.5(11)	546.5(7)	8424.5(6)	36.4(2)
N3	8940.4(9)	3196.2(6)	7608.0(6)	28.6(2)
C1	8777.0(16)	965.2(10)	8981.9(9)	49.3(4)
C2	7894.5(14)	400.3(9)	8931.1(8)	39.6(3)
C3	7161.2(11)	1278.6(8)	7957.4(7)	30.8(2)
C4	8014.9(11)	1864.5(7)	8023.4(6)	27.7(2)
C5	8001.0(11)	2714.8(7)	7531.2(6)	27.0(2)
C6	8962.1(12)	4091.2(7)	7265.1(6)	29.4(2)
C7	8758.4(11)	4701.6(7)	7867.9(6)	27.8(2)
C8	9848.6(12)	4920.9(8)	8126.8(7)	34.0(3)
С9	9766.5(14)	5413.6(9)	8710.8(8)	41.4(3)
C10	8519.8(15)	5700.0(9)	9068.9(8)	42.3(3)
C11	7391.9(13)	5513.6(8)	8828.5(7)	35.8(3)
C12	7495.7(11)	5034.6(7)	8217.7(6)	27.6(2)
C13	6241.6(11)	4929.5(7)	7939.0(6)	27.1(2)
C14	5355.9(11)	4377.2(7)	8450.3(6)	27.6(2)
C15	5922.7(12)	3669.0(8)	8897.2(7)	32.6(2)
C16	5135.1(14)	3131.8(8)	9381.3(7)	37.9(3)
C17	3766.2(14)	3301.8(9)	9441.7(7)	39.7(3)
C18	3190.3(13)	4013.2(9)	9020.9(7)	39.6(3)
C19	3971.9(12)	4546.9(8)	8526.4(7)	33.6(3)
C20	5996.1(11)	5343.6(7)	7262.2(6)	27.6(2)
C21	4827.6(11)	5271.6(8)	6890.8(6)	30.2(2)
C22	4790.7(14)	4549.4(9)	6526.8(7)	38.6(3)
C23	3748.5(16)	4530.0(11)	6129.4(9)	49.5(3)
C24	2743.8(16)	5217.5(11)	6101.3(9)	51.7(4)
C25	2767.1(15)	5936.4(10)	6467.7(9)	49.3(4)
C26	3809.2(13)	5966.8(9)	6855.3(8)	39.8(3)
C27	6947.9(11)	5888.4(7)	6828.6(6)	28.8(2)
C28	6998.9(12)	6199.6(8)	6108.4(7)	31.9(2)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 230103_ZJ_ZYH_5aa_tBu_0m. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Ζ	U(eq)
C29	8051.5(12)	6739.5(8)	5767.5(7)	33.2(2)
C30	8875.0(14)	7546.4(10)	4577.6(7)	41.7(3)
C31	10290.3(16)	7101.8(16)	4539.5(9)	65.0(5)
C32	8657(2)	8430.6(12)	4880.3(10)	62.1(5)
C33	8404.3(16)	7627.1(11)	3820.6(8)	49.6(4)
F2	2872.1(7)	11449.1(5)	417.1(4)	36.50(17)
O4	7986.9(8)	9792.8(6)	641.4(5)	37.1(2)
O5	3834.4(10)	9336.9(7)	3451.6(5)	47.4(2)
O6	4982.4(9)	8942.0(6)	4426.0(5)	36.0(2)
N4	5869.6(10)	8442.8(7)	1838.8(6)	34.1(2)
N5	8297.9(10)	7364.5(7)	1854.9(7)	38.0(2)
N6	5738.8(9)	9993.7(6)	956.4(5)	26.90(19)
C34	5974.3(13)	7674.2(8)	2251.8(8)	38.0(3)
C35	7179.0(13)	7146.7(8)	2263.5(7)	36.1(3)
C36	8183.0(12)	8127.5(8)	1428.4(7)	33.9(3)
C37	6986.4(11)	8668.9(7)	1429.8(6)	26.9(2)
C38	6950.3(11)	9540.7(7)	969.5(6)	27.3(2)
C39	5543.1(11)	10881.2(7)	588.0(6)	27.1(2)
C40	4615.9(11)	11458.4(7)	1105.6(6)	25.4(2)
C41	3286.5(11)	11677.1(7)	1030.8(7)	28.9(2)
C42	2350.8(12)	12101.8(8)	1538.4(8)	35.8(3)
C43	2764.9(13)	12337.3(8)	2157.0(8)	38.6(3)
C44	4092.0(12)	12159.2(8)	2249.3(7)	34.5(3)
C45	5022.2(11)	11722.5(7)	1730.5(6)	27.4(2)
C46	6446.1(11)	11541.9(7)	1848.9(6)	28.1(2)
C47	7360.5(12)	12068.9(8)	1320.9(6)	31.0(2)
C48	6922.7(14)	12930.7(9)	1067.5(7)	39.0(3)
C49	7721.1(17)	13409.5(10)	530.7(8)	49.5(4)
C50	8968.9(16)	13030.1(12)	228.8(8)	51.4(4)
C51	9416.3(14)	12181.2(11)	475.8(8)	46.7(3)
C52	8626.7(13)	11698.0(9)	1018.6(7)	37.0(3)
C53	6804.2(11)	10936.5(8)	2409.8(6)	28.9(2)
C54	8126.5(11)	10839.7(8)	2666.9(6)	29.4(2)
C55	8578.1(12)	11564.4(9)	2867.8(7)	33.5(3)
C56	9787.1(13)	11486.6(10)	3131.9(7)	42.1(3)
C57	10562.3(13)	10683.3(12)	3194.1(8)	47.5(3)
C58	10124.3(14)	9959.9(11)	2998.7(8)	45.6(3)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 230103_ZJ_ZYH_5aa_tBu_0m. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
C59	8916.3(13)	10035.5(9)	2735.6(7)	37.6(3)
C60	5834.2(12)	10374.6(8)	2799.1(6)	31.0(2)
C61	5909.4(13)	9850.9(8)	3434.6(7)	33.7(3)
C62	4789.5(13)	9356.0(8)	3752.7(7)	34.1(3)
C63	3994.0(13)	8408.2(9)	4861.7(7)	37.6(3)
C64	3943(2)	7631.9(11)	4447.2(10)	58.9(4)
C65	2653.8(16)	8953.6(13)	5017.9(9)	56.2(4)
C66	4583.8(16)	8119.2(10)	5580.5(8)	49.2(3)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 230103_ZJ_ZYH_5aa_tBu_0m. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Table 3 Anisotropic Displacement Parameters (Ų×10³) for 230103_ZJ_ZYH_5aa_tBu_0m. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U ₂₂	U33	U ₂₃	U13	U12
F1	28.5(4)	43.5(4)	64.6(5)	-6.3(4)	-8.5(3)	-4.5(3)
01	35.5(4)	33.9(4)	40.1(5)	2.0(4)	-14.6(4)	-7.9(3)
02	50.4(6)	62.0(6)	33.1(5)	3.5(4)	-8.8(4)	-28.8(5)
O3	36.1(4)	41.1(5)	26.6(4)	3.0(3)	-2.9(3)	-12.0(4)
N1	44.3(6)	37.9(6)	46.4(6)	10.7(5)	-20.9(5)	-18.9(5)
N2	33.6(5)	34.4(5)	42.2(6)	0.9(4)	-5.0(4)	-12.7(4)
N3	27.1(5)	22.5(4)	36.7(5)	0.7(4)	-8.2(4)	-4.2(3)
C1	56.2(9)	46.3(8)	51.7(8)	17.2(6)	-27.2(7)	-24.4(7)
C2	43.2(7)	35.4(6)	40.5(7)	8.0(5)	-8.0(5)	-14.7(5)
C3	27.7(5)	30.1(6)	35.5(6)	-2.5(5)	-5.1(4)	-6.9(4)
C4	25.3(5)	27.4(5)	30.4(5)	-2.5(4)	-3.1(4)	-5.5(4)
C5	25.5(5)	25.8(5)	29.4(5)	-3.5(4)	-2.4(4)	-3.5(4)
C6	31.0(5)	23.7(5)	32.7(6)	0.1(4)	-3.3(4)	-4.8(4)
C7	31.0(6)	21.4(5)	31.5(5)	2.7(4)	-8.0(4)	-5.6(4)
C8	30.5(6)	27.2(5)	44.6(7)	1.5(5)	-10.6(5)	-3.5(4)
C9	41.9(7)	35.4(6)	53.0(8)	-4.5(6)	-22.8(6)	-7.4(5)
C10	51.6(8)	39.3(7)	40.9(7)	-9.8(5)	-17.3(6)	-5.1(6)
C11	39.5(6)	34.7(6)	33.9(6)	-5.6(5)	-8.0(5)	-2.2(5)
C12	31.8(6)	23.2(5)	27.7(5)	2.9(4)	-7.2(4)	-4.8(4)
C13	28.7(5)	23.4(5)	28.6(5)	-0.8(4)	-4.9(4)	-2.4(4)
C14	31.0(5)	26.6(5)	24.9(5)	-0.3(4)	-4.9(4)	-4.7(4)
C15	33.9(6)	31.2(6)	31.2(6)	2.8(5)	-7.1(5)	-2.3(5)
C16	47.0(7)	31.3(6)	32.9(6)	7.5(5)	-6.8(5)	-5.0(5)

Atom Un U22 U33 U13 $U_{12} \\$ U_{23} C17 45.0(7) -15.4(6) 40.5(7) 32.8(6) 6.8(5) -2.5(5)C18 32.8(6) 47.4(7) 36.9(6) 4.9(5) -3.0(5) -9.5(5) C19 31.5(6) 35.4(6) 31.8(6) 5.2(5) -5.8(5) -3.5(5)C20 29.4(5) 24.2(5) 28.6(5) 0.7(4) -5.4(4)-3.4(4)C21 30.6(6) 7.6(4) -6.0(4)-8.0(4)31.1(6) 27.9(5) C22 41.7(7) 35.7(6) 39.7(6) 0.9(5) -12.0(5) -7.0(5)C23 55.0(9) 49.9(8) 50.3(8) -2.4(6)-21.4(7) -15.8(7)C24 46.0(8) 59.5(9) 54.3(8) 10.8(7) -26.1(7) -16.1(7) C25 37.8(7) 49.0(8) 60.2(9) 9.6(7) -19.6(6) -2.7(6) C26 38.0(7) 35.4(6) 45.7(7) 4.3(5) -12.6(5) -3.4(5)C27 -4.1(4)30.5(5) 24.4(5)31.4(5) 0.3(4) -6.1(4) C28 33.0(6) 32.5(6) 30.3(6) 2.2(4) -5.7(4) -8.3(5)C29 36.2(6) -3.0(5) -8.9(5) 36.0(6) 27.3(5) 0.1(5) C30 42.8(7) 52.6(8) 29.4(6) 5.0(5) 0.6(5) -19.8(6) C31 38.1(8) 110.3(16) 43.5(8) 1.6(9) 1.5(6) -16.1(9) C32 92.0(13) 52.1(9) 46.0(8) 4.6(7) -3.9(8) -36.8(9) C33 53.9(8) 62.8(9) 30.2(6) 6.5(6) -2.1(6)-15.4(7)F2 37.8(4) 34.9(4) 41.3(4) -0.6(3)-19.1(3) -7.6(3) 04 28.5(4) 37.5(5) 42.9(5) 7.4(4) -4.1(4)-8.1(3)05 49.0(6) -29.4(5) 63.2(6) 36.3(5) 4.9(4) -12.8(4) 06 42.2(5) 35.1(4) 31.7(4) 4.8(3) -6.8(4)-13.8(4)N4 30.0(5) 29.8(5) 39.3(5) 2.5(4) -0.8(4)-3.3(4)N5 30.8(5) 34.0(5) 47.8(6) 6.3(5) -10.5(4) -3.5(4)27.0(4) 22.9(4) 0.0(4) -6.2(3)N6 31.2(5) -4.8(4)C34 34.9(6) 33.2(6) 41.9(7) 5.0(5) 0.7(5) -6.2(5)C35 38.0(6) 30.8(6) 39.0(6) 5.6(5) -9.3(5)-6.3(5)C36 26.9(5)34.4(6) 39.3(6) 3.3(5) -6.3(5)-4.9(5)C37 27.4(5) 27.2(5) 27.3(5) -1.9(4)-6.3(4)-5.3(4)C38 28.2(5) 28.0(5) 27.0(5) -0.9(4)-6.9(4) -6.7(4)C39 30.6(5) 24.8(5) 26.4(5) 1.6(4) -6.7(4)-6.0(4)C40 28.6(5) 20.7(5) 27.3(5) 3.5(4) -6.3(4)-7.1(4)C41 31.7(6) 22.1(5) 34.9(6) 3.1(4) -11.7(4) -8.0(4)C42 27.1(6) 29.8(6) 50.8(7) -1.3(5)-7.6(5) -4.9(4)C43 -5.4(5) 33.4(6) 34.3(6) 47.2(7) -10.2(5)1.9(5) C44 35.1(6) 35.3(6) 35.2(6) -7.7(5)-3.7(5)-9.4(5)C45 29.5(5) 25.5(5) 28.1(5) 1.0(4) -5.3(4) -9.0(4)C46 29.6(5) 30.6(5) 26.4(5) -3.2(4)-5.7(4)-9.3(4)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for 230103_ZJ_ZYH_5aa_tBu_0m. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U ₂₃	U ₁₃	U12
C47	32.8(6)	38.0(6)	26.6(5)	0.8(4)	-10.0(4)	-15.7(5)
C48	42.6(7)	39.2(7)	38.8(6)	4.5(5)	-13.8(5)	-16.2(5)
C49	63.1(9)	47.2(8)	44.8(7)	12.8(6)	-20.4(7)	-30.4(7)
C50	54.7(9)	72.2(10)	34.9(7)	9.7(7)	-10.7(6)	-41.4(8)
C51	37.6(7)	74.4(10)	32.7(6)	-2.4(6)	-4.4(5)	-25.9(7)
C52	33.8(6)	49.6(7)	30.2(6)	-0.9(5)	-6.9(5)	-14.4(5)
C53	31.2(6)	30.6(5)	27.1(5)	-3.2(4)	-6.8(4)	-8.5(4)
C54	28.9(5)	35.8(6)	24.1(5)	0.5(4)	-5.1(4)	-8.3(4)
C55	33.4(6)	39.9(6)	29.5(5)	-1.7(5)	-6.4(5)	-12.0(5)
C56	36.3(7)	59.8(8)	35.3(6)	-4.7(6)	-7.4(5)	-20.7(6)
C57	28.5(6)	75.3(10)	39.1(7)	0.8(7)	-8.2(5)	-10.1(6)
C58	34.0(7)	55.8(8)	42.2(7)	0.1(6)	-3.8(5)	3.3(6)
C59	36.5(6)	39.4(7)	36.1(6)	-2.8(5)	-4.5(5)	-4.8(5)
C60	33.8(6)	32.9(6)	28.9(5)	-2.4(4)	-7.1(4)	-10.4(5)
C61	37.7(6)	34.9(6)	31.4(6)	-0.1(5)	-9.2(5)	-12.7(5)
C62	42.0(7)	34.1(6)	28.7(5)	-1.1(5)	-7.0(5)	-12.9(5)
C63	41.9(7)	36.6(6)	32.2(6)	1.7(5)	2.5(5)	-11.7(5)
C64	76.7(11)	45.1(8)	57.2(9)	-6.5(7)	4.6(8)	-30.3(8)
C65	46.4(8)	72.4(11)	42.4(8)	1.7(7)	1.3(6)	0.8(7)
C66	54.7(9)	47.9(8)	38.7(7)	10.5(6)	-2.2(6)	-4.4(6)

 $Table \ 3 \ Anisotropic \ Displacement \ Parameters \ (\AA^2 \times 10^3) \ for \ 230103 _ ZJ _ ZYH _ 5aa _ tBu _ 0m. \ The \ Anisotropic \ displacement \ factor \ exponent \ takes \ the \ form: \ -2\pi^2 [h^2a^{*2}U_{11} + 2hka^*b^*U_{12} + \ldots].$

Table 4 Bond Lengths for 230103_ZJ_ZYH_5aa_tBu_0m.

Atom Atom		Length/Å	Atom	Atom	Length/Å
F1	C8	1.3571(15)	F2	C41	1.3658(13)
01	C5	1.2292(14)	04	C38	1.2285(14)
O2	C29	1.2084(16)	05	C62	1.2088(16)
03	C29	1.3440(14)	06	C62	1.3441(15)
03	C30	1.4800(15)	06	C63	1.4773(14)
N1	C1	1.3341(17)	N4	C34	1.3330(16)
N1	C4	1.3362(15)	N4	C37	1.3331(15)
N2	C2	1.3264(17)	N5	C35	1.3305(17)
N2	C3	1.3408(16)	N5	C36	1.3382(16)
N3	C5	1.3449(15)	N6	C38	1.3416(15)
N3	C6	1.4581(14)	N6	C39	1.4616(14)
C1	C2	1.3784(19)	C34	C35	1.3847(18)

Table 4	Bond	Lengths fo	r 230103	ZJ	ZYH	5aa	tBu	0m.
			-					

Atom Atom		Length/Å	Atom Atom		Length/Å
C3	C4	1.3879(16)	C36	C37	1.3863(16)
C4	C5	1.5047(15)	C37	C38	1.5044(15)
C6	C7	1.5134(16)	C39	C40	1.5091(16)
C7	C8	1.3898(16)	C40	C41	1.3859(16)
C7	C12	1.4067(16)	C40	C45	1.4041(15)
C8	С9	1.3755(19)	C41	C42	1.3774(18)
C9	C10	1.379(2)	C42	C43	1.3787(19)
C10	C11	1.3884(19)	C43	C44	1.3874(18)
C11	C12	1.3998(17)	C44	C45	1.3960(17)
C12	C13	1.5016(16)	C45	C46	1.4977(16)
C13	C14	1.4822(15)	C46	C47	1.4913(16)
C13	C20	1.3630(15)	C46	C53	1.3605(16)
C14	C15	1.4010(16)	C47	C48	1.3986(18)
C14	C19	1.3977(17)	C47	C52	1.3997(19)
C15	C16	1.3862(17)	C48	C49	1.3882(19)
C16	C17	1.384(2)	C49	C50	1.389(3)
C17	C18	1.3823(19)	C50	C51	1.380(2)
C18	C19	1.3881(17)	C51	C52	1.3929(18)
C20	C21	1.4993(16)	C53	C54	1.4929(16)
C20	C27	1.4607(16)	C53	C60	1.4637(16)
C21	C22	1.3869(18)	C54	C55	1.3957(17)
C21	C26	1.3950(18)	C54	C59	1.3933(18)
C22	C23	1.3965(19)	C55	C56	1.3911(17)
C23	C24	1.377(2)	C56	C57	1.385(2)
C24	C25	1.382(2)	C57	C58	1.383(2)
C25	C26	1.3885(19)	C58	C59	1.3895(19)
C27	C28	1.3373(16)	C60	C61	1.3374(17)
C28	C29	1.4801(16)	C61	C62	1.4822(17)
C30	C31	1.513(2)	C63	C64	1.519(2)
C30	C32	1.523(2)	C63	C65	1.514(2)
C30	C33	1.522(2)	C63	C66	1.524(2)

Table 5 Bond Angles for 230103_ZJ_ZYH_5aa_tBu_0m.

Aton	1 Aton	n Atom	Angle/°	Aton	n Atom	Atom	Angle/°
C29	03	C30	120.91(10)	C62	06	C63	120.63(10)
C1	N1	C4	116.30(11)	C34	N4	C37	116.24(10)

Table 5 Bond Angles for 230103_ZJ_ZYH_5aa_tBu_0m.

Aton	1 Aton	n Atom	Angle/°	Atom	n Aton	n Atom	Angle/°
C2	N2	C3	116.07(11)	C35	N5	C36	115.57(11)
C5	N3	C6	122.50(10)	C38	N6	C39	122.09(9)
N1	C1	C2	121.80(13)	N4	C34	C35	121.85(12)
N2	C2	C1	122.44(12)	N5	C35	C34	122.38(11)
N2	C3	C4	121.66(11)	N5	C36	C37	122.27(11)
N1	C4	C3	121.64(11)	N4	C37	C36	121.65(11)
N1	C4	C5	118.10(10)	N4	C37	C38	119.10(10)
C3	C4	C5	120.21(10)	C36	C37	C38	119.24(10)
01	C5	N3	124.55(10)	04	C38	N6	124.65(10)
01	C5	C4	120.85(10)	04	C38	C37	120.01(10)
N3	C5	C4	114.59(10)	N6	C38	C37	115.33(10)
N3	C6	C7	109.64(9)	N6	C39	C40	109.70(9)
C8	C7	C6	119.95(11)	C41	C40	C39	121.33(10)
C8	C7	C12	116.93(11)	C41	C40	C45	116.72(10)
C12	C7	C6	123.04(10)	C45	C40	C39	121.61(10)
F1	C8	C7	118.13(11)	F2	C41	C40	117.92(10)
F1	C8	С9	117.54(11)	F2	C41	C42	117.73(10)
С9	C8	C7	124.33(12)	C42	C41	C40	124.34(11)
C8	C9	C10	117.81(12)	C41	C42	C43	117.98(11)
С9	C10	C11	120.53(12)	C42	C43	C44	120.19(12)
C10	C11	C12	120.77(12)	C43	C44	C45	120.87(12)
C7	C12	C13	122.30(10)	C40	C45	C46	120.80(10)
C11	C12	C7	119.50(11)	C44	C45	C40	119.86(11)
C11	C12	C13	118.15(10)	C44	C45	C46	119.34(10)
C14	C13	C12	115.23(9)	C47	C46	C45	114.90(10)
C20	C13	C12	119.17(10)	C53	C46	C45	119.50(10)
C20	C13	C14	125.60(10)	C53	C46	C47	125.60(10)
C15	C14	C13	118.90(10)	C48	C47	C46	120.16(11)
C19	C14	C13	122.94(10)	C48	C47	C52	118.33(11)
C19	C14	C15	118.13(11)	C52	C47	C46	121.29(11)
C16	C15	C14	120.98(11)	C49	C48	C47	121.04(14)
C17	C16	C15	120.09(11)	C48	C49	C50	120.04(14)
C18	C17	C16	119.64(12)	C51	C50	C49	119.55(13)
C17	C18	C19	120.63(12)	C50	C51	C52	120.82(14)
C18	C19	C14	120.48(11)	C51	C52	C47	120.21(14)
C13	C20	C21	125.64(10)	C46	C53	C54	123.01(10)
C13	C20	C27	119.39(10)	C46	C53	C60	118.68(10)
C27	C20	C21	114.93(9)	C60	C53	C54	118.27(10)

Table 5 Bond Angles for 230103_ZJ_ZYH_5aa_tBu_0m.

Aton	1 Aton	n Atom	Angle	l°	Atom	Atom	Atom	Angl	e/°
C22	C21	C20		120.88(11)	C55	C54	C53		119.70(11)
C22	C21	C26		118.94(12)	C59	C54	C53		121.83(11)
C26	C21	C20		119.98(11)	C59	C54	C55		118.44(11)
C21	C22	C23		119.88(13)	C56	C55	C54		120.85(13)
C24	C23	C22	1	120.73(14)	C57	C56	C55		119.98(13)
C23	C24	C25		119.76(13)	C58	C57	C56		119.72(12)
C24	C25	C26		119.91(14)	C57	C58	C59		120.43(14)
C25	C26	C21	1	120.77(13)	C58	C59	C54		120.58(13)
C28	C27	C20		126.91(11)	C61	C60	C53		127.47(11)
C27	C28	C29	-	118.70(11)	C60	C61	C62		118.99(11)
02	C29	O3		125.29(11)	05	C62	O6		125.06(11)
02	C29	C28		124.53(11)	05	C62	C61		124.69(11)
03	C29	C28		110.18(10)	06	C62	C61		110.24(10)
03	C30	C31	1	109.84(12)	06	C63	C64		108.97(11)
03	C30	C32		109.35(11)	06	C63	C65		110.77(11)
03	C30	C33		101.85(11)	06	C63	C66		102.02(11)
C31	C30	C32		113.67(15)	C64	C63	C66		110.97(13)
C31	C30	C33		111.02(13)	C65	C63	C64		112.71(14)
C33	C30	C32		110.45(14)	C65	C63	C66		110.89(12)

Table 6 Torsion Angles for 230103_ZJ_ZYH_5aa_tBu_0m.

A	В	С	D	Angle/°	A	B	С	D	Angle/°
F1	C8	C9	C10	-179.70(12)	F2	C41	C42	C43	-179.68(10)
N1	C1	C2	N2	2.2(3)	N4	C34	C35	N5	-1.3(2)
N1	C4	C5	01	-171.66(11)	N4	C37	C38	O4	173.61(11)
N1	C4	C5	N3	7.19(15)	N4	C37	C38	N6	-6.08(15)
N2	C3	C4	N1	2.69(19)	N5	C36	C37	N4	-2.42(19)
N2	C3	C4	C5	-174.87(11)	N5	C36	C37	C38	176.43(11)
N3	C6	C7	C8	91.58(12)	N6	C39	C40	C41	-100.42(11)
N3	C6	C7	C12	-85.03(13)	N6	C39	C40	C45	72.75(13)
C1	N1	C4	C3	-0.2(2)	C34	N4	C37	C36	0.84(18)
C1	N1	C4	C5	177.41(13)	C34	N4	C37	C38	-178.02(11)
C2	N2	C3	C4	-2.62(18)	C35	N5	C36	C37	1.99(19)
C3	N2	C2	C1	0.3(2)	C36	N5	C35	C34	-0.2(2)
C3	C4	C5	01	5.98(17)	C36	C37	C38	O4	-5.27(16)
C3	C4	C5	N3	-175.17(10)	C36	C37	C38	N6	175.03(11)

Table 6 Torsion Angles for 230103_ZJ_ZYH_5aa_tBu_0m.

A	B	С	D	Angle/°	A	B	С	D	Angle/°
C4	N1	C1	C2	-2.1(2)	C37	N4	C34	C35	0.93(19)
C5	N3	C6	C7	115.84(12)	C38	N6	C39	C40	-131.34(11)
C6	N3	C5	01	8.22(18)	C39	N6	C38	04	-4.94(17)
C6	N3	C5	C4	-170.59(10)	C39	N6	C38	C37	174.74(9)
C6	C7	C8	F1	5.82(16)	C39	C40	C41	F2	-8.27(15)
C6	C7	C8	С9	-174.71(11)	C39	C40	C41	C42	171.04(11)
C6	C7	C12	2 C11	172.66(10)	C39	C40	C45	C44	-171.60(10)
C6	C7	C12	2 C 13	-10.09(16)	C39	C40	C45	C46	8.43(15)
C7	C8	C9	C10	0.8(2)	C40	C41	C42	C43	1.01(18)
C7	C12	2 C13	3 C14	4 114.17(12)	C40	C45	C46	C47	71.09(13)
C7	C12	2 C13	3 C20	-66.72(15)	C40	C45	C46	C53	-109.22(13)
C8	C7	C12	2 C11	-4.04(16)	C41	C40	C45	C44	1.87(15)
C8	C7	C12	2 C 13	3 173.21(10)	C41	C40	C45	C46	-178.10(10)
C8	C9	C1(0C11	-1.8(2)	C41	C42	C43	C44	1.04(19)
С9	C10)C11	l C12	2 -0.2(2)	C42	C43	C44	C45	-1.53(19)
C10	C11	C12	2 C7	3.23(18)	C43	C44	C45	C40	0.01(18)
C10	C11	C12	2 C 13	-174.13(11)	C43	C44	C45	C46	179.99(11)
C11	C12	2 C13	3 C14	-68.54(13)	C44	C45	C46	C47	-108.88(12)
C11	C12	2 C13	3 C20) 110.56(13)	C44	C45	C46	C53	70.80(15)
C12	2 C7	C8	F1	-177.38(10)	C45	C40	C41	F2	178.23(9)
C12	2 C7	C8	C9	2.09(18)	C45	C40	C41	C42	-2.45(16)
C12	C13	8 C14	4 C1:	-33.47(15)	C45	C46	C47	C48	35.08(15)
C12	C13	8 C14	4 C 1 9	9 144.36(11)	C45	C46	C47	C52	-139.44(11)
C12	C13	8 C20	0 C21	176.96(10)	C45	C46	C53	C54	-167.35(10)
C12	C13	8 C20) C27	-0.79(16)	C45	C46	C53	C60	10.31(16)
C13	C14	4C1:	5 C 1 6	-179.70(11)	C46	C47	C48	C49	-174.78(11)
C13	C14	+C19	9 C 18	-179.22(12)	C46	C47	C52	C51	174.19(11)
C13	C20)C21	1 C22	-78.27(16)	C46	C53	C54	C55	52.89(16)
C13	C20)C21	1 C26	5 107.00(14)	C46	C53	C54	C59	-129.12(13)
C13	C20) C27	7 C28	3 166.14(12)	C46	C53	C60	C61	-167.87(13)
C14	C13	8 C20	0 C21	-4.03(19)	C47	C46	C53	C54	12.30(18)
C14	C13	8 C20) C27	7 178.21(10)	C47	C46	C53	C60	-170.04(11)
C14	C15	5C16	5 C 1 7	-1.5(2)	C47	C48	C49	C50	0.9(2)
C15	C14	4C19	9 C 18	-1.38(18)	C48	C47	C52	C51	-0.43(17)
C15	C16	5C17	7 C18	-0.5(2)	C48	C49	C50	C51	-1.1(2)
C16	6C17	7 C18	8 C 1 9) 1.4(2)	C49	C50	C51	C52	0.6(2)
C17	C18	3 C 1 9	9 C14	-0.5(2)	C50	C51	C52	C47	0.2(2)
C19	C14	4C1:	5 C16	5 2.36(18)	C52	C47	C48	C49	-0.10(18)

Table 6 Torsion Angles for 230103_ZJ_ZYH_5aa_tBu_0m.

A	B	С	D	Angle/°	Α	В	С	D	Angle/°
C20	C13	C14	C15	147.49(12	2) C53	C46	C47	C48	-144.58(12)
C20	C13	C14	C19	-34.68(18	3) C53	C46	C47	C52	40.90(17)
C20	C21	C22	C23	-174.40(12	2) C53	C54	C55	C56	177.93(11)
C20	C21	C26	C25	175.37(12	2) C53	C54	C59	C58	-177.97(11)
C20	C27	C28	C29	-179.65(11) C53	C60	C61	C62	177.81(11)
C21	C20	C27	C28	-11.85(17	7) C54	C53	C60	C61	9.91(19)
C21	C22	C23	C24	-0.8(2	2) C54	C55	C56	C57	0.36(19)
C22	C21	C26	C25	0.54(19	9) C55	C54	C59	C58	0.04(18)
C22	C23	C24	C25	0.2(2	2) C55	C56	C57	C58	-0.5(2)
C23	C24	C25	C26	0.7(2	2) C56	C57	C58	C59	0.4(2)
C24	C25	C26	C21	-1.1(2	2) C57	C58	C59	C54	-0.2(2)
C26	C21	C22	C23	0.39(19	9) C59	C54	C55	C56	-0.12(18)
C27	C20	C21	C22	99.57(13	3) C60	C53	C54	C55	-124.78(12)
C27	C20	C21	C26	-75.16(14	4) C60	C53	C54	C59	53.21(16)
C27	C28	C29	02	-1.6(2	2) C60	C61	C62	05	5.7(2)
C27	C28	C29	O3	178.64(11) C60	C61	C62	06	-173.50(11)
C29	03	C30	C31	62.24(16	6) C62	06	C63	C64	65.55(16)
C29	03	C30	C32	-63.15(16	6) C62	06	C63	C65	-58.99(15)
C29	03	C30	C33	179.97(12	2) C62	06	C63	C66	-177.06(11)
C30	03	C29	02	-2.0(2	2) C63	06	C62	05	0.2(2)
C30	O3	C29	C28	177.77(11) C63	06	C62	C61	179.49(10)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 230103_ZJ_ZYH_5aa_tBu_0m.

Atom	x	У	Ζ	U(eq)
H3	9565.73	2962.15	7875.5	34
H1	9362.22	819.97	9343.72	59
H2	7870.41	-112.86	9271.53	48
H3A	6622.62	1399.44	7571.53	37
H6A	8250.25	4248.75	6948.96	35
H6B	9824.55	4145.62	6943.07	35
Н9	10542.86	5552.12	8862.54	50
H10	8432.27	6027.53	9483.26	51
H11	6539.7	5713.33	9081.58	43
H15	6860.78	3555.31	8868.05	39
H16	5535.38	2646.15	9672.07	46

Atom	x	У	Ζ	U(eq)
H17	3225.33	2931.7	9770.5	48
H18	2250.63	4138.1	9070.59	48
H19	3563.1	5030.91	8237.71	40
H22	5473.18	4068.64	6547.7	46
H23	3732.32	4037.18	5875.68	59
H24	2037.36	5197.56	5830.92	62
H25	2070.97	6409.27	6454.51	59
H26	3828.97	6466.72	7099.14	48
H27	7599.91	6037.39	7085.47	35
H28	6371.74	6076.64	5821.2	38
H31A	10336.73	6507.4	4407.24	98
H31B	10583.27	7080.82	5026.81	98
H31C	10867.77	7429.07	4159.75	98
H32A	8973.6	8369.03	5364.72	93
H32B	7708.61	8652.64	4941.79	93
H32C	9149.5	8839.09	4529.05	93
H33A	7469.73	7883	3866.79	74
H33B	8499.34	7048.29	3647.83	74
H33C	8940.6	8002.08	3459.83	74
H6	5039.78	9748.62	1176.69	32
H34	5200.68	7483.04	2546.26	46
H35	7207.6	6609.86	2574.57	43
H36	8947.86	8304.31	1113.89	41
H39A	5163.06	10880.36	123.68	33
H39B	6407.51	11108.77	452.18	33
H42	1447.57	12228.51	1464.51	43
H43	2139.71	12622.38	2521.08	46
H44	4371.36	12336.72	2671.2	41
H48	6065.47	13192.71	1265.81	47
H49	7413.74	13996.9	369.74	59
H50	9510.95	13352.7	-145.16	62
H51	10273.29	11923.29	273.08	56
H52	8948.63	11114.9	1184.28	44
H55	8053.05	12118.05	2823.65	40
H56	10080.66	11984.48	3269.39	51
H57	11391.7	10629.3	3370.45	57
H58	10652.6	9407.68	3044.5	55

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 230103_ZJ_ZYH_5aa_tBu_0m.

Atom	x	У	Z	U(eq)
Н59	8626.45	9534.45	2601.5	45
H60	5062.51	10382.9	2574.6	37
H61	6669.14	9796.89	3678.33	40
H64A	3526.33	7830.7	3999.15	88
H64B	3423.94	7217.14	4773.22	88
H64C	4847.33	7346.82	4301.67	88
H65A	2762.39	9489.82	5215.63	84
H65B	2062.09	8622.3	5385.44	84
H65C	2269.48	9101.65	4553.8	84
H66A	5457.72	7778.7	5464.86	74
H66B	3995.88	7759.82	5923.23	74
H66C	4677.12	8633.19	5815.74	74

Table 7 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 230103_ZJ_ZYH_5aa_tBu_0m.

Experimental

Single crystals of C₃₃H₃₀FN₃O₃ [230103_ZJ_ZYH_5aa_tBu_0m] were []. A suitable crystal was selected and [] on a diffractometer. The crystal was kept at 170.00 K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.

- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [230103_ZJ_ZYH_5aa_tBu_0m]

Crystal Data for C₃₃H₃₀FN₃O₃ (*M* =535.60 g/mol): triclinic, space group P-1 (no. 2), *a* = 10.3014(13) Å, *b* = 15.605(2) Å, *c* = 18.244(2) Å, *a* = 82.729(4)°, *β* = 80.543(4)°, *γ* = 81.413(4)°, *V* = 2844.7(6) Å³, *Z* = 4, *T* = 170.00 K, μ (GaK*a*) = 0.440 mm⁻¹, *Dcalc* = 1.251 g/cm³, 54150 reflections measured (4.296° ≤ 2 Θ ≤ 121.18°), 12693 unique (*R*_{int} = 0.0596, R_{sigma} = 0.0665) which were used in all calculations. The final *R*₁ was 0.0502 (I > 2 σ (I)) and *wR*₂ was 0.1329 (all data).

Refinement model description

Number of restraints0, number of constraintsunknown.

Details:

1. Fixed Uiso

At 1.2 times of:

All C(H) groups, All C(H,H) groups, All N(H) groups

At 1.5 times of:

All C(H,H,H) groups

2.a Secondary CH2 refined with riding coordinates:

C6(H6A,H6B), C39(H39A,H39B)

2.b Aromatic/amide H refined with riding coordinates:

N3(H3), C1(H1), C2(H2), C3(H3A), C9(H9), C10(H10), C11(H11), C15(H15), C16(H16), C17(H17), C18(H18), C19(H19), C22(H22), C23(H23), C24(H24), C25(H25), C26(H26), C27(H27), C28(H28), N6(H6), C34(H34), C35(H35), C36(H36), C42(H42), C43(H43), C44(H44), C48(H48), C49(H49), C50(H50), C51(H51), C52(H52), C55(H55), C56(H56), C57(H57), C58(H58), C59(H59), C60(H60), C61(H61)

2.c Idealised Me refined as rotating group:

C31(H31A,H31B,H31C), C32(H32A,H32B,H32C), C33(H33A,H33B,H33C), C64(H64A,H64B, H64C), C65(H65A,H65B,H65C), C66(H66A,H66B,H66C)