Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2024

Supporting Information

Palladium(II)-Catalyzed Intramolecular C–H Amination to Carbazole: Crucial Role of Cyclic Diacyl Peroxides

Ting Yuan, Kang Fu, and Lei Shi*

Table of Contents

1. General information	S1
2. Representative conditions in carbazoles Synthesis	S2
3. Representative KIE values of electrophilic aromatic mechanism	S2
4. Possible mechanism	S3
5. General procedures for the preparation of substrates (1)	S4
5.1 General procedure A	S4
5.2 General procedure B	S11
6. Synthesis of carbazoles (2)	S13
6.1 Reaction optimization	S13
6.2 General procedure for carbazoles synthesis	S15
7. Gram-scale Synthesis of <i>N</i> -Ts-Carbazole (2a)	S31
8. Optical and photoperties	S31
8.1 Photographs of 2a, 2i, 2j powders	S31
8.2 UV-Vis and fluorescence spectra.	S31
8.3 Photophysical data	S32
9. Green chemistry metrics analysis	S33
10. Mechanistic experiments	S36
10.1 Radical inhibition experiments	S36
10.2 Reaction rate of carbazoles synthesis	S37
10.3 Light On/Off experiment	S38
10.4 Screening of light source	S38
10.5 Investigation in palladium(II) 2,2-dimethylmalonate	
10.6 2,2-Dimethylmalonic acid identificated by NMR spectra	S41
10.7 Competition experiments of <i>meta</i> -substituted N-Ts-2-Phenylanilines	S43
10.8 Kinetic experiments	S46
10.9 Intermolecular kinetic isotope effect	S50
10.10 Intramolecular kinetic isotope effect	S53
10.11 The parallel kinetic isotope effect	S55
11. References	S57
12. Copies of NMR spectra	

1. General information

Unless otherwise noted, all experiments were carried out under air atmosphere. Commercially available reagents, starting materials and solvents were used without further purification. All the solvents including *N*,*N*-dimethylformamide (DMF), 1,2-dimethoxyethane (DME), dimethyl sulfoxide (DMSO), 1,2-dichloroethane (DCE), dichloromethane (DCM), acetonitrile (MeCN), toluene (PhMe), tetrahydrofuran (THF), ethyl acetate (EA), petroleum ether (PE) and acetone were used as received without purification. Flash column chromatography was performed using 200-300 mesh silica gel. Schlenk tubes were purchased from Synthware.

All reactions were monitored by TLC and visualized by UV lamp (254 nm). ¹H NMR (400 MHz or 600 MHz) and ¹³C NMR (101 MHz or 150 MHz) spectra were obtained on Bruker 400M or 600M or Zhongke-Niujin (Quantum-I Plus 400M) nuclear magnetic resonance spectrometers. For CDCl₃ solutions, the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; CHCl₃ δ H (7.26 ppm) and CDCl₃ δ C (77.16 ppm). For DMSO-*d*₆ solutions, the chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvents; DMSO-*d*₆ δ H (2.5 ppm) and DMSO-*d*₆ δ C (39.6 ppm). Coupling constants (*J*) are reported in Hertz (Hz). Data for ¹H NMR and ¹³C NMR spectra are reported as follows: chemical shift (ppm, referenced to protium: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet (quintet), dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet, coupling constant (Hz), and integration). HRMS (ESI) was recorded using an Agilent 6520 accurate-Mass Q-TOF spectrometer. Yields of kinetic experiments were determined by LC-MS using the Agilent 1260 Infinity II G7129A/ G7115A/ G6125B or GC using Agilent 7890B.

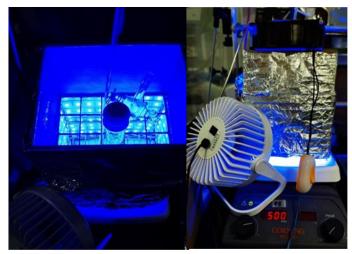


Figure S1. The photoreaction setup using blue LEDs

2. Representative conditions in carbazoles synthesis

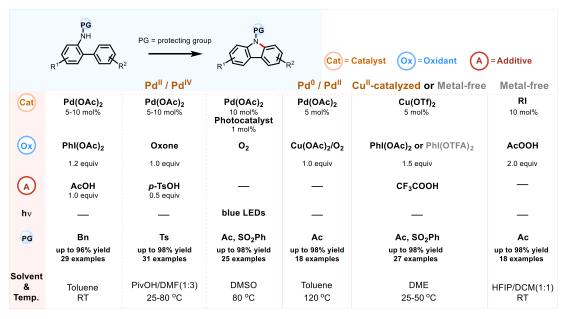


Figure S2. Various conditions in carbazoles synthesis¹⁻⁶

3. Representative KIE values of electrophilic aromatic mechanism

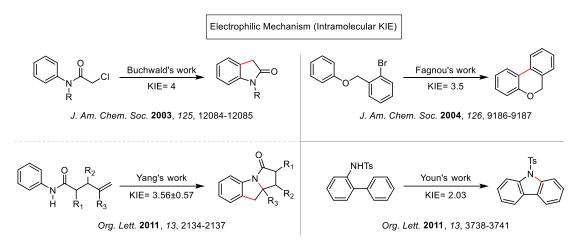


Figure S3. Various intramolecular KIE values in electrophilic aromatic mechanism

4. Possible mechanism

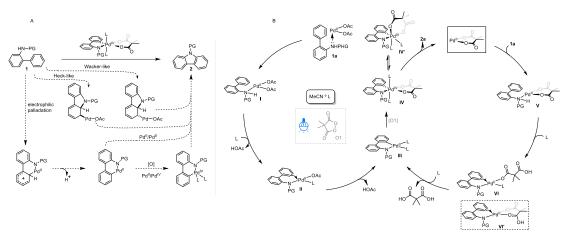
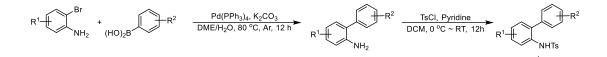
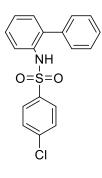
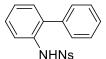



Figure S4. Possible mechanism for C-H bond amination

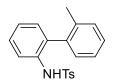
5. General procedures for the preparation of substrates (1)


5.1 General procedure A

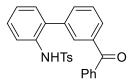

A dry round bottom flask flushed with argon and equipped with a magnetic stirrer bar and a septum was charged with arylboronic acid (1.5 equiv), K_2CO_3 (4.0 equiv), and $Pd(PPh_3)_4$ (10 mol%). A mixture of DME and H_2O (DME : $H_2O = 1:1, 0.25$ M), 2-Bromoaniline (1.0 equiv) were added, and the resulting mixture was heated to 80 °C for 12 hours. The reaction mixture was then poured into water and extracted with CH_2Cl_2 (3-5 times), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the corresponding 2-aminobiphenyl product.

A dry round bottom flask equipped with a magnetic stirrer bar was charged with 2-aminobiphenyl (1.0 equiv), pyridine (0.2 M) in CH₂Cl₂ (0.2 M). 4-toluenesulfonyl chloride (1.1 equiv) was added at 0 $^{\circ}$ C. After being stirred at 25 $^{\circ}$ C for 12 h, the reaction mixture was poured into water and extracted with CH₂Cl₂ (3-5 times), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the desired product **1**.

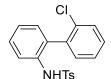
The spectral data of the compounds **1a-1d**, **1g-1n**, **1aa**, **1ab**, **1ad**, **1ae**, **1ag-1ai**, **1ak**, **1al**, **1ao**, **1aq**, **1ba-1be**, **1da**, **1ea**, **1fb**, **1fc** are in accordance with previous reports.^{2, 7}



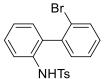
N-(4-Chlorobenzenesulfonyl)-2-aminobiphenyl(1e): white solid; Yield 90%; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, J = 8.2, 1.3 Hz, 1H), 7.48 – 7.41 (m, 2H), 7.41 – 7.30 (m, 6H), 7.19 (td, J = 7.5, 1.2 Hz, 1H), 7.12 (dd, J = 7.6, 1.7 Hz, 1H), 6.89 – 6.80 (m, 2H), 6.67 (s, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 139.64, 137.56, 137.22, 134.71, 133.20, 130.50, 129.36, 129.27, 128.90, 128.83, 128.63, 128.29, 125.73, 122.45; HRMS (ESI) m/z calcd for C₁₈H₁₄ClNNaO₂S⁺ (M+Na)⁺ 366.0326, found 366.0329.


N-([1,1'-biphenyl]-2-yl)-4-nitrobenzenesulfonamide(1f): grey solid; Yield 92%; ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.13 (m, 2H), 7.71 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.68 – 7.60 (m, 2H), 7.43 – 7.28 (m, 4H), 7.23 (dd, *J* = 7.5, 1.3 Hz, 1H),

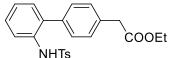
7.13 (dd, J = 7.6, 1.7 Hz, 1H), 6.82 (dt, J = 6.5, 1.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 130.64, 129.37, 129.10, 128.70, 128.46, 126.43, 124.24, 123.12; HRMS (ESI) m/z calcd for C₁₈H₁₄N₂NaO₄S⁺ (M+Na)⁺ 377.0566, found 377.0568.


4-methyl-*N*-(**2'-methyl-**[**1**,**1'-biphenyl**]-**2-yl**)**benzenesulfonamide**(**1ac**): white solid; Yield 87%; ¹**H** NMR (**400** MHz, CDCl₃) δ 7.81 – 7.59 (m, 2H), 7.54 – 7.48 (m, 2H), 7.33 – 7.27 (m, 1H), 7.20 (d, *J* = 7.9 Hz, 2H), 7.12 (qd, *J* = 7.5, 1.6 Hz, 2H), 7.04 – 6.92 (m, 2H), 6.56 (dd, *J* = 7.5, 1.5 Hz, 1H), 6.25 (s,

1H), 2.40 (s, 3H), 1.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.06, 136.82, 136.32, 136.08, 134.20, 132.69, 132.42, 130.83, 130.17, 129.70, 128.83, 128.65, 127.39, 126.45, 124.48, 120.00, 21.70, 21.66, 19.61; **HRMS (ESI)** m/z calcd for C₂₀H₁₉NNaO₂S⁺ (M+Na)⁺ 360.1029, found 360.1029.


N-(3'-benzoyl-[1,1'-biphenyl]-2-yl)-4-methylbenzenesulfonamide(1af): white solid; Yield 84%; ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.77 (m, 2H), 7.76 – 7.67 (m, 2H), 7.66 – 7.59 (m, 1H), 7.57 – 7.41 (m, 5H), 7.36 (td, *J* = 8.2, 7.8, 1.9 Hz, 1H), 7.24 – 7.07 (m, 6H), 6.55 (s, 1H), 2.31 (s, 3H); ¹³C NMR

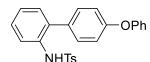
(**101 MHz, CDCl**₃) δ 196.03, 144.25, 138.49, 137.79, 137.21, 136.01, 133.77, 133.46, 132.96, 132.81, 130.51, 130.30, 130.20, 129.77, 129.22, 128.99, 128.65, 127.19, 125.40, 122.23, 21.61; **HRMS (ESI)** m/z calcd for C₂₆H₂₁NNaO₃S⁺ (M+Na)⁺ 450.1134, found 450.1133.


N-(2'-chloro-[1,1'-biphenyl]-2-yl)-4-methylbenzenesulfonamide(1aj): white solid; Yield 90%; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.50 – 7.41 (m, 3H), 7.35 (dtd, *J* = 21.5, 7.8, 1.7 Hz, 2H), 7.16 (dtd, *J* = 8.7, 7.5, 1.3 Hz, 4H), 7.05 (dd, *J* = 7.6, 1.7 Hz, 1H), 6.62 (dd, *J* = 7.6, 1.7 Hz, 2H), 7.05 (dd, *J* = 7.6, 1.7 Hz, 1H), 6.62 (dd, *J* = 7.6, 1.7 Hz, 2H), 7.05 (dd, *J* = 7.6, 1.7 Hz, 1H), 6.62 (dd, *J* = 7.6, 1.7 Hz, 2H), 7.05 (dd, *J* = 7.6, 1.7 Hz, 1H), 6.62 (dd, *J* = 7.6, 1.7 Hz, 2H), 7.05 (dd, *J* = 7.6, 1.7 Hz, 1H), 6.62 (dd, *J* = 7.6, 1.7 Hz, 2H), 7.05 (dd, *J* = 7.6, 1.7 Hz, 1H), 6.62 (dd, *J* = 7.6, 1.7 Hz, 2H), 7.05 (dd, *J* = 7.6, 1.7 Hz, 1H), 6.62 (dd, *J* = 7.6, 1.7 Hz, 2H), 7.05 (dd, *J* = 7.6, 1.7 Hz, 1H), 6.62 (dd, J = 7.6, 1.7 Hz, 1H

1H), 6.29 (s, 1H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.94, 136.31, 135.93, 134.04, 133.56, 131.57, 130.58, 130.01, 129.98, 129.70, 129.39, 127.36, 127.29, 125.16, 121.97, 21.69; HRMS (ESI) m/z calcd for C₁₉H₁₆ClNNaO₂S⁺ (M+Na)⁺ 380.0482, found 380.0486.

N-(2'-bromo-[1,1'-biphenyl]-2-yl)-4-methylbenzenesulfonamide(1am): white solid; Yield 89%; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (ddd, *J* = 26.8, 8.0, 1.3 Hz, 2H), 7.52 – 7.45 (m, 2H), 7.37 (td, *J* = 7.7, 1.7 Hz, 1H), 7.25 – 7.20 (m, 1H), 7.20 – 7.13 (m, 4H), 7.03 (dd, *J* = 7.6, 1.7 Hz, 1H), 6.58 (dd, *J* = 7.3, 2.0

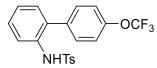
Hz, 1H), 6.24 (s, 1H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.99, 137.92, 136.34, 133.87, 133.22, 133.06, 131.48, 130.45, 130.17, 129.73, 129.39, 127.87, 127.44, 124.98, 123.90, 121.57, 21.70; HRMS (ESI) m/z calcd for C₁₉H₁₆BrNNaO₂S⁺ (M+Na)⁺ 423.9977, found 423.9979.


ethyl 2-(2'-((4-methylphenyl)sulfonamido)-[1,1'-biphenyl]-4yl)acetate(1an): white solid; Yield 85%; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, J = 8.3, 1.3 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.32

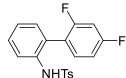
(td, J = 8.2, 7.8, 1.8 Hz, 1H), 7.27 (d, J = 8.3 Hz, 2H), 7.22 – 7.17 (m, 2H), 7.16 – 7.05 (m, 2H), 6.85 – 6.78 (m, 2H), 6.58 (s, 1H), 4.21 (q, J = 7.2 Hz, 2H), 3.65 (s, 2H), 2.40 (s, 3H), 1.30 (t, J =7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 171.44, 144.03, 136.25, 136.07, 134.25, 133.89, 133.60, 130.42, 130.10, 129.73, 129.24, 128.79, 127.30, 125.02, 121.43, 61.22, 41.14, 21.70, 14.36; HRMS (ESI) m/z calcd for C₂₃H₂₃NNaO₄S⁺ (M+Na)⁺ 432.1240, found 432.1244.

4-methyl-N-(4'-pentyl-[1,1'-biphenyl]-2-

yl)benzenesulfonamide(1ap): white solid; Yield 88%; ¹H NMR (400


NHTs MHz, CDCl₃) δ 7.69 (dd, J = 8.2, 1.3 Hz, 1H), 7.48 (d, J = 8.3 Hz, 2H), 7.35 – 7.26 (m, 1H), 7.22 – 7.00 (m, 6H), 6.80 – 6.71 (m, 2H), 6.64 (s, 1H), 2.63 (dd, J = 8.8, 6.7 Hz, 2H), 2.40 (s, 3H), 1.86 (s, 1H), 1.72 – 1.62 (m, 2H), 1.37 (ddt, J = 7.2, 5.6, 2.8 Hz, 4H), 0.98 – 0.86 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 143.95, 143.12, 136.26, 134.45, 133.94, 130.46, 129.68, 129.34, 129.22, 128.87, 128.56, 127.32, 125.50, 124.91, 121.22, 35.75, 31.69, 31.24, 22.69, 21.70, 14.20; HRMS (ESI) m/z calcd for C₂₄H₂₇NNaO₂S⁺ (M+Na)⁺ 416.1655, found 416.1656.

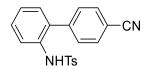
4-methyl-N-(4'-phenoxy-[1,1'-biphenyl]-2-


yl)benzenesulfonamide(1as): white solid; Yield 87%; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.2 Hz, 1H), 7.52 (d, J = 7.5 Hz, 2H), 7.41

(t, J = 7.3 Hz, 2H), 7.33 (t, J = 7.6 Hz, 1H), 7.23 – 7.07 (m, 7H), 6.96 (d, J = 7.4 Hz, 2H), 6.82 (d, J = 7.4 Hz, 2H), 6.60 (s, 1H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 157.62, 156.51, 144.03, 136.27, 133.93, 133.43, 131.76, 130.53, 130.43, 130.05, 129.70, 128.70, 127.25, 125.03, 124.04, 121.49, 119.61, 118.83, 21.65; HRMS (ESI) m/z calcd for C₂₅H₂₁NNaO₃S⁺ (M+Na)⁺ 438.1134, found 438.1136.

4-methyl-*N***-(4'-(trifluoromethoxy)-[1,1'-biphenyl]-2**yl)benzenesulfonamide(1at): white solid; Yield 80%; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 8.2, 1.3 Hz, 1H), 7.53 – 7.41 (m, 3H), 7.40 (td, J = 7.8, 1.7 Hz, 1H), 7.26 – 7.17 (m, 4H), 7.12 (dd, J = 7.6,

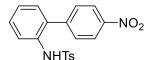
1.7 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.50 (s, 1H), 2.45 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 149.06, 144.16, 136.33, 136.11, 133.71, 133.12, 132.71, 130.58, 130.45, 129.78, 129.24, 127.23, 125.47, 128.83 – 122.16 (m), 121.52, 21.68; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.72; HRMS (ESI) m/z calcd for C₂₀H₁₆F₃NNaO₃S⁺ (M+Na)⁺ 430.0695, found 430.0699.


N-(2',4'-difluoro-[1,1'-biphenyl]-2-yl)-4methylbenzenesulfonamide(1au): white solid; Yield 81%; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, *J* = 8.1, 1.4 Hz, 1H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.21 (td, *J* = 7.5, 1.3 Hz, 1H), 7.16 - 7.05 (m, 4H), 6.91 - 6.75 (m, 2H),

6.67 (td, J = 8.5, 6.4 Hz, 1H), 6.39 (s, 1H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.99 (d, J = 238.8 Hz), 159.42 (d, J = 260.0 Hz), 143.88, 136.30, 134.18, 132.55 – 132.40 (m), 132.38, 131.16, 129.79, 129.64, 128.39, 127.11, 126.93 (d, J = 105.7 Hz), 126.01, 124.00, 112.06 (d, J = 21.1 Hz), 104.49 (t, J = 25.7 Hz). 21.65; ¹⁹F NMR (376 MHz, CDCl₃) δ -109.00, -109.99; HRMS (ESI) m/z calcd for C₁₉H₁₅F₂NNaO₂S⁺ (M+Na)⁺ 382.0684, found 382.0689.

N-(4'-(cyanomethyl)-[1,1'-biphenyl]-2-yl)-4-

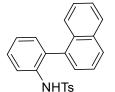
methylbenzenesulfonamide(1av): white solid; Yield 82%; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (dd, J = 8.2, 1.1 Hz, 1H), 7.55 – 7.45 (m, 2H),


7.38 – 7.27 (m, 3H), 7.21 (d, J = 8.4 Hz, 2H), 7.16 (td, J = 7.5, 1.2 Hz, 1H), 7.08 (dd, J = 7.6, 1.7 Hz, 1H), 6.92 – 6.86 (m, 2H), 6.52 – 6.48 (m, 1H), 3.80 (s, 2H), 2.41 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.16, 137.31, 136.21, 133.29, 130.36, 129.97, 129.83, 129.73, 129.05, 128.68, 127.21, 125.24, 121.87, 117.66, 77.48, 77.16, 76.84, 23.45, 21.66; HRMS (ESI) m/z calcd for C₂₁H₁₈N₂NaO₂S⁺ (M+Na)⁺ 385.0981, found 385.0987.

N-(4'-cyano-[1,1'-biphenyl]-2-yl)-4-

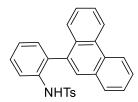
methylbenzenesulfonamide(1aw): white solid; Yield 72%; ¹H NMR (400 MHz, CDCI₃) δ 7.63 – 7.56 (m, 3H), 7.46 (d, *J* = 7.5 Hz, 2H), 7.36 (d, *J* = 7.8 Hz, 1H), 7.20 (d, *J* = 7.6 Hz, 3H), 7.09 (d, *J* = 7.6 Hz, 1H),

7.03 (d, J = 7.3 Hz, 2H), 6.60 (s, 1H), 2.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 144.15, 142.47, 136.27, 133.54, 133.29, 132.49, 130.22, 129.93, 129.74, 129.60, 127.08, 125.91, 123.62, 118.48, 111.68, 29.70, 21.62; HRMS (ESI) m/z calcd for C₂₀H₁₆N₂NaO₂S⁺ (M+Na)⁺ 371.0825, found 371.0825.

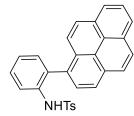

4-methyl-*N***-(4'-nitro-[1,1'-biphenyl]-2-yl)benzenesulfonamide(1ax):** yellow solid; Yield 70%; ¹**H NMR (400 MHz, CDCl**₃) δ 8.16 (d, *J* = 8.8 Hz, 2H), 7.67 - 7.60 (m, 1H), 7.44 (dd, *J* = 26.7, 7.9 Hz, 2H), 7.38 (d, *J*

= 1.5 Hz, 1H), 7.28 – 7.18 (m, 3H), 7.11 (ddd, J = 14.1, 7.2, 1.7 Hz, 3H), 6.43 (s, 1H), 2.43 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 147.49, 144.47, 144.39, 136.33, 133.44, 133.06, 130.26, 130.20, 129.94, 129.86, 127.20, 126.00, 124.09, 123.59, 77.37, 77.16, 76.95, 21.72; HRMS (ESI) m/z calcd for C₁₉H₁₆N₂NaO₄S⁺ (M+Na)⁺ 391.0723, found 391.0722.

NHTs


N,*N'*-([1,1'-biphenyl]-2,4'-diyl)bis(4methylbenzenesulfonamide)(1ay): white solid; Yield 76%; ¹H NMR

NHTs (400 MHz, CDCl₃) δ 7.78 – 7.72 (m, 2H), 7.65 (dd, J = 8.2, 1.3 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.32 (d, J = 5.7 Hz, 2H), 7.16 – 7.07 (m, 4H), 7.09 – 6.96 (m, 4H), 6.75 – 6.67 (m, 2H), 6.44 (d, J = 2.7 Hz, 1H), 2.40 (d, J = 10.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 144.54, 144.11, 136.70, 136.11, 134.02, 133.75, 133.43, 130.33, 130.05, 129.70, 128.93, 127.42, 127.21, 125.26, 122.01, 121.46, 77.48, 77.16, 76.84, 21.74, 21.69; HRMS (ESI) m/z calcd for C₂₆H₂₄N₂NaO₄S₂⁺ (M+Na)⁺ 515.1070, found 515.1073.

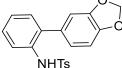

4-methyl-*N***-(2-(naphthalen-1-yl)phenyl)benzenesulfonamide(1az):** white solid; Yield 77%; ¹**H NMR (400 MHz, CDCl**₃) δ 7.92 (t, *J* = 7.1 Hz, 2H), 7.87 (d, *J* = 8.3 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.44 (dt, *J* = 14.9, 7.6 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.9 Hz, 1H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.14 (dd, *J* = 20.9, 9.1 Hz, 4H), 6.84 (d, *J* = 6.9 Hz, 1H), 6.27 (s, 1H), 2.41 (s, 3H);

¹³C NMR (101 MHz, CDCl₃) δ 143.82, 136.07, 134.84, 134.26, 133.82, 131.73, 131.71, 131.26, 129.57, 129.06, 129.04, 128.63, 127.48, 127.31, 127.01, 126.42, 125.54, 125.10, 124.84, 121.22, 21.69; HRMS (ESI) m/z calcd for $C_{23}H_{19}NNaO_2S^+$ (M+Na)⁺ 396.1029, found 396.1032.

4-methyl-*N***-(2-(phenanthren-9-yl)phenyl)benzenesulfonamide(1aa'):** white solid; Yield 78%; ¹H NMR (400 MHz, CDCl₃) δ 8.78 (dd, *J* = 12.2, 8.3 Hz, 2H), 7.93 (d, *J* = 8.2 Hz, 1H), 7.76 (ddd, *J* = 8.3, 5.3, 3.1 Hz, 1H), 7.72 - 7.64 (m, 3H), 7.55 - 7.46 (m, 1H), 7.46 - 7.38 (m, 1H), 7.32 - 7.24 (m, 3H), 7.26 - 7.17 (m, 2H), 7.08 - 6.97 (m, 3H), 6.31 (s, 1H), 2.44 (s, 1H), 7.46 - 7.38 (m, 1H), 7.46 - 7.38 (m, 1H), 7.46 - 7.44 (m, 3H), 7.26 - 7.17 (m, 2H), 7.08 - 6.97 (m, 3H), 6.31 (s, 1H), 2.44 (s, 1H), 7.46 - 7.46 (m, 2H), 7.08 - 6.97 (m, 2H), 7.08 - 6.97 (m, 2H), 7.08 - 6.97 (m, 2H), 7.46 (m, 2H), 7.46 - 7.46 (m, 2H), 7.46 (m, 2H), 7.

3H); ¹³C NMR (150 MHz, CDCl₃) δ 143.61, 135.90, 134.78, 132.83, 132.01, 131.14, 130.99, 130.57, 130.42, 130.31, 129.40, 129.01, 128.51, 128.14, 127.39, 127.32, 127.12, 127.08, 127.05, 125.80, 125.14, 123.22, 122.71, 121.85, 21.67; HRMS (ESI) m/z calcd for C₂₇H₂₁NNaO₂S⁺ (M+Na)⁺ 446.1185, found 446.1187.

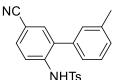
4-methyl-*N***-(2-(pyren-1-yl)phenyl)benzenesulfonamide(1ab'):** grey solid; Yield 58%; ¹**H NMR (400 MHz, CDCl₃)** δ 8.31 (d, *J* = 7.6 Hz, 1H), 8.24 – 8.05 (m, 5H), 7.93 (dd, *J* = 10.8, 8.7 Hz, 2H), 7.54 – 7.51 (m, 1H), 7.42 (dd, *J* = 8.4, 2.9 Hz, 2H), 7.32 – 7.30 (m, 4H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.39 (d, *J* = 3.2 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 143.86, 136.12, 134.99, 132.27, 131.70, 131.53, 131.44, 131.37, 130.87,


129.53, 129.30, 129.19, 128.60, 128.33, 127.37, 127.35, 127.22, 126.53, 125.87, 125.57, 124.95, 124.62, 124.09, 121.47, 21.64; **HRMS (ESI)** m/z calcd for $C_{29}H_{21}NNaO_2S^+$ (M+Na)⁺ 470.1185, found 470.1189.

N-(2-(dibenzo[b,d]furan-4-yl)phenyl)-4-

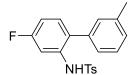
methylbenzenesulfonamide(1ac'): white solid; Yield 81%; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.7 Hz, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.86 (d, J = 8.1 Hz, 1H), 7.52 (d, J = 4.9 Hz, 3H), 7.42 (t, J = 6.8 Hz, 1H), 7.34 (d, J = 4.0 Hz, 2H), 7.28 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 7.8 Hz, 2H), 7.02 (s, 1H), 6.91 (d, J = 7.8 Hz, 2H), 6.86 (d, J = 7.4 Hz, 1H), 2.21 (s, 3H); ¹³C NMR

(**150** MHz, CDCl₃) δ 155.83, 152.62, 143.30, 135.77, 133.88, 131.15, 130.60, 129.29, 129.23, 127.97, 127.71, 126.59, 126.34, 125.43, 124.59, 123.89, 123.33, 123.28, 121.75, 120.92, 120.54, 111.94, 21.29; **HRMS (ESI)** m/z calcd for C₂₅H₁₉NNaO₃S⁺ (M+Na)⁺ 436.0978, found 436.0981.



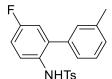
N-(2-(benzo[d][1,3]dioxol-5-yl)phenyl)-4methylbenzenesulfonamide(1ad'): white solid; Yield 82%; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.2 Hz, 1H), 7.48 (d, J = 7.5 Hz, 2H),

NHTs 7.30 (t, J = 7.7 Hz, 1H), 7.19 (d, J = 7.8 Hz, 2H), 7.11 (t, J = 7.4 Hz, 1H), 7.05 (d, J = 7.5 Hz, 1H), 6.76 (d, J = 7.8 Hz, 1H), 6.64 (s, 1H), 6.34 (d, J = 7.9 Hz, 1H), 6.19 (s, 1H), 6.00 (s, 2H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 148.17, 147.50, 144.01, 136.07,


133.91, 133.75, 130.76, 130.37, 129.62, 128.56, 127.17, 124.97, 122.20, 121.61, 109.43, 108.72, 101.40, 21.57; **HRMS (ESI)** m/z calcd for $C_{20}H_{17}NNaO_4S^+$ (M+Na)⁺ 390.0770, found 390.0774.

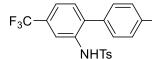
N-(5-cyano-3'-methyl-[1,1'-biphenyl]-2-yl)-4-

methylbenzenesulfonamide(1ca): white solid; Yield 73%; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.6 Hz, 1H), 7.61 – 7.51 (m, 4H), 7.38 (d, J = 2.1 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.26 (d, J = 15.3 Hz, 2H), 6.81 (s, 1H),

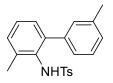

6.75 (dt, J = 7.5, 1.7 Hz, 1H), 6.71 – 6.67 (m, 1H), 2.43 (s, 3H), 2.35 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 144.84, 139.65, 138.34, 135.78, 134.81, 134.13, 133.74, 132.55, 130.11, 130.06, 129.65, 129.50, 127.29, 125.84, 119.81, 118.52, 107.78, 21.76, 21.54; HRMS (ESI) m/z calcd for C₂₁H₁₈N₂NaO₂S⁺ (M+Na)⁺ 385.0981, found 385.0985.

N-(4-fluoro-3'-methyl-[1,1'-biphenyl]-2-yl)-4-

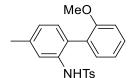
methylbenzenesulfonamide(1cb): white solid; Yield 62%; ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.50 (m, 3H), 7.34 – 7.24 (m, 4H), 7.25 – 7.18 (m, 1H), 7.07 (dd, J = 8.5, 6.3 Hz, 1H), 6.86 (td, J = 8.2, 2.6 Hz, 1H), 6.71 (dt,


J = 7.3, 1.7 Hz, 1H), 6.66 – 6.60 (m, 1H), 2.45 (s, 3H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 162.51 (d, J = 246.3 Hz), 161.29, 144.31, 139.11, 136.14 (d, J = 32.3 Hz), 135.32 (d, J = 10.8 Hz), 131.42 (d, J = 9.1 Hz), 111.60 (d, J = 21.1 Hz), 108.09 (d, J = 26.5 Hz), 129.84, 129.26, 127.33, 126.17, 111.60 (d, J = 21.1 Hz), 108.09 (d, J = 26.5 Hz), 21.72, 21.52; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.86; HRMS (ESI) m/z calcd for C₂₀H₁₈FNNaO₂S⁺ (M+Na)⁺ 378.0934, found 378.0934.

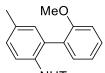
N-(5-fluoro-3'-methyl-[1,1'-biphenyl]-2-yl)-4-


methylbenzenesulfonamide(1cc): white solid; Yield 61%; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, J = 9.0, 5.2 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.29 – 7.17 (m, 5H), 7.09 (ddd, J = 9.0, 7.9, 3.0 Hz, 1H), 6.84 (dd, J = 8.8, 3.1 Hz, 1H),

6.63 (dt, J = 7.3, 1.8 Hz, 1H), 6.51 (q, J = 1.4, 1.0 Hz, 1H), 2.46 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.95 (d, J = 245.9 Hz), 143.98, 139.01, 136.84, 136.25, 135.96, 129.69, 129.34, 129.29, 129.12, 127.29, 125.64, 124.49 (d, J = 8.3 Hz), 116.95 (d, J = 22.8 Hz), 115.40 (d, J = 22.4 Hz), 21.71, 21.52; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.98; HRMS (ESI) m/z calcd for C₂₀H₁₈FNNaO₂S⁺ (M+Na)⁺ 378.0934, found 378.0935.

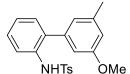

4-methyl-*N*-(4'-methyl-4-(trifluoromethyl)-[1,1'-biphenyl]-2yl)benzenesulfonamide(1cd): white solid; Yield 59%; ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.48 (m, 3H), 7.45 (d, *J* = 8.3 Hz, 2H),

7.18 (d, J = 8.3 Hz, 2H), 6.99 (dt, J = 16.1, 8.1 Hz, 4H), 6.40 (s, 1H), 2.41 (d, J = 5.3 Hz, 6H); ¹³C **NMR (101 MHz, CDCl₃)** δ 144.12, 141.38, 139.72, 136.34, 133.28, 131.11 (q, J = 32.1 Hz), 130.63, 130.08, 129.76, 129.56, 127.45, 127.19, 126.58, 125.90 (d, J = 3.8 Hz), 123.65, 123.50 (q, J = 272.3 Hz), 21.68, 21.52. ¹⁹F **NMR (376 MHz, CDCl₃)** δ -62.61; **HRMS (ESI)** m/z calcd for C₂₁H₁₉F₃NO₂S⁺ (M+H)⁺ 406.1083, found 406.1083.


N-(**3,3'-dimethyl-[1,1'-biphenyl]-2-yl)-4-methylbenzenesulfonamide(1ce) :** white solid; Yield 73%; ¹**H NMR (400 MHz, CDCl**₃) δ 7.28 (dd, *J* = 7.6, 2.2 Hz, 1H), 7.21 (q, *J* = 7.6, 7.0 Hz, 1H), 7.12 – 6.90 (m, 7H), 6.65 – 6.59 (m, 2H), 6.50 (d, *J* = 2.0 Hz, 1H), 2.57 (d, *J* = 18.8 Hz, 3H), 2.40 (d, *J* = 12.6 Hz, 3H),

2.22 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 142.88, 140.57, 138.89, 138.86, 138.24, 136.69, 131.18, 130.97, 129.31, 129.22, 128.40, 128.37, 127.82, 127.50, 127.13, 125.42, 21.69, 21.54, 20.10; HRMS (ESI) m/z calcd for C₂₁H₂₁NNaO₂S⁺ (M+Na)⁺ 374.1185, found 374.1187.

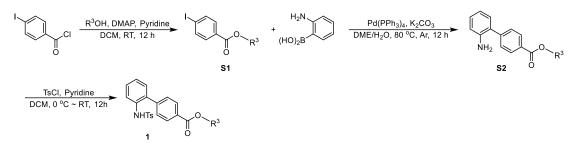
N-(2'-methoxy-4-methyl-[1,1'-biphenyl]-2-yl)-4methylbenzenesulfonamide(1cf): white solid; Yield 70%; ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.48 (m, 1H), 7.32 – 7.19 (m, 1H), 7.17 – 7.10 (m, 2H), 7.07 – 6.98 (m, 2H), 6.98 – 6.80 (m, 4H), 6.75 (td, *J* = 7.5, 1.1 Hz, 1H),


6.39 (dd, J = 7.5, 1.8 Hz, 1H), 3.80 (s, 3H), 2.41 (s, 3H), 2.33 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.18, 142.99, 138.78, 136.22, 133.96, 131.84, 130.90, 130.57, 129.31, 127.36, 127.03, 126.75, 126.27, 121.34, 111.20, 56.22, 21.58, 21.35; HRMS (ESI) m/z calcd for C₂₁H₂₁NNaO₃S⁺ (M+Na)⁺ 390.1134, found 390.1135.

N-(2'-methoxy-5-methyl-[1,1'-biphenyl]-2-yl)-4-

methylbenzenesulfonamide(1fa): white solid; Yield 72%; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.2 Hz, 1H), 7.23 – 7.15 (m, 1H), 7.13 – 7.00 (m,

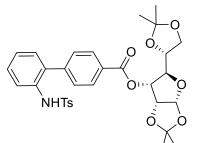
NHTs 3H), 6.91 – 6.80 (m, 4H), 6.78 (d, J = 2.4 Hz, 1H), 6.66 (td, J = 7.5, 1.2 Hz, 1H), 6.30 (dd, J = 7.5, 1.8 Hz, 1H), 3.71 (s, 3H), 2.24 (d, J = 5.4 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 155.07, 142.90, 136.34, 136.21, 133.55, 131.77, 131.71, 131.61, 129.41, 129.36, 129.31, 127.21, 126.75, 125.99, 121.31, 111.14, 56.24, 21.58, 21.08; HRMS (ESI) m/z calcd for C₂₁H₂₁NNaO₃S⁺ (M+Na)⁺ 390.1134, found 390.1134.

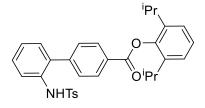


N-(3'-methoxy-5'-methyl-[1,1'-biphenyl]-2-yl)-4-

methylbenzenesulfonamide(1fe): white solid; Yield 73%; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (dt, J = 8.2, 1.5 Hz, 1H), 7.45 (dd, J = 8.4, 2.3 Hz, 2H), 7.31 (tt, J = 8.1, 2.1 Hz, 1H), 7.22 – 7.01 (m, 4H), 6.72 (dd, J = 18.0,

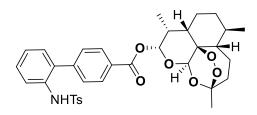
2.0 Hz, 2H), 6.40 - 5.93 (m, 2H), 3.74 (d, J = 2.4 Hz, 3H), 2.37 (d, J = 2.4 Hz, 3H), 2.28 (d, J = 2.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.92, 143.73, 140.14, 138.15, 136.00, 134.13, 133.59, 129.96, 129.47, 128.46, 127.04, 124.88, 121.62, 121.50, 114.16, 111.63, 77.48, 77.16, 76.84, 55.11, 21.48, 21.45; HRMS (ESI) m/z calcd for C₂₁H₂₁NNaO₃S⁺ (M+Na)⁺ 390.1134, found 390.1135.


5.2 General procedure B


A dry round bottom flask equipped with a magnetic stirrer bar was charged with alcohol (1.0 equiv), pyridine (5 equiv), and DMAP (2 mol%) in CH_2Cl_2 (0.1 M). 4-Iodobenzoyl chloride (1.2 equiv) was added and the resulting mixture stirring at 25 °C for 12 h. The reaction mixture was poured into water and extracted with CH_2Cl_2 (3-5 times), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the desired product **S1**.

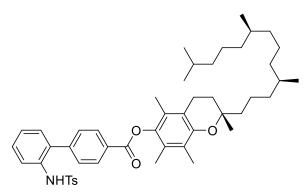
A dry round bottom flask flushed with argon and equipped with a magnetic stirrer bar and a septum was charged with arylboronic acid (1.5 equiv), K_2CO_3 (4.0 equiv), and $Pd(PPh_3)_4$ (10 mol%). A mixture of DME and H_2O (DME : $H_2O = 1:1, 0.25$ M), **S1** (1.0 equiv) were added, and the resulting mixture was heated to 80 °C for 12 h. The reaction mixture was poured into water and extracted with CH_2Cl_2 (3-5 times), dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the desired product **S2**.

A dry round bottom flask equipped with a magnetic stirrer bar was charged with **S2** (1.0 equiv), DMAP (2 mol%) and pyridine (5.0 equiv) in $CH_2Cl_2(0.2 \text{ M})$. 4-toluenesulfonyl chloride (1.1 equiv) was added at 0 °C. After being stirred at 25 °C for 12 h, the reaction mixture was poured into water and extracted with CH_2Cl_2 (3-5 times), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the corresponding product **1**.



(d, J = 3.1 Hz, 1H), 4.63 (t, J = 3.4 Hz, 1H), 4.42 – 4.28 (m, 2H), 4.16 – 4.01 (m, 2H), 2.37 (s, 3H), 1.53 (s, 3H), 1.40 (s, 3H), 1.29 (d, J = 13.2 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 164.79, 144.23, 142.81, 136.21, 133.60, 133.20, 130.43, 130.16, 129.80, 129.47, 129.36, 127.55, 127.25, 125.43, 122.22, 112.56, 109.63, 105.27, 83.50, 80.03, 76.84, 72.68, 67.42, 27.02, 26.84, 26.32, 25.40, 21.69; HRMS (ESI) m/z calcd for C₃₂H₃₅KNO₉S⁺ (M+K)⁺ 648.1664, found 648.1669.

2,6-diisopropylphenyl 2'-((4-methylphenyl)sulfonamido)-[1,1'-biphenyl]-4-carboxylate(1fg): white solid; Yield 70%; ¹H NMR (400 MHz, CDCl₃) δ 8.26 – 8.19 (m, 2H), 7.75 (dd, J = 8.3, 1.3 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.40 (td, J = 7.8, 1.8 Hz, 1H), 7.33 – 7.28 (m, 2H), 7.22 (ddd, J = 14.1, 6.7, 2.3 Hz, 4H), 7.15 (dd, J = 7.6, 1.7 Hz, 1H), 7.05 (dq, J = 8.3, 2.0 Hz, 2H), 6.49 (s, 1H), 3.03


(hept, J = 6.9 Hz, 2H), 2.43 (s, 3H), 1.27 (dd, J = 6.8, 2.2 Hz, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 164.80, 145.83, 144.34, 142.88, 140.61, 136.21, 133.71, 133.13, 130.96, 130.19, 129.86, 129.56, 129.19, 127.33, 126.89, 125.38, 124.23, 122.05, 27.81, 24.10, 22.86, 21.73; HRMS (ESI) m/z calcd for C₃₂H₃₃KNO₄S⁺ (M+K)⁺ 566.1762, found 566.1762.

trimethyldecahydro-12*H*-3,12epoxy[1,2]dioxepino[4,3-*i*]isochromen-10-yl 2'-((4methylphenyl)sulfonamido)-[1,1'-biphenyl]-4carboxylate(1fh): colorless oil; Yield 88%; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (dd, *J* = 8.3, 2.2 Hz, 2H), 7.66

(3R,5aR,6S,8aR,9S,12S,12aS)-3,6,9-

(dd, J = 8.1, 2.1 Hz, 1H), 7.48 – 7.37 (m, 2H), 7.37 – 7.25 (m, 1H), 7.19 – 7.12 (m, 3H), 7.07 (dd, J = 7.6, 1.4 Hz, 1H), 6.91 (d, J = 8.3 Hz, 2H), 6.68 – 6.63 (m, 1H), 5.99 (d, J = 1.5 Hz, 1H), 5.51 (s, 1H), 2.79 – 2.69 (m, 2H), 2.37 (s, 3H), 2.12 – 1.99 (m, 3H), 1.93 – 1.60 (m, 4H), 1.51 – 1.24 (m, 6H), 0.93 (dd, J = 9.8, 5.9 Hz, 6H); ¹³**C** NMR (101 MHz, CDCI₃) δ 164.88, 144.25, 142.54, 136.14, 133.60, 133.47, 130.86, 130.21, 130.05, 129.83, 129.41, 129.08, 127.22, 125.47, 122.53, 104.64, 92.91, 91.79, 80.35, 51.76, 45.45, 37.43, 36.37, 34.24, 32.16, 26.10, 24.72, 22.21, 21.74, 20.39, 12.43; HRMS (ESI) m/z calcd for C₃₅H₃₉KNO₈S⁺ (M+K)⁺ 672.2028, found 672.2030.

2,5,7,8-tetramethyl-2-(4,8,12trimethyltridecyl)chroman-6-yl 2'-((4methylphenyl)sulfonamido)-[1,1'-biphenyl]-4-carboxylate(1fi): colorless oil; Yield 66%; ¹**H NMR (400 MHz, CDCl**₃) δ 8.25 (d, *J* = 8.3 Hz, 2H), 7.78 (dd, *J* = 8.2, 1.1 Hz, 1H), 7.59 – 7.52 (m, 2H), 7.43 (td, *J* = 7.8, 1.7 Hz, 1H), 7.25 (dd, *J* = 7.7, 6.1 Hz, 3H), 7.19 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.10 – 7.04 (m, 2H), 6.59 (s, 1H),

2.70 (t, J = 6.8 Hz, 2H), 2.46 (s, 3H), 2.22 – 2.10 (m, 9H), 1.88 (ddp, J = 19.5, 13.4, 6.8, 6.3 Hz, 2H), 1.73 – 1.07 (m, 24H), 0.92 (t, J = 6.0 Hz, 12H); ¹³**C NMR (101 MHz, CDCl₃)** δ 164.74, 149.69, 144.20, 142.67, 140.64, 136.23, 133.63, 133.41, 130.83, 130.17, 129.79, 129.40, 129.38, 129.32, 127.25, 126.92, 125.44, 125.18, 123.33, 122.40, 117.68, 75.24, 39.47, 37.64, 37.55, 37.49, 37.39, 32.87, 32.81, 28.08, 24.92, 24.55, 22.84, 22.75, 21.67, 21.16, 20.76, 19.87, 19.81, 13.23, 12.39, 12.00; **HRMS (ESI)** m/z calcd for C₄₉H₆₅KNO₅S⁺ (M+K)⁺ 818.4215, found 818.4213.

6. Synthesis of carbazoles (2)

6.1 Reaction optimization

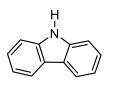
					Pd-catalyst Solvent RT			N Ts			
			1a					2a			
				01, R=N 02, R=E 03, R= ⁿ	εt (Γ	0 	O4 , n=1 O5 , n=2 O6 , n=3 O7 , n=4		08	O O PPO	
Entry	Pd-Catalyst	Oxidant	Solvent	hν	Yield (%) ^b	Entry	Pd-Catalyst	Oxidant	Solvent	hν	Yield (%) ^b
1	Pd(OAc) ₂	01	DMSO	-	7	21	Pd(OAc) ₂	Phl(OAc) ₂	MeCN	Blue LEDs	49
2	Pd(OAc) ₂	01	DMF	-	11	22	Pd(OAc) ₂	TBPB	MeCN	Blue LEDs	10
3	Pd(OAc) ₂	01	DCE	-	6	23	Pd(OAc) ₂	TBPA	MeCN	Blue LEDs	<5
4	Pd(OAc) ₂	01	Toluene	-	6	24	Pd(OAc) ₂	DTPB	MeCN	Blue LEDs	17
5	Pd(OAc) ₂	01	DCM	-	5	25	Pd(OAc) ₂	твнр	MeCN	Blue LEDs	<5
6	Pd(OAc) ₂	01	MeCN	-	70 / 90 ^c	26	Pd(OAc) ₂	BPO	MeCN	Blue LEDs	<5
7	Pd(OAc) ₂	01	MeCN	Blue LEDs	94	27	Pd(OAc) ₂	LPO	MeCN	Blue LEDs	39
8	Pd(OAc) ₂	01	PhCN	Blue LEDs	80	28	Pd(TFA) ₂	01	MeCN	Blue LEDs	86
9	Pd(OAc) ₂	01	PhCH ₂ CN	Blue LEDs	75	29	PdCl ₂	01	MeCN	Blue LEDs	10
10	Pd(OAc) ₂	02	MeCN	Blue LEDs	84	30	Pd(MeCN) ₂ Cl ₂	01	MeCN	Blue LEDs	12
11	Pd(OAc) ₂	O3	MeCN	Blue LEDs	76	31	Pd(acac) ₂	01	MeCN	Blue LEDs	69
12	Pd(OAc) ₂	04	MeCN	Blue LEDs	90	32^d	Pd(OAc) ₂	01	MeCN	Blue LEDs	51
13	Pd(OAc) ₂	O5	MeCN	Blue LEDs	88	33 ^e	Pd(OAc) ₂	01	MeCN	Blue LEDs	64
14	Pd(OAc) ₂	O 6	MeCN	Blue LEDs	92	34 ^f	Pd(OAc) ₂	01	MeCN	Blue LEDs	90
15	Pd(OAc) ₂	07	MeCN	Blue LEDs	90	35 ^g	Pd(OAc) ₂	01	MeCN	Blue LEDs	98
16	Pd(OAc) ₂	08	MeCN	Blue LEDs	83	36 ^h	Pd(OAc) ₂	01	MeCN	Blue LEDs	94
17	Pd(OAc) ₂	PPO	MeCN	Blue LEDs	80	37 ⁱ	Pd(OAc) ₂	01	MeCN	Blue LEDs	86
18	Pd(OAc) ₂	NFSI	MeCN	Blue LEDs	23	38 ^j	Pd(OAc) ₂	01	MeCN	Blue LEDs	81
19	Pd(OAc) ₂	H_2O_2	MeCN	Blue LEDs	<5	39 ^k	Pd(OAc) ₂	01	MeCN	Blue LEDs	95
20	Pd(OAc) ₂	m-CPBA	MeCN	Blue LEDs	40						
		0-0		$ \vdash $	pr°×	λ°		0-0	C ₁₁ H ₂₃		H ₂₃
	TBI	РВ	ТВРА	I	ОТРВ	твн	Р	BPO		LPO	

Table S1. Optimization of the Reaction Conditions^a

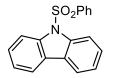
^{*a*}Reaction conditions:**1a** (0.10 mmol, 1.0 equiv), Pd(OAc)₂ (0.01 mmol, 10 mol%), oxidant (0.20 mmol, 2.0 equiv) and solvent (1 mL), irradiation with blue LEDs for 6 h at room temperature. ^{*b*}Isolated yields. ^{*c*}24 h. ^{*d*}Oxidant (1 equiv). ^{*e*}Oxidant (1.2 equiv). ^{*f*}Oxidant (1.4 equiv). ^{*g*}Oxidant (1.6 equiv). ^{*h*}Oxidant (1.8 equiv). ^{*i*}Solvent (0.2 M), **O1** (1.6 equiv). ^{*j*}Solvent (0.07 M), **O1** (1.6 equiv). ^{*k*}Pd(OAc)₂ (5 mol%), **O1** (1.6 equiv), 24 h.

	NHPG 1	Pd(OAc) ₂ (10 m O1 (1.6 equiv MeCN (0.1 M), blue LEI	DI%) Dos, RT, 6 h PG 2	\rangle
Entry	PG	Product	Yield (%) ^b	Predicted pKa ^c
1	Ts	2a	98	17.69
2	н	2b	80	26.03
3	PhSO ₂	2c	94	17.45
4	Ms	2d	96	16.86
5	p-CIC ₆ H ₄ SO ₂	2e	91	16.5
6	Ns	2f	72	15.79
7	COOMe	2g	56	20.51
8	Ac	2h	41	23.17
9	PhCO	2i	23	22.21
10	<i>p</i> -CIC ₆ H₄CO	2j	20	21.07
11	[#] BuCO	2k	<5	23.87
12	CF₃CO	21	<5	13.91
13	Ме	2m	<5	25.48
14	Bn	2n	<5	24.54

Table S2. Effect of Nitrogen-Protecting Groups on the Carbazole Synthesis^a

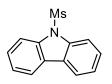

^aReaction conditions: 1 (0.1 mmol, 1.0 equiv), Pd(OAc)₂ (0.01 mmol 10 mol%), O1 (0.16 mmol, 1.6 equiv) and solvent (1 mL), irradiation with blue LEDs for 6 h at room temperature. PG =protecting group, $Ts = p-MeC_6H_4SO_2$, $Ns = p-NO_2C_6H_4SO_2$, $Ms = MeSO_2$. ^bIsolated yield. ^{*c*}Predicted p*K*_a in MeCN.

6.2 General procedure for carbazoles synthesis

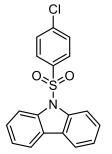

A dry Schlenk tube equipped with a magnetic stirrer bar was charged with substrate 1 (0.10 mmol, 1.0 equiv) and Pd(OAc)₂ (0.01 mmol, 10 mol%) in MeCN (1 mL). **O1** (0.16 mmol, 1.6 equiv) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W) for 6-12 h. The reaction mixture was then purified by flash chromatography on silica gel (PE/EA).

Ts N **9-Tosyl-9***H***-carbazole (2a)**: white solid; Yield 98%, 6h; ¹**H** NMR (600 MHz, CDCl₃) δ 8.37 (d, J = 8.4 Hz, 2H; H_{Ar}), 7.89 (d, J = 7.7 Hz, 2H; H_{Ar}), 7.71 (d, J = 8.4 Hz, 2H; H_{Ar}), 7.50 (t, J = 7.8 Hz, 2H; H_{Ar}), 7.36 (t, J = 7.5 Hz, 2H; H_{Ar}), 7.05 (d, J = 8.3 Hz, 2H; H_{Ar}), 2.21 (s, 3H; CH₃); ¹³C NMR (150 MHz, CDCl₃)

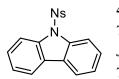
δ144.95 (C_{Ar}), 138.43 (C_{Ar}), 134.98 (C_{Ar}), 129.71 (C_{Ar}), 127.46 (C_{Ar}), 126.52 (C_{Ar}), 126.44 (C_{Ar}), 123.98 (C_{Ar}), 120.09 (C_{Ar}), 115.21 (C_{Ar}), 21.52 (CH₃).



9*H***-carbazole (2b)**: white solid; Yield 80%, 6h; ¹**H NMR (400 MHz, CDCl₃)** δ 8.09 (d, *J* = 7.8 Hz, 2H; H_{Ar}), 8.04 (s, 1H; NH), 7.46 – 7.39 (m, 4H; H_{Ar}), 7.27 – 7.22 (m, 2H; H_{Ar}); ¹³**C NMR (101 MHz, CDCl₃)** δ 139.62 (C_{Ar}), 125.98 (C_{Ar}), 123.50 (C_{Ar}), 120.47 (C_{Ar}), 119.59 (C_{Ar}), 110.71 (C_{Ar}).

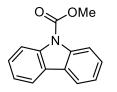

9-(Phenylsulfonyl)-9*H***-carbazole (2c)**: white solid; Yield 94%, 6h; ¹**H NMR** (400 MHz, CDCl₃) δ 8.35 (d, J = 8.4 Hz, 2H; H_{Ar}), 7.90 (d, J = 7.6 Hz, 2H; H_{Ar}), 7.83 (d, J = 8.0 Hz, 2H; H_{Ar}), 7.50 (t, J = 7.6 Hz, 2H; H_{Ar}), 7.43 (t, J = 7.6 Hz, 1H; H_{Ar}), 7.37 (t, J = 7.6 Hz, 2H; H_{Ar}), 7.30 (t, J = 7.6 Hz, 2H; H_{Ar}); ¹³C

NMR (101 MHz, CDCl₃) δ 138.46 (C_{Ar}), 137.99 (C_{Ar}), 133.88 (C_{Ar}), 129.13 (C_{Ar}), 127.54 (C_{Ar}), 126.53 (C_{Ar}), 126.52 (C_{Ar}), 124.11 (C_{Ar}), 120.15 (C_{Ar}), 115.24 (C_{Ar}).

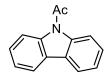


9-(Methylsulfonyl)-9*H***-carbazole (2d):** white solid; Yield 96%, 6h; ¹**H** NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.4 Hz, 2H; H_{Ar}), 8.01 (d, J = 7.6 Hz, 2H; H_{Ar}), 7.51 (t, J = 7.6 Hz, 2H; H_{Ar}), 7.43 (t, J = 7.6 Hz, 2H; H_{Ar}), 2.98 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 138.45 (C_{Ar}), 127.70 (C_{Ar}), 126.34 (C_{Ar}),

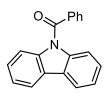
124.23 (C_{Ar}), 120.31 (C_{Ar}), 114.77 (C_{Ar}), 38.75 (CH_3).



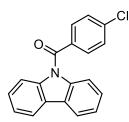
9-((4-chlorophenyl)sulfonyl)-9*H***-carbazole (2e):** white solid; Yield 91%, 6h; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (dd, J = 8.3, 4.3 Hz, 2H; H_{Ar}), 7.91 (dd, J = 7.9, 3.8 Hz, 2H; H_{Ar}), 7.76 – 7.68 (m, 2H; H_{Ar}), 7.49 (td, J = 7.9, 3.7 Hz, 2H; H_{Ar}), 7.38 (td, J = 7.6, 4.1 Hz, 2H; H_{Ar}), 7.27 (dd, J = 9.0, 4.3 Hz, 2H; H_{Ar}); ¹³C NMR (101 MHz, CDCl₃) δ 140.64 (C_{Ar}), 138.34 (C_{Ar}), 136.23 (C_{Ar}), 129.53 (C_{Ar}), 127.98 (C_{Ar}), 127.71 (C_{Ar}), 126.74 (C_{Ar}), 124.44 (C_{Ar}), 120.31 (C_{Ar}), 115.32 (C_{Ar}).


4-(9H-carbazol-9-yl)-3-nitrobenzenesulfonic acid (2f): yellow solid; Yield 72%, 6h; ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 8.4 Hz, 2H; H_{Ar}), 8.11 (d, J = 8.9 Hz, 2H; H_{Ar}), 7.98 – 7.92 (m, 2H; H_{Ar}), 7.89 (d, J = 7.7 Hz, 2H; H_{Ar}), 7.55 - 7.48 (m, 2H; H_{Ar}), 7.40 (t, J = 7.5 Hz, 2H; H_{Ar}); ¹³C NMR (101 MHz,

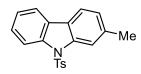
CDCl₃) δ 150.73 (C_{Ar}), 142.83 (C_{Ar}), 138.07 (C_{Ar}), 127.93 (C_{Ar}), 127.82 (C_{Ar}), 126.90 (C_{Ar}), 124.93 (CAr), 124.36 (CAr), 120.46 (CAr), 115.33 (CAr); HRMS (ESI) m/z calcd for C18H13N2O4S⁺ (M+H)⁺ 353.0591, found 353.0595.


Methyl 9H-carbazole-9-carboxylate (g): white solid; Yield 56%, 6h; ¹H **NMR** (400 MHz, CDCl₃) δ 8.31 (d, J = 8.3 Hz, 2H; H_{Ar}), 7.99 (d, J = 7.6 Hz, 2H; H_{Ar}), 7.49 (dd, J = 11.5, 4.2 Hz, 2H; H_{Ar}), 7.38 (t, J = 7.5 Hz, 2H; H_{Ar}), 4.15 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 153.12 (CO), 138.36 (C_{Ar}), 127.37 (CAr), 126.09 (CAr), 123.52 (CAr), 119.81 (CAr), 116.39 (CAr), 53.71

(CH₃); **HRMS (ESI)** m/z calcd for $C_{14}H_{12}NO_2^+$ (M+H)⁺ 226.0863, found 226.0868.

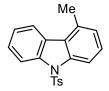


1-(9H-carbazol-9-yl)ethan-1-one (2h): white solid; Yield 41%, 6h; ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.4 Hz, 2H; H_{Ar}), 8.01 (d, J = 7.6 Hz, 2H; H_{Ar}), 7.49 (t, *J* = 7.6 Hz, 2H; H_{Ar}), 7.40 (t, *J* = 7.6 Hz, 2H; H_{Ar}), 2.90 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 170.23 (C_{Ar}), 138.84 (C_{Ar}), 127.52 (C_{Ar}),


126.61 (C_{Ar}), 123.85 (C_{Ar}), 110.01 (C_{Ar}), 116.43 (C_{Ar}), 27.89 (CH₃).

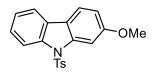
(9H-carbazol-9-yl)(phenyl)methanone (2i): white solid; Yield 23%, 6h; ¹H **NMR** (400 MHz, CDCl₃) δ 8.02 (dd, J = 6.8, 2.3 Hz, 2H; H_{Ar}), 7.75 – 7.70 (m, 2H; H_{Ar}), 7.69 – 7.63 (m, 1H; H_{Ar}), 7.57 – 7.49 (m, 4H; H_{Ar}), 7.34 (pd, J = 7.3, 1.7 Hz, 4H; H_{Ar}); ¹³C NMR (101 MHz, CDCl₃) δ 169.81 (CO), 139.31 (C_{Ar}), 135.91 (CAr), 132.55 (CAr), 129.22 (CAr), 129.07 (CAr), 126.90 (CAr), 126.19 (C_{Ar}), 123.57 (C_{Ar}), 119.98 (C_{Ar}), 115.96 (C_{Ar}).

(9H-carbazol-9-yl)(4-chlorophenyl)methanone (2j): white solid; Yield 20%, 6h; ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 8.00 (m, 2H; H_{Ar}), 7.71 – 7.66 (m, 2H; H_{Ar}), 7.55 – 7.48 (m, 4H; H_{Ar}), 7.40 – 7.32 (m, 4H; H_{Ar}); ¹³C NMR (101 MHz, CDCl₃) δ 168.56 (C_{Ar}), 139.10 (C_{Ar}), 138.94 (C_{Ar}), 134.10 (C_{Ar}), 130.79 (C_{Ar}), 129.40 (C_{Ar}), 126.97 (C_{Ar}), 126.19 (C_{Ar}), 123.73 (C_{Ar}), 120.07 (C_{Ar}), 115.80 (C_{Ar}).

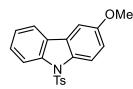


2-Methyl-9-tosyl-9*H***-carbazole (2aa/2ba)**: white solid; Yield 98% from **1aa**; Yield 93% from **1ba**, 6h; ¹**H NMR** (**400 MHz**, **CDCl**₃) δ 8.31 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 8.17 (s, 1H; H_{Ar}), 7.84 (d, *J* = 7.7 Hz, 1H; H_{Ar}), 7.76 (d, *J* = 7.9 Hz, 1H; H_{Ar}), 7.70 (d, *J* = 8.4 Hz, 2H; H_{Ar}), 7.49 – 7.41 (m, 1H;

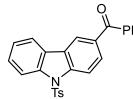
H_{Ar}), 7.37 – 7.30 (m, 1H; H_{Ar}), 7.18 (d, J = 7.8 Hz, 1H; H_{Ar}), 7.08 (d, J = 8.2 Hz, 2H; H_{Ar}), 2.57 (s, 3H; CH₃), 2.24 (s, 3H; CH₃); ¹³C NMR (150 MHz, CDCl₃) δ 144.88 (C_{Ar}), 138.87 (C_{Ar}), 138.41 (C_{Ar}), 137.85 (C_{Ar}), 135.14 (C_{Ar}), 129.74 (C_{Ar}), 126.91 (C_{Ar}), 126.58 (C_{Ar}), 126.53 (C_{Ar}), 125.30 (C_{Ar}), 124.08 (C_{Ar}), 123.91 (C_{Ar}), 119.76 (C_{Ar}), 119.71 (C_{Ar}), 115.42 (C_{Ar}), 115.20 (C_{Ar}), 22.40 (CH₃), 21.57 (CH₃); HRMS (ESI) m/z calcd for C₂₀H₁₈NO₂S⁺ (M+H)⁺ 336.1053, found 336.1055.


Me N Ts **2-Methyl-9-tosyl-9***H***-carbazole (2ab/2bb)**: white solid; Yield 97% from **1ab**; Yield 97% from **1bb**, 6h; ¹**H NMR (400 MHz, CDCl₃)** δ 8.31 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 8.17 (s, 1H; H_{Ar}), 7.84 (d, *J* = 7.6 Hz, 1H; H_{Ar}), 7.76 (d, *J* = 8.0 Hz, 1H; H_{Ar}), 7.70 (d, *J* = 8.4 Hz, 2H; H_{Ar}), 7.49 – 7.41 (m, 1H; H_{Ar}),

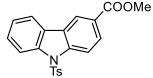
7.37 – 7.30 (m, 1H; H_{Ar}), 7.18 (d, J = 7.6 Hz, 1H; H_{Ar}), 7.08 (d, J = 8.0 Hz, 2H; H_{Ar}), 2.57 (s, 3H; CH₃), 2.24 (s, 3H; CH₃); ¹³C **NMR** (**150 MHz, CDCl₃**) δ 144.85 (C_{Ar}), 138.75 (C_{Ar}), 136.61 (C_{Ar}), 135.02 (C_{Ar}), 133.74 (C_{Ar}), 129.89 (C_{Ar}), 129.71 (C_{Ar}), 128.70 (C_{Ar}), 127.32 (C_{Ar}), 126.66 (C_{Ar}), 126.57 (C_{Ar}), 123.93 (C_{Ar}), 120.19 (C_{Ar}), 110.00 (C_{Ar}), 115.33 (C_{Ar}), 115.00 (C_{Ar}), 21.60 (CH₃), 21.41 (CH₃); **HRMS (ESI**) m/z calcd for C₂₀H₁₈NO₂S⁺ (M+H)⁺ 336.1053, found 336.1055.


4-Methyl-9-tosyl-9*H***-carbazole (2ac/2bc)**: white solid; Yield 64% from **1ac**; Yield 39% from **1bc**, 6h; ¹**H NMR (600 MHz, CDCl₃)** δ 8.41 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 8.24 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 8.03 (d, *J* = 7.8 Hz, 1H; H_{Ar}), 7.69 (d, *J* = 8.3 Hz, 2H; H_{Ar}), 7.50 (t, *J* = 7.8 Hz, 1H; H_{Ar}), 7.38 (td, *J* = 7.8, 3.7 Hz, 2H; H_{Ar}), 7.14 (d, *J* = 7.4 Hz, 1H; H_{Ar}), 7.08 (d, *J* = 8.3 Hz, 2H; H_{Ar}), 2.76 (s, 3H;

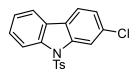
CH₃), 2.25 (s, 3H; CH₃); ¹³C NMR (150 MHz, CDCl₃) δ 144.88 (C_{Ar}), 138.66 (C_{Ar}), 138.55 (C_{Ar}), 135.21 (C_{Ar}), 133.30 (C_{Ar}), 129.72 (C_{Ar}), 127.28 (C_{Ar}), 127.06 (C_{Ar}), 126.76 (C_{Ar}), 126.61 (C_{Ar}), 125.85 (C_{Ar}), 124.82 (C_{Ar}), 123.91 (C_{Ar}), 122.67 (C_{Ar}), 115.09 (C_{Ar}), 112.78 (C_{Ar}), 21.57 (CH₃), 21.02 (CH₃); **HRMS (ESI)** m/z calcd for C₂₀H₁₈NO₂S⁺ (M+H)⁺ 336.1053, found 336.1056.


2-Methoxy-9-tosyl-9*H***-carbazole (2ad)**: yellow solid; Yield 87%, 6h; ¹**H NMR (400 MHz, CDCl₃)** δ 8.28 (d, *J* = 8.3 Hz, 1H; H_{Ar}), 7.90 (d, *J* = 2.2 Hz, 1H; H_{Ar}), 7.79-7.76 (m, 1H; H_{Ar}), 7.75 (d, *J* = 8.5 Hz, 1H; H_{Ar}), 7.69 (d, *J* = 8.4 Hz, 2H; H_{Ar}), 7.40 (td, *J* = 8.4, 7.9, 1.3 Hz 1H;

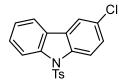
 H_{Ar}), 7.31 (td, J = 7.6, 0.9 Hz, 1H; H_{Ar}), 7.09 (d, J = 8.1 Hz, 2H; H_{Ar}), 6.95 (dd, J = 8.5, 2.3 Hz, 1H; H_{Ar}), 3.95 (s, 3H; CH₃), 2.25 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 159.92 (C_{Ar}), 144.99 (C_{Ar}), 139.86 (C_{Ar}), 138.48 (C_{Ar}), 135.10 (C_{Ar}), 129.77 (C_{Ar}), 126.62 (C_{Ar}), 126.58 (C_{Ar}), 126.14 (C_{Ar}), 124.06 (C_{Ar}), 120.68 (C_{Ar}), 119.93 (C_{Ar}), 119.26 (C_{Ar}), 115.17 (C_{Ar}), 112.21 (C_{Ar}), 100.03 (C_{Ar}), 55.94 (CH₃), 21.59 (CH₃); HRMS (ESI) m/z calcd for C₂₀H₁₈NO₃S⁺ (M+H)⁺ 352.1002, found 352.1001.


3-Methoxy-9-tosyl-9*H***-carbazole (2ae)**: red solid; Yield 92%, 6h; ¹**H NMR (400 MHz, CDCl₃)** δ 8.31 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 8.23 (d, *J* = 9.2 Hz, 1H; H_{Ar}), 7.84 (d, *J* = 7.7 Hz, 1H; H_{Ar}), 7.64 (d, *J* = 8.4 Hz, 2H; H_{Ar}), 7.51 – 7.44 (m, 1H; H_{Ar}), 7.38 – 7.30 (m, 2H; H_{Ar}), 7.11 – 7.03 (m, 3H; H_{Ar}), 3.89 (s, 3H; CH₃), 2.24 (s, 3H; CH₃); ¹³C NMR (150 MHz, CDCl₃)

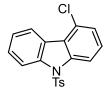
δ 156.95 (C_{Ar}), 144.85 (C_{Ar}), 139.18 (C_{Ar}), 134.82 (C_{Ar}), 132.82 (C_{Ar}), 129.70 (C_{Ar}), 127.66 (C_{Ar}), 127.55 (C_{Ar}), 126.70 (C_{Ar}), 126.58 (C_{Ar}), 123.94 (C_{Ar}), 120.06 (C_{Ar}), 116.39 (C_{Ar}), 115.60 (C_{Ar}), 115.42 (C_{Ar}), 103.31 (C_{Ar}), 55.88 (CH₃), 21.62 (CH₃); **HRMS (ESI**) m/z calcd for C₂₀H₁₈NO₃S⁺ (M+H)⁺ 352.1002, found 352.1001.


phenyl(9-tosyl-9*H*-carbazol-3-yl)methanone (2af): colorless liquid; Yield 90%, 6h; ¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, J = 8.8 Hz, 1H; H_{Ar}), 8.40 (d, J = 2.0 Hz, 1H; H_{Ar}), 8.35 (d, J = 8.4 Hz, 1H; H_{Ar}), 7.98 (dd, J = 8.8, 1.8 Hz, 1H; H_{Ar}), 7.96 – 7.90 (m, 1H; H_{Ar}), 7.87 – 7.80 (m, 2H; H_{Ar}), 7.78 – 7.71 (m, 2H; H_{Ar}), 7.66 – 7.58 (m, 1H; H_{Ar}), 7.58 – 7.47

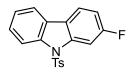
(m, 3H; H_{Ar}), 7.38 (td, J = 7.7, 0.9 Hz, 1H; H_{Ar}), 7.14 (d, J = 8.3 Hz, 2H; H_{Ar}), 2.27 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 196.27 (C_{Ar}), 145.47 (C_{Ar}), 140.91 (C_{Ar}), 138.97 (C_{Ar}), 137.93 (C_{Ar}), 134.86 (C_{Ar}), 133.34 (C_{Ar}), 132.51 (C_{Ar}), 130.12 (C_{Ar}), 129.96 (C_{Ar}), 129.64 (C_{Ar}), 128.47 (C_{Ar}), 128.22 (C_{Ar}), 126.61 (C_{Ar}), 126.28 (C_{Ar}), 125.83 (C_{Ar}), 124.36 (C_{Ar}), 122.58 (C_{Ar}), 120.50 (C_{Ar}), 115.17 (C_{Ar}), 114.66 (C_{Ar}), 21.62 (CH₃); **HRMS (ESI**) m/z calcd for C₂₆H₂₀NO₃S⁺ (M+H)⁺ 426.1158, found 426.1159.


methyl 9-tosyl-9H-carbazole-3-carboxylate(2ag): white solid; Yield 84%, 6h; ¹**H NMR (400 MHz, CDCl₃)** δ 1 8.61 (d, J = 1.7 Hz, 1H; H_{Ar}), 8.35 (dd, J = 16.1, 8.7 Hz, 2H; H_{Ar}), 8.18 (dt, J = 8.7, 1.5 Hz, 1H; H_{Ar}), 7.97 (d, J = 7.8 Hz, 1H; H_{Ar}), 7.71 (d, J = 8.4 Hz, 2H; H_{Ar}), 7.53

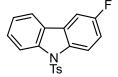
 $(ddd, J = 8.6, 7.3, 1.3 Hz, 1H; H_{Ar})$, 7.40 (t, J = 7.6 Hz, 1H; H_{Ar}), 7.12 (d, J = 8.3 Hz, 2H; H_{Ar}), 3.97 (s, 3H; CH₃), 2.28 (s, 3H; CH₃); ¹³C NMR (150 MHz, CDCl₃) δ 167.11 (CO), 145.46 (C_{Ar}), 141.28 (C_{Ar}), 138.96 (C_{Ar}), 134.88 (C_{Ar}), 129.97 (C_{Ar}), 128.81 (C_{Ar}), 128.19 (C_{Ar}), 126.64 (C_{Ar}), 126.45 (C_{Ar}), 125.91 (C_{Ar}), 124.43 (C_{Ar}), 122.16 (C_{Ar}), 120.49 (C_{Ar}), 115.25 (C_{Ar}), 114.81 (C_{Ar}), 52.43 (CH₃), 21.69 (CH₃); HRMS (ESI) m/z calcd for C₂₁H₁₈NO₄S⁺ (M+H)⁺ 380.0951, found 380.0951.


2-Chloro-9-tosyl-9*H***-carbazole (2ah)**: white solid; Yield 93%, 6h; ¹**H NMR (400 MHz, CDCl₃)** δ 8.37 (d, J = 1.6 Hz, 1H; H_{Ar}), 8.30 (d, J = 8.4 Hz, 1H; H_{Ar}), 7.85 (d, J = 7.6 Hz, 1H; H_{Ar}), 7.79 (d, J = 8.4 Hz, 1H; H_{Ar}), 7.71 (d, J = 8.4 Hz, 2H; H_{Ar}), 7.54 – 7.46 (m, 1H; H_{Ar}), 7.40 – 7.30 (m, 2H;

 H_{Ar}), 7.12 (d, J = 8.0 Hz, 2H; H_{Ar}), 2.27 (s, 3H; CH₃); ¹³C NMR (150 MHz, CDCl₃) δ 145.35 (C_{Ar}), 138.93 (C_{Ar}), 138.61 (C_{Ar}), 134.82 (C_{Ar}), 133.22 (C_{Ar}), 129.94 (C_{Ar}), 127.77 (C_{Ar}), 126.63 (C_{Ar}), 125.63 (C_{Ar}), 124.98 (C_{Ar}), 124.52 (C_{Ar}), 124.26 (C_{Ar}), 120.85 (C_{Ar}), 120.10 (C_{Ar}), 115.43 (C_{Ar}), 115.21 (C_{Ar}), 21.66 (CH₃); **HRMS (ESI**) m/z calcd for C₁₉H₁₅ClNO₂S⁺ (M+H)⁺ 356.0507, found 356.0505.


3-Chloro-9-tosyl-9*H***-carbazole (2ai)**: yellow solid; Yield 97%, 6h; ¹**H NMR (600 MHz, CDCl₃)** δ 8.32 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 8.26 (d, *J* = 8.9 Hz, 1H; H_{Ar}), 7.86 – 7.82 (m, 2H; H_{Ar}), 7.67 (d, *J* = 8.4 Hz, 2H; H_{Ar}), 7.54 – 7.50 (m, 1H; H_{Ar}), 7.44 (dd, *J* = 8.9, 2.1 Hz, 1H; H_{Ar}), 7.37 (dd, *J* = 11.2, 3.9

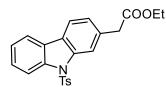
Hz, 1H; H_{Ar}), 7.10 (d, J = 8.3 Hz, 2H; H_{Ar}), 2.26 (s, 3H; CH₃); ¹³C NMR (150 MHz, CDCl₃) δ 145.27 (C_{Ar}), 138.96 (C_{Ar}), 136.81 (C_{Ar}), 134.75 (C_{Ar}), 129.86 (C_{Ar}), 129.79 (C_{Ar}), 128.24 (C_{Ar}), 127.91 (C_{Ar}), 127.50 (C_{Ar}), 126.57 (C_{Ar}), 125.43 (C_{Ar}), 124.27 (C_{Ar}), 120.31 (C_{Ar}), 110.00 (C_{Ar}), 116.36 (C_{Ar}), 115.39 (C_{Ar}), 21.63 (CH₃); **HRMS (ESI)** m/z calcd for C₁₉H₁₅ClNO₂S⁺ (M+H)⁺ 356.0507, found 356.0502.


4-Chloro-9-tosyl-9*H***-carbazole (2aj)**: white solid; Yield 96%, 6h; ¹**H** NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 7.9 Hz, 1H; H_{Ar}), 8.39 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 8.31 (d, *J* = 8.2 Hz, 1H; H_{Ar}), 7.69 (d, *J* = 8.4 Hz, 2H; H_{Ar}), 7.59 – 7.51 (m, 1H; H_{Ar}), 7.40 (t, *J* = 8.0 Hz, 2H; H_{Ar}), 7.34 (d, *J* = 7.8 Hz, 1H; H_{Ar}), 7.10 (d, *J* = 8.2 Hz, 2H; H_{Ar}), 2.26 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ

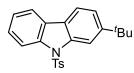
145.31 (C_{Ar}), 139.71 (C_{Ar}), 138.63 (C_{Ar}), 134.89 (C_{Ar}), 129.87 (C_{Ar}), 128.69 (C_{Ar}), 127.99 (C_{Ar}), 127.59 (C_{Ar}), 126.63 (C_{Ar}), 125.34 (C_{Ar}), 125.13 (C_{Ar}), 124.14 (C_{Ar}), 123.72 (C_{Ar}), 123.24 (C_{Ar}), 114.91 (C_{Ar}), 113.56 (C_{Ar}), 21.62 (CH₃); **HRMS (ESI)** m/z calcd for $C_{19}H_{15}CINO_2S^+$ (M+H)⁺ 356.0507, found 356.0505.

2-Fluoro-9-tosyl-9*H***-carbazole (2ak)**: white solid; Yield 94%, 6h; ¹**H NMR (400 MHz, CDCl₃)** δ 8.31 (d, *J* = 8.3 Hz, 1H; H_{Ar}), 8.08 (dd, *J* = 10.2, 1.9 Hz, 1H; H_{Ar}), 7.82 (dd, *J* = 12.2, 6.6 Hz, 2H; H_{Ar}), 7.71 (d, *J* = 8.2 Hz, 2H; H_{Ar}), 7.47 (t, *J* = 7.8 Hz, 1H; H_{Ar}), 7.35 (t, *J* = 7.5 Hz, 1H; H_{Ar}),

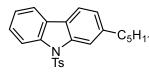
7.09 (dd, J = 16.2, 5.1 Hz, 3H; H_{Ar}), 2.26 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.47 (d, J = 244.0 Hz) (C_{Ar}), 145.30 (C_{Ar}), 139.11 (d, J = 12.5 Hz) (C_{Ar}), 138.85 (d, J = 2.2 Hz) (C_{Ar}), 134.93 (C_{Ar}), 129.89 (C_{Ar}), 127.11 (C_{Ar}), 126.63 (C_{Ar}), 125.84 (C_{Ar}), 124.23 (C_{Ar}), 122.68 (d, J = 1.9 Hz) (C_{Ar}), 120.97 (d, J = 10.1 Hz) (C_{Ar}), 119.80 (C_{Ar}), 115.16 (C_{Ar}), 111.97 (d, J = 24.0 Hz) (C_{Ar}), 102.93 (d, J = 29.1 Hz) (C_{Ar}), 21.60 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -36.11 – -36.22 (m, 1F); HRMS (ESI) m/z calcd for C₁₉H₁₅FNO₂S⁺ (M+H)⁺ 340.0802, found 340.0807.


3-Fluoro-9-tosyl-9*H***-carbazole (2al**): white solid; Yield 92%, 6h; ¹**H NMR** (**400 MHz, CDCl**₃) δ 8.27 – 8.14 (m, 2H; H_{Ar}), 7.73 (d, *J* = 7.6 Hz, 1H; H_{Ar}), 7.56 (d, *J* = 8.0 Hz, 2H; H_{Ar}), 7.42 (t, *J* = 7.9 Hz, 2H; H_{Ar}), 7.26 (t, *J* = 7.5 Hz, 1H; H_{Ar}), 7.11 (dd, *J* = 12.4, 5.3 Hz, 1H; H_{Ar}), 6.99 (d, *J* = 7.9 Hz, 2H; H_{Ar}),

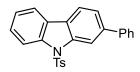
2.15 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 160.05 (d, J = 242.1 Hz) (C_{Ar}), 145.15 (C_{Ar}), 139.37 (C_{Ar}), 134.83 (C_{Ar}), 134.65 (d, J = 1.8 Hz) (C_{Ar}), 129.81 (C_{Ar}), 128.15 (C_{Ar}), 127.89 (d, J = 9.5 Hz) (C_{Ar}), 126.58 (C_{Ar}), 126.01 (d, J = 3.7 Hz) (C_{Ar}), 124.15 (C_{Ar}), 110.35 (C_{Ar}), 116.53 (d, J = 8.9 Hz) (C_{Ar}), 115.58 (C_{Ar}), 114.94 (d, J = 24.7 Hz) (C_{Ar}), 106.28 (d, J = 24.2 Hz) (C_{Ar}), 21.60 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -42.55 (td, J = 8.6, 4.5 Hz, 1F); HRMS (ESI) m/z calcd for C₁₉H₁₅FNO₂S⁺ (M+H)⁺ 340.0802, found 340.0800.


4-bromo-9-tosyl-9*H***-carbazole (2am):** colorless liquid; Yield 90%, 6h; ¹**H NMR (400 MHz, CDCl₃):** δ 8.71 (d, J = 7.9 Hz, 1H; H_{Ar}), 8.39 (t, J = 8.6 Hz, 2H; H_{Ar}), 7.68 (d, J = 8.4 Hz, 2H; H_{Ar}), 7.60 – 7.49 (m, 2H; H_{Ar}), 7.41 (t, J = 7.6 Hz, 1H; H_{Ar}), 7.33 (t, J = 8.1 Hz, 1H; H_{Ar}), 7.10 (d, J = 8.4 Hz, 2H; H_{Ar}), 2.25 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 145.35 (C_{Ar}), 139.71 (C_{Ar}),

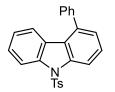
138.69 (C_{Ar}), 134.73 (C_{Ar}), 129.87 (C_{Ar}), 128.56 (C_{Ar}), 128.14 (C_{Ar}), 127.79 (C_{Ar}), 126.60 (C_{Ar}), 125.85 (C_{Ar}), 124.99 (C_{Ar}), 123.83 (C_{Ar}), 122.82 (C_{Ar}), 116.42 (C_{Ar}), 114.89 (C_{Ar}), 114.07 (C_{Ar}), 21.63 (CH₃); **HRMS (ESI)** m/z calcd for $C_{19}H_{15}BrNO_2S^+$ (M+H)⁺ 400.0001, found 400.0000.


Ethyl 2-(9-tosyl-9*H*-carbazol-2-yl)acetate (2an): yellow solid; Yield 97%, 6h; ¹H NMR (600 MHz, CDCl₃) δ 8.34 – 8.28 (m, 2H; H_{Ar}), 7.86 (d, *J* = 7.7 Hz, 1H; H_{Ar}), 7.83 (d, *J* = 7.9 Hz, 1H; H_{Ar}), 7.71 (d, *J* = 8.4 Hz, 2H; H_{Ar}), 7.50 – 7.44 (m, 1H; H_{Ar}), 7.34 (t, *J* = 7.5 Hz, 1H; H_{Ar}), 7.29 (dd, *J* = 7.9, 0.9 Hz, 1H; H_{Ar}), 7.08 (d, *J* = 8.4

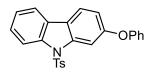
Hz, 2H; H_{Ar}), 4.21 (q, J = 7.1 Hz, 2H; CH₂), 3.82 (s, 2H; CH₂), 2.24 (s, 3H; CH₃), 1.30 (t, J = 7.1 Hz, 3H; CH₃); ¹³C NMR (150 MHz, CDCl₃) δ 171.57 (CO), 144.99 (C_{Ar}), 138.68 (C_{Ar}), 138.62 (C_{Ar}), 134.91 (C_{Ar}), 133.75 (C_{Ar}), 129.74 (C_{Ar}), 127.37 (C_{Ar}), 126.61 (C_{Ar}), 126.28 (C_{Ar}), 125.50 (C_{Ar}), 125.34 (C_{Ar}), 124.03 (C_{Ar}), 110.05 (C_{Ar}), 110.02 (C_{Ar}), 116.17 (C_{Ar}), 115.25 (C_{Ar}), 61.09 (CH₂), 41.98 (CH₂), 21.57 (CH₃), 14.33 (CH₃); **HRMS (ESI**) m/z calcd for C₂₃H₂₂NO₄S⁺ (M+H)⁺ 408.1264, found 408.1267.


2-(Tert-butyl)-9-tosyl-9H-carbazole (2ao): white solid; Yield 96%, 6h; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (dd, J = 12.0, 4.8 Hz, 2H; H_{Ar}), 7.85 (dd, J = 7.6, 0.4 Hz, 1H; H_{Ar}), 7.79 (d, J = 8.0 Hz, 1H; H_{Ar}), 7.68 (d, J = 8.4 Hz, 2H; H_{Ar}), 7.50 – 7.43 (m, 1H; H_{Ar}), 7.41 (dd, J = 8.0, 1.6 Hz, 1H;

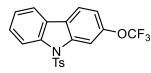
H_{Ar}), 7.34 (td, J = 7.6, 0.8 Hz, 1H; H_{Ar}), 7.07 (d, J = 8.0 Hz, 2H; H_{Ar}), 2.24 (s, 3H; CH₃), 1.46 (s, 9H; CH₃); ¹³C NMR (150 MHz, CDCl₃) δ 151.28 (C_{Ar}), 144.88 (C_{Ar}), 138.82 (C_{Ar}), 138.74 (C_{Ar}), 135.04 (C_{Ar}), 129.67 (C_{Ar}), 126.99 (C_{Ar}), 126.59 (C_{Ar}), 126.56 (C_{Ar}), 124.12 (C_{Ar}), 123.97 (C_{Ar}), 121.60 (C_{Ar}), 119.84 (C_{Ar}), 119.46 (C_{Ar}), 115.35 (C_{Ar}), 112.15 (C_{Ar}), 35.53 (C), 31.81 (CH₃), 21.58 (CH₃); **HRMS (ESI**) m/z calcd for C₂₃H₂₄NO₂S⁺ (M+H)⁺ 378.1522, found 378.1521.


2-Pentyl-9-tosyl-9*H***-carbazole (2ap)**: white solid; Yield 98%, 6h; ¹**H NMR (600 MHz, CDCl₃)** δ 8.32 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 8.16 (s, 1H; H_{Ar}), 7.84 (d, *J* = 7.6 Hz, 1H; H_{Ar}), 7.78 (d, *J* = 7.9 Hz, 1H; H_{Ar}), 7.69 (d, *J* = 8.4 Hz, 2H; H_{Ar}), 7.45 (dd, *J* = 11.5, 4.1 Hz, 1H; H_{Ar}), 7.33 (t,

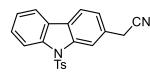
J = 7.5 Hz, 1H; H_{Ar}), 7.18 (d, J = 7.4 Hz, 1H; H_{Ar}), 7.08 (d, J = 8.3 Hz, 2H; H_{Ar}), 2.81 (t, J = 7.7 Hz, 2H; CH₂), 2.25 (s, 3H; CH₃), 1.77 – 1.68 (m, 2H; CH₂), 1.43 – 1.32 (m, 4H; CH₂), 0.93 (t, J = 7.0 Hz, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 144.87 (C_{Ar}), 143.04 (C_{Ar}), 138.85 (C_{Ar}), 138.57 (C_{Ar}), 135.13 (C_{Ar}), 129.69 (C_{Ar}), 126.93 (C_{Ar}), 126.70 (C_{Ar}), 126.58 (C_{Ar}), 124.77 (C_{Ar}), 124.38 (C_{Ar}), 123.97 (C_{Ar}), 119.77 (C_{Ar}), 119.74 (C_{Ar}), 115.31 (C_{Ar}), 115.01 (C_{Ar}), 36.72 (CH₂), 31.76 (CH₂), 31.53 (CH₂), 22.73 (CH₂), 21.58 (CH₃), 14.22 (CH₃); HRMS (ESI) m/z calcd for C₂₄H₂₆NO₂S⁺ (M+H)⁺ 392.1679, found 392.1679.


2-Phenyl-9-tosyl-9*H***-carbazole (2aq)**: yellow solid; Yield 98%, 6h; ¹**H NMR (400 MHz, CDCl₃)** δ 8.60 (d, J = 1.1 Hz, 1H; H_{Ar}), 8.36 (d, J = 8.4Hz, 1H; H_{Ar}), 7.92 (dd, J = 10.0, 8.1 Hz, 2H; H_{Ar}), 7.78 – 7.70 (m, 4H; H_{Ar}), 7.61 (dd, J = 8.1, 1.4 Hz, 1H; H_{Ar}), 7.51 (dt, J = 8.3, 4.3 Hz, 3H;

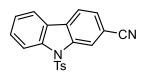
H_{Ar}), 7.40 (dt, J = 18.4, 7.3 Hz, 2H; H_{Ar}), 7.09 (d, J = 8.2 Hz, 2H; H_{Ar}), 2.25 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 145.05 (C_{Ar}), 141.26 (C_{Ar}), 139.15 (C_{Ar}), 138.90 (C_{Ar}), 135.09 (C_{Ar}), 129.82 (C_{Ar}), 129.04 (C_{Ar}), 127.67 (C_{Ar}), 127.49 (C_{Ar}), 126.62 (C_{Ar}), 126.27 (C_{Ar}), 125.63 (C_{Ar}), 124.13 (C_{Ar}), 123.47 (C_{Ar}), 120.31 (C_{Ar}), 120.14 (C_{Ar}), 115.31 (C_{Ar}), 113.72 (C_{Ar}), 21.61 (CH₃); HRMS (ESI) m/z calcd for C₂₅H₂₀NO₂S⁺ (M+H)⁺ 398.1209, found 398.1206.


4-phenyl-9-tosyl-9*H***-carbazole (2ar):** yellow solid; Yield 72%, 6h; ¹**H** NMR (**400** MHz, CDCl₃) δ 8.35 – 8.20 (m, 2H; H_{Ar}), 7.71 – 7.56 (m, 2H; H_{Ar}), 7.45 – 7.23 (m, 6H; H_{Ar}), 7.13 (d, *J* = 6.3 Hz, 1H; H_{Ar}), 7.12 – 7.07 (m, 1H; H_{Ar}), 7.02 (dt, *J* = 13.7, 6.7 Hz, 3H; H_{Ar}), 6.94 (dd, *J* = 13.9, 7.0 Hz, 1H; H_{Ar}), 2.16 (d, *J* = 5.9 Hz, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 145.02 (C_{Ar}), 130.36

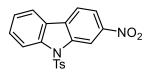
 (C_{Ar}) , 138.78 (C_{Ar}) , 138.71 (C_{Ar}) , 137.76 (C_{Ar}) , 135.27 (C_{Ar}) , 129.83 (C_{Ar}) , 129.18 (C_{Ar}) , 128.66 (C_{Ar}) , 127.99 (C_{Ar}) , 127.18 (C_{Ar}) , 126.96 (C_{Ar}) , 126.70 (C_{Ar}) , 126.19 (C_{Ar}) , 125.71 (C_{Ar}) , 123.82 (C_{Ar}) , 123.46 (C_{Ar}) , 122.44 (C_{Ar}) , 114.93 (C_{Ar}) , 112.8 (C_{Ar}) , 21.63 (CH_3) ; **HRMS (ESI)** m/z calcd for $C_{25}H_{20}NO_2S^+$ (M+H)⁺ 398.1209, found 398.1205.


2-Phenoxy-9-tosyl-9H-carbazole (2as): yellow solid; Yield 93%, 6h; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 8.4 Hz, 1H; H_{Ar}), 8.01 (d, J= 1.2 Hz, 1H; H_{Ar}), 7.88 – 7.79 (m, 2H; H_{Ar}), 7.67 (d, J = 8.4 Hz, 2H; H_{Ar}), 7.47 (t, J = 7.6 Hz, 1H; H_{Ar}), 7.43 – 7.32 (m, 3H; H_{Ar}), 7.16 (t, J =

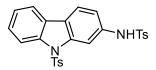
7.6 Hz, 1H; H_{Ar}), 7.11 (d, J = 8.0 Hz, 2H; H_{Ar}), 7.05 (d, J = 7.6 Hz, 3H; H_{Ar}), 2.28 (s, 3H; CH₃); ¹³C **NMR (150 MHz, CDCl₃)** δ 157.73 (C_{Ar}), 156.94 (C_{Ar}), 145.14 (C_{Ar}), 139.37 (C_{Ar}), 138.83 (C_{Ar}), 134.87 (C_{Ar}), 129.95 (C_{Ar}), 129.80 (C_{Ar}), 126.89 (C_{Ar}), 126.69 (C_{Ar}), 126.16 (C_{Ar}), 124.16 (C_{Ar}), 123.54 (C_{Ar}), 122.22 (C_{Ar}), 120.94 (C_{Ar}), 119.68 (C_{Ar}), 118.73 (C_{Ar}), 115.95 (C_{Ar}), 115.18 (C_{Ar}), 106.44 (C_{Ar}), 21.65 (CH₃); **HRMS (ESI**) m/z calcd for C₂₅H₂₀NO₃S⁺ (M+H)⁺ 414.1158, found 414.1157.


9-Tosyl-2-(trifluoromethoxy)-9H-carbazole (2at): yellow solid; Yield 95%, 6h; ¹H NMR (600 MHz, CDCl₃) δ 8.34 (d, J = 8.4 Hz, 1H; H_{Ar}), 8.25 (s, 1H; H_{Ar}), 7.87 (d, J = 8.3 Hz, 2H; H_{Ar}), 7.70 (d, J = 8.4 Hz, 2H; H_{Ar}), 7.52 (t, J = 7.8 Hz, 1H; H_{Ar}), 7.38 (t, J = 7.5 Hz, 1H; H_{Ar}),

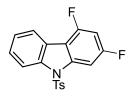
7.24 (d, J = 8.4 Hz, 1H; H_{Ar}), 7.12 (d, J = 8.4 Hz, 2H; H_{Ar}), 2.27 (s, 3H H; CH₃); ¹³C NMR (150 MHz, CDCl₃) δ 148.37 (d, J = 1.8 Hz) (C_{Ar}), 145.46 (C_{Ar}), 139.09 (C_{Ar}), 138.65 (C_{Ar}), 134.64 (C_{Ar}), 129.93 (C_{Ar}), 127.87 (C_{Ar}), 126.65 (C_{Ar}), 125.47 (C_{Ar}), 125.14 (C_{Ar}), 124.38 (C_{Ar}), 120.84 (C_{Ar}), 120.73 (q, J = 257.2 Hz) (C_{Ar}), 120.22 (C_{Ar}), 117.41 (C_{Ar}), 115.29 (C_{Ar}), 108.93 (C_{Ar}), 21.64 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -57.86 (s, 3F); HRMS (ESI) m/z calcd for C₂₀H₁₅F₃NO₃S⁺ (M+H)⁺ 406.0719, found 406.0725.


2-(9-Tosyl-9*H***-carbazol-2-yl)acetonitrile (2au)**: yellow solid; Yield 83%, 6h; ¹**H** NMR (400 MHz, CDCl₃) δ 8.35 – 8.24 (m, 2H; H_{Ar}), 7.87 (dd, *J* = 7.6, 4.6 Hz, 2H; H_{Ar}), 7.70 (d, *J* = 8.2 Hz, 2H; H_{Ar}), 7.51 (t, *J* = 7.6 Hz, 1H; H_{Ar}), 7.41 – 7.30 (m, 2H; H_{Ar}), 7.11 (d, *J* = 8.1 Hz, 2H;

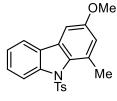
H_{Ar}), 3.93 (s, 2H; CH₂), 2.26 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 145.30 (C_{Ar}), 138.79 (C_{Ar}), 138.73 (C_{Ar}), 134.88 (C_{Ar}), 129.92 (C_{Ar}), 129.35 (C_{Ar}), 127.91 (C_{Ar}), 126.59 (C_{Ar}), 126.28 (C_{Ar}), 125.72 (C_{Ar}), 124.20 (C_{Ar}), 123.77 (C_{Ar}), 120.76 (C_{Ar}), 120.26 (CN), 118.03 (C_{Ar}), 115.22 (C_{Ar}), 114.82 (C_{Ar}), 24.34 (CH₂), 21.60 (CH₃); **HRMS (ESI)** m/z calcd for C₂₁H₁₇N₂O₂S⁺ (M+H)⁺ 361.1005, found 361.1008.


9-Tosyl-9*H***-carbazole-2-carbonitrile (2av)**: yellow solid; Yield 83%, 6h; ¹**H NMR (400 MHz, CDCl₃)** δ 8.66 (s, 1H), 8.36 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 7.98 (dd, *J* = 12.8, 8.0 Hz, 2H; H_{Ar}), 7.72 (d, *J* = 8.0 Hz, 2H; H_{Ar}), 7.61 (dd, *J* = 15.6, 8.0 Hz, 2H; H_{Ar}), 7.43 (t, *J* = 7.6 Hz, 1H; H_{Ar}), 7.16 (d, *J* =

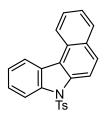
8.0 Hz, 2H; H_{Ar}), 2.30 (s, 3H; CH₃); ¹³C NMR (150 MHz, CDCl₃) δ 145.78 (C_{Ar}), 139.45 (C_{Ar}), 137.68 (C_{Ar}), 134.64 (C_{Ar}), 130.13 (C_{Ar}), 129.51 (C_{Ar}), 127.36 (C_{Ar}), 126.68 (C_{Ar}), 124.89 (C_{Ar}), 124.60 (C_{Ar}), 121.07 (C_{Ar}), 120.93 (C_{Ar}), 119.46 (CN), 119.17 (C_{Ar}), 115.29 (C_{Ar}), 110.33 (C_{Ar}), 21.72 (CH₃); **HRMS (ESI)** m/z calcd for C₂₀H₁₅N₂O₂S⁺ (M+H)⁺ 347.0849, found 347.0851.


2-Nitro-9-tosyl-9*H***-carbazole (2aw/2be**): white solid; Yield 47% from 1ax, 12h; Yield 23% from 1be, 12h; ¹**H** NMR (400 MHz, CDCl₃) δ 9.23 (d, *J* = 2.0 Hz, 1H; H_{Ar}), 8.39 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 8.28 (dd, *J* = 8.4, 2.0 Hz, 1H; H_{Ar}), 8.01 (t, *J* = 8.0 Hz, 2H; H_{Ar}), 7.76 (d, *J* = 8.4 Hz, 2H;

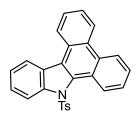
 H_{Ar}), 7.63 (t, J = 8.4 Hz, 1H; H_{Ar}), 7.45 (t, J = 7.6 Hz, 1H; H_{Ar}), 7.17 (d, J = 8.0 Hz, 2H; H_{Ar}), 2.30 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 158.00 (C_{Ar}), 147.37 (C_{Ar}), 145.82 (C_{Ar}), 136.21 (C_{Ar}), 133.02 (C_{Ar}), 132.92 (C_{Ar}), 130.17 (C_{Ar}), 129.79 (C_{Ar}), 126.80 (C_{Ar}), 124.72 (C_{Ar}), 120.28 (C_{Ar}), 119.36 (C_{Ar}), 116.25 (C_{Ar}), 115.45 (C_{Ar}), 111.28 (C_{Ar}), 111.25 (C_{Ar}), 21.71 (CH₃); HRMS (ESI) m/z calcd for C₁₉H₁₅N₂O₄S⁺ (M+H)⁺ 367.0704, found 367.0702.


4-Methyl-N-(9-tosyl-9*H***-carbazol-2-yl)benzenesulfonamide (2ax)**: red solid; Yield 75%, 6h; ¹**H NMR (400 MHz, CDCl₃)** δ 8.28 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 8.10 (d, *J* = 1.5 Hz, 1H; H_{Ar}), 7.79 (d, *J* = 7.6 Hz, 1H; H_{Ar}), 7.73 (t, *J* = 8.9 Hz, 3H; H_{Ar}), 7.65 (d, *J* = 8.3 Hz, 2H; H_{Ar}), 7.44

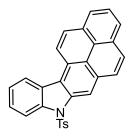
(dd, J = 11.5, 4.1 Hz, 1H; H_{Ar}), 7.32 (t, J = 7.2 Hz, 1H; H_{Ar}), 7.23 (d, J = 8.0 Hz, 2H; H_{Ar}), 7.10 (dd, J = 10.8, 4.7 Hz, 4H; H_{Ar}), 2.36 (s, 3H; CH₃), 2.27 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 145.16 (C_{Ar}), 144.13 (C_{Ar}), 138.85 (C_{Ar}), 138.75 (C_{Ar}), 136.18 (C_{Ar}), 136.13 (C_{Ar}), 134.83 (C_{Ar}), 129.88 (C_{Ar}), 129.85 (C_{Ar}), 127.61 (C_{Ar}), 127.32 (C_{Ar}), 126.76 (C_{Ar}), 125.89 (C_{Ar}), 124.17 (C_{Ar}), 123.63 (C_{Ar}), 120.75 (C_{Ar}), 119.86 (C_{Ar}), 117.77 (C_{Ar}), 115.17 (C_{Ar}), 108.04 (C_{Ar}), 21.69 (CH₃), 21.65 (CH₃); **HRMS (ESI)** m/z calcd for C₂₆H₂₃N₂O₄S₂⁺ (M+H)⁺ 491.1094, found 491.1098.


2,4-Difluoro-9-tosyl-9*H*-carbazole (2ay): white solid; Yield 91%, 6h; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 8.4 Hz, 1H; H_{Ar}), 8.00 (d, J = 7.7 Hz, 1H; H_{Ar}), 7.91 (d, J = 9.8 Hz, 1H; H_{Ar}), 7.72 (d, J = 8.1 Hz, 2H; H_{Ar}), 7.50 (t, J = 7.9 Hz, 1H; H_{Ar}), 7.38 (t, J = 7.6 Hz, 1H; H_{Ar}), 7.16 (d, J = 8.2 Hz, 2H; H_{Ar}), 6.84 (t, J = 9.5 Hz, 1H; H_{Ar}), 2.30 (s, 3H; CH₃); ¹³C NMR

(101 MHz, CDCl₃) $\delta 163.37$ (d, J = 12.0 Hz) (C_{Ar}), 160.93 (d, J = 12.1 Hz) (C_{Ar}), 158.77 (d, J = 14.8 Hz) (C_{Ar}), 156.27 (d, J = 14.8 Hz) (C_{Ar}), 145.63 (C_{Ar}), 140.18 (C_{Ar}), 140.03 (C_{Ar}), 139.92 (C_{Ar}), 138.31 (d, J = 2.2 Hz) (C_{Ar}), 134.70 (C_{Ar}), 120.04 (C_{Ar}), 127.38 (C_{Ar}), 126.71 (C_{Ar}), 124.66 (C_{Ar}), 123.19 (C_{Ar}), 122.62 (d, J = 4.7 Hz) (C_{Ar}), 114.87 (C_{Ar}), 111.53 (d, J = 19.8 Hz) (C_{Ar}), 100.07 (C_{Ar}), 99.82 (d, J = 4.9 Hz) (C_{Ar}), 99.57 (C_{Ar}), 99.16 (d, J = 4.4 Hz) (C_{Ar}), 98.87 (d, J = 4.3 Hz) (C_{Ar}), 21.70 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -33.47 (td, J = 9.6, 6.6 Hz, 1F), -39.75 (dd, J = 9.7, 6.7 Hz, 1F); HRMS (ESI) m/z calcd for C₁₉H₁₄F₂NO₂S⁺ (M+H)⁺ 358.0708, found 358.0702.


3-methoxy-1-methyl-9-tosyl-9*H***-carbazole (2az)**: pale yellow solid; Yield 65%, 6h; ¹**H NMR (400 MHz, CDCl₃)**: δ 8.20 (dd, J = 8.3, 2.5 Hz, 1H; H_{Ar}), 7.61 – 7.54 (m, 1H; H_{Ar}), 7.41 (tdd, J = 8.4, 2.9, 1.4 Hz, 1H; H_{Ar}), 7.33 – 7.25 (m, 1H; H_{Ar}), 7.06 – 7.00 (m, 3H; H_{Ar}), 6.87 (dd, J = 7.9, 2.4 Hz, 3H; H_{Ar}), 3.90 (s, 3H; CH₃), 2.83 (s, 3H; CH₃), 2.22 (s, 3H; CH₃); ¹³C NMR (101

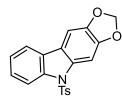
MHz, CDCl₃): δ 157.90 (C_{Ar}), 144.10 (C_{Ar}), 142.43 (C_{Ar}), 134.47 (C_{Ar}), 132.53 (C_{Ar}), 132.47 (C_{Ar}), 132.05 (C_{Ar}), 130.20 (C_{Ar}), 128.69 (C_{Ar}), 127.23 (C_{Ar}), 127.15 (C_{Ar}), 125.52 (C_{Ar}), 119.96 (C_{Ar}), 119.66 (C_{Ar}), 117.63 (C_{Ar}), 101.19 (C_{Ar}), 55.72 (CH₃), 21.88 (CH₃), 21.60 (CH₃); **HRMS (ESI**) m/z calcd for C₂₁H₁₉NNaO₃S⁺ (M+Na)⁺ 388.0978, found 388.0975.


7-Tosyl-7*H***-benzo[***c***]carbazole (2aa'): white solid; Yield 89%, 12h; ¹H NMR (400 MHz, CDCl₃) \delta 8.71 (d,** *J* **= 8.4 Hz, 1H; H_{Ar}), 8.61 (d,** *J* **= 9.2 Hz, 1H; H_{Ar}), 8.53 (d,** *J* **= 8.4 Hz, 1H; H_{Ar}), 8.47 (d,** *J* **= 7.6 Hz, 1H; H_{Ar}), 8.00 (d,** *J* **= 8.0 Hz, 1H; H_{Ar}), 7.95 (d,** *J* **= 9.2 Hz, 1H; H_{Ar}), 7.69 (d,** *J* **= 8.0 Hz, 3H; H_{Ar}), 7.52 (dt,** *J* **= 20.0, 7.6 Hz, 3H; H_{Ar}), 7.05 (d,** *J* **= 8.0 Hz, 2H; H_{Ar}), 2.21 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) \delta 145.07 (C_{Ar}), 138.31 (C_{Ar}), 136.73 (C_{Ar}), 135.17**

 (C_{Ar}) , 131.17 (C_{Ar}) , 129.80 (C_{Ar}) , 129.26 (C_{Ar}) , 128.93 (C_{Ar}) , 128.71 (C_{Ar}) , 127.43 (C_{Ar}) , 127.26 (C_{Ar}) , 126.53 (C_{Ar}) , 126.30 (C_{Ar}) , 125.00 (C_{Ar}) , 124.44 (C_{Ar}) , 123.66 (C_{Ar}) , 122.27 (C_{Ar}) , 120.01 (C_{Ar}) , 115.58 (C_{Ar}) , 115.09 (C_{Ar}) , 21.58 (CH_3) ; **HRMS (ESI)** m/z calcd for $C_{23}H_{18}NO_2S^+$ $(M+H)^+$ 372.1053, found 372.1052.

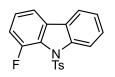
9-Tosyl-9*H***-dibenzo[***a***,***c***]carbazole (2ab'): white solid; Yield 41%, 12h; ¹H NMR (400 MHz, CDCl₃) \delta 8.97 (d,** *J* **= 7.6 Hz, 1H; H_{Ar}), 8.82 (d,** *J* **= 7.6 Hz, 1H; H_{Ar}), 8.75 (d,** *J* **= 7.6 Hz, 1H; H_{Ar}), 8.56 (d,** *J* **= 7.6 Hz, 1H; H_{Ar}), 8.42 (d,** *J* **= 8.0 Hz, 1H; H_{Ar}), 8.18 (d,** *J* **= 7.6 Hz, 1H; H_{Ar}), 7.78 – 7.67 (m, 4H; H_{Ar}), 7.44 (dt,** *J* **= 21.6, 7.6 Hz, 2H; H_{Ar}), 6.84 (d,** *J* **= 8.0 Hz, 2H; H_{Ar}), 6.68 (d,** *J* **= 8.0 Hz, 2H; H_{Ar}), 2.09 (s, 3H; CH₃); ¹³C NMR (150**

MHz, CDCl₃) δ 144.38 (C_{Ar}), 142.17 (C_{Ar}), 137.01 (C_{Ar}), 131.07 (C_{Ar}), 130.81 (C_{Ar}), 130.77 (C_{Ar}), 130.26 (C_{Ar}), 128.82 (C_{Ar}), 128.57 (C_{Ar}), 127.79 (C_{Ar}), 127.37 (C_{Ar}), 127.20 (C_{Ar}), 127.12 (C_{Ar}), 126.51 (C_{Ar}), 126.25 (C_{Ar}), 126.08 (C_{Ar}), 126.02 (C_{Ar}), 125.79 (C_{Ar}), 124.37 (C_{Ar}), 124.19 (C_{Ar}), 123.83 (C_{Ar}), 122.97 (C_{Ar}), 121.97 (C_{Ar}), 120.08 (C_{Ar}), 21.52 (CH₃); **HRMS (ESI**) m/z calcd for C₂₇H₂₀NO₂S⁺ (M+H)⁺ 422.1209, found 422.1210.

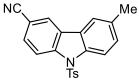

7-Tosyl-7*H***-phenaleno[1,9-***bc***]carbazole (2ac'): yellow solid; Yield 39%, 12h; ¹H NMR (400 MHz, CDCl₃) \delta 9.27 (s, 1H; H_{Ar}), 9.03 (d, J = 9.2 Hz, 1H; H_{Ar}), 8.75 – 8.68 (m, 1H; H_{Ar}), 8.63 (d, J = 8.1 Hz, 1H; H_{Ar}), 8.36 (d, J = 9.0 Hz, 1H; H_{Ar}), 8.33 – 8.25 (m, 2H; H_{Ar}), 8.17 (d, J = 8.9 Hz, 1H; H_{Ar}), 8.08 (t, J = 7.6 Hz, 1H; H_{Ar}), 7.80 – 7.73 (m, 2H; H_{Ar}), 7.70 – 7.57 (m, 2H; H_{Ar}), 7.06 (d, J = 8.4 Hz, 2H; H_{Ar}), 2.22 (s, 3H; CH₃).; ¹³C NMR (101 MHz, CDCl₃) \delta 145.11 (C_{Ar}), 139.39 (C_{Ar}), 137.22 (C_{Ar}), 134.92 (C_{Ar}), 132.09**

 (C_{Ar}) , 131.21 (C_{Ar}) , 131.02 (C_{Ar}) , 130.31 (C_{Ar}) , 129.80 (C_{Ar}) , 129.11 (C_{Ar}) , 128.43 (C_{Ar}) , 127.99 (C_{Ar}) , 127.42 (C_{Ar}) , 127.11 (C_{Ar}) , 126.93 (C_{Ar}) , 126.59 (C_{Ar}) , 126.29 (C_{Ar}) , 125.92 (C_{Ar}) , 125.85 (C_{Ar}) , 125.75 (C_{Ar}) , 124.97 (C_{Ar}) , 124.58 (C_{Ar}) , 123.09 (C_{Ar}) , 122.91 (C_{Ar}) , 122.41 (C_{Ar}) , 115.67 (C_{Ar}) , 111.68 (C_{Ar}) , 21.59 (CH_3) ; **HRMS (ESI)** m/z calcd for $C_{29}H_{20}NO_2S$ $(M+H)^+$ 446.1209, found 446.1213.

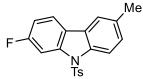
 $\begin{array}{c}
\mathbf{5} \cdot \mathbf{T} \\
\mathbf{1} \mathbf{H} \\
\mathbf{J} = \\
\mathbf{Hz}, \\
\mathbf{7}.08 \\
\mathbf{\delta} 15 \\
\mathbf{Is} \\
\end{array}$


5-Tosyl-5*H***-benzofuro[3,2-***c***]carbazole (2ad'): white solid; Yield 71%, 12h; ¹H NMR (400 MHz, CDCl₃) \delta 8.40 (dd, J = 13.2, 8.4 Hz, 3H; H_{Ar}), 8.02 (dd, J = 15.2, 8.0 Hz, 2H; H_{Ar}), 7.70 (dd, J = 13.6, 8.4 Hz, 3H; H_{Ar}), 7.56 (t, J = 7.6 Hz, 1H; H_{Ar}), 7.48 (dd, J = 14.4, 7.2 Hz, 2H; H_{Ar}), 7.39 (t, J = 7.2 Hz, 1H; H_{Ar}), 7.08 (d, J = 8.0 Hz, 2H; H_{Ar}), 2.24 (s, 3H; CH₃); ¹³C NMR (150 MHz, CDCl₃) \delta 156.69 (C_{Ar}), 150.37 (C_{Ar}), 150.33 (C_{Ar}), 145.17 (C_{Ar}), 138.46 (C_{Ar}), 138.40 (C_{Ar}), 134.90 (C_{Ar}), 129.82 (C_{Ar}), 127.39 (C_{Ar}), 126.67 (C_{Ar}), 126.61 (C_{Ar}),**

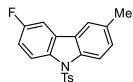
124.56 (C_{Ar}), 124.25 (C_{Ar}), 123.34 (C_{Ar}), 122.84 (C_{Ar}), 120.48 (C_{Ar}), 120.38 (C_{Ar}), 119.25 (C_{Ar}), 115.34 (C_{Ar}), 112.25 (C_{Ar}), 111.96 (C_{Ar}), 110.43 (C_{Ar}), 21.64 (CH₃); **HRMS (ESI)** m/z calcd for $C_{25}H_{18}NO_3S^+$ (M+H)⁺ 412.1002, found 412.1004.


5-Tosyl-5*H***-[1,3]dioxolo[4,5-***b***]carbazole (2ae'): white solid; Yield 47%, 12h; ¹H NMR (400 MHz, CDCl₃) \delta 8.27 (d,** *J* **= 8.3 Hz, 1H; H_{Ar}), 7.86 (s, 1H; H_{Ar}), 7.72 (d,** *J* **= 7.8 Hz, 1H; H_{Ar}), 7.66 (d,** *J* **= 8.3 Hz, 2H; H_{Ar}), 7.39 (t,** *J* **= 7.2 Hz, 1H; H_{Ar}), 7.31 (t,** *J* **= 7.5 Hz, 1H; H_{Ar}), 7.24 (s, 1H; H_{Ar}), 7.10 (d,** *J* **= 8.0 Hz, 2H; H_{Ar}), 6.06 (s, 2H; CH₂), 2.27 (s, 3H; CH₃); ¹³C NMR**

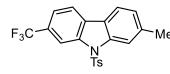
(101 MHz, CDCl₃) δ 148.30 (C_{Ar}), 145.51 (C_{Ar}), 145.00 (C_{Ar}), 138.59 (C_{Ar}), 134.96 (C_{Ar}), 133.55 (C_{Ar}), 129.80 (C_{Ar}), 126.88 (C_{Ar}), 126.65 (C_{Ar}), 126.10 (C_{Ar}), 124.00 (C_{Ar}), 120.46 (C_{Ar}), 119.12 (C_{Ar}), 115.46 (C_{Ar}), 101.84 (C_{Ar}), 99.22 (C_{Ar}), 97.36 (CH₂), 21.66 (CH₃); **HRMS (ESI)** m/z calcd for C₂₀H₁₆NO₄S⁺ (M+H)⁺ 366.0795, found 366.0797.


1-Fluoro-9-tosyl-9*H***-carbazole (2bd)**: yellow solid; Yield 51%, 6h; ¹**H NMR** (**400 MHz, CDCl**₃) δ 8.45 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 7.92 (d, *J* = 7.2 Hz, 1H; H_{Ar}), 7.75 (d, *J* = 8.0 Hz, 2H; H_{Ar}), 7.70 (dd, *J* = 7.6, 0.8 Hz, 1H; H_{Ar}), 7.58 – 7.51 (m, 1H; H_{Ar}), 7.40 (t, *J* = 7.6 Hz, 1H; H_{Ar}), 7.27 (td, *J* = 7.8, 4.0 Hz, 1H;

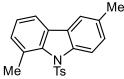
H_{Ar}), 7.21 – 7.09 (m, 3H; H_{Ar}), 2.33 (s, 3H; CH₃); ¹³C NMR (150 MHz, CDCl₃) δ 150.62 (d, J = 252.5 Hz) (C_{Ar}), 145.00 (C_{Ar}), 140.39 (C_{Ar}), 136.11 (C_{Ar}), 130.74 (d, J = 3.3 Hz) (C_{Ar}), 129.84 (C_{Ar}), 128.37 (C_{Ar}), 127.27 (C_{Ar}), 127.25 (C_{Ar}), 126.05 (d, J = 2.8 Hz) (C_{Ar}), 125.62 (d, J = 9.9 Hz) (C_{Ar}), 125.09 (d, J = 7.2 Hz) (C_{Ar}), 124.34 (C_{Ar}), 120.29 (C_{Ar}), 116.52 (C_{Ar}), 115.87 (d, J = 3.3 Hz) (C_{Ar}), 115.07 (d, J = 22.0 Hz) (C_{Ar}), 77.37 (C_{Ar}), 77.16 (C_{Ar}), 76.95 (C_{Ar}), 21.85 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -40.52 (dd, J = 12.4, 4.0 Hz, 1F); HRMS (ESI) m/z calcd for C₁₉H₁₅FNO₂S (M+H)⁺ 340.0802, found 340.0801.


6-Methyl-9-tosyl-9*H***-carbazole-3-carbonitrile** (**2ca**): yellow oil; Yield 66%, 12h; ¹**H NMR** (**400 MHz, DMSO-***d***₆**) δ 7.79 (d, J = 5.2 Hz, 1H; H_{Ar}), 7.50 (d, J = 8.0 Hz, 1H; H_{Ar}), 7.26 (d, J = 7.7 Hz, 1H; H_{Ar}), 7.14 (d, J = 4.1 Hz, 1H; H_{Ar}), 7.06 (d, J = 7.9 Hz, 1H; H_{Ar}), 6.89 (s, 2H;

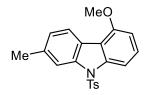
H_{Ar}), 6.58 (s, 1H; H_{Ar}), 6.42 (s, 2H; H_{Ar}), 1.58 (d, J = 5.5 Hz, 3H; CH₃), 1.38 (d, J = 5.5 Hz, 3H; CH₃).; ¹³C NMR (101 MHz, DMSO-*d*₆) δ 146.06 (C_{Ar}), 139.90 (C_{Ar}), 136.12 (C_{Ar}), 134.28 (C_{Ar}), 133.53 (C_{Ar}), 130.94 (C_{Ar}), 130.32 (C_{Ar}), 130.18 (C_{Ar}), 126.34 (C_{Ar}), 126.26 (C_{Ar}), 125.48 (C_{Ar}), 124.47 (C_{Ar}), 121.30 (CN), 118.98 (C_{Ar}), 115.48 (C_{Ar}), 114.32 (C_{Ar}), 106.69 (C_{Ar}), 21.07 (CH₃), 20.88 (CH₃); **HRMS (ESI)** m/z calcd for C₂₁H₁₇N₂O₂S⁺ (M+H)⁺ 361.1005, found 361.1007.


2-Fluoro-6-methyl-9-tosyl-9*H***-carbazole (2cb**): yellow solid; Yield 69%, 12h; ¹**H NMR (400 MHz, CDCl**₃) δ 8.16 (d, *J* = 8.5 Hz, 1H; H_{Ar}), 8.04 (dd, *J* = 10.3, 2.3 Hz, 1H; H_{Ar}), 7.77 (dd, *J* = 8.5, 5.4 Hz, 1H; H_{Ar}), 7.71 – 7.67 (m, 2H; H_{Ar}), 7.62 (s, 1H; H_{Ar}), 7.28 (s, 1H; H_{Ar}), 7.08 (ddd,

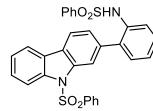
J = 11.1, 9.6, 5.2 Hz, 3H; H_{Ar}), 2.47 (s, 3H; CH₃), 2.27 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.40 (d, J = 243.8 Hz) (C_{Ar}), 145.17 (C_{Ar}), 139.36 (d, J = 12.4 Hz) (C_{Ar}), 136.99 (d, J = 2.2 Hz) (C_{Ar}), 134.91 (C_{Ar}), 134.03 (C_{Ar}), 129.87 (C_{Ar}), 128.30 (C_{Ar}), 126.65 (C_{Ar}), 126.02 (C_{Ar}), 122.75 (d, J = 1.8 Hz) (C_{Ar}), 120.82 (d, J = 10.0 Hz) (C_{Ar}), 119.91 (C_{Ar}), 114.92 (C_{Ar}), 111.89 (d, J = 24.0 Hz) (C_{Ar}), 103.00 (d, J = 29.1 Hz) (C_{Ar}), 21.64 (CH₃), 21.40 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -42.70 (td, J = 8.5, 4.4 Hz, 1F); HRMS (ESI) m/z calcd for C₂₀H₁₇FNO₂S⁺ (M+H)⁺ 354.0959, found 354.0956.


3-Fluoro-6-methyl-9-tosyl-9H-carbazole (2cc): yellow solid; Yield 67%, 12h; ¹**H NMR (400 MHz, CDCl₃)** δ 8.26 (dd, J = 9.1, 4.4 Hz, 1H; H_{Ar}), 8.18 (d, J = 8.5 Hz, 1H; H_{Ar}), 7.62 (dd, J = 9.9, 4.5 Hz, 3H; H_{Ar}), 7.48 (dd, J = 8.3, 2.6 Hz, 1H; H_{Ar}), 7.32 (d, J = 7.7 Hz, 1H; H_{Ar}), 7.17 (td, J = 9.0,

2.6 Hz, 1H; H_{Ar}), 7.08 (d, J = 8.5 Hz, 2H; H_{Ar}), 2.47 (s, 3H; CH₃), 2.25 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 160.04 (d, J = 241.9 Hz) (C_{Ar}), 145.02 (C_{Ar}), 137.52 (C_{Ar}), 134.85 (d, J = 12.6 Hz) (C_{Ar}), 133.97 (C_{Ar}), 129.76 (C_{Ar}), 129.40 (C_{Ar}), 127.97 (d, J = 9.5 Hz) (C_{Ar}), 126.59 (C_{Ar}), 126.19 (d, J = 3.5 Hz) (C_{Ar}), 120.38 (C_{Ar}), 116.58 (d, J = 9.0 Hz) (C_{Ar}), 115.34 (C_{Ar}), 114.75 (d, J = 24.7 Hz) (C_{Ar}), 106.17 (d, J = 24.2 Hz) (C_{Ar}), 21.62 (CH₃), 21.38 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -112.50 (s, 1F); HRMS (ESI) m/z calcd for C₂₀H₁₇FNO₂S⁺ (M+H)⁺ 354.0959, found 354.0958.

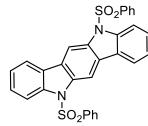

2-Methyl-9-tosyl-7-(trifluoromethyl)-9*H***-carbazole (2cd)**: white solid; Yield 65%, 12h; ¹**H NMR (400 MHz, CDCl₃)** δ 8.58 (s, 1H), 8.17 (s, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 7.6 Hz,

1H), 7.14 (d, J = 8.4 Hz, 2H), 2.58 (s, 3H), 2.28 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 145.42 (C_{Ar}), 139.80 (C_{Ar}), 139.46 (C_{Ar}), 137.88 (C_{Ar}), 134.91 (C_{Ar}), 129.98 (C_{Ar}), 129.37 (C_{Ar}), 128.97 (C_{Ar}), 128.64 (C_{Ar}), 125.92 (C_{Ar}), 125. (C_{Ar}), 124.76(q, J = 272.3 Hz) (C_{Ar}), 122.89 (C_{Ar}), 120.81 (d, J = 3.7 Hz) (C_{Ar}), 120.37 (C_{Ar}), 120.08 (C_{Ar}), 115.48 (C_{Ar}), 112.57 (d, J = 4.2 Hz) (C_{Ar}), 22.52 (CH₃), 21.65 (CH₃); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.17 (s, 3F); HRMS (ESI) m/z calcd for C₂₁H₁₇F₃NO₂S⁺ (M+H)⁺ 404.0927, found 404.0931.

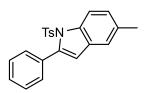

1,6-Dimethyl-9-tosyl-9H-carbazole (2ce): white solid; Yield 34%, 12h; ¹**H NMR (400 MHz, CDCl₃)** δ 8.06 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 7.52 – 7.45 (m, 1H; H_{Ar}), 7.40 (s, 1H; H_{Ar}), 7.29 – 7.16 (m, 3H; H_{Ar}), 7.03 (d, *J* = 8.2 Hz, 2H; H_{Ar}), 6.85 (d, *J* = 8.0 Hz, 2H; H_{Ar}), 2.81 (s, 3H; CH₃), 2.41 (s, 3H;

CH₃), 2.19 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 144.06 (C_{Ar}), 140.65 (C_{Ar}), 139.56 (C_{Ar}), 135.30 (C_{Ar}), 132.59 (C_{Ar}), 131.26 (C_{Ar}), 131.06 (C_{Ar}), 130.88 (C_{Ar}), 129.99 (C_{Ar}), 128.74 (C_{Ar}), 128.30 (C_{Ar}), 127.08 (C_{Ar}), 125.71 (C_{Ar}), 119.90 (C_{Ar}), 119.37 (C_{Ar}), 117.19 (C_{Ar}), 21.92 (CH₃), 21.60 (CH₃), 21.48 (CH₃); **HRMS (ESI**) m/z calcd for C₂₁H₂₀NO₂S⁺ (M+H)⁺ 350.1209, found 350.1210.

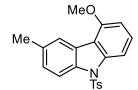
5-Methoxy-2-methyl-9-tosyl-9H-carbazole (**2cf**): white solid; Yield 76%, 12h; ¹H NMR (**400 MHz, CDCl**₃) δ 8.14 (s, 1H; H_{Ar}), 8.07 (d, *J* = 8.0 Hz, 1H; H_{Ar}), 7.92 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 7.69 (d, *J* = 8.4 Hz, 2H; H_{Ar}), 7.36 (t, *J* = 8.4 Hz, 1H; H_{Ar}), 7.17 (d, *J* = 8.0 Hz, 1H; H_{Ar}), 7.08 (d, *J* = 8.0 Hz, 2H; H_{Ar}), 6.80 (d, *J* = 8.0 Hz, 1H; H_{Ar}), 3.99 (s, 3H; CH₃),


2.55 (s, 3H; CH₃), 2.25 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 155.48 (C_{Ar}), 144.82 (C_{Ar}), 139.71 (C_{Ar}), 138.20 (C_{Ar}), 136.76 (C_{Ar}), 135.28 (C_{Ar}), 129.73 (C_{Ar}), 127.57 (C_{Ar}), 126.59 (C_{Ar}), 125.33 (C_{Ar}), 123.42 (C_{Ar}), 122.88 (C_{Ar}), 115.73 (C_{Ar}), 114.87 (C_{Ar}), 107.81 (C_{Ar}), 105.12 (C_{Ar}), 55.62 (CH₃), 22.39 (CH₃), 21.59 (CH₃); **HRMS (ESI**) m/z calcd for C₂₁H₂₀NO₃S⁺ (M+H)⁺ 366.1158, found 366.1159.

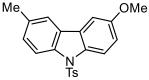
N-(2-(9-(phenylsulfonyl)-9H-carbazol-2-


yl)phenyl)benzenesulfonamide (2da): yellow solid; Yield 70%, 6h; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 8.04 (s, 1H; H_{Ar}), 7.94 (d, *J* = 7.7 Hz, 1H; H_{Ar}), 7.85 (dd, *J* = 15.3, 8.0 Hz, 3H; H_{Ar}), 7.70 (d, *J* = 8.1 Hz, 1H; H_{Ar}), 7.57 (dd, *J* = 16.8, 8.2 Hz, 4H; H_{Ar}), 7.50 (t, *J* = 7.2 Hz, 1H; H_{Ar}), 7.40 (dt, *J* = 16.5, 8.1 Hz, 6H; H_{Ar}),

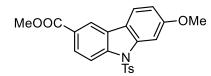
7.25 – 7.16 (m, 2H; H_{Ar}), 6.87 (d, J = 7.9 Hz, 1H; H_{Ar}), 6.72 (s, 1H; NH); ¹³C NMR (101 MHz, CDCl₃) δ 139.00 (C_{Ar}), 138.84 (C_{Ar}), 138.83 (C_{Ar}), 137.80 (C_{Ar}), 136.61 (C_{Ar}), 134.28 (C_{Ar}), 134.05 (C_{Ar}), 133.85 (C_{Ar}), 133.35 (C_{Ar}), 130.82 (C_{Ar}), 129.51 (C_{Ar}), 129.18 (C_{Ar}), 129.09 (C_{Ar}), 128.14 (C_{Ar}), 127.29 (C_{Ar}), 126.56 (C_{Ar}), 126.28 (C_{Ar}), 125.86 (C_{Ar}), 125.27 (C_{Ar}), 124.83 (C_{Ar}), 124.46 (C_{Ar}), 121.56 (C_{Ar}), 120.79 (C_{Ar}), 120.38 (C_{Ar}), 115.74 (C_{Ar}), 115.38 (C_{Ar}); HRMS (ESI) m/z calcd for C₃₀H₂₃N₂O4S₂⁺ (M+H)⁺ 539.1094, found 539.1091.


5,11-Bis(phenylsulfonyl)-5,11-dihydroindolo[3,2-*b***]carbazole (2da'): white solid; Yield 80% (with 4.0 equiv O1), 12h; ¹H NMR (400 MHz, CDCl₃) \delta 8.83 (s, 2H; H_{Ar}), 8.34 (d,** *J* **= 8.4 Hz, 2H H_{Ar}), 8.10 (d,** *J* **= 7.7 Hz, 2H H_{Ar}), 7.81 (d,** *J* **= 8.1 Hz, 4H H_{Ar}), 7.58 – 7.48 (m, 3H H_{Ar}), 7.44 (t,** *J* **= 7.6 Hz, 5H H_{Ar}), 7.30 (d,** *J* **= 7.7 Hz, 2H H_{Ar}); ¹³C NMR (101 MHz, CDCl₃) \delta 139.41 (C_{Ar}), 137.75 (C_{Ar}), 135.89 (C_{Ar}), 134.07 (C_{Ar}), 129.25 (C_{Ar}), 128.06 (C_{Ar}), 127.00 (C_{Ar}), 126.82**

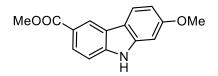
(C_{Ar}), 126.61 (C_{Ar}), 124.43 (C_{Ar}), 120.54 (C_{Ar}), 115.50 (C_{Ar}), 106.43 (C_{Ar}).


6-Methyl-2-phenyl-1-tosyl-1*H***-indole (2ea)**: yellow solid; Yield 13%, 12h; ¹**H NMR (400 MHz, CDCl₃)** δ 8.13 (s, 1H; H_{Ar}), 7.50 – 7.44 (m, 2H; H_{Ar}), 7.41 (d, *J* = 5.2 Hz, 3H; H_{Ar}), 7.27 (s, 1H; H_{Ar}), 7.25 (s, 1H; H_{Ar}), 7.22 (s, 1H; H_{Ar}), 7.17 (d, *J* = 8.6 Hz, 1H; H_{Ar}), 7.03 (d, *J* = 8.2 Hz, 2H; H_{Ar}), 6.49 (s, 1H; CH), 2.53 (s, 3H; CH₃), 2.29 (s, 3H; CH₃); ¹³C

NMR (101 MHz, CDCl₃) δ 144.53 (C_{Ar}), 142.39 (C_{Ar}), 136.63 (C_{Ar}), 134.73 (C_{Ar}), 134.12 (C_{Ar}), 132.67 (C_{Ar}), 130.97 (C_{Ar}), 130.41 (C_{Ar}), 129.30 (C_{Ar}), 128.71 (C_{Ar}), 127.62 (C_{Ar}), 126.95 (C_{Ar}), 126.31 (C_{Ar}), 120.77 (C_{Ar}), 116.52 (C_{Ar}), 113.74 (C_{Ar}), 100.11 (CH), 21.67 (CH₃), 21.42 (CH₃); HRMS (ESI) m/z calcd for C₂₂H₂₀NO₂S⁺ (M+H)⁺ 362.1209, found 362.1209.

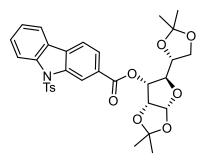

5-methoxy-3-methyl-9-tosyl-9*H***-carbazole (2fa):** white solid; Yield 70%, 12h; ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 7.93-7.90 (m, 1H; H_{Ar}), 7.84 (dd, *J* = 8.4, 0.6 Hz, 1H; H_{Ar}), 7.58 (d, *J* = 8.6 Hz, 2H; H_{Ar}), 7.29 (t, *J* = 8.3 Hz, 1H; H_{Ar}), 7.20 – 7.14 (m, 1H; H_{Ar}), 7.04 – 6.91 (m, 2H; H_{Ar}), 6.71 (d, *J* = 8.2 Hz, 1H; H_{Ar}), 3.91 (s, 3H; CH₃), 2.39 (s,

3H; CH₃), 2.14 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 155.72 (C_{Ar}), 144.78 (C_{Ar}), 140.01 (C_{Ar}), 135.88 (C_{Ar}), 135.07 (C_{Ar}), 133.72 (C_{Ar}), 129.67 (C_{Ar}), 127.96 (C_{Ar}), 127.65 (C_{Ar}), 126.58 (C_{Ar}), 125.99 (C_{Ar}), 123.37 (C_{Ar}), 115.62 (C_{Ar}), 114.31 (C_{Ar}), 107.85 (C_{Ar}), 105.09 (C_{Ar}), 55.62 (CH₃), 21.57 (CH₃), 21.45 (CH₃). **HRMS (ESI**) m/z calcd for C₂₁H₁₉NNaO₃S⁺ (M+Na)⁺ 388.0978, found 388.0978.

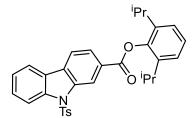

3-Methoxy-6-methyl-9-tosyl-9*H***-carbazole (2fb):** white solid; Yield 98%, 12h; ¹**H NMR (400 MHz, CDCl₃)** δ 8.18 (dd, *J* = 12.4, 8.8 Hz, 2H; H_{Ar}), 7.62 (d, *J* = 8.4 Hz, 3H; H_{Ar}), 7.29 (t, *J* = 6.0 Hz, 2H; H_{Ar}), 7.05 (dd, *J* = 8.8, 2.8 Hz, 3H; H_{Ar}), 3.88 (s, 3H; CH₃), 2.47 (s, 3H;

CH₃), 2.24 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 156.95 (C_{Ar}), 144.70 (C_{Ar}), 137.37 (C_{Ar}), 134.88 (C_{Ar}), 133.69 (C_{Ar}), 133.15 (C_{Ar}), 129.64 (C_{Ar}), 128.77 (C_{Ar}), 127.76 (C_{Ar}), 126.90 (C_{Ar}), 126.59 (C_{Ar}), 120.14 (C_{Ar}), 116.47 (C_{Ar}), 115.38 (C_{Ar}), 115.25 (C_{Ar}), 103.26 (C_{Ar}), 55.87 (CH₃), 21.60 (CH₃), 21.41 (CH₃); **HRMS (ESI)** m/z calcd for C₂₁H₂₀NO₃S⁺ (M+H)⁺ 366.1158, found 365.1159.

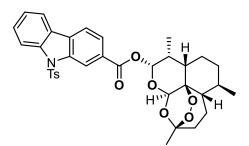
methyl 7-methoxy-9-tosyl-9H-carbazole-3-carboxylate (2fc): white solid; Yield 85%, 12h; ¹H NMR (400 MHz, CDCl₃): δ 8.48 (d, J = 1.7 Hz, 1H; H_{Ar}), 8.30 (d, J = 8.8 Hz, 1H; H_{Ar}), 8.09 (dd, J = 8.7, 1.8 Hz,1H; H_{Ar}), 7.87 (d, J = 2.3


Hz, 1H; H_{Ar}), 7.82 (d, J = 8.6Hz, 1H; H_{Ar}), 7.72 – 7.67 (m, 2H; H_{Ar}), 7.13 (d, J = 7.8 Hz, 2H; H_{Ar}), 6.99 (dd, J = 8.6, 2.3 Hz, 1H; H_{Ar}), 3.95 (d, J = 1.0 Hz, 6H; CH₃), 2.28 (s, 3H; CH₃); ¹³C NMR (101 MHz, CDCl₃): δ 167.19 (C=O), 160.41 (C_{Ar}), 145.45 (C_{Ar}), 141.30 (C_{Ar}), 140.41 (C_{Ar}), 134.94 (C_{Ar}), 129.97 (C_{Ar}), 127.53 (C_{Ar}), 126.63 (C_{Ar}), 126.01 (C_{Ar}), 121.19 (C_{Ar}), 121.09 (C_{Ar}), 119.27 (C_{Ar}), 114.70 (C_{Ar}), 112.63 (C_{Ar}), 99.99 (C_{Ar}). 56.01 (CH₃), 52.34 (CH₃), 21.67 (CH₃); HRMS (ESI) m/z calcd for C₂₂H₁₉NNaO₅S⁺ (M+Na)⁺ 432.0876, found 432.0879.

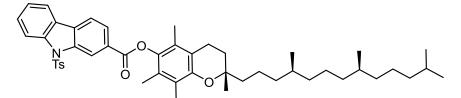
To a solution of **2fc** in THF (0.1 M) was added TBAF (1.0 M solution in THF, 5 equiv) at room temperature. The reaction mixture was refluxed for 3 h. The reaction mixture was poured into water and extracted with CH_2Cl_2 (3-5 times), dried over


anhydrous Na_2SO_4 , and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (PE/EA).

Clausine C (2fd): white solid; Yield 80% in two steps; ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.73 (s, 1H; NH), 7.81 (d, J = 1.8 Hz, 1H; H_{Ar}), 7.27 (d, J = 8.6 Hz, 1H; H_{Ar}), 7.08 (dd, J = 8.5, 1.8 Hz, 1H; H_{Ar}), 6.65 (d, J = 8.6 Hz, 1H; H_{Ar}), 6.16 (d, J = 2.3 Hz, 1H; H_{Ar}), 5.98 (dd, J = 8.6, 2.3 Hz, 1H; H_{Ar}), 3.02 (s, 3H; CH₃), 3.00 (s, 3H; CH₃); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 167.17 (C_{Ar}), 159.17 (C_{Ar}), 142.77 (C_{Ar}), 141.93 (C_{Ar}), 125.60 (C_{Ar}), 122.65 (C_{Ar}), 121.65 (C_{Ar}), 121.44 (C_{Ar}), 119.98 (C_{Ar}), 116.13 (C_{Ar}), 110.57 (C_{Ar}), 108.88 (C_{Ar}), 94.93 (C_{Ar}), 55.44(CH₃), 51.85 (CH₃).


(3aR,5R,6R,6aR)-5-((*R*)-2,2-dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydrofuro[2,3-*d*][1,3]dioxol-6-yl 9-tosyl-9*H*-carbazole-2-carboxylate (2fe): colorless liquid; Yield 90%, 12h;¹H NMR (400 MHz, CDCl₃): δ 9.00 (d, *J* = 1.6 Hz, 1H; H_{Ar}), 8.36 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 8.03 (dd, *J* = 8.1, 1.7 Hz, 1H; H_{Ar}), 7.97 (d, *J* = 3.7 Hz, 1H; H_{Ar}), 7.95 (d, *J* = 4.0 Hz, 1H; H_{Ar}), 7.74 – 7.68 (m, 2H; H_{Ar}), 7.58 (ddd, *J* = 8.7, 7.2, 1.6 Hz, 1H; H_{Ar}), 7.41 (t, *J* = 7.5 Hz, 1H; H_{Ar}), 7.12 (d, *J* = 8.4 Hz,

2H; H_{Ar}), 6.01 (d, J = 3.7 Hz, 1H; CH), 5.54 (d, J = 3.1 Hz, 1H; CH), 4.74 (d, J = 3.7 Hz, 1H; CH), 4.51 (dt, J = 7.9, 5.4 Hz, 1H; CH), 4.39 (dd, J = 7.9, 3.1 Hz, 1H; CH), 4.17 (dd, J = 9.2, 5.5 Hz, 2H; CH₂), 2.27 (s, 3H; CH₃), 1.59 (s, 3H; CH₃), 1.45 (s, 3H; CH₃), 1.35 (s, 3H; CH₃), 1.29 (s, 3H; CH₃).; ¹³C NMR (101 MHz, CDCl₃): δ 165.43 (CO), 145.40 (C_{Ar}), 139.79 (C_{Ar}), 138.06 (C_{Ar}), 134.90 (C_{Ar}), 130.67 (C_{Ar}), 129.97 (C_{Ar}), 129.06 (C_{Ar}), 128.38 (C_{Ar}), 126.71 (C_{Ar}), 125.33 (C_{Ar}), 125.25 (C_{Ar}), 124.36 (C_{Ar}), 121.02 (C_{Ar}), 120.02 (C_{Ar}), 116.90 (C_{Ar}), 115.38 (C_{Ar}), 112.52 (C), 109.58 (C), 105.32 (CH), 83.54 (CH), 80.18 (CH), 77.23 (CH), 72.87 (CH), 67.50 (CH₂), 27.03 (CH₃), 26.90 (CH₃), 26.38 (CH₃), 25.37 (CH₃), 21.68 (CH₃); HRMS (ESI) m/z calcd for C₃₂H₃₃NNaO₉S⁺ (M+Na)⁺ 630.1768, found 630.1763.


2,6-Diisopropylphenyl 9-tosyl-9*H***-carbazole-2-carboxylate (2ff): white solid; Yield 74%, 12h; ¹H NMR (400 MHz, CDCl₃) \delta 9.23 (s, 1H; H_{Ar}), 8.43 (d,** *J* **= 8.4 Hz, 1H; H_{Ar}), 8.25 (dd,** *J* **= 8.1, 1.2 Hz, 1H; H_{Ar}), 8.03 (dd,** *J* **= 13.7, 7.9 Hz, 2H; H_{Ar}), 7.77 (d,** *J* **= 8.3 Hz, 2H; H_{Ar}), 7.61 (t,** *J* **= 7.4 Hz, 1H; H_{Ar}), 7.44 (t,** *J* **= 7.5 Hz, 1H; H_{Ar}), 7.34 – 7.21 (m, 3H; H_{Ar}), 7.13 (d,** *J* **= 8.2 Hz,**

2H; H_{Ar}), 3.13 - 2.99 (m, 2H; CH), 2.30 (s, 3H; CH₃), 1.30 (s, 2H; CH₃), 1.27 (dd, J = 7.9, 4.3 Hz, 10H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 165.23 (CO), 146.19 (C_{Ar}), 145.42 (C_{Ar}), 140.65 (C_{Ar}), 139.91 (C_{Ar}), 138.11 (C_{Ar}), 135.00 (C_{Ar}), 130.81 (C_{Ar}), 129.94 (C_{Ar}), 129.08 (C_{Ar}), 128.25 (C_{Ar}), 126.77 (C_{Ar}), 125.93 (C_{Ar}), 125.41 (C_{Ar}), 124.39 (C_{Ar}), 124.21 (C_{Ar}), 121.04 (C_{Ar}), 120.18 (C_{Ar}), 117.13 (C_{Ar}), 115.41 (C_{Ar}), 114.2 (C_{Ar}), 27.96 (CH), 24.13 (CH₃), 22.77 (CH₃), 21.70 (CH₃); HRMS (ESI) m/z calcd for C₃₂H₃₁NO₄S⁺ (M+H)⁺ 526.2047, found 526.2045.

(3R,5aS,6R,8aS,9R,12R)-3,6,9-trimethyldecahydro-12*H*-3,12-epoxy[1,2]dioxepino[4,3-*i*]isochromen-10yl 9-tosyl-9*H*-carbazole-2-carboxylate (2fg): white solid; Yield 90%, 12h; ¹H NMR (600 MHz, CDCl₃) δ 9.04 (s, 1H; H_{Ar}), 8.36 (d, *J* = 8.4 Hz, 1H; H_{Ar}), 8.12 (d, *J* = 8.1 Hz, 1H; H_{Ar}), 7.92 (t, *J* = 8.8 Hz, 2H; H_{Ar}), 7.72 (d, *J* = 8.1 Hz, 2H; H_{Ar}), 7.55 (t, *J* = 7.8 Hz, 1H; H_{Ar}),

7.38 (t, J = 7.5 Hz, 1H; H_{Ar}), 7.10 (d, J = 8.0 Hz, 2H; H_{Ar}), 6.05 (d, J = 9.8 Hz, 1H; CH), 5.57 (s, 1H; CH), 2.92 – 2.80 (m, 1H; CH), 2.40 (td, J = 14.2, 3.4 Hz, 1H; CH), 2.24 (s, 3H; CH₃), 2.05 (d, J = 14.6 Hz, 1H; CH), 1.91 (dd, J = 8.9, 4.7 Hz, 1H; CH), 1.84 (d, J = 13.1 Hz, 1H; CH₂), 1.79 – 1.68 (m, 2H; CH₂), 1.56 – 1.46 (m, 2H; CH₂), 1.44 (s, 3H; CH₃), 1.41 – 1.30 (m, 2H; CH₂), 1.09 – 1.03 (m, 1H; CH₂), 0.99 (dd, J = 11.0, 6.7 Hz, 6H; CH₃); ¹³C NMR (150 MHz, CDCl₃) δ 165.30 (CO), 145.23 (C_{Ar}), 139.66 (C_{Ar}), 137.92 (C_{Ar}), 134.77 (C_{Ar}), 130.50 (C_{Ar}), 129.88 (C_{Ar}), 128.85 (C_{Ar}), 128.56 (C_{Ar}), 126.68 (C_{Ar}), 125.64 (C_{Ar}), 125.37 (C_{Ar}), 124.24 (C_{Ar}), 120.93 (C_{Ar}), 119.73 (C_{Ar}), 117.14 (C_{Ar}), 115.29 (C_{Ar}), 104.52 (C), 92.91 (CH), 91.74 (CH), 80.31 (C), 51.73 (CH), 45.43 (CH), 37.35 (CH), 36.35 (CH₂), 34.19 (CH), 32.07 (CH₂), 26.09 (CH₃), 24.66 (CH₂), 22.15 (CH₂), 21.59 (CH₃), 20.33 (CH₃), 12.44 (CH₃); HRMS (ESI) m/z calcd for C₃₅H₃₇NNaO₈S⁺ (M+Na)⁺ 654.2138, found 654.2141.

(R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)chroman-6-yl 9-tosyl-9Hcarbazole-2-carboxylate (2fh): white solid; Yield 63%, 12h; ¹H NMR (400 MHz, CDCl₃) & 9.21 $(d, J = 0.8 \text{ Hz}, 1\text{H}; \text{H}_{\text{Ar}}), 8.42 (d, J = 8.4 \text{ Hz}, 1\text{H}; \text{H}_{\text{Ar}}), 8.25 (dd, J = 8.0, 1.3 \text{ Hz}, 1\text{H}; \text{H}_{\text{Ar}}), 8.01 (t, t, t)$ J = 8.4 Hz, 2H; H_{Ar}), 7.77 (d, J = 8.4 Hz, 2H; H_{Ar}), 7.64 – 7.56 (m, 1H; H_{Ar}), 7.43 (t, J = 7.8 Hz, 1H; H_{Ar}), 7.13 (d, J = 8.0 Hz, 2H; H_{Ar}), 2.66 (t, J = 6.4 Hz, 2H; CH₂), 2.29 (s, 3H; CH₃), 2.17 (s, 3H; CH₃), 2.14 (s, 3H; CH₃), 2.09 (s, 3H; CH₃), 1.85 (m, 2H; CH₂), 1.69 – 1.57 (m, 2H; CH₂), 1.56 - 1.48 (m, 2H; CH₂), 1.47 - 1.36 (m, 4H; CH₂), 1.29 (s, 10H; CH₂), 1.19 - 1.07 (m, 6H; CH, CH₃), 0.90 - 0.85 (m, 12H; CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 165.21 (CO), 149.69 (C_{Ar}), 145.35 (CAr), 140.92 (CAr), 139.89 (CAr), 138.09 (CAr), 135.00 (CAr), 130.64 (CAr), 129.92 (CAr), 128.97 (CAr), 128.53 (CAr), 127.06 (CAr), 126.79 (CAr), 125.83 (CAr), 125.46 (CAr), 125.31 (CAr), 124.33 (CAr), 123.35 (CAr), 120.99 (CAr), 120.06 (CAr), 117.70 (CAr), 117.14 (CAr), 115.41 (CAr), 75.27 (C), 39.53 (CH₂), 37.74 (CH₂), 37.63 (CH₂), 37.55 (CH₂), 37.45 (CH₂), 32.94 (CH), 32.88 (CH), 28.13 (CH₂), 24.95 (CH₂), 24.61 (CH₃), 22.87 (CH₃), 22.78 (CH₃), 21.67 (CH₃), 20.83 (CH₂), 19.91 (CH₂), 19.86 (CH₃), 19.85 (CH₃), 13.29 (CH₃), 12.45 (CH₃), 12.03 (CH₃); HRMS (ESI) m/z calcd for C₄₉H₆₄NO₅S⁺ (M+H)⁺ 778.4500, found 778.4504.

7. Gram-scale synthesis of N-Ts-Carbazole (2a)

A dry round bottom flask equipped with a magnetic stirrer bar was charged with **1a** (1.29 g, 4.00 mmol, 1.0 equiv) and Pd(OAc)₂ (0.40 mmol, 10 mol%) in MeCN (40 mL). **O1** (6.4 mmol, 1.6 equiv) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W). The reaction mixture was then purified by flash chromatography on silica gel (PE/EA). Yield 95%, 12h.

8. Optical and photoperties

Lab-2a MACKLIN-2a Lab-2i MACKLIN-2i Lab-2j MACKLIN-2j Daylight Image: Amount of the state of the

8.1 Photographs of 2a, 2i, 2j Powders.

Figure S5. Photographs of 2a, 2i, 2j powders in daylight and under 365 nm irradiation ON/OFF

8.2 UV-Vis and fluorescence spectra.

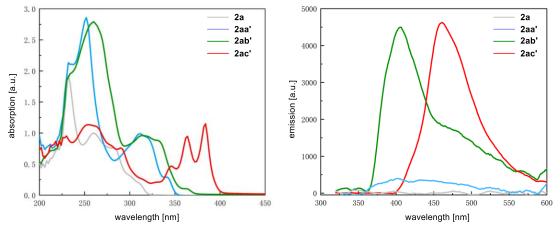


Figure S6. Absorption and emission spectra of selected compounds in CH₂Cl₂

8.3 Photophysical data

Compound	$\lambda_{ m max, \ abs}{}^a$	$\lambda_{\max, em}^{b}$	Stokes Shift (cm ⁻¹)	$\lambda_{onset, abs}$	$E_{g(opt)} (eV)^c$
2a	232 nm	-	-	255 nm	4.86
2aa'	252 nm	-	-	288 nm	4.31
2ab'	260 nm	403 nm	13648	303 nm	4.09
2ac'	384 nm	461 nm	4350	402 nm	3.09

 Table S3. Photophysical Data of Representative Carbazoles

^{*a*}Maximum of the longest absorption wavalength. ^{*b*}Maximum of the shortest emission wavelength. ^{*c*}Optical gap estimated from $\lambda_{onset, abs}$: E_{g(opt)} = 1239.8/ $\lambda_{onset, abs}$.

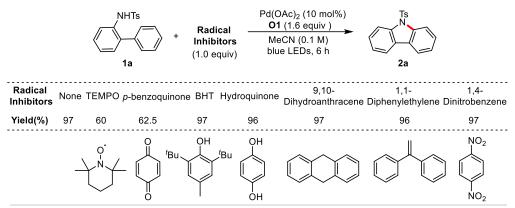
9. Green chemistry metrics analysis

Table S4. *E*-Factor, AE, RME, PMI, CE and Atom Efficiency for Carbazoles Synthesis (This work).

Table S5. *E*-Factor, AE, RME, PMI, CE and Atom Efficiency for Carbazoles Synthesis Using Oxone as Oxidant.²

NHTs + Oxone + p -TsOH 1 equiv 0.5 equiv 323.41 346.29 172.20 321.39 32.3 mg 34.6 mg 8.6 mg 31.5 mg
Total amount of reactants: 32.3 mg + 34.6 mg + 8.6 mg = 75.5 mg Amount of final product: 31.5 mg Amount of waste: 75.5 mg - 31.5 mg = 44 mg <u><i>E</i>-Factor</u> = Amount of waste/Amount of final product = 44/31.5 = 1.40
Molecular weight of product: 321.39 Sum of molecular weight of reagent: 323.41 + 346.29 + 172.2 ×0.5 = 755.8 Atom economy = Molecular weight of product/Sum of molecular weight of reagent = 321.39/755.8 = 42.5%
Mass of product: 31.5 mg Total Mass of reagent: 32.3 mg + 34.6 mg + 8.6 mg = 75.5 mg RME = Mass of product/Total Mass of reagent = 31.5/75.5 = 41.7%
Total Mass in process: 32.3 mg + 34.6 mg + 8.6 mg = 75.5 mg Mass of product: 31.5 mg PMI = Total Mass in process/Mass of product = 75.5/31.5 = 2.40
Amount of carbon in desired product: 19 Total amount of carbon presenten in all reactants: 19 + 7 \times 0.5 = 22.5
Carbon Efficiency (%) = $\frac{\text{Amount of carbon in desired product}}{\text{Amount of carbon in desired product}} \times 100\% = 84.4\%$
Carbon Efficiency (%) = $\frac{1}{100\%} = 84.4\%$ Total amount of carbon presenten in all reactants
Yield of product: 98% Atom economy: 42.5% Atom Efficiency (%) = (% Yield of product ×% Atom economy) ×100% = 41.7%

Table S6. *E*-Factor, AE, RME, PMI, CE and Atom Efficiency for Carbazoles Synthesis Using PhI(OAc)₂ as Oxidant.¹


NHBn + PhI(OAc) ₂ + AcOH 1.2 equiv 1.2 equiv 1.0 equiv 259.35 322.10 60.05 257.34 25.9 mg 38.7 mg 6.0 mg 24.7 mg
Total amount of reactants: 25.9 mg + 38.7 mg + 6.0 mg = 70.6 mg Amount of final product: 24.7 mg Amount of waste: 70.6 mg - 24.7 mg = 45.9 mg <u><i>E</i>-Factor</u> = Amount of waste/Amount of final product = 45.9/24.7 = 1.86
Molecular weight of product: 257.34 Sum of molecular weight of reagent: 259.35 + 322.10 \times 1.2 + 60.05 \times 1.0 = 705.92 Atom economy = Molecular weight of product/Sum of molecular weight of reagent = 257.34/705.92 = 36.5%
Mass of product: 24.7 mg Total Mass of reagent: 25.9 mg + 38.7 mg +6.0 mg = 70.6 mg RME = Mass of product/Total Mass of reagent = 24.7/70.6 = 35.0%
Total Mass in process: 25.9 mg + 38.7 mg +6.0 mg = 70.6 mg Mass of product: 24.7 mg PMI = Total Mass in process/Mass of product = 70.6/24.7 = 2.86
Amount of carbon in desired product: 19 Total amount of carbon presenten in all reactants: $19 + 10 \times 1.2 + 2 \times 1.0 = 33$
Carbon Efficiency (%) = $\frac{\text{Amount of carbon in desired product}}{\text{Total amount of carbon presenten in all reactants}} \times 100\% = 57.6\%$
Yield of product: 96% Atom economy: 36.5% Atom Efficiency (%) = (% Yield of product \times % Atom economy) $\times 100\% = 35.1\%$

10. Mechanistic experiments

10.1 Radical inhibition experiments

A dry Schlenk tube equipped with a magnetic stirrer bar was charged with **1a** (0.10 mmol, 1.0 equiv), $Pd(OAc)_2$ (0.01 mmol, 10 mol%) and additive (0.10 mmol, 1.0 equiv) in MeCN (1 mL). **O1** (0.16 mmol, 1.6 equiv) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W) for 6 h. The reaction mixture was then purified by flash chromatography on silica gel (PE/EA).

Table S7: Effect of Radical Inhibitors^{a, b}

^{*a*}Reaction conditions: **1a** (0.10 mmol, 1.0 equiv), additive (0.10 mmol, 1.0 equiv), Pd(OAc)₂ (0.01 mmol, 10 mol%), **O1** (0.16 mmol, 1.6 equiv), MeCN (1 mL), irradiation with blue LEDs for 6 h at room temperature. ^{*b*}Isolated yields.

10.2 Reaction rate of carbazoles synthesis

Carbazoles synthesis under blue LEDs: A dry Schlenk tube equipped with a magnetic stirrer bar was charged with **1a** (0.10 mmol, 1.0 equiv) and Pd(OAc)₂ (0.01 mmol, 10 mol%) in MeCN (1 mL). **O1** (0.16 mmol, 1.6 equiv) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W). Aiquots (50 μ l) were taken out by syringe at every 30 minutes and immediately quenched by Na₂S₂O₃, diluted with EA (1 mL) and immediately tested by GC using naphthalene as an internal standard and the results were presented in Figure S7.

Carbazoles synthesis in the dark: A dry Schlenk tube equipped with a magnetic stirrer bar was charged with **1a** (0.10 mmol, 1.0 equiv) and Pd(OAc)₂ (0.01 mmol, 10 mol%) in MeCN (1 mL). **O1** (0.16 mmol, 1.6 equiv) was added, and the reaction mixture was stirred at room temperature in the dark. Aiquots (50 μ l) were taken out by syringe at every 30 minutes and immediately quenched by Na₂S₂O₃, diluted with EA (1 mL) and immediately tested by GC using naphthalene as an internal standard and the results were presented in Figure S7.

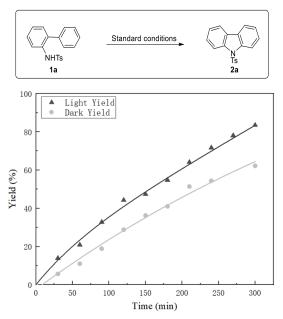


Figure S7. Reactivity comparison between blue LEDs and dark

10.3 Light On/Off experiment

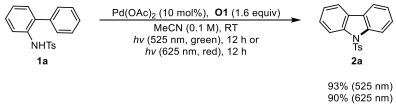
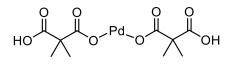
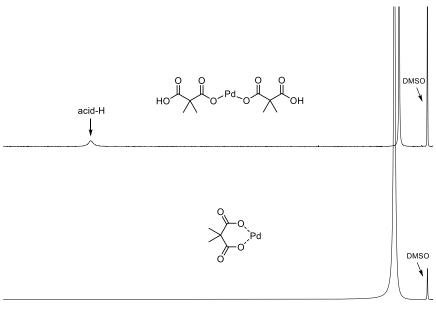

A dry Schlenk tube equipped with a magnetic stirrer bar was charged with **1a** (0.10 mmol, 1.0 equiv) and Pd(OAc)₂ (0.01 mmol, 10 mol%) in MeCN (1 mL). **O1** (0.16 mmol, 1.6 equiv) was added, and the reaction mixture was stirred alternately in the dark and irradiation with blue LEDs (20 W) at room temperature. Aiquots (50 μ l) were taken out by syringe at every 30 minutes and immediately quenched by Na₂S₂O₃, diluted with EA (1 mL). Product yield was tested by GC using naphthalene as an internal standard and the results were presented in Figure S8.

Figure S8. Light on/off experiment

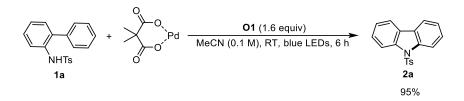

10.4 Screening of light source

A dry Schlenk tube equipped with a magnetic stirrer bar was charged with 1a (0.10 mmol, 1.0 equiv) and Pd(OAc)₂ (0.01 mmol, 10 mol%) in MeCN (1 mL). O1 (0.16 mmol, 1.6 equiv) was added, and the reaction mixture was stirred at room temperature under irradiation with green or red LEDs (20 W) for 12 h. The reaction mixture was then purified by flash chromatography on silica gel (PE/EA).

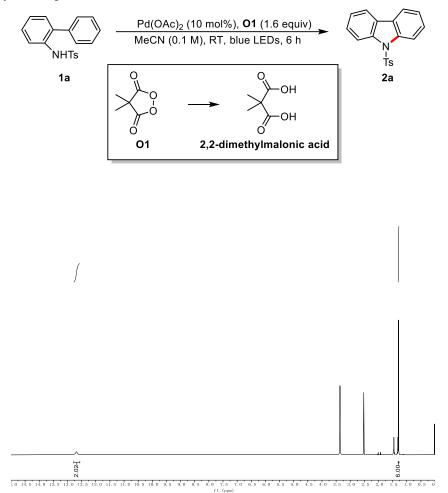
10.5 Investigation in palladium(II) 2,2-dimethylmalonate

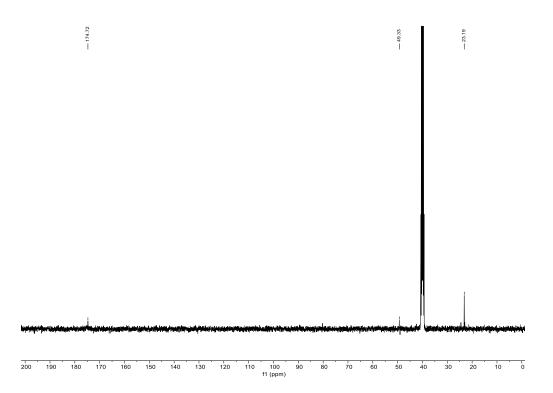

A Soxhlet set up was charged with solid sodium carbonate (approx. 2 g), in which the dry round bottom flask equipped with a magnetic stirrer bar was charged with a solution of palladium(II) acetate (2.0 mmol) and dimethylmalonic acid (1 mmol) in toluene (30 mL). The reaction mixture was heated at reflux for 3 h, such that the solvent condensed through the solid sodium carbonate before returning to the round bottomed flask. The reaction mixture was allowed to cool to ambient temperature and concentrated under reduced pressure. Acetone (6 mL) was added to the residue and the suspension stirred for 10 minutes at ambient temperature. The precipitate was filtered and dried under vacuum to provide desired product.9

With 2 mmol dimethylmalonic acid. bis((2-carboxy-2-


palladium(II) 2,2-dimethylmalonate: brown yellow solid; ¹H NMR (400 MHz, **DMSO-***d*₆) δ 3.49 (s, 6H).

15.0 14.5 14.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 ff(ppm)


Figure S9. Comparison of two palladium compounds


A dry Schlenk tube equipped with a magnetic stirrer bar was charged with **1a** (0.10 mmol, 1.0 equiv) and palladium(II) 2,2-dimethylmalonate (0.01 mmol, 10 mol%) in MeCN (1 mL). **O1** (0.16 mmol, 1.6 equiv) was added, and the mixture was stirred at room temperature under irradiation with blue LEDs (20 W) for 6 h. The reaction mixture was then purified by flash chromatography on silica gel (PE/EA).

10.6 2,2-Dimethylmalonic acid identificated by NMR spectra

A dry Schlenk tube equipped with a magnetic stirrer bar was charged with **1a** (4 mmol, 1.0 equiv) and Pd(OAc)₂ (0.4 mmol, 10 mol%) in MeCN (40 mL). **O1** (6.4 mmol, 1.6 equiv) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W) for 6 h. Next, an aqueous NaOH (10 mL, 1 M) and EA (20 mL) was added. The layers were separated, and the aqueous layer was extracted with EA (15 mL ×2). The combined aqueous layers were acided by aqueous HCl until PH < 2 and extracted with EA (15 mL ×2). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was detected by NMR spectra.

10.7 Competition experiments of meta-substituted N-Ts-2-Phenylanilines

A dry Schlenk tube equipped with a magnetic stirrer bar was charged with two substrates (0.20 mmol, 1:1) and Pd(OAc)₂ (0.01 mmol) in MeCN (1 mL). **O1** (0.16 mmol) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W) for 6 h. The reaction mixture was then purified by flash chromatography on silica gel (PE/EA).

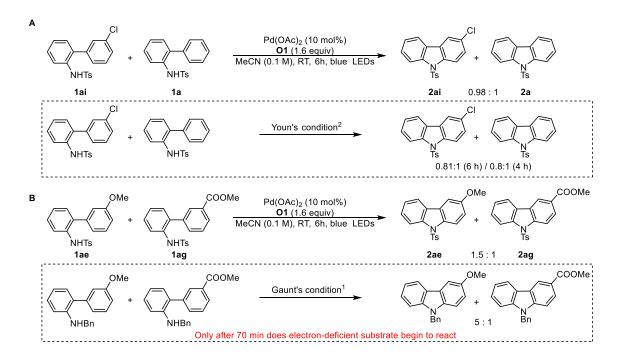


Figure S10. Two competition experiments in comparison with the literatures

A dry Schlenk tube equipped with a magnetic stirrer bar was charged with two substrates (0.20 mmol, 1:1) and $Pd(OAc)_2$ (0.01 mmol) in MeCN (1 mL). **O1** (0.16 mmol) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W). The mixture was detected by ¹H NMR spectra (*in-situ*).

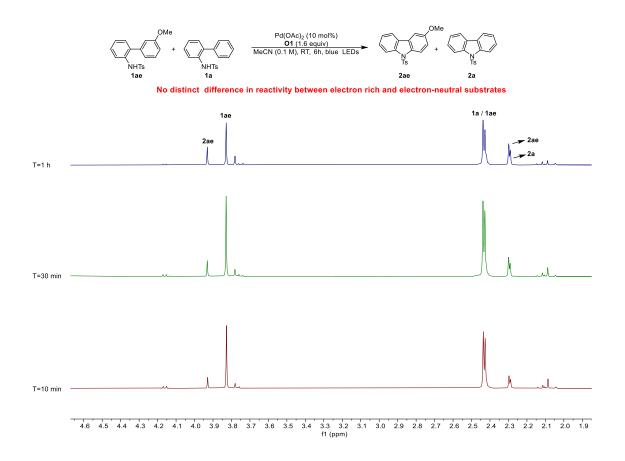


Figure S11. Competition experiment between electron rich and electron-neutral substrates

A dry Schlenk tube equipped with a magnetic stirrer bar was charged with two substrates (0.20 mmol, 1:1) and Pd(OAc)₂ (0.01 mmol) in MeCN (1 mL). **O1** (0.16 mmol) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W). The mixture was detected by ¹H NMR spectra (*in-situ*).

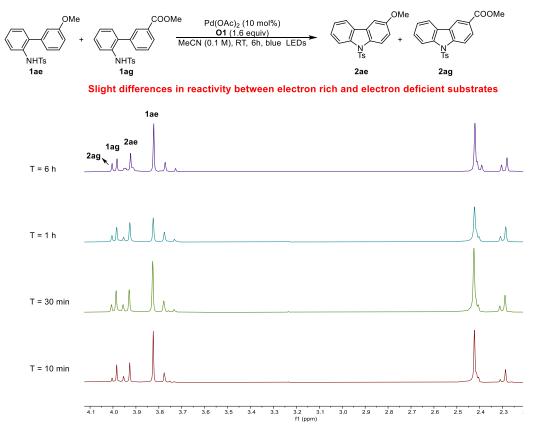


Figure S12. Competition experiment between electron rich and electron deficient substrates

10.8 Kinetic experiments

Reaction rate profile: A dry Schlenk tube equipped with a magnetic stirrer bar was charged with **1a** (0.10 mmol, 1.0 equiv) and Pd(OAc)₂ (0.01 mmol, 10 mol%) in MeCN (1 mL). **O1** (0.16 mmol, 1.6 equiv) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W). Aiquots (50 μ l) were taken out by syringe at every 30 minutes and immediately quenched by Na₂S₂O₃, diluted with EA (1 mL). Product yield was tested by GC using naphthalene as an internal standard and the results were presented in Figure S13.

Initial rate profile: A dry Schlenk tube equipped with a magnetic stirrer bar was charged with **1a** (0.10 mmol, 1.0 equiv) and Pd(OAc)₂ (0.01 mmol, 10 mol%) in MeCN (1 mL). **O1** (0.16 mmol, 1.6 equiv) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W). Aiquots (50 μ L) were taken out by syringe at every 5 minutes and immediately quenched by Na₂S₂O₃, diluted with EA (1 mL). Product yield was tested by GC using naphthalene as an internal standard and the results were presented in Figure S13.

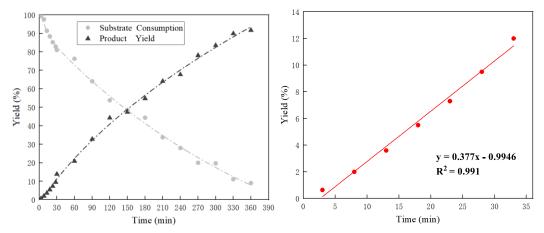


Figure S13. Representive time course of the reaction

Order in catalyst: A dry Schlenk tube equipped with a magnetic stirrer bar was charged with **1a** (0.10 mmol, 1.0 equiv) and Pd(OAc)₂ (0. 004 ~ 0.012 mmol) in MeCN (1 mL). **O1** (0.16 mmol, 1.6 equiv) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W). Aiquots (50 μ L) were taken out by syringe at every 5 minutes and immediately quenched by Na₂S₂O₃, diluted with EA (1 mL). Product yield from the corresponding reaction was tested by GC using naphthalene as an internal standard, and each reported initial rate represents an average of three experiments. The results were presented in Figure S14. A plot of initial rate versus [Pd(OAc)₂] gave a straight line (R² = 0.9961), indicating a 1st order dependence on [Pd(OAc)₂]. Y = 0.0286 mM/min × X + 0.085.

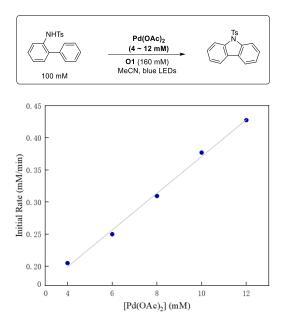


Figure S14. Dependence of the initial rate on Pd(OAc)₂

Order in substrate: A dry Schlenk tube equipped with a magnetic stirrer bar was charged with **1a** $(0.07 \sim 0.11 \text{ mmol})$ and Pd(OAc)₂ (0.01 mmol, 10 mol%) in MeCN (1 mL). **O1** (0.16 mmol, 1.6 equiv) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W). Aiquots (1 mL) were taken out by syringe at every 5 minutes and immediately quenched by Na₂S₂O₃ (0.5 mL), diluted with EA (1 mL). Product yield from the corresponding reaction was tested by GC using naphthalene as an internal standard, and each reported initial rate represents an average of three experiments. The results were presented in Figure S15. A plot of initial rate versus substrate gave a straight line (R² = 0.9992), indicating of a 1st order dependence on [substrate]. Y = 0.00405 mM/min ×X - 0.0299.

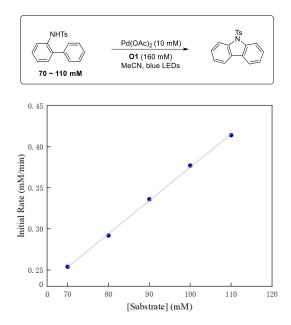
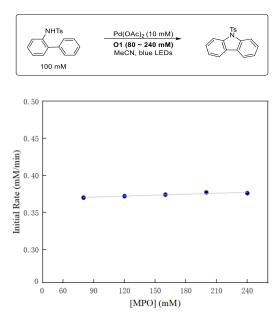
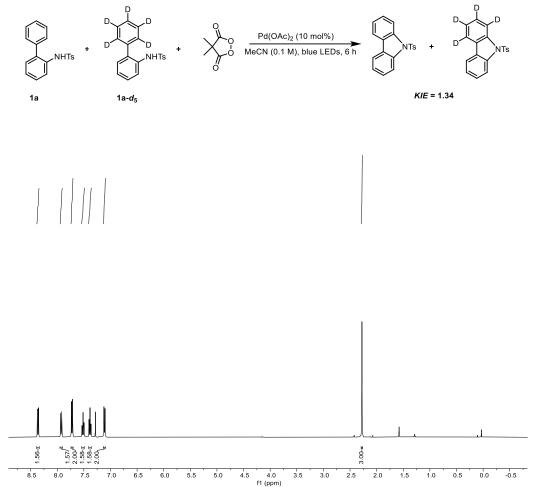


Figure S15. Dependence of the initial rate on substrate

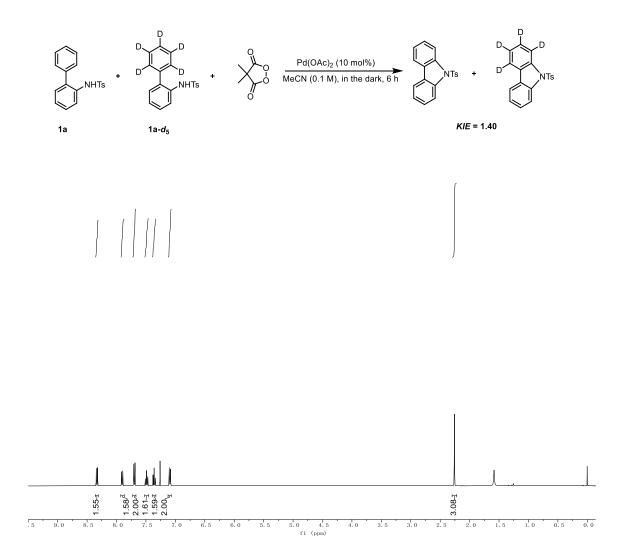
Order in oxidant: A dry Schlenk tube equipped with a magnetic stirrer bar was charged with **1a** (0.10 mmol, 1.0 equiv) and Pd(OAc)₂ (0.01 mmol, 10 mol%) in MeCN (1 mL). **O1** (0.08 ~ 0.24 mmol) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W). Aiquots (50 μ L) were taken out by syringe at every 5 minutes and immediately quenched by Na₂S₂O₃, diluted with EA (1 mL). Product yield from the corresponding reaction was tested by GC using naphthalene as an internal standard, and each reported initial rate represents an average of three experiments. The results were presented in Figure S16. A plot of initial rate versus substrate gave a flat line, indicating of a zero order dependence on [MPO]. Y = 0.00004 mM/min × X + 0.367.



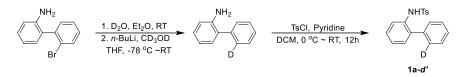

Figure S16. Dependence of the initial rate on oxidant

10.9 Intermolecular kinetic isotope effect

Under blue LEDs

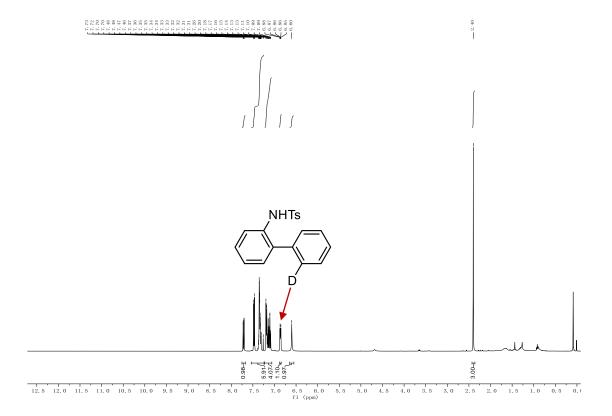

A dry round bottom flask flushed with argone and quipped with a magnetic stirrer bar and a septum was charged with arylboronic acid (1.5 equiv), K_2CO_3 (4.0 equiv), and $Pd(PPh_3)_4$ (10 mol%). A mixture of DME and H_2O (DME : $H_2O = 1:1, 0.25$ M), bromobenzene- d_5 (1.0 equiv) were added, and the resulting mixture was heated to 80 °C for 12 hours. The reaction mixture was poured into water and extracted with CH₂Cl₂ (3-5 times), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the corresponding 2-aminobiphenyl product.

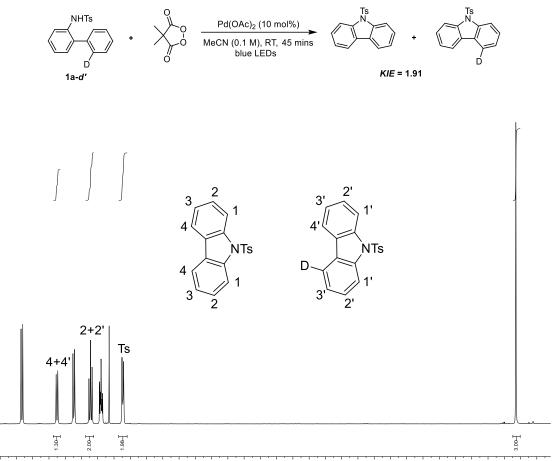
A round bottom flask equipped with a magnetic stirrer bar was charged with the corresponding 2aminobiphenyl (1.0 equiv) and pyridine (0.2 M) in CH₂Cl₂ (0.2 M). 4-toluenesulfonyl chloride (1.1 equiv) was added at 0 °C. After being stirred at 25 °C for 12 h, the reaction mixture was poured into water and extracted with CH₂Cl₂ (3 times), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the product **1a-d**₅. A dry Schlenk tube equipped with a magnetic stirrer bar was charged with **1a** (0.05 mmol), **1a**- d_5 (0.05 mmol) and Pd(OAc)₂ (0.01 mmol) in MeCN (1 mL). **O1** (0.10 mmol) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W) for 6 h. The reaction mixture was then purified by flash chromatography on silica gel (PE/EA). The *KIE* was calculated as 1.33 ±0.02 based on the average of three kinetics experiments.



In the dark

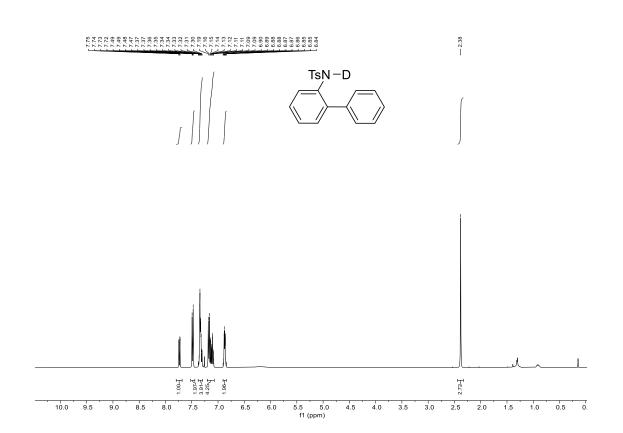
A dry Schlenk tube equipped with a magnetic stirrer bar was charged with **1a** (0.05 mmol), **1a**- d_5 (0.05 mmol) and Pd(OAc)₂ (0.01 mmol) in MeCN (1 mL) **O1** (0.10 mmol) was added, and the reaction mixture was stirred at room temperature in the dark for 6 h. The reaction mixture was then purified by flash chromatography on silica gel (PE/EA). The *KIE* was calculated as 1.39 ± 0.02 based on the average of three kinetics experiments.


10.10 Intramolecular kinetic isotope effect


2'-bromobiphenyl-2-amine was dissolved in diethyl ether (25 mL) and washed with D₂O (3 × 15 mL) to replace most of the amine protons by deuterium. The ethereal solution was dried (anhydrous Na₂SO₄) and concentrated. A dry round bottom flask flushed with argon and equipped with a magnetic stirrer bar and a septum was charged with above yellowish liquid (2.5 mmol, 1 equiv.) in dry THF (25 mL). The mixture was cooled to -78 °C and a solution of *n*-BuLi (1.65 M solution in hexane, 6.05 mL, 10 mmol) was added dropwise under vigorous stirring (the color was immediately changed to red). After 1 h at -78 °C, CD₃OD (3.0 mL) was added, and then quenched with H₂O (10 mL). The aqueous layer was extracted three times with Et₂O (10 mL), and the combined organic layers were dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and 2'-*d*-biphenyl-2-amine was obtained as light yellow oil.⁵ The product **1a-d'** was obtained from General procedure A.

N-([1,1'-biphenyl]-2-yl-2'-d)-4-methylbenzenesulfonamide(1a-*d'*): 90% D-incorporated; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 8.2, 1.2 Hz, 1H), 7.51 – 7.29 (m, 6H), 7.22 – 7.06 (m, 4H), 6.86 (m, 1.10H), 6.60 (s, 1H), 2.40 (s, 3H).

A dry Schlenk tube equipped with a magnetic stirrer bar was charged with **1a**-*d*' (0.10 mmol, 1.0 equiv) and Pd(OAc)₂ (0.01 mmol, 10 mol%) in MeCN (1 mL). **O1** (0.16 mmol, 1.6 equiv) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W) for 45 mins. The reaction mixture was then purified by flash chromatography on silica gel (PE/EA). The *KIE* was calculated as 1.92 \pm 0.02 based on the average of three kinetics experiments.


B.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 fl (ppm)

10.11 The parallel kinetic isotope effect

3H).

A dry round bottom flask flushed with argon and equipped with a magnetic stirrer bar and a septum was charged with **1a** (2.0 mmol, 1 equiv) in dry THF (10 mL). The mixture was cooled to -78 °C and *n*-butyl lithium (1.3 equiv) was added dropwise via syringe. The reaction mixture was stirred for 15 min and D₂O (6 mL) was added. The resulting mixture was allowed to warm to room temperature and was stirred for another 30 minutes. The mixture was extracted with dry EA (2×6 mL) and the combined organic layer was dried with anhydrous Na₂SO₄ and concentrated in vacuo to give **1a-d**.¹⁰

TsN -D N-([1,1'-biphenyl]-2-yl)-4-methylbenzenesulfonamide-d (1a-d): white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 8.3, 1.2 Hz, 1H), 7.52 - 7.45 (m, 2H), 7.37 - 7.28 (m, 4H), 7.21 - 7.06 (m, 4H), 6.91 - 6.84 (m, 2H), 2.38 (s,

The kinetic isotope effect was determined by studying the initial rate profiles of reactions between two substrates (Figure S17). A dry Schlenk tube equipped with a magnetic stirrer bar was charged with substrate (0.10 mmol, 1.0 equiv) and Pd(OAc)₂ (0.01 mmol, 10 mol%) in MeCN (1 mL). **O1** (0.16 mmol, 1.6 equiv) was added, and the reaction mixture was stirred at room temperature under irradiation with blue LEDs (20 W). Aiquots (50 μ L) were taken out by syringe at every 5 minutes and immediately quenched by Na₂S₂O₃, diluted with EA (1 mL). Product yield was tested by GC using naphthalene as an internal standard. The *KIE* was calculated as 0.64.

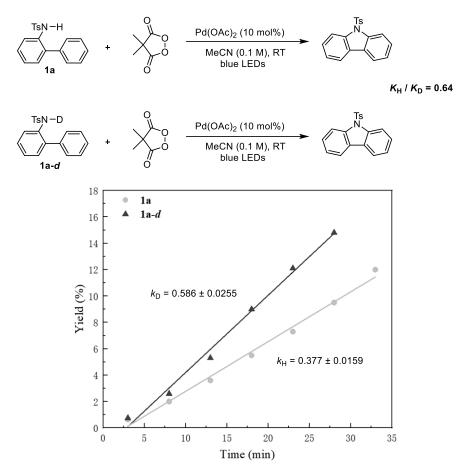


Figure S17. The initial rate profiles of reactions.

11. References

(1) J. A. Jordan-Hore, C. C. C. Johansson, M. Gulias, E. M. Beck, M. J. Gaunt, Oxidative Pd(II)-Catalyzed C–H Bond Amination to Carbazole at Ambient Temperature. *J. Am. Chem. Soc.* 2008, **130**, 16184–16186.

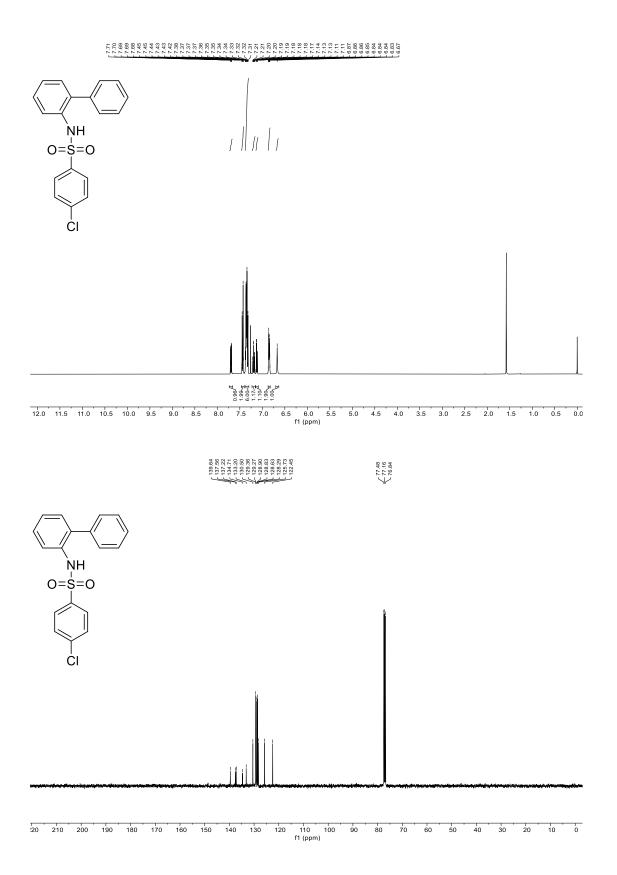
(2) S. W. Youn, J. H. Bihn, B. S. Kim, Pd-Catalyzed Intramolecular Oxidative C–H Amination: Synthesis of Carbazoles. *Org. Lett.* 2011, **13**, 3738–3741.

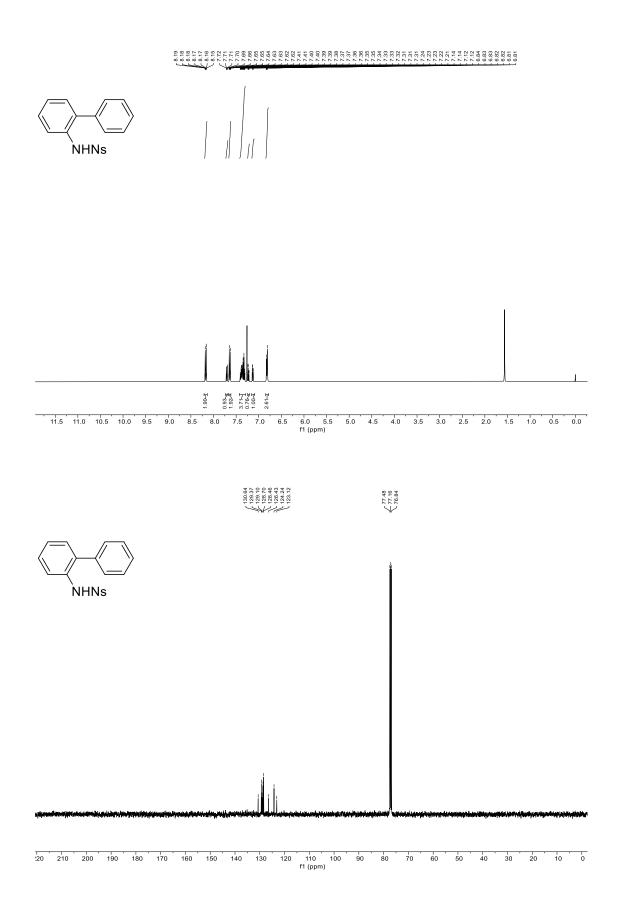
(3) S. Choi, T. Chatterjee, W. J. Choi, Y. You, E. J. Cho, Synthesis of Carbazoles by a Merged Visible Light Photoredox and Palladium-Catalyzed Process. *ACS Catal.* 2015, **5**, 4796–4802.

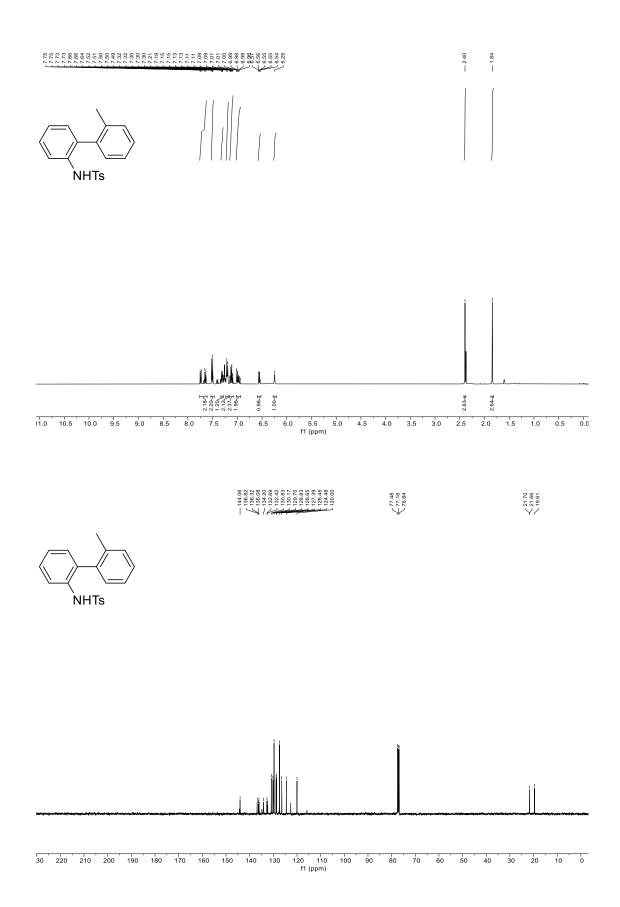
(4) W. C. P. Tsang, N. Zheng, S. L. Buchwald, Combined C–H Functionalization/C–N Bond Formation Route to Carbazoles. *J. Am. Chem. Soc.* 2005, **127**, 14560–14561.

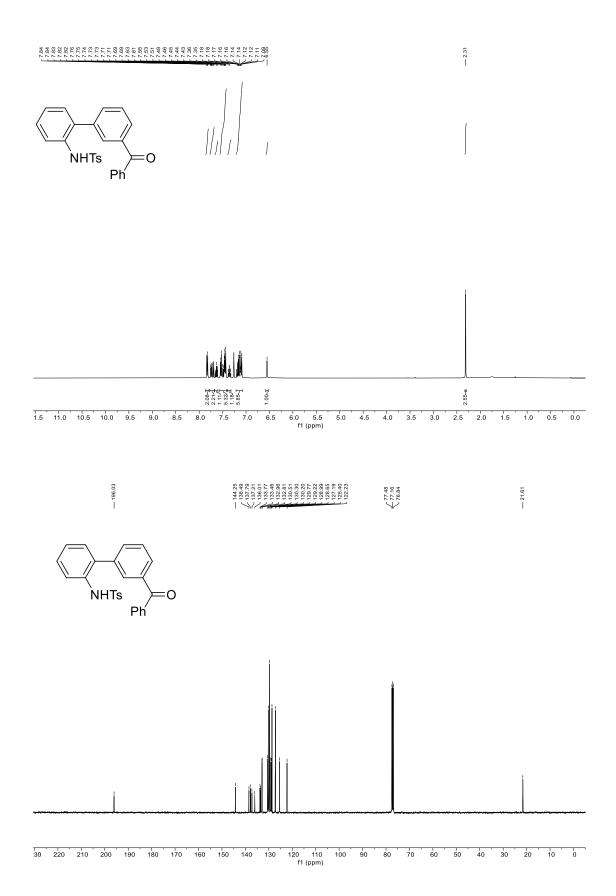
(5) S. H. Cho, J. Yoon, S. Chang, Intramolecular Oxidative C–N Bond Formation for the Synthesis of Carbazoles: Comparison of Reactivity between the Copper-Catalyzed and Metal-Free Conditions. *J. Am. Chem. Soc.* 2011, **133**, 5996–6005.

(6) A. P. Antonchick, R. Samanta, K. Kulikov, J. Lategahn, Organocatalytic, Oxidative, Intramolecular C–H Bond Amination and Metal-free Cross-Amination of Unactivated Arenes at Ambient Temperature. *Angew. Chem., Int. Ed.* 2011, **50**, 8605–8608.

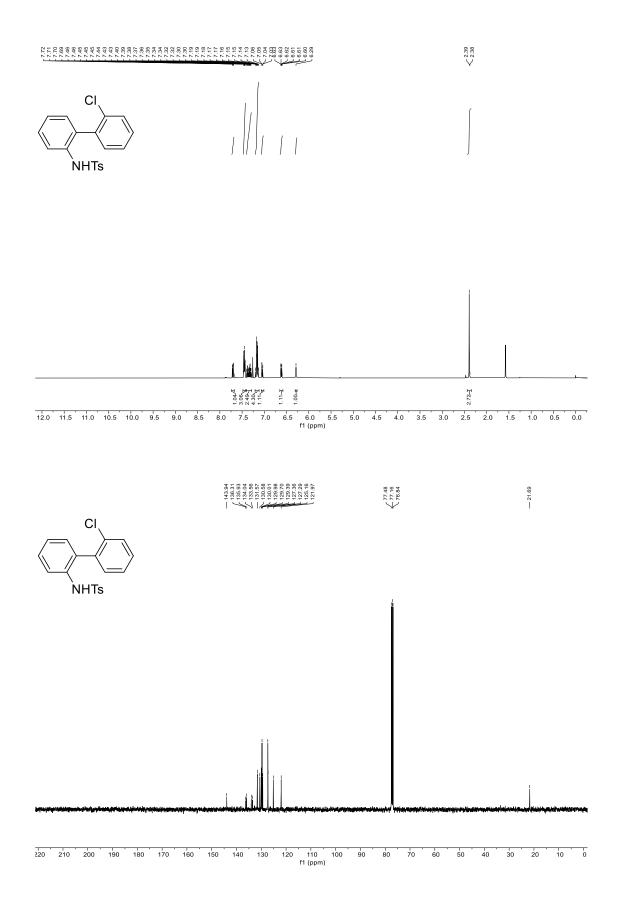

(7) (a) W. C. P. Tsang, R. H. Munday, G. Brasche, N. Zheng, S. L. Buchwald, Palladium-Catalyzed Method for the Synthesis of Carbazoles via Tandem C-H Functionalization and C-N Bond Formation. J. Org. Chem. 2008, 73, 7603–7610; (b) B. S. Kim, S. Y. Lee, S. W. Youn, Pd-Catalyzed Sequential C-C and C-N Bond Formations for the Synthesis of N-Heterocycles: Exploiting Protecting Group-Directed C-H Activation under Modified Reaction Conditions. Chem. Asian J. 2011, 6, 1952–1957; (c) D.-D. Li, T.-T. Yuan, G.-W. Wang, Palladium-Catalyzed Ortho-Arylation of Benzamides via Direct sp² C-H Bond Activation. J. Org. Chem. 2012, 77, 3341-3347; (d) V. Rajeshkumar, F.-W. Chan, S.-C. Chuang, Palladium-Catalyzed and Hybrid Acids-Assisted Synthesis of [60]Fulleroazepines in One Pot under Mild Conditions: Annulation of N-Sulfonyl-2aminobiaryls with [60]Fullerene through Sequential C-H Bond Activation, C-C and C-N Bond Formation. Adv. Synth. Catal. 2012, 354, 2473–2483; (e) J. Hubrich, T. Himmler, L. Rodefeld, L. Ackermann, Ruthenium(II)-Catalyzed C-H Arylation of Anilides with Boronic Acids, Borinic Acids and Potassium Trifluoroborates. Adv. Synth. Catal. 2015, 357, 474-480; (f) L. Bai, Y. Wang, Y. Ge, J. Liu, X. Luan, Diastereoselective Synthesis of Dibenzo[b,d] azepines by Pd(II)-Catalyzed [5+2] Annulation of o-Arylanilines with Dienes. Org. Lett. 2017, 19, 1734–1737; (g) P.-X. Ling, K. Chen, B.-F. Shi, Palladium-catalyzed interannular meta-C-H arylation. Chem. Commun. 2017, 53, 2166–2169; (h) P. Sharma, N. Jain, Chemoselective Synthesis of N-arylbenzamides and Benzoyloxyacetanilides from Aryl Isocyanides: Styrene as Aryl and Arylcarboxymethylene Source. Adv. Synth. Catal. 2018, 360, 1932–1937; (i) H. Jiang, K. Li, S. Dong, Z. Chen, G. Yin, Pd(II)/Lewis acid catalyzed oxidative C-H olefination/annulation with dioxygen to construct dihydrophenanthridines and its mechanistic studies. Tetrahedron 2023, 138, 133419.

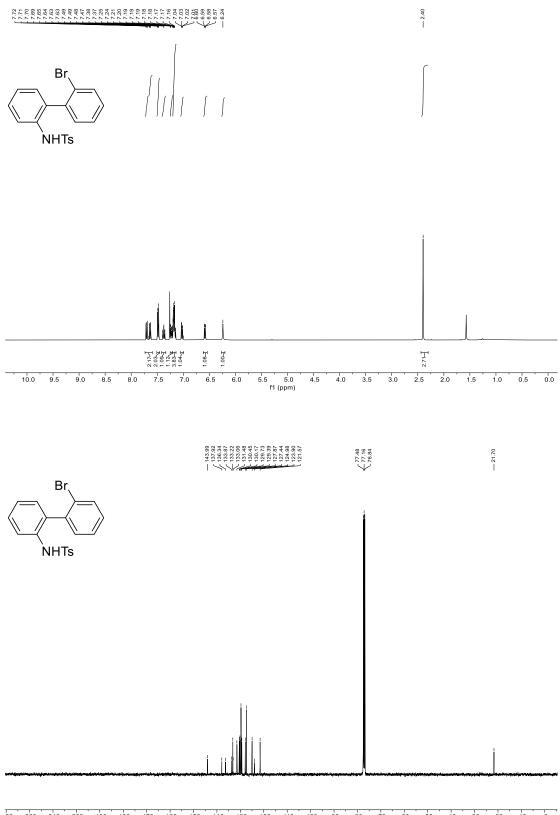

(8) Q. Yang, Y. Li, J.-D. Yang, Y. Liu, L. Zhang, S. Luo, J.-P. Cheng, Holistic Prediction of the pK_a in Diverse Solvents Based on a Machine-Learning Approach. *Angew. Chem., Int. Ed.* 2020, **59**, 19282–19291.

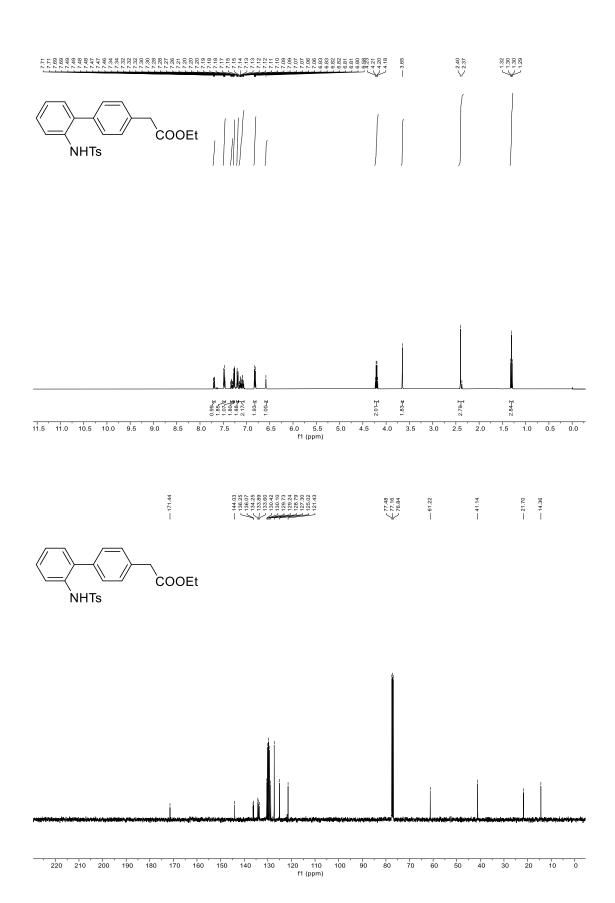

(9) D. Willcox, B. G. N. Chappell, K. F. Hogg, J. Calleja, A. P. Smalley, M. J. Gaunt, A general catalytic β -C–H carbonylation of aliphatic amines to β -lactams. *Science* 2016, **354**, 851–857.


(10) M. C. Paderes, L. Belding, T. Dudding, J. B. Keister, S. R. Chemler, Evidence for Alkene cis-Aminocupration, an Aminooxygenation Case Study: Kinetics, EPR Spectroscopy, and DFT Calculations. *Chem. Eur. J.* 2012, **18**, 1711–1726.

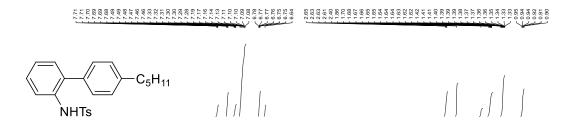
12. Copies of NMR spectra

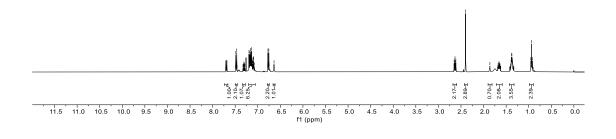




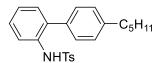


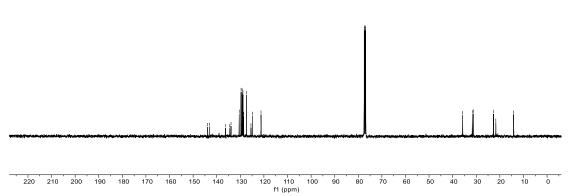
S62



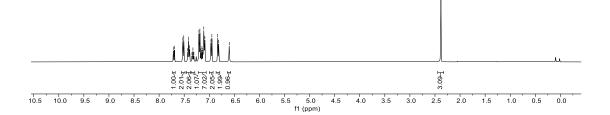


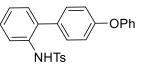
30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

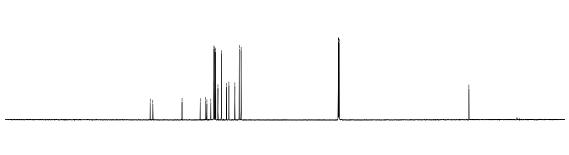


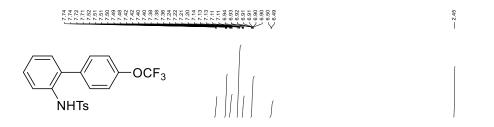

S65

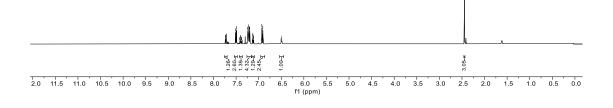


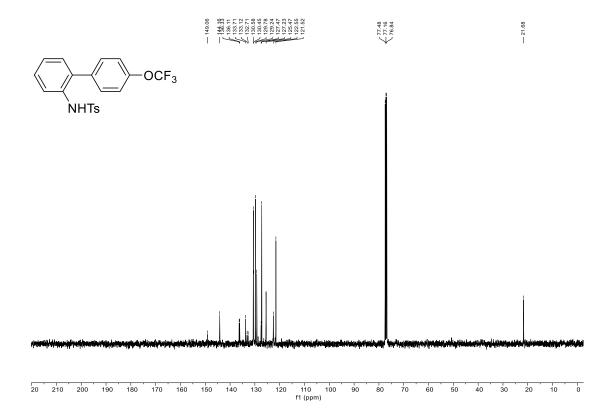


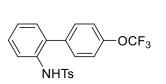


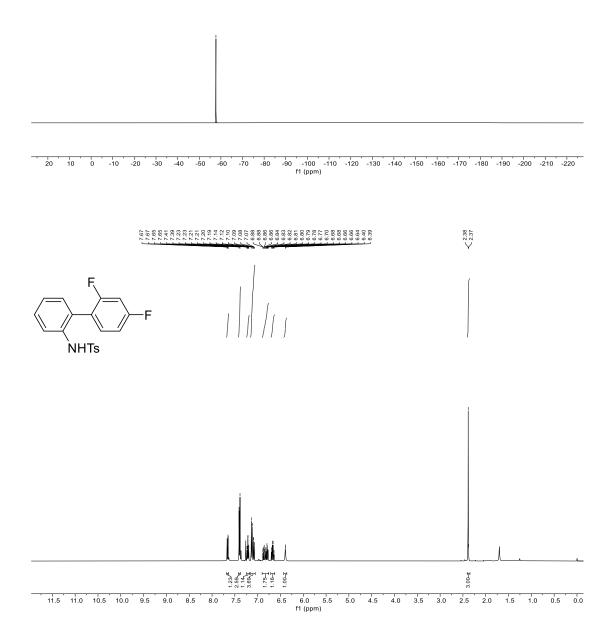


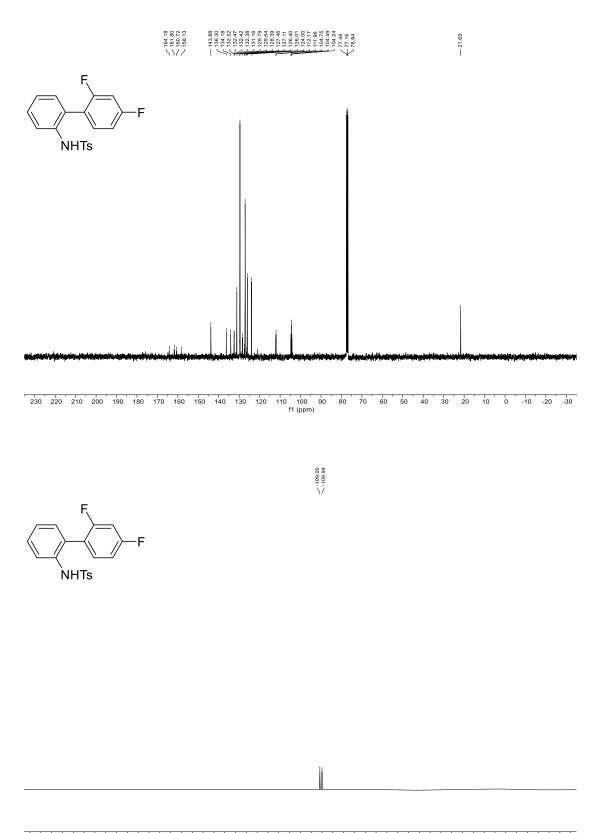


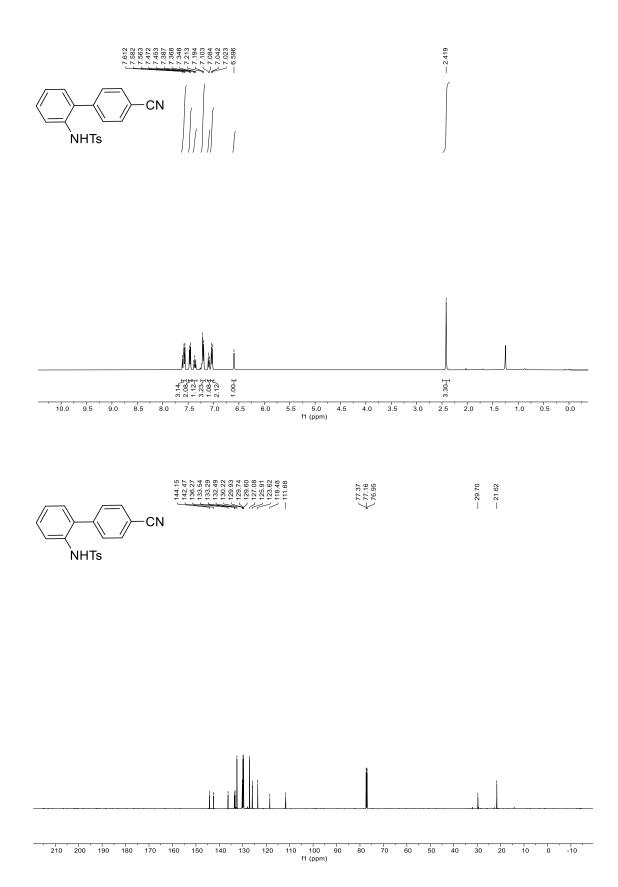


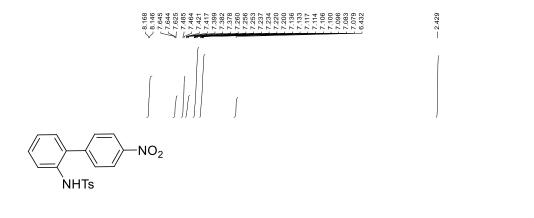


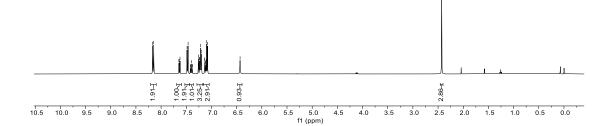


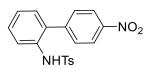

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

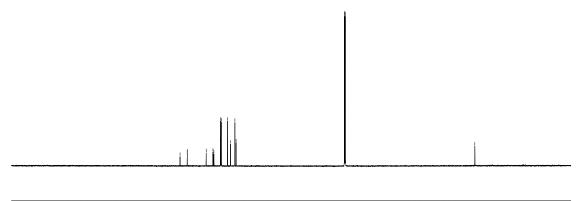


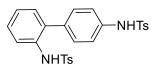


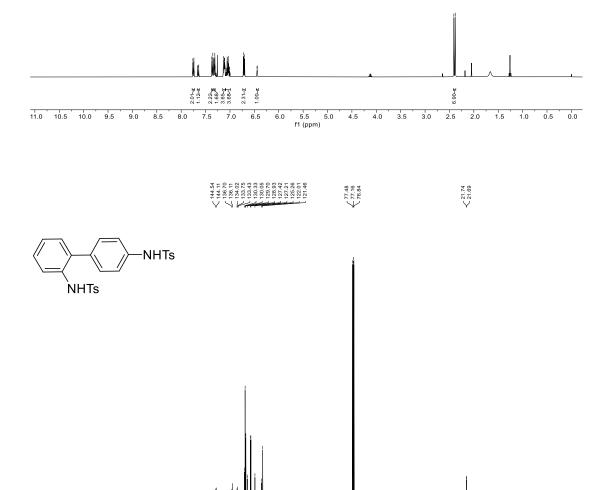


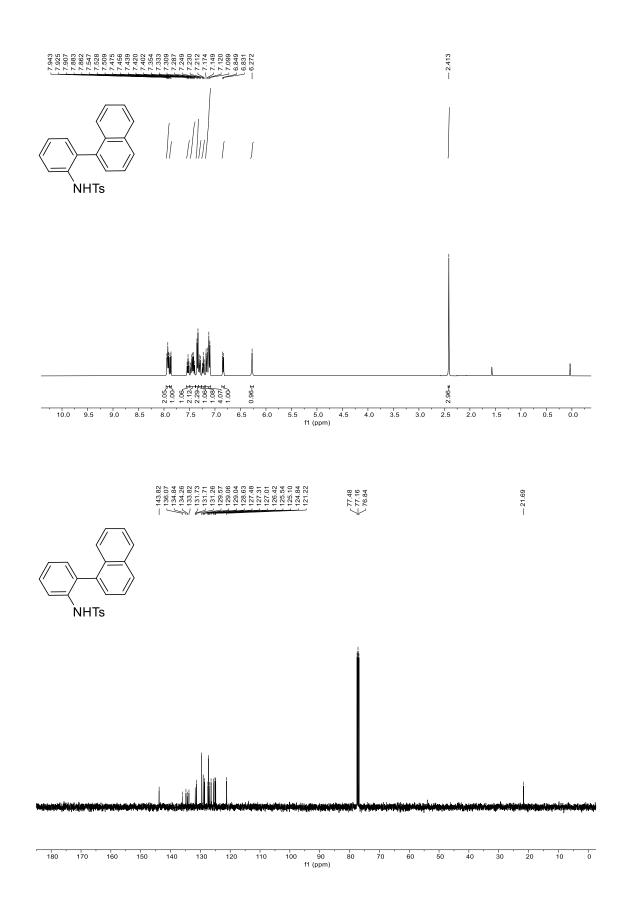

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

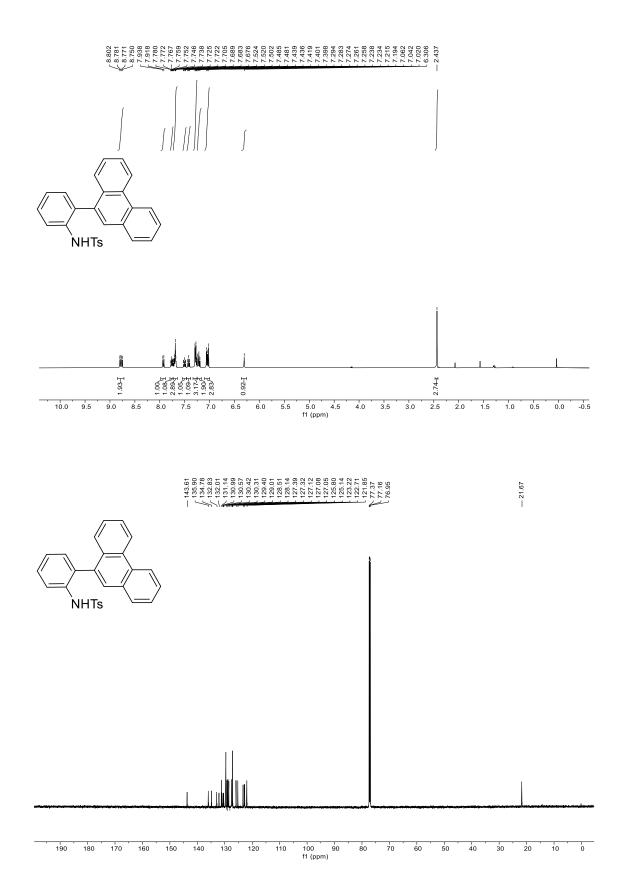

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

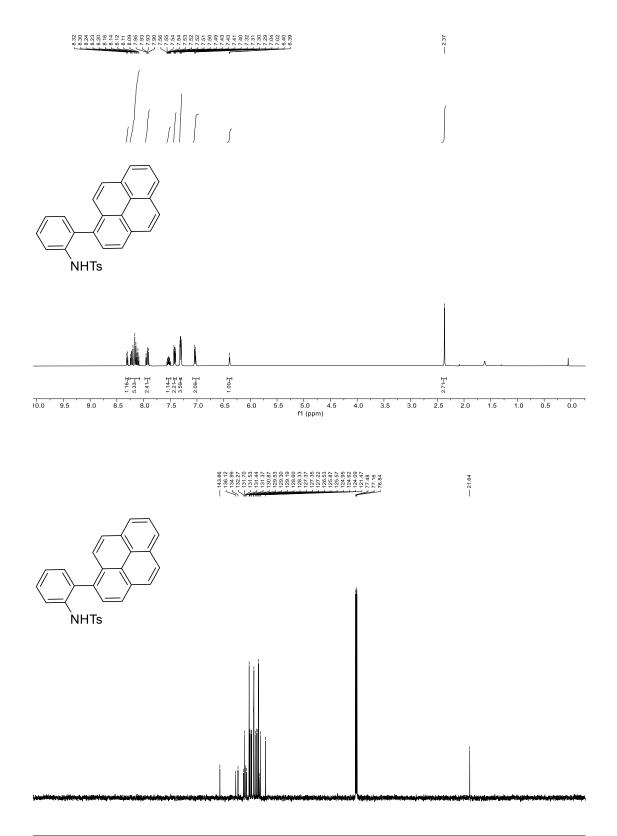


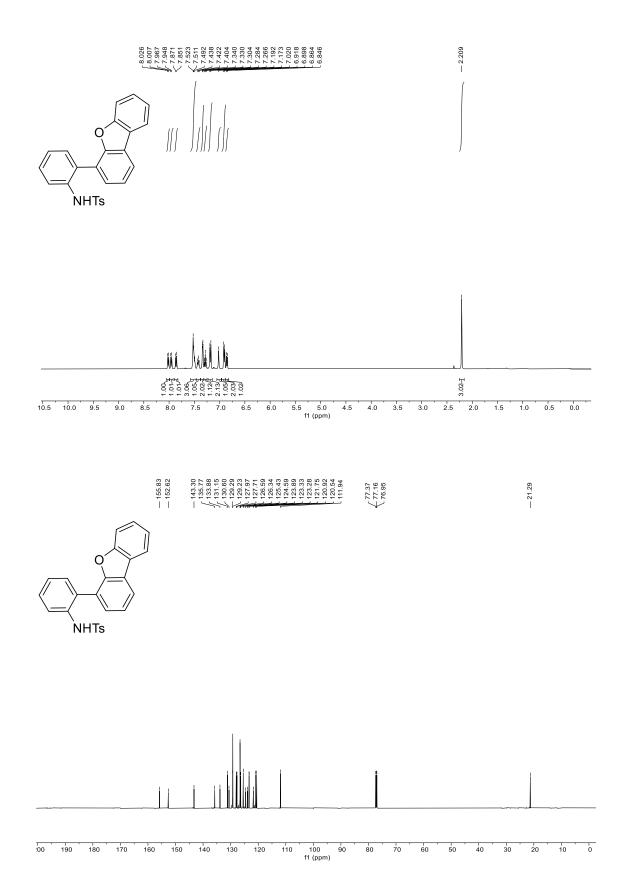


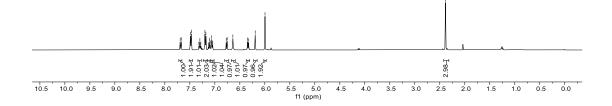


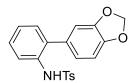

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

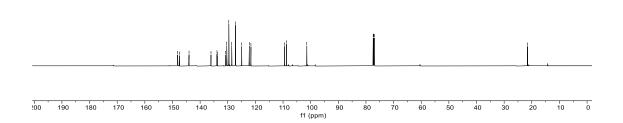

2.38 2.39

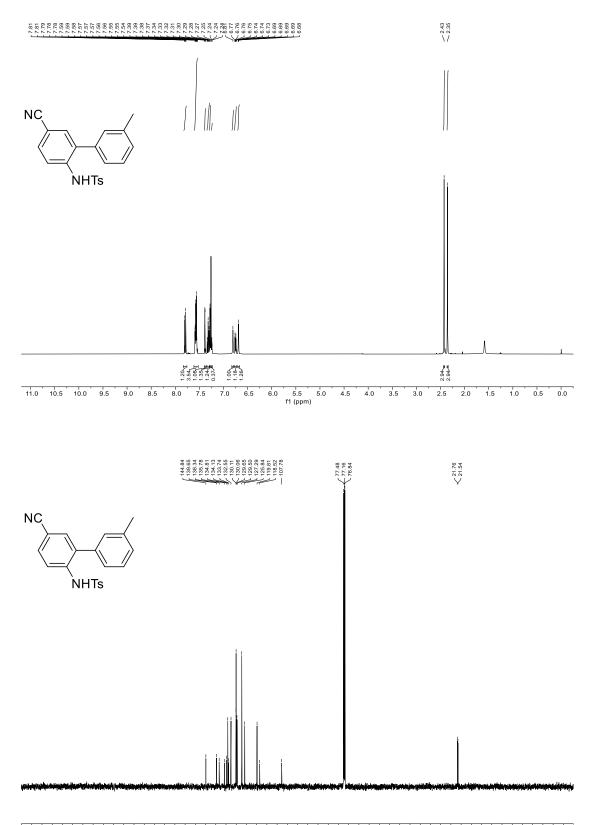


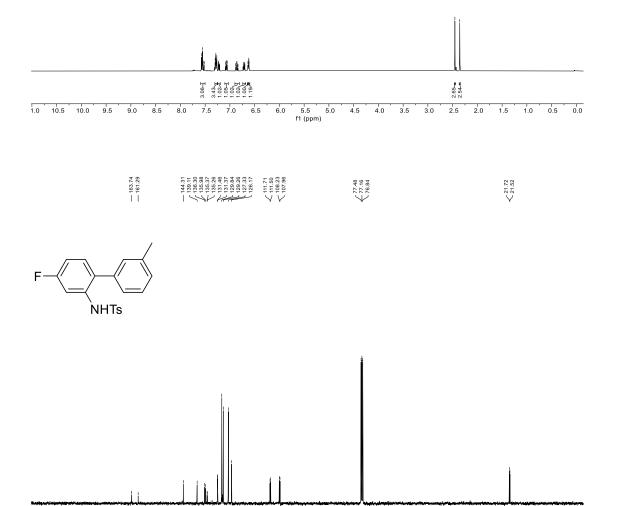

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

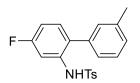


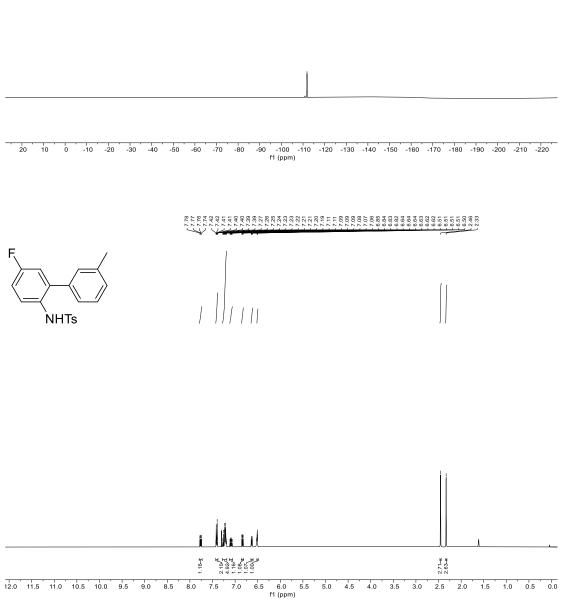

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

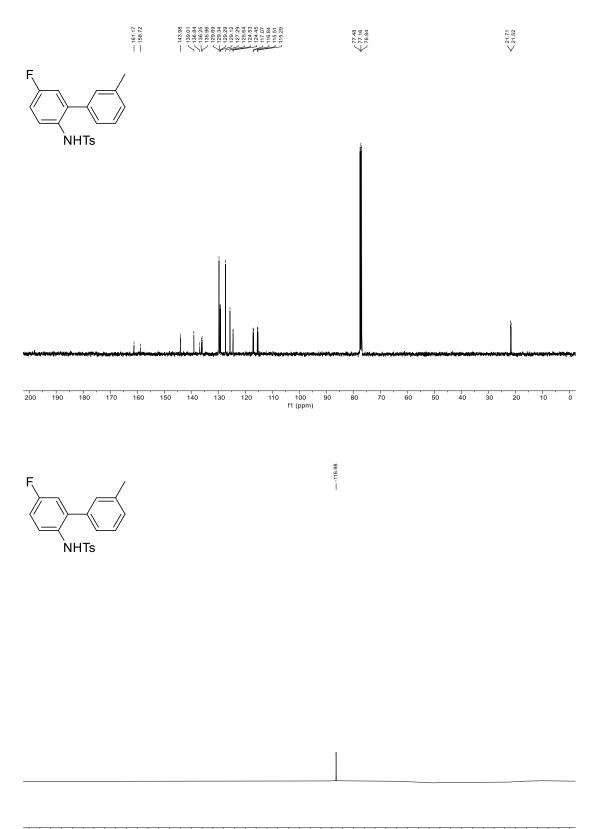




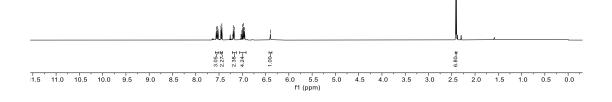


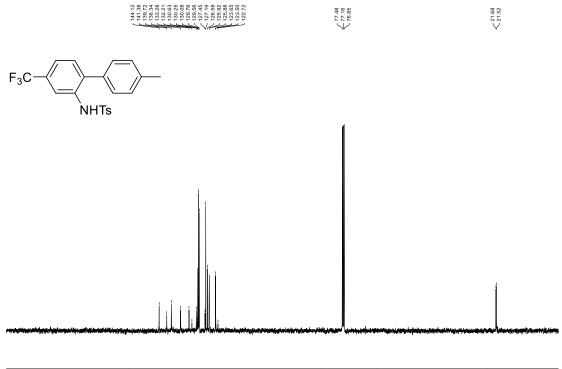


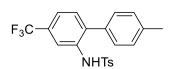

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 f1 (ppm)

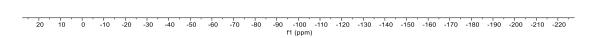


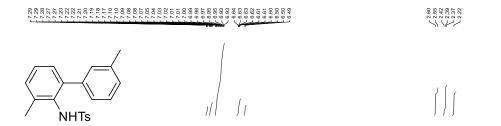
200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

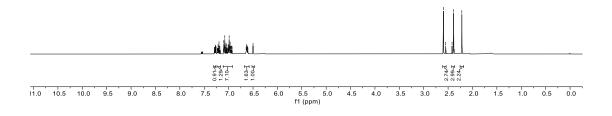


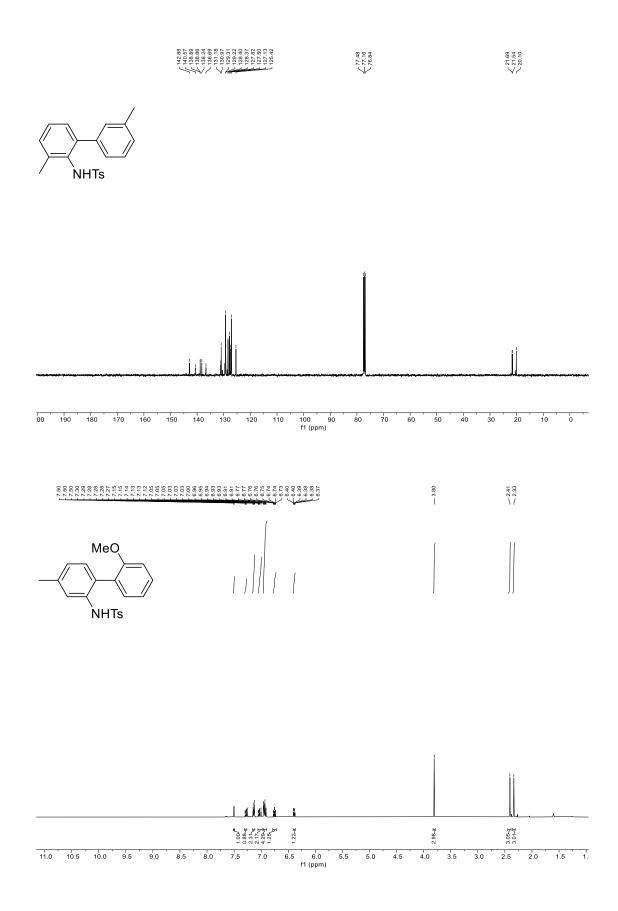


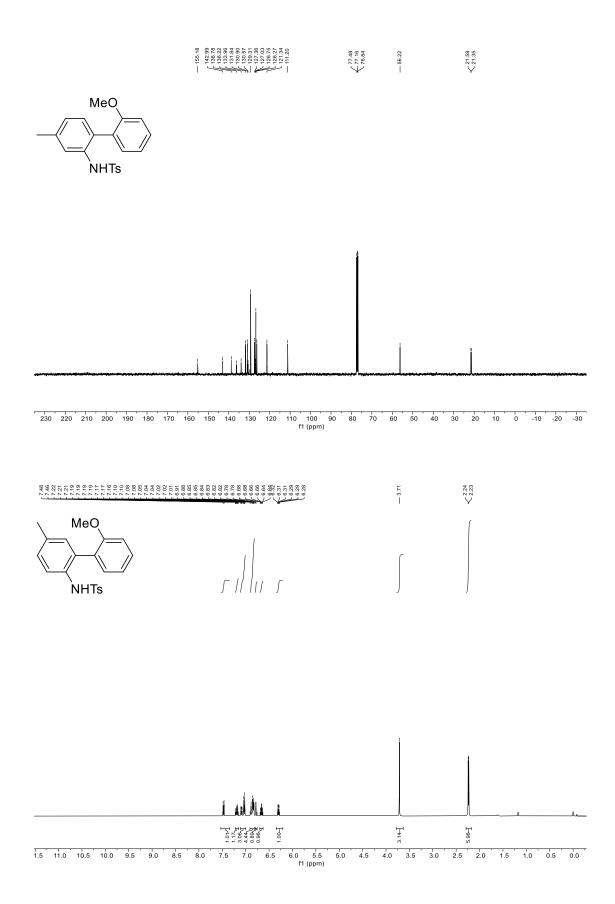

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

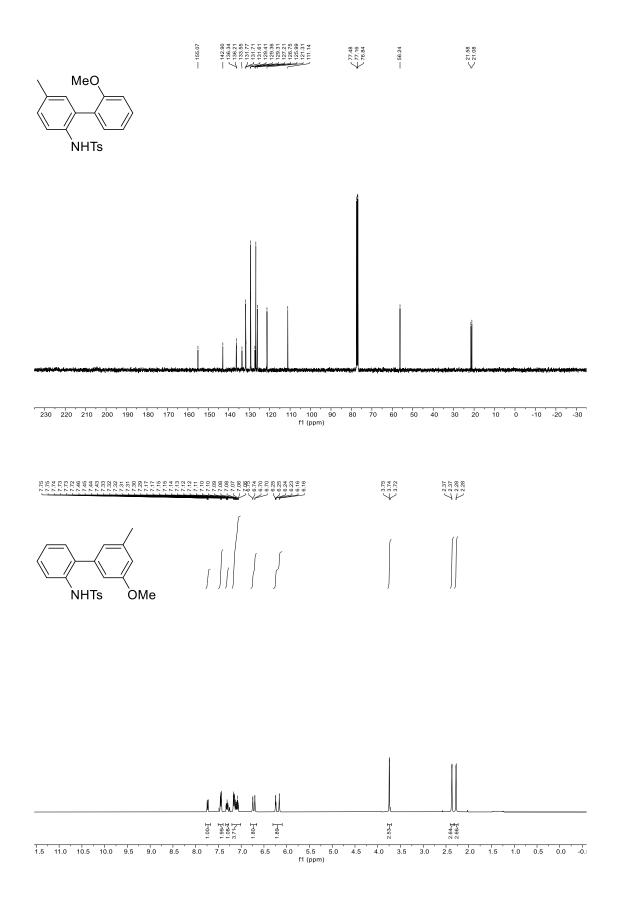


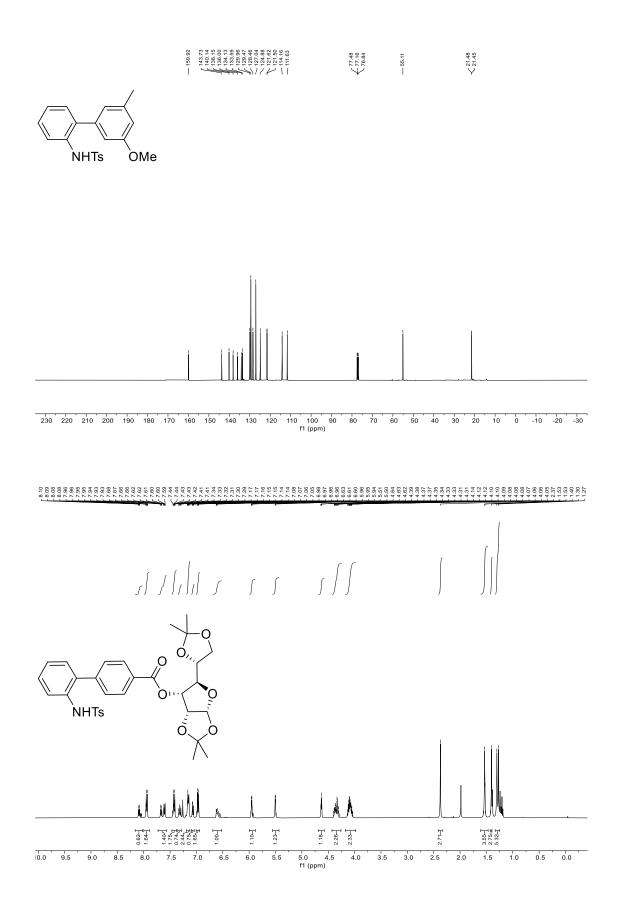


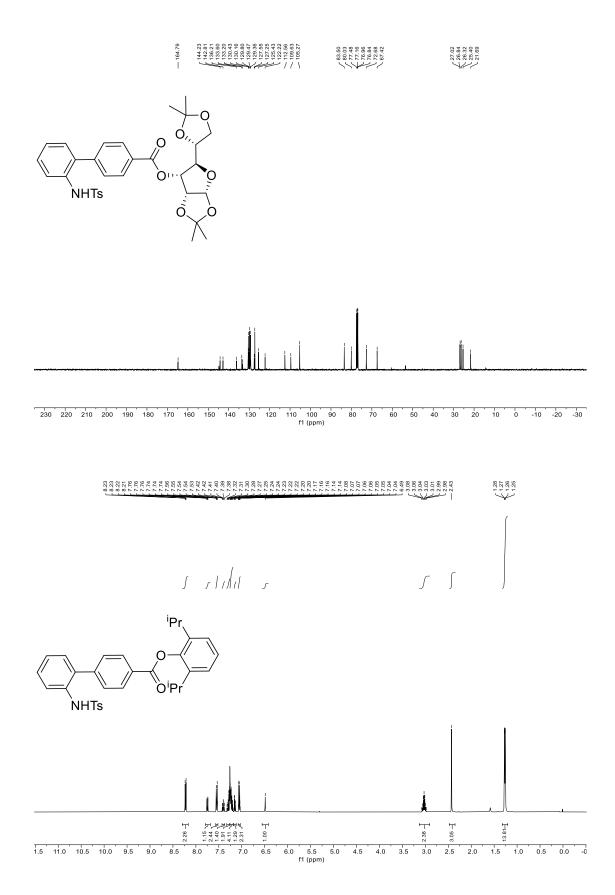


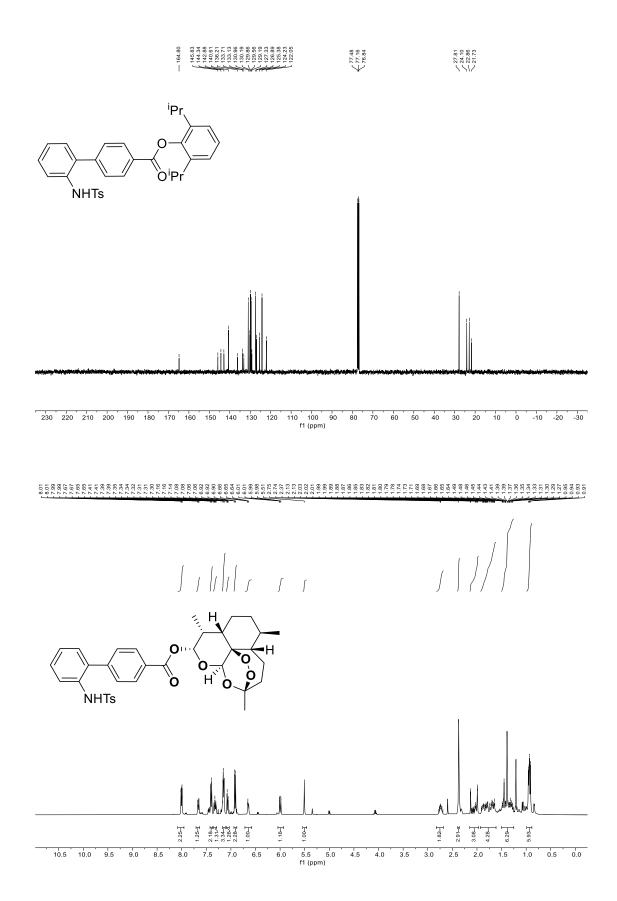

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

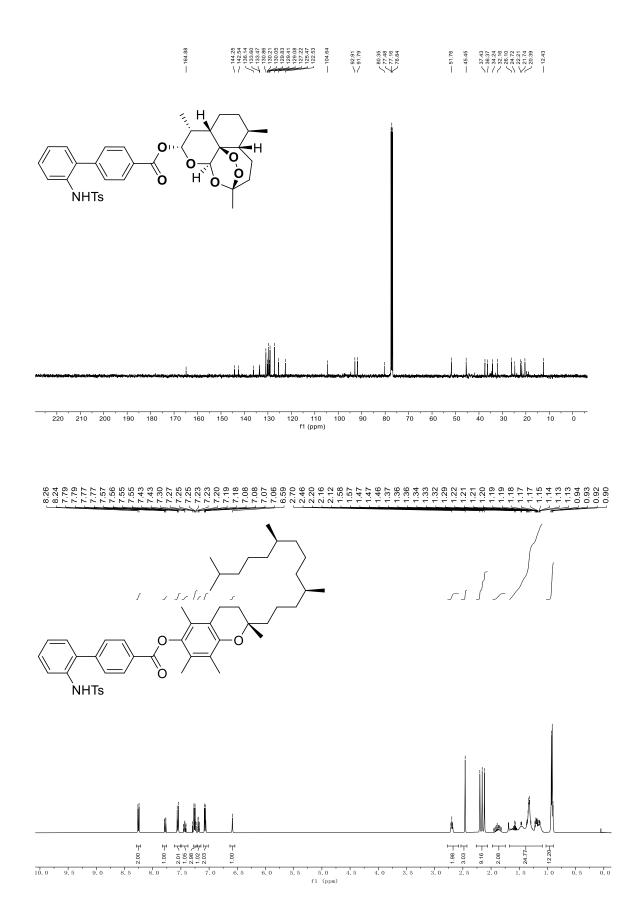


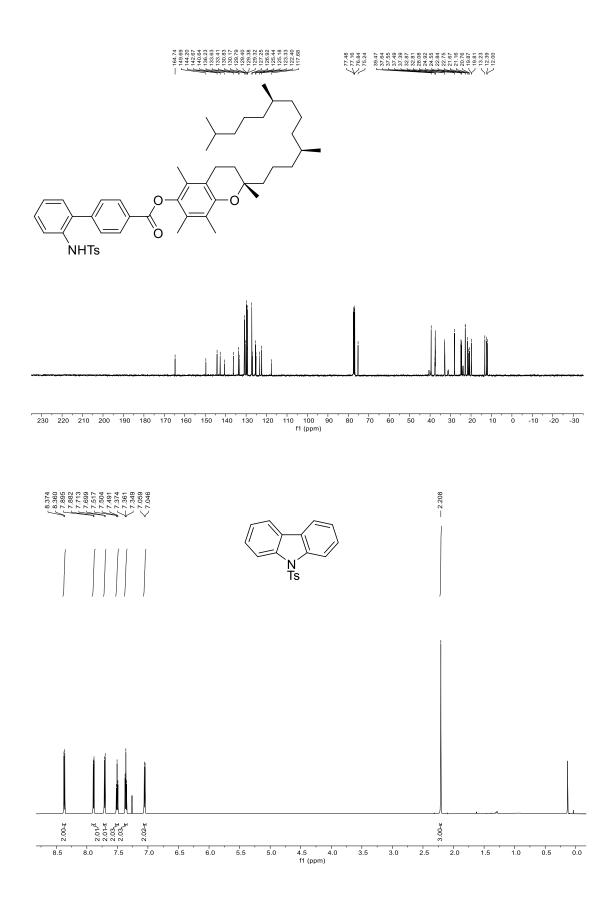


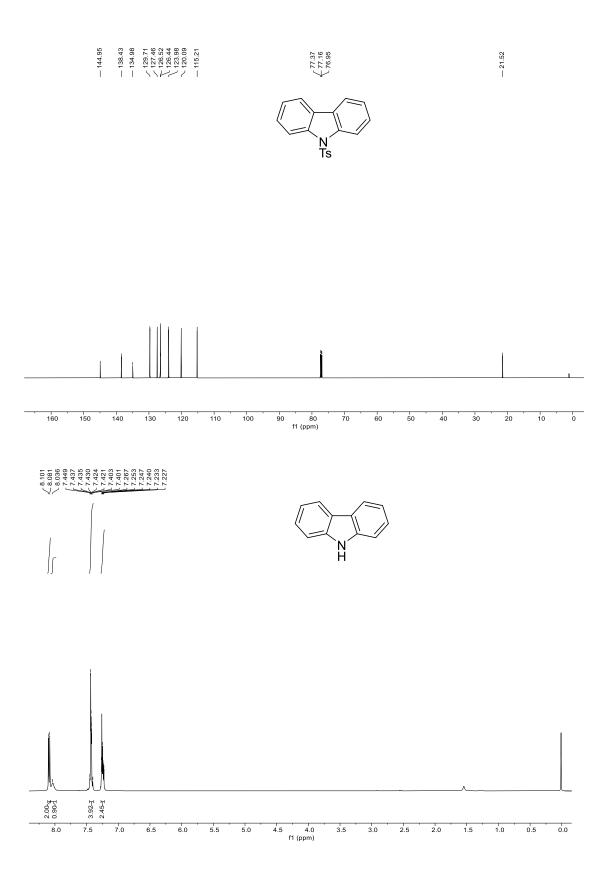


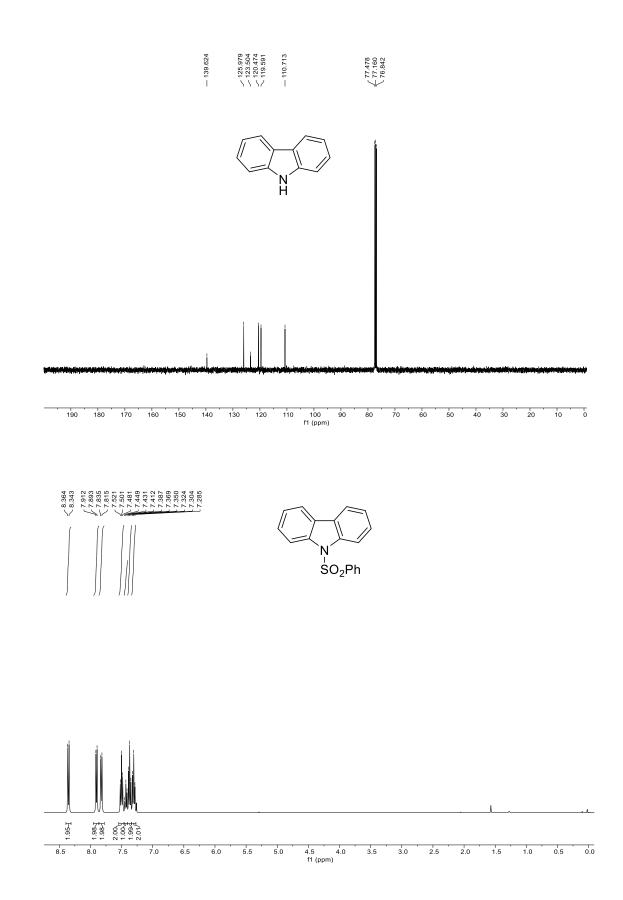


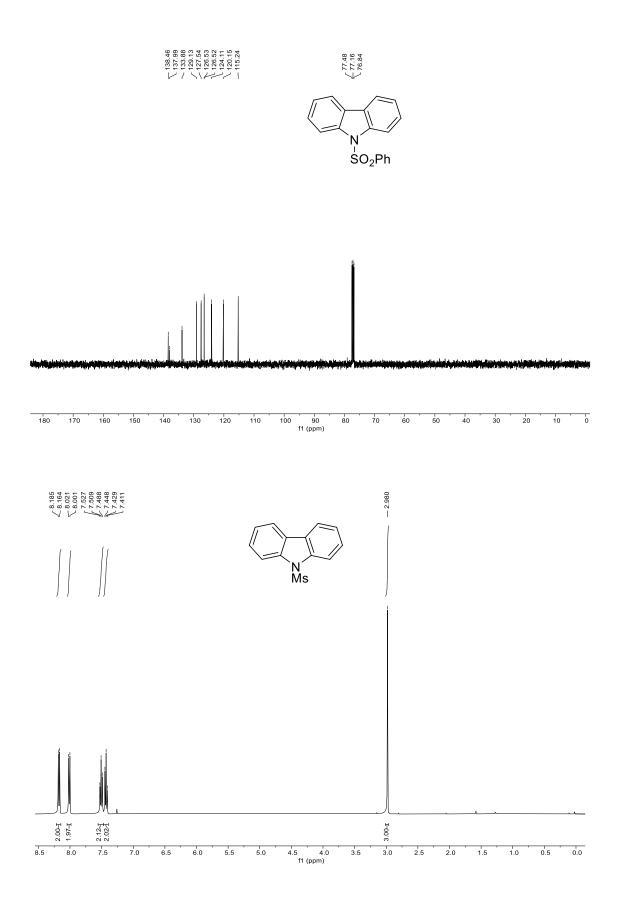


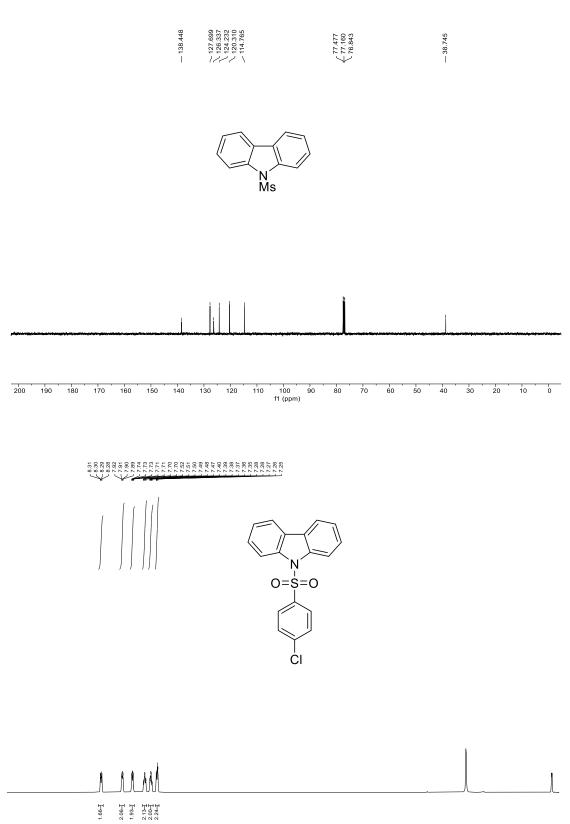


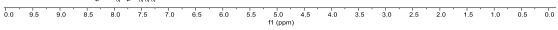


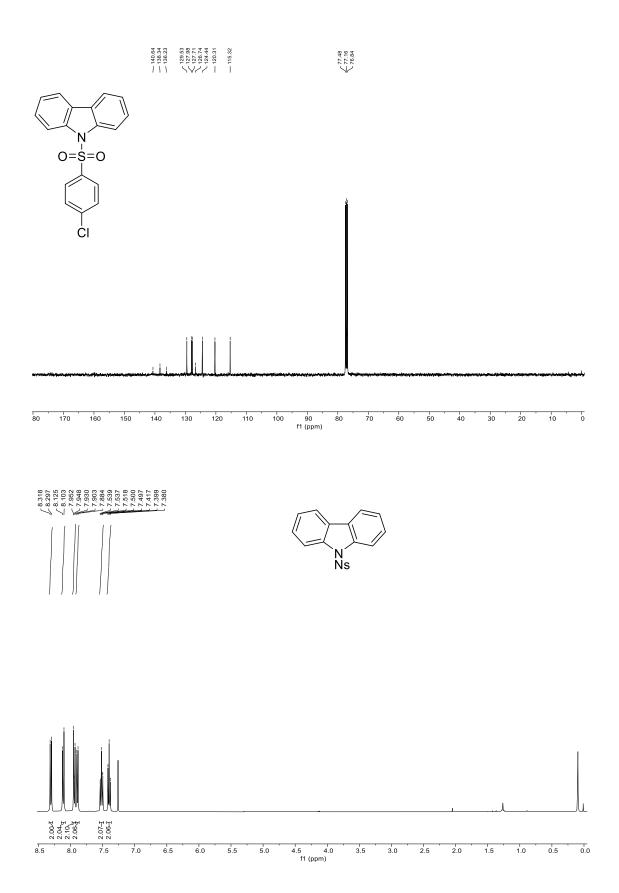


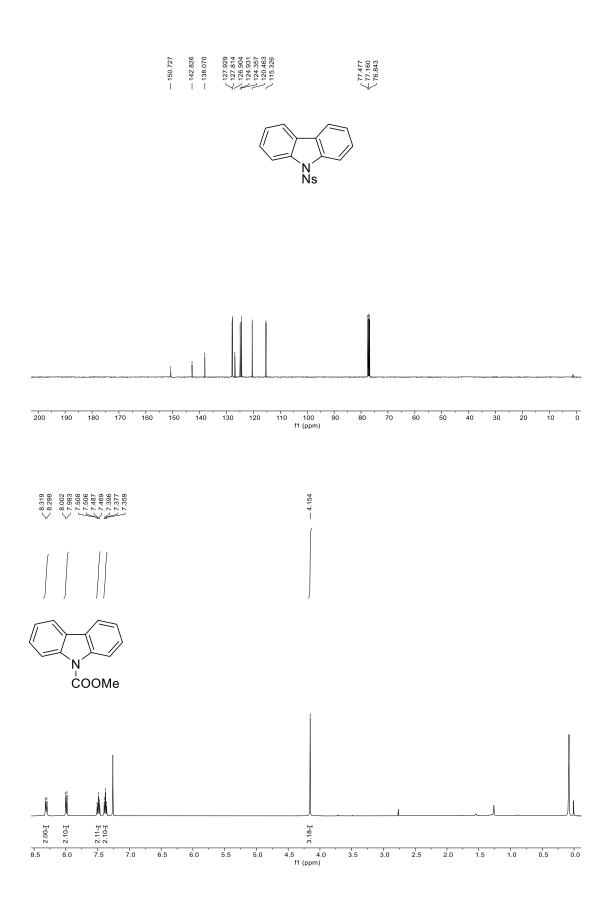


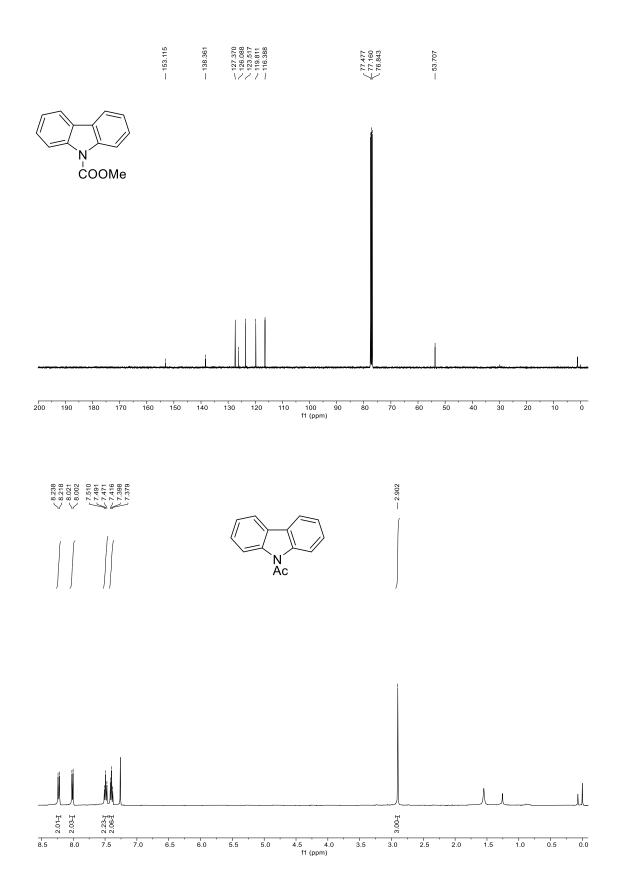


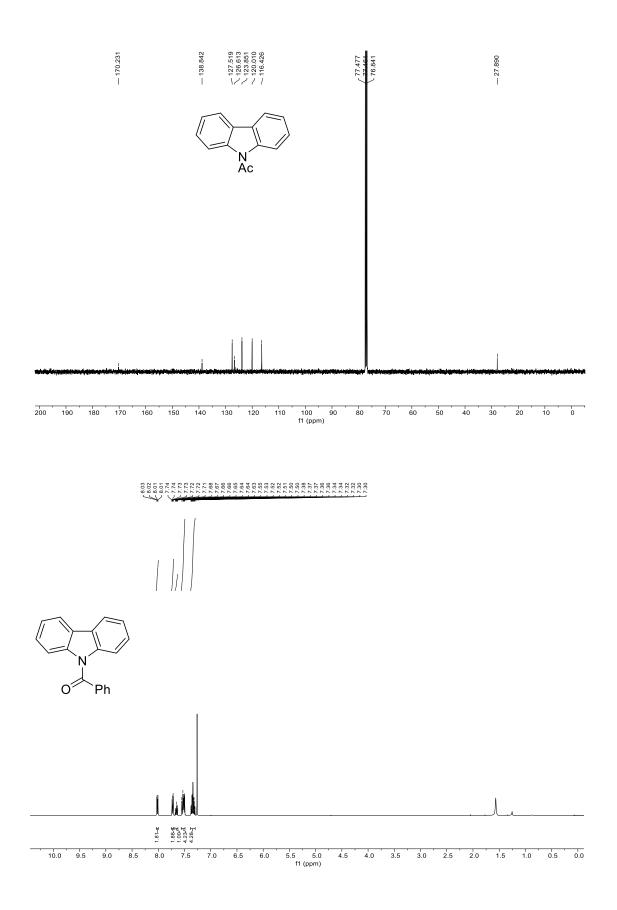


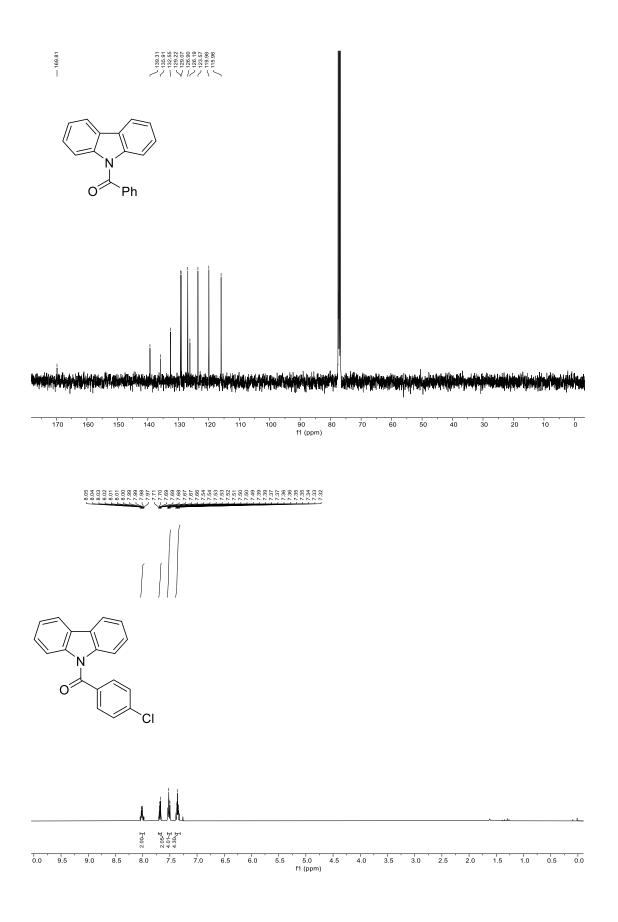


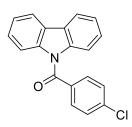


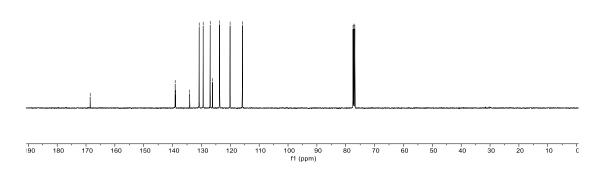


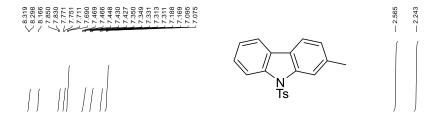


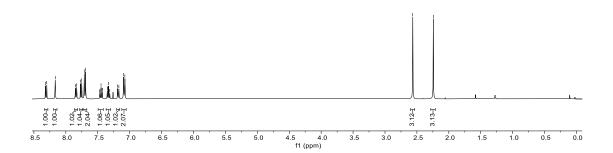


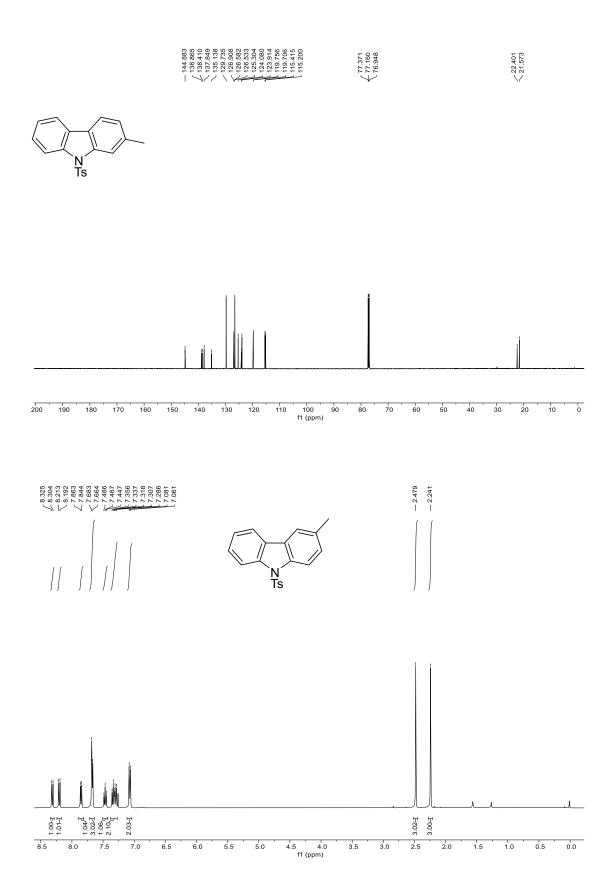


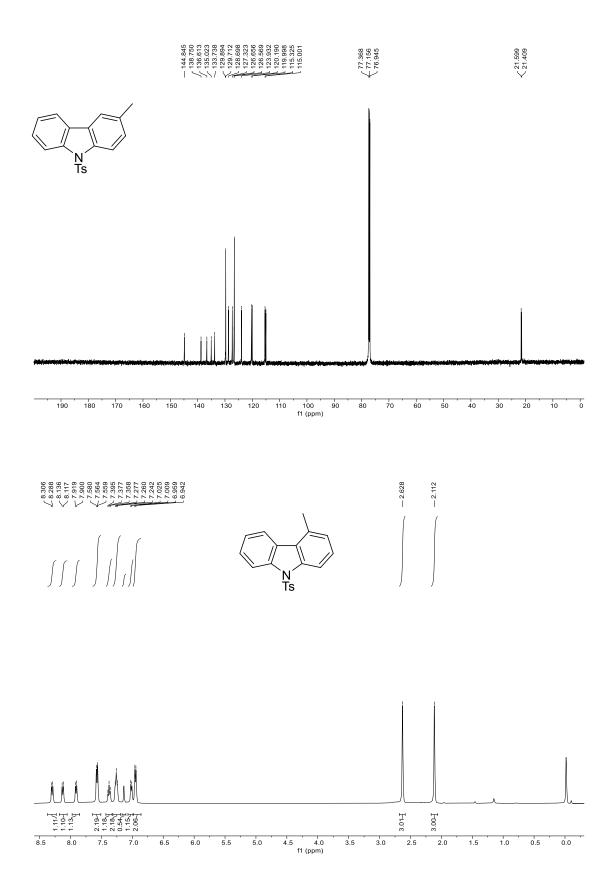


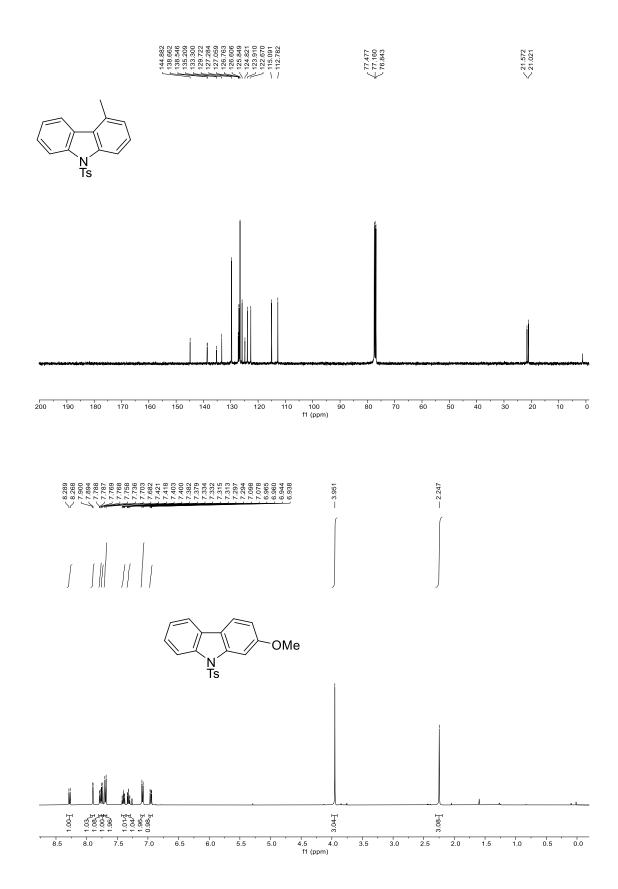


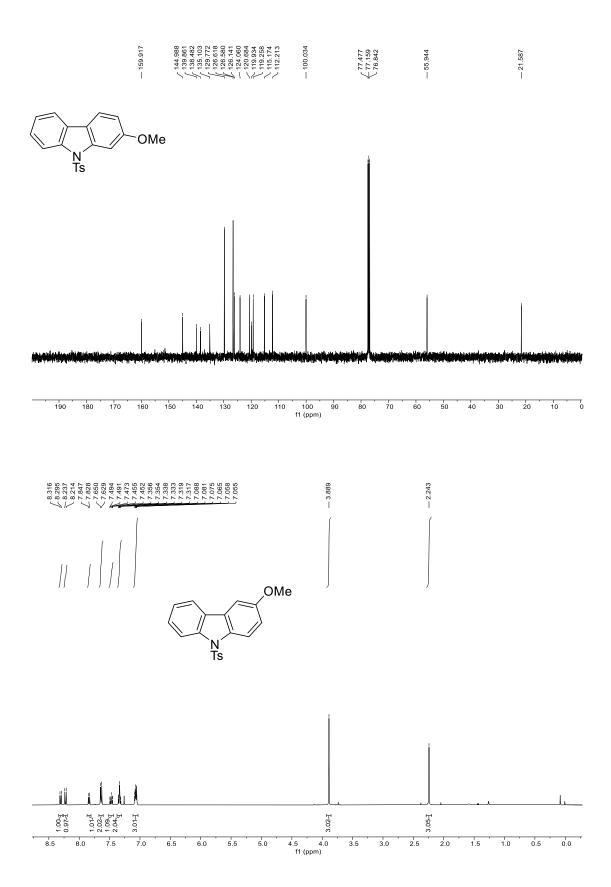


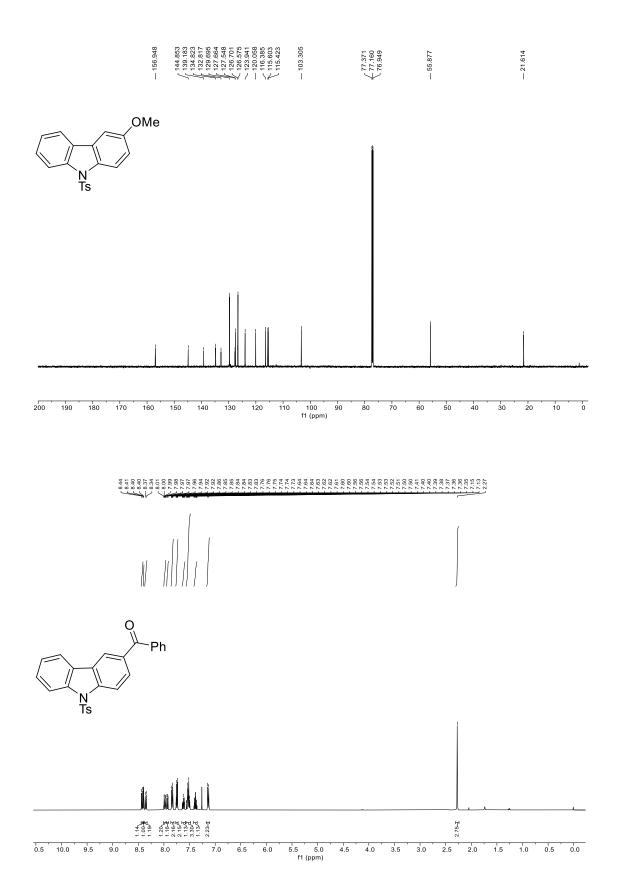


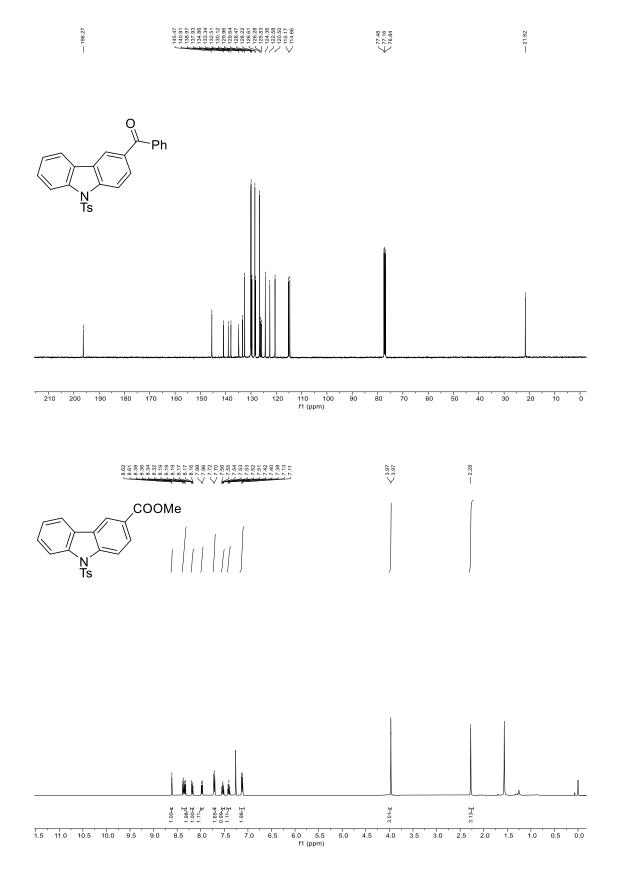


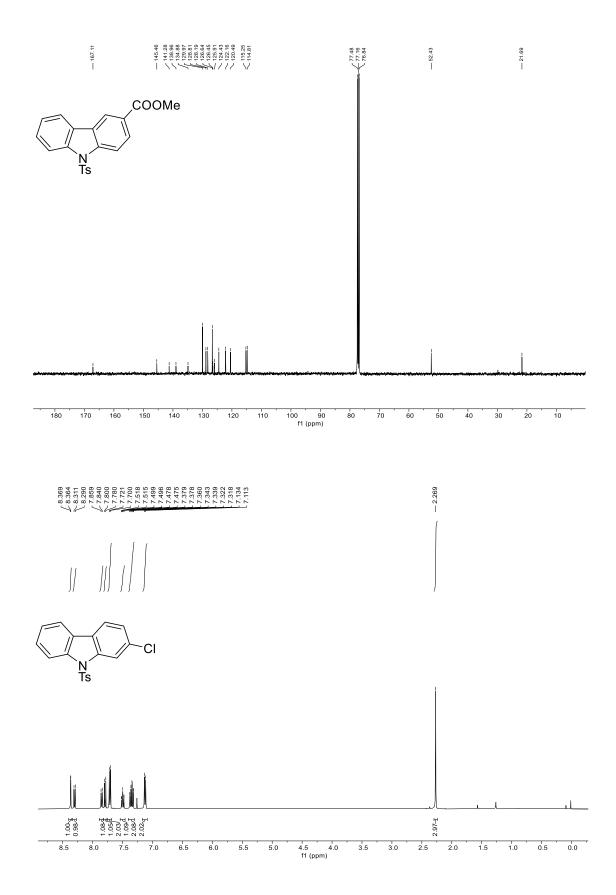


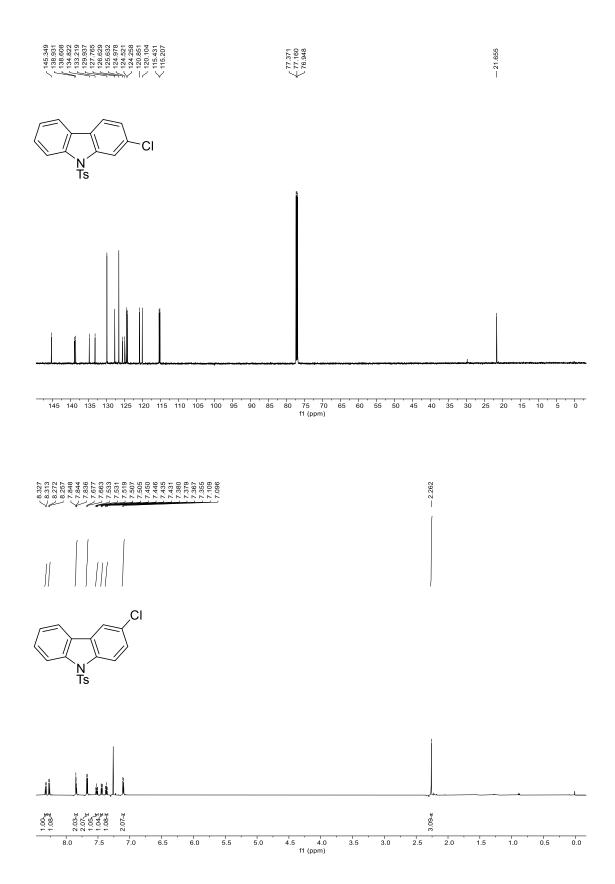


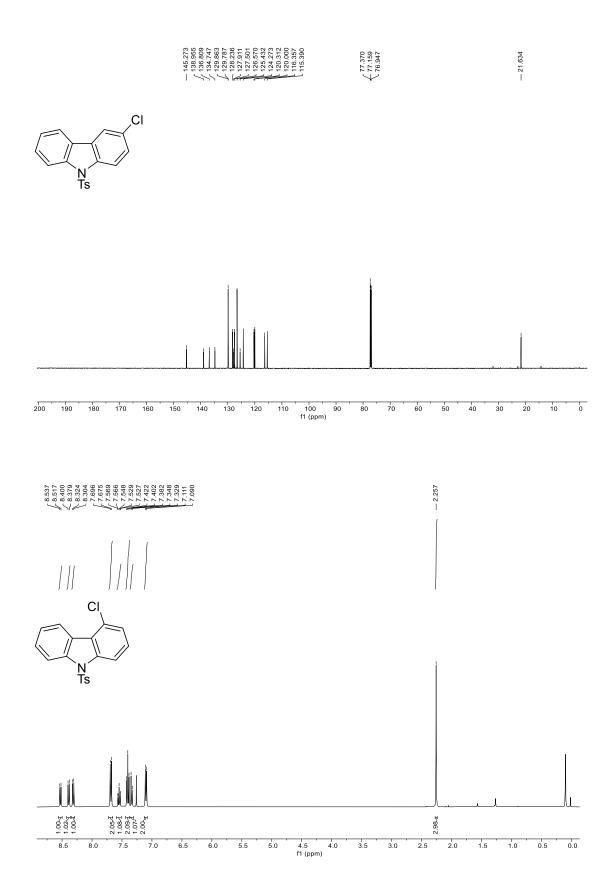


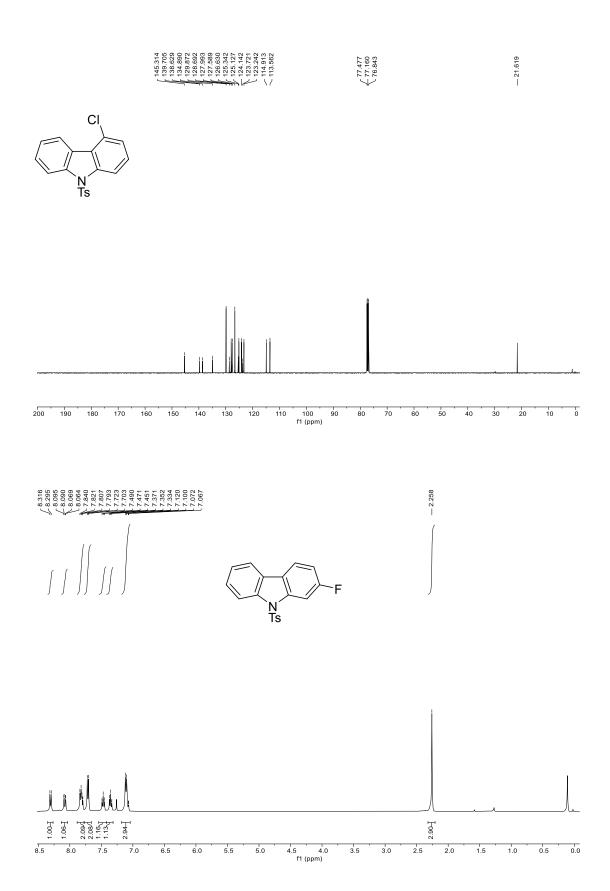


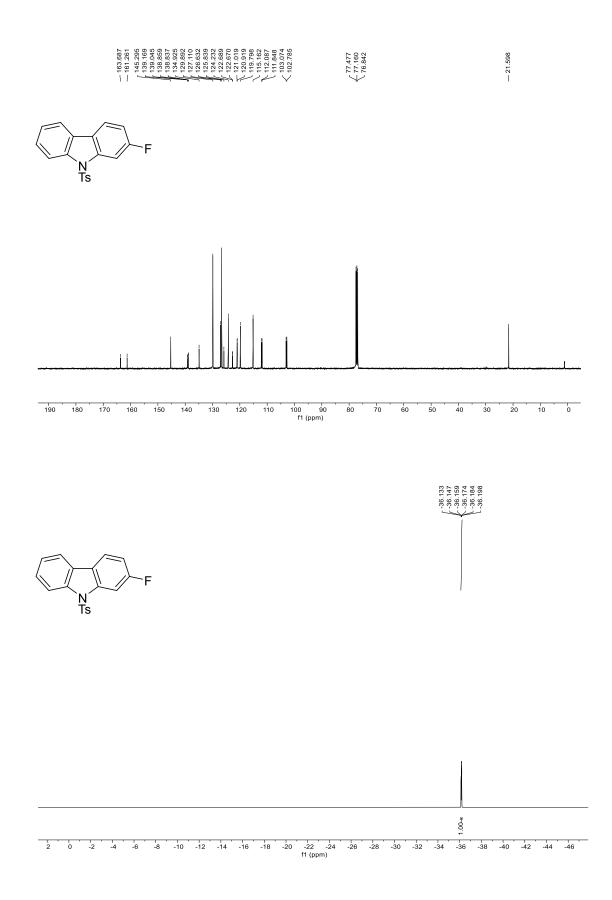


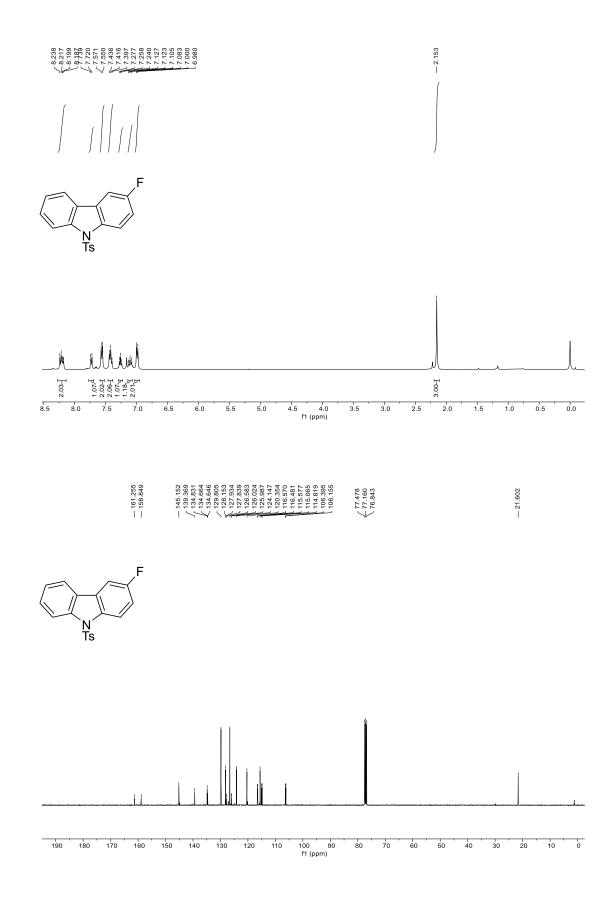


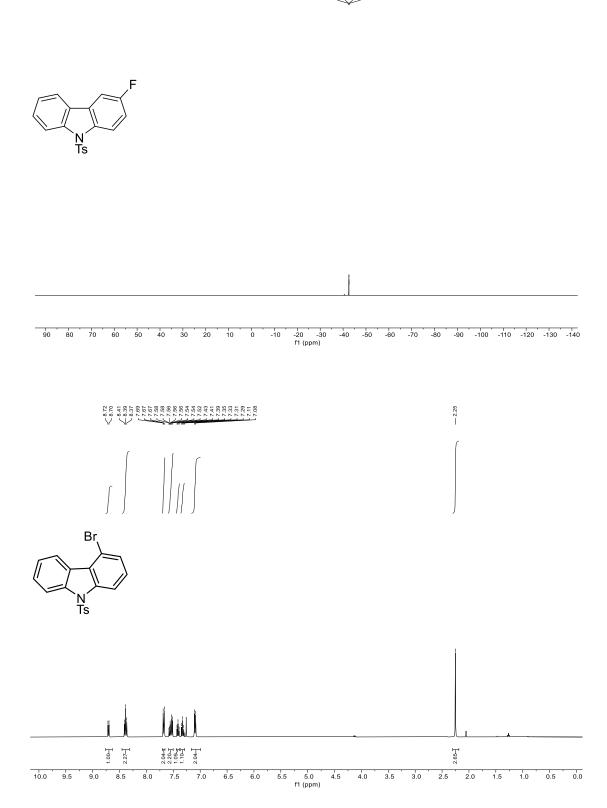


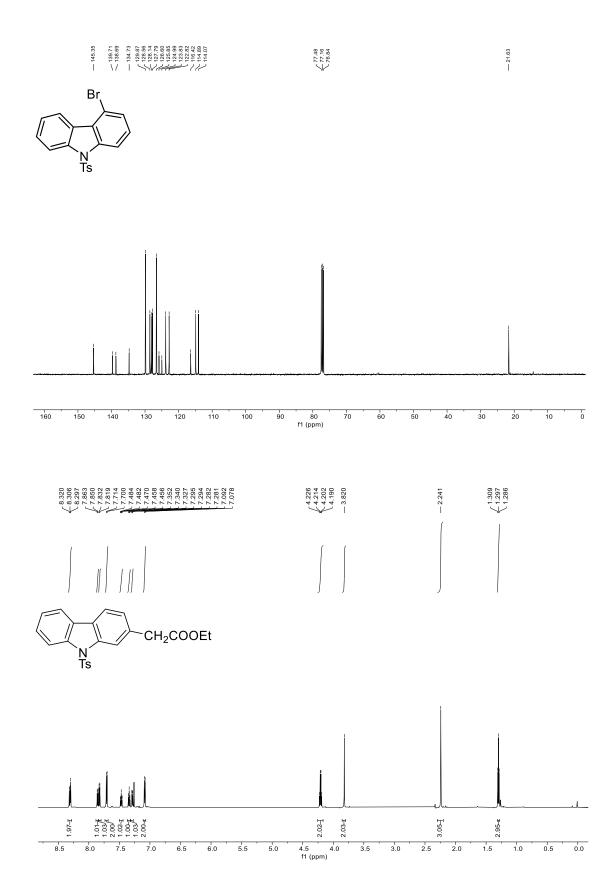


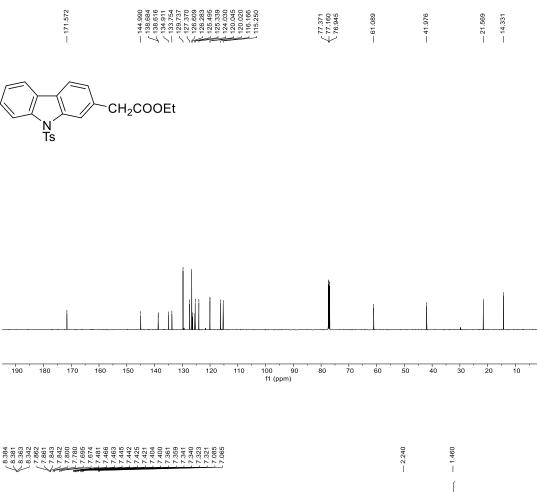


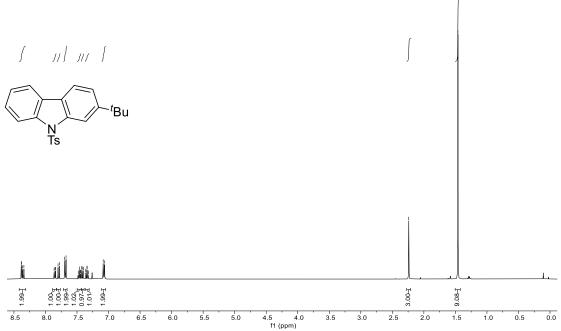


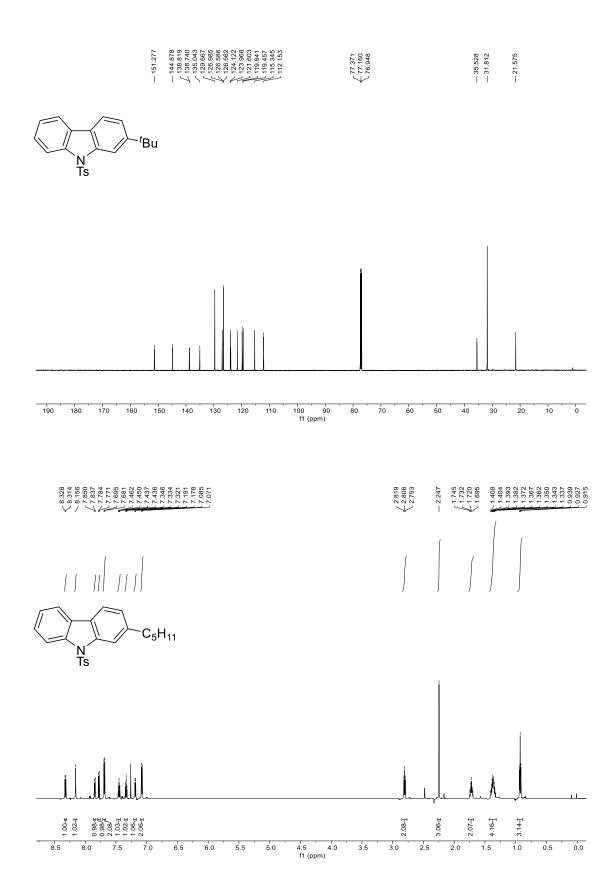


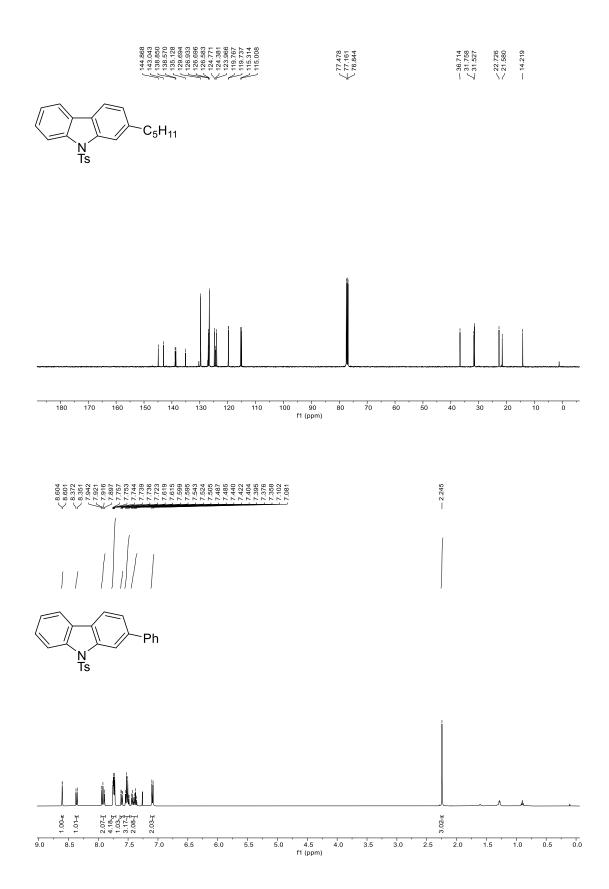


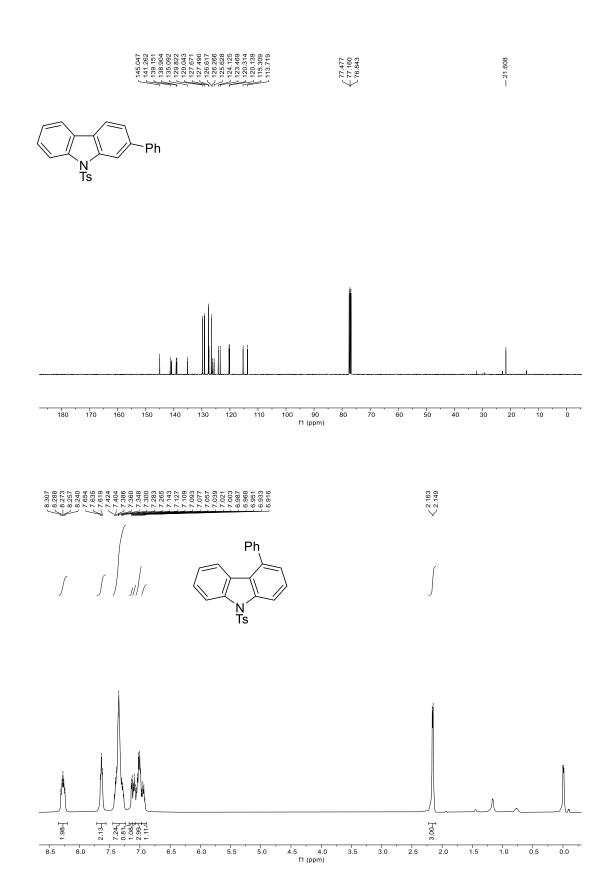


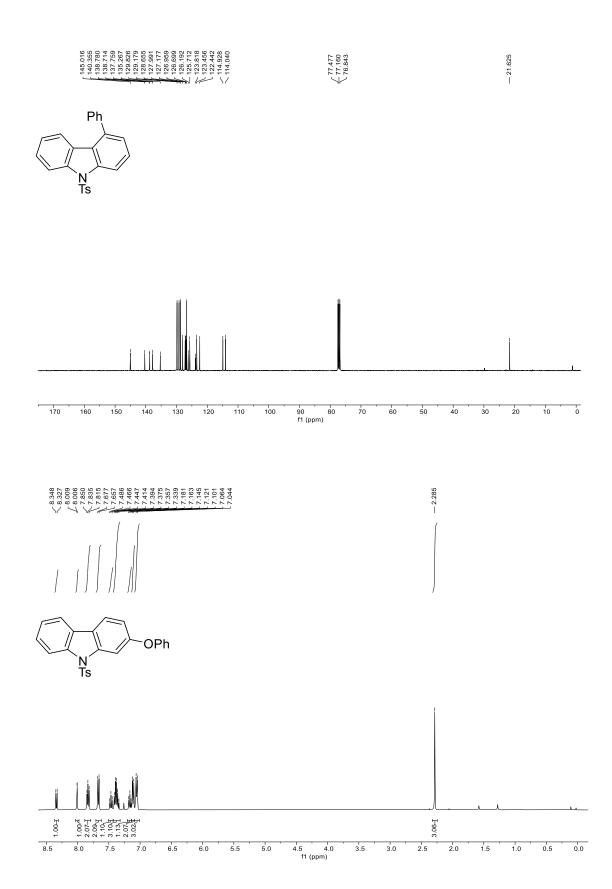


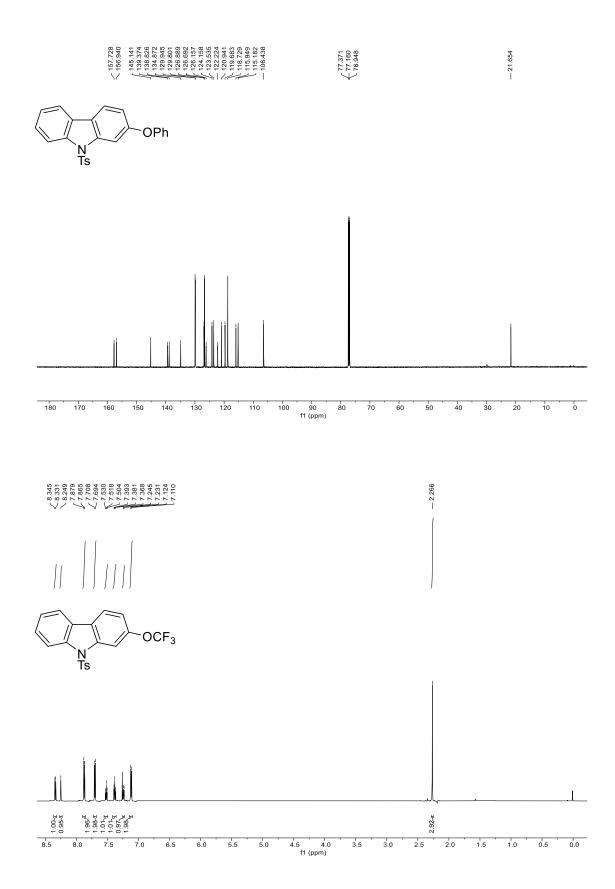


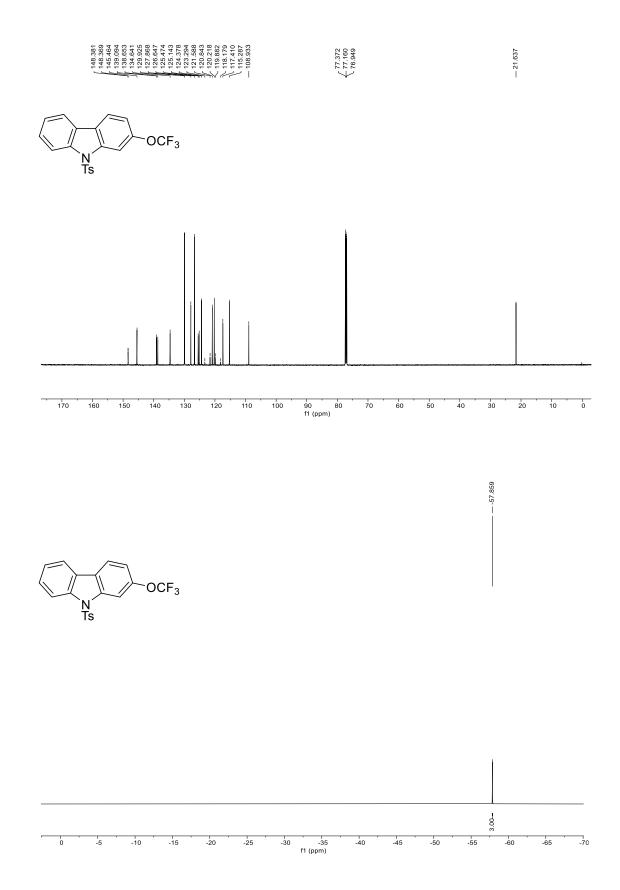

-42.549 -42.560 -42.583

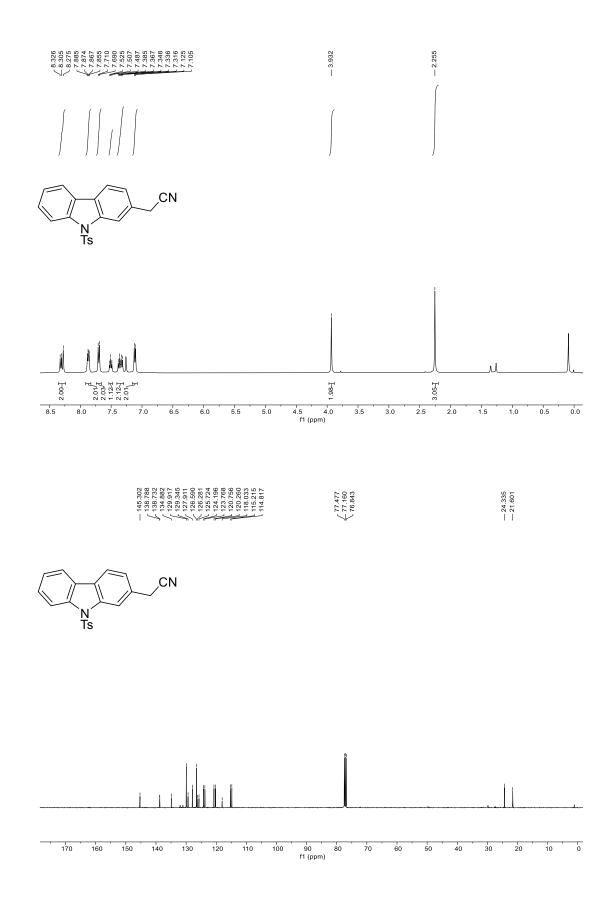


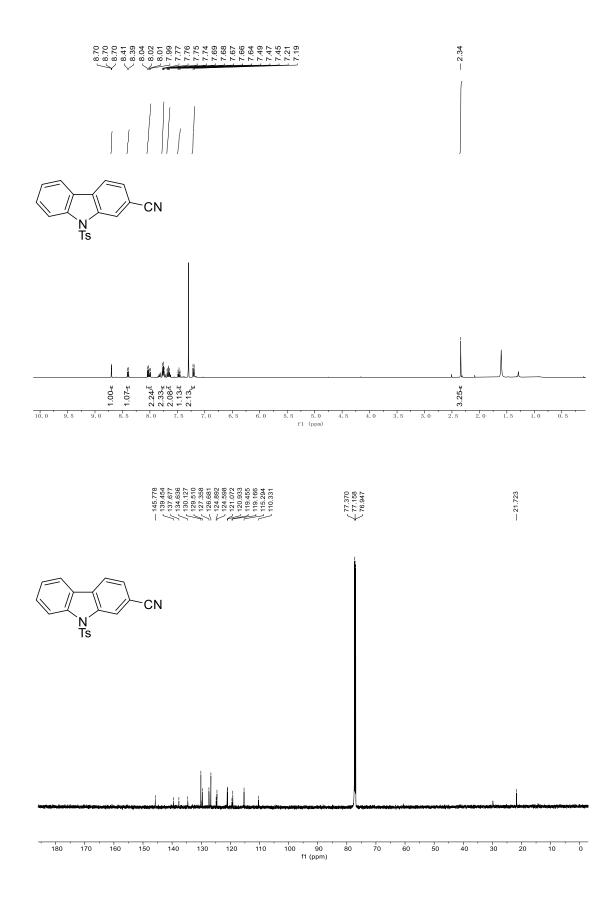

0




S119






S121

