Supporting Information

Photoredox-catalyzed selective deuterodefluorination of α , α -

difluoroarylacetic esters and amides

Zi-Hang Yuan,^a Hong Xin,^a Yuan Gao,^a Guo-Wei Sun,^a Rui-Ying Zhao,^a

Xin-Hua Duan,^{a b} and Li-Na Guo*a

^aDepartment of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

^bState Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.

Table of Contents

1. General Information	S2
2. Starting Materials	S3
2.1 Synthesis of 1b-1v	S3
2.2 Characterization Data of 1	S5
3. Optimization of Reaction Conditions	S12
3.1 General Procedures for $1a$ with D_2O	S12
3.2 Optimization of the Deutodeflurination of Reaction $1a$ with D_2O	S13
4. Representative Procedure for the Deutodeflurination of 1 with D_2O	S22
4.1 Monodeuterodefluorination	S22
4.2 Dideuterodefluorination	S22
4.3 Applied Research	S24
5. Mechanism Studies	S28
5.1 Radical Inhibiting Experiments	S28
5.2 EPR Experiments	S30
5.3 Transformation of $1a$ to $4a/5a$ without $Ir(ppy)_3$	S31
5.4 Stern-Volmer Fluorescence Quenching Experiments	S32
5.5 Light On-Off Experiments	S33
5.6 Cyclic Voltammetry Experiments	S34
5.7 Proportions of 2a and 3a under Conditions A and B	S36
5.8 Proposed mechanism (double defluorinative deuteration)	S36
6. Characterization of Products	S37
7. References	S51
8. ¹ H, ¹³ C and ¹⁹ F NMR Spectra of Products	S52

1. General Information

All reactions were conducted in 10 mL oven-dried sealed tube under N₂ atmosphere. Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification. ¹H, ¹⁹F and ¹³C NMR spectra were recorded on a Bruker 400 MHz (100 MHz for ¹³C NMR) spectrometer at ambient temperature. Chemical shift are reported in ppm from TMS with the solvent resonance as internal standard (CDCl₃: ¹H NMR: δ = 7.26; ¹³C NMR: δ = 77.16; CFCl₃ as an external standard and low field is positive). Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), dt (doublet of triplets), dd (doublet of doublets) and m (multiplet). FT-IR spectra were recorded on a Bruker V 70 spectrometer and only major peaks are reported in cm⁻¹. HRMS were obtained on a WATERS I-Class VION IMS Q-Tof. Melting points were measured using open glass capillaries in a SGW® X-4A apparatus. Analytical TLC: aluminum backed plates pre-coated (0.25 mm) with Merck Silica Gel 60F-254. Compounds were visualized by exposure to UV-light or by dipping the plates in KMnO₄ stain followed by heating.

2. Starting Materials

The ethyl-2-(4-biphenylyl)-2,2-difluoro-acetate **1a** and bromoaryl difluoroacetic acid ethyl ester were prepared according to the literature.¹

2.1 Synthesis of 1b-1v

To a 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with arylboronic acid (2.4 mmol), K_2CO_3 (2.0 equiv.) and Pd(PPh_3)Cl_2 (3.0 mol%) were added. The vessel was evacuated and filled with nitrogen (three times). A solution of bromoaryl difluoroacetic acid ethyl ester (2.0 mmol) in toluene (2.0 mL) and H₂O (1.0 mL), was added via syringe. The tube was put into a heating jacket and stirred at 80 °C overnight. The reaction mixture was cooled to room temperature. The aqueous layer was extracted with ethyl acetate, the combined organic layer was dried over Na₂SO₄, filtered and concentrated under the reduced pressure. The residue was

purified by column chromatography on silica gel (PE/EtOAc = 30:1) to give the desired coupling products **1b-1l**.^{1,2}

A solution of aryl difluorocarboxylic acid (2.0 mmol), corresponding alcohol (2.4 mmol), and DMAP (5.0 mol%) in DCM (2.0 mL) at 0 °C was added DCC (2.4 mmol) in one portion. A precipitate began to form almost immediately. The reaction was stirred at 0 °C for 10 min and then warmed to room temperature. After completion as detected by TLC, the reaction was then diluted with pentane (10 mL) and filtered through a short plug of silica. The aqueous layer was extracted with ethyl acetate, the combined organic layer was dried over Na₂SO₄, filtered and concentrated under the reduced pressure. The residue was purified by column chromatography on silica gel (PE/EtOAc = 30:1 to 10:1) to afford aryl difluorinated esters **1m-1p**, **1s-1v**.²

A 50 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with aryl difluorocarboxylic acid (2.0 mmol), EDCI (1.6 equiv.), HOBt (1.5 equiv.), and corresponding amine (2.4 mmol) were dissolved in 10 mL DCM under N₂, then Et₃N (4.0 mmol) was added. The reaction mixture stirred overnight. Subsequently, water was added to the Schlenk-tube. The resulting mixture was extracted with DCM (three times), and the combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography (PE/EtOAc = 4:1) to afford aryl difluorinated amides **1q and 1r**.²

2.2 Characterization data of 1

Cyclopropylmethyl 2-([1,1'-biphenyl]-4-yl)-2,2-difluoroacetate (1b)

Colorless oil (93%, 561.9 mg); m.p.: 51-52 °C; $R_f = 0.5$ (PE/EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.68 (m, 4H), 7.63 – 7.61 (m, 2H), 7.50 – 7.46 (m, 2H), 7.43 – 7.34 (m, 1H), 4.12 (d, J = 7.4 Hz, 2H), 1.25 – 1.15 (m, 1H), 0.63 – 0.58 (m, 2H), 0.35 – 0.31 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.6 (t, J = 35.1Hz), 144.1, 140.10, 131.9 (t, J = 25.6 Hz), 129.2, 128.2, 127.6, 127.5, 126.2 (t, J = 6.0 Hz), 113.8 (t, J = 250.6 Hz), 72.1, 9.7, 3.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -103.45 (s); HRMS (ESI) calcd for C₁₈H₁₆F₂O₂Li [M+Li]⁺ 285.1273, found 285.1269.

3-Methylbut-2-en-1-yl 2-([1,1'-biphenyl]-4-yl)-2,2-difluoroacetate (1c)

Colorless oil (90%, 568.9 mg); $R_f = 0.5$ (PE/EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.66 (m, 4H), 7.61 (d, *J* = 7.6 Hz, 2H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.40 (t, *J* = 7.2 Hz, 1H), 5.37 (t, *J* = 7.2 Hz, 1H), 4.76 (d, *J* = 7.2 Hz, 2H), 1.77 (s, 3H), 1.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4 (t, *J* = 35.0 Hz), 144.0, 141.4, 140.1, 131.8 (t, *J* = 25.6 Hz), 129.1, 128.1, 127.5, 127.4, 126.1 (t, *J* = 5.9 Hz), 117.1, 113.7 (t, *J* = 250.7 Hz), 64.0, 25.9, 18.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.32 (s); HRMS (ESI) calcd for C₁₉H₁₈F₂O₂Na [M+Na]⁺ 339.1167, found 339.1155.

But-3-yn-1-yl 2-([1,1'-biphenyl]-4-yl)-2,2-difluoroacetate (1d)

Colorless oil (87%, 522.2 mg); $R_f = 0.5$ (PE/EtOAc = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.68 (m, 4H), 7.59 (d, J = 6.8 Hz, 2H), 7.48 – 7.45 (m, 2H), 7.41 – 7.38 (m, 1H), 4.36 (t, J = 6.0 Hz, 2H), 2.59 (t, J = 6.0 Hz, 2H), 1.97 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1 (t, J = 36.5 Hz), 144.2, 140.0, 131.4 (t, J = 25.6 Hz), 129.0, 128.1, 127.5, 127.3, 126.1 (t, J = 5.9 Hz), 113.5 (t, J = 250.6 Hz), 78.8, 70.6, 64.4, 18.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.67 (s); HRMS (ESI) calcd for C₁₈H₁₈F₂O₂N [M+NH₄]⁺ 318.1300, found 318.1302.

Benzyl 2-([1,1'-biphenyl]-4-yl)-2,2-difluoroacetate (1e)

Colorless oil (86%, 581.5 mg); m.p.: 62-63 °C; $R_f = 0.5$ (PE/EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.65 (m, 5H), 7.60 (d, J = 7.2 Hz, 2H), 7.50 – 7.46 (m, 3H), 7.41 (d, J = 6.8 Hz, 1H), 7.34 (m, 5H), 5.29 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2 (t, J = 35.5 Hz), 144.1, 140.0, 134.3, 131.49 (t, J = 25.5 Hz), 129.0, 128.82, 128.76, 128.3, 128.1, 127.5, 127.3, 126.1 (t, J = 6.0 Hz), 113.6 (t, J = 250.7 Hz), 68.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.57 (s); HRMS (ESI) calcd for C₂₁H₁₆F₂O₂ [M]⁺

338.1113, found 338.1105.

2-([1,1'-Biphenyl]-4-yl)-2,2-difluoro-N-phenylacetamide (1f)

White solid (79%, 510.5 mg); m.p.: 160-161 °C; $R_f = 0.5$ (PE/EtOAc = 4:1); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.76 (d, J = 7.8 Hz, 2H), 7.69 (d, J = 5.2 Hz, 2H), 7.61 (m, 4H), 7.49 – 7.45 (m, 2H), 7.41 – 7.36 (m, 3H), 7.22 – 7.18 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.0 (t, J = 29.9 Hz), 144.2, 140.1, 136.2, 131.5 (t, J = 26.0 Hz), 129.4, 129.1, 128.2, 127.6, 127.4, 126.3 (t, J = 6.0 Hz), 125.8, 120.3, 115.0 (t, J = 252.7 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -102.11 (s); HRMS (ESI) calcd for C₂₀H₁₆F₂ON [M+H]⁺ 324.1195, found 324.1206.

Methyl (2-([1,1'-biphenyl]-4-yl)-2,2-difluoroacetyl)leucinate (1g)

White solid (72%, 540.3 mg); m.p.: 92-93 °C; $R_f = 0.5$ (PE/EtOAc = 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.66 (m, 4H), 7.59 (d, J = 7.2 Hz, 2H), 7.48 – 7.44 (m, 2H), 7.41 – 7.37 (m, 1H), 6.95 (d, J = 6.4 Hz, 1H), 4.71 – 4.68 (m, 1H), 3.76 (s, 3H), 1.79 – 1.65 (m, 3H), 0.96 (s, 3H), 0.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 164.0 (t, J = 31.4 Hz), 144.0, 140.1, 131.7 (t, J = 25.3 Hz), 129.0, 128.1, 127.5, 127.4, 126.1 (t, J = 5.9 Hz), 115.0 (t, J = 251.5 Hz), 52.7, 51.1, 41.6, 25.0, 22.8, 22.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -102.14 (d, J = 255.7 Hz), -102.97 (d, J = 255.3 Hz); HRMS (ESI) calcd for C₂₁H₂₄F₂O₃N [M+H]⁺ 376.1719, found 376.1726.

Ethyl 2-([1,1'-biphenyl]-3-yl)-2,2-difluoroacetate (1h)

Colorless oil (90%, 497.0 mg); $R_f = 0.5$ (PE/EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.73 (d, J = 7.2 Hz, 1H), 7.61 (d, J = 7.2 Hz, 3H), 7.56 – 7.38 (m, 4H), 4.33 (q, J = 6.8 Hz, 2H), 1.33 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.40 (t, J = 35.1 Hz), 142.0, 140.1, 133.5 (t, J = 25.3 Hz), 129.9, 129.3, 129.1, 128.0, 127.3, 124.4 (t, J = 6.0 Hz), 113.5 (t, J = 250.5 Hz), 63.4, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.72 (s); HRMS (ESI) calcd for C₁₆H₁₄F₂O₂ [M]⁺ 276.0956, found 276.0943.

Ethyl 2,2-difluoro-2-(2-fluoro-[1,1'-biphenyl]-4-yl)acetate (1i)

Colorless oil (87%, 511.7 mg); $R_f = 0.5$ (PE/EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.52 (m, 3H), 7.49 – 7.43 (m, 5H), 4.35 (q, *J* = 6.8 Hz, 2H), 1.35 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9 (t, *J* = 34.9 Hz), 159.6 (d, *J* = 248.4 Hz), 134.7, 133.8 (dt, *J* = 26.3, 7.9 Hz), 132.1 (d, *J* = 13.4 Hz), 131.4 (d, *J* = 3.7 Hz), 130.7 (d, *J* = 8.0 Hz), 129.1 (d, *J* = 2.8 Hz), 128.7, 128.5, 121.6 (t, *J* = 5.8 Hz), 118.3 (d, *J* = 21.4 Hz), 114.0 (dt, *J* = 26.1, 6.4 Hz), 112.7 (t, *J* = 251.2 Hz), 63.6, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.64 (s), -115.97 (t, *J* = 9.0 Hz); HRMS (ESI) calcd for C₁₆H₁₃F₃O₂ [M]⁺ 294.0862, found 294.0860.

Ethyl 2-(2-chloro-[1,1'-biphenyl]-4-yl)-2,2-difluoroacetate (1j)

Colorless oil (82%, 508.6 mg); $R_f = 0.5$ (PE/EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.59 (d, J = 7.6 Hz, 1H), 7.46 (s, 6H), 4.37 (q, J = 6.8 Hz, 2H), 1.37 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9 (t, J = 34.7 Hz), 143.4, 138.4, 133.3, 133.2 (t, J = 34.2 Hz), 131.8, 129.4, 128.3, 127.3 (t, J = 6.2 Hz), 124.1 (t, J = 5.8 Hz), 112.7 (t, J = 251.5 Hz), 63.6, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ - 103.72 (s); HRMS (ESI) calcd for C₁₆H₁₃ClF₂O₂ [M]⁺ 310.0567, found 310.0581.

Ethyl 2,2-difluoro-2-(3-methyl-[1,1'-biphenyl]-4-yl)acetate (1k)

Colorless oil (82%, 475.8 mg); $R_f = 0.5$ (PE/EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.60 (m, 3H), 7.52 – 7.39 (m, 5H), 4.36 (q, *J* = 7.2 Hz, 2H), 2.52 (s, 3H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3 (t, *J* = 35.0 Hz), 143.7, 140.1, 137.0 (t, *J* = 2.9 Hz), 130.7, 130.1 (t, *J* = 23.3 Hz), 129.0, 128.0, 127.3, 126.85 (t, *J* = 8.4 Hz), 124.7, 114.5 (t, *J* = 250.7 Hz), 63.3, 20.0, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -100.97 (s); HRMS (ESI) calcd for C₁₇H₁₇F₂O₂ [M+H]⁺ 291.1191, found 291.1195.

Ethyl 2-(4'-(tert-butyl)-[1,1'-biphenyl]-4-yl)-2,2-difluoroacetate (11)

White solid (79%, 524.8 mg); m.p.: 62-63 °C; $R_f = 0.5$ (PE/EtOAc = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 4H), 7.58 (d, J = 7.6 Hz, 2H), 7.53 (d, J = 7.6 Hz, 2H), 4.36 (q, J = 6.8 Hz, 2H), 1.41 (s, 9H), 1.37 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4 (t, J = 35.2 Hz), 151.3, 143.9, 137.1, 131.4 (t, J = 25.5 Hz), 127.3, 127.0, 126.0 (t, J = 6.1 Hz), 113.7 (t, J = 250.4 Hz), 63.3, 34.7, 31.5, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.45 (s); HRMS (ESI) calcd for C₂₀H₂₂F₂O₂Na [M+Na]⁺ 355.1480, found 355.1484.

Ethyl 2-(4'-bromo-[1,1'-biphenyl]-4-yl)-2,2-difluoroacetate (1m)

Colorless oil (82%, 580.9 mg); $R_f = 0.5$ (PE/EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 6.8 Hz, 2H), 7.64 – 7.57 (m, 4H), 7.46 (d, J = 7.2 Hz, 2H), 4.33 (q, J = 7.6 Hz, 2H), 1.33 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3 (t, J = 35.1 Hz), 142.8, 138.9, 132.2, 128.9, 127.3, 126.2 (t, J = 6.0 Hz), 122.5, 113.5 (t, J = 250.7 Hz), 63.4, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.65 (s); HRMS (ESI) calcd for C₁₆H₁₃BrF₂O₂Li [M+Li]⁺ 361.0222, found 361.021.

Ethyl 2,2-difluoro-2-(3'-methoxy-[1,1'-biphenyl]-4-yl)acetate (1n)

Colorless oil (88%, 538.8 mg); $R_f = 0.5$ (PE/EtOAc = 30:1); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 4H), 7.41 – 7.37 (m, 1H), 7.19 (d, J = 7.6 Hz, 1H), 7.14 (s, 1H), 6.95 (d, J = 8.0 Hz, 1H), 4.34 (q, J = 6.8 Hz, 2H), 3.88 (s, 3H), 1.34 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3 (t, J = 35.2 Hz), 160.2, 143.9, 141.6, 131.9 (t, J = 25.5 Hz), 130.1, 127.5, 126.1 (t, J = 6.0 Hz), 119.8, 113.6, 113.5, 113.2 (t, J = 250.7 Hz), 63.3, 55.4, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.57 (s); HRMS (ESI) calcd for C₁₇H₁₆F₂O₃Na [M+NH₄]⁺ 329.0960, found 329.0961.

Ethyl 2-(3'-chloro-[1,1'-biphenyl]-4-yl)-2,2-difluoroacetate (10)

Colorless oil (83%, 514.7 mg); $R_f = 0.5$ (PE/EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 7.6 Hz, 2H), 7.54 (d, J = 7.6 Hz, 2H), 7.49 (d, J = 5.6 Hz, 1H), 7.33 (s, 3H), 4.34 (q, J = 6.8 Hz, 2H), 1.34 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.32 (t, J = 35.1 Hz), 142.3, 139.4, 132.5, 132.1 (t, J = 25.6 Hz), 131.4, 130.2, 129.9, 129.3, 127.1, 125.4 (t, J = 5.9 Hz), 113.5 (t, J = 250.6 Hz), 63.4, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.51 (s); HRMS (ESI) calcd for C₁₆H₁₃ClF₂O₂ [M]⁺ 310.0567, found 310.0553.

Ethyl 2-(3',5'-dimethyl-[1,1'-biphenyl]-4-yl)-2,2-difluoroacetate (1p)

Colorless oil (91%, 553.5 mg); $R_f = 0.5$ (PE/EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.69 (m, 4H), 7.29 – 7.26 (m, 2H), 7.09 (s, 1H), 4.37 (q, *J* = 7.2 Hz, 2H), 2.44 (s, 6H), 1.37 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4 (t, *J* = 35.2 Hz), 144.3, 140.1, 138.6, 131.5 (t, *J* = 25.6 Hz), 129.8, 127.5, 126.0 (t, *J* = 5.9 Hz), 125.3, 113.6 (t, *J* = 250.1 Hz), 63.3, 21.5, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ - 103.52 (s); HRMS (ESI) calcd for C₁₈H₁₈F₂O₂Li [M+Li]⁺ 311.142, found 311.1417.

Ethyl 2,2-difluoro-2-(4-(thiophen-2-yl)phenyl)acetate (1r)

Colorless oil (73%, 411.8 mg); $R_f = 0.5$ (PE/EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.68 (m, 2H), 7.62 (d, J = 7.6 Hz, 2H), 7.38 – 7.34 (m, 2H), 7.11 (s, 1H), 4.31 (q, J = 6.8 Hz, 2H), 1.32 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.3 (t, J = 35.2 Hz), 143.0, 137.2, 131.7, 128.4, 126.3 (t, J = 6.1 Hz), 126.1, 126.1, 124.4, 113.5 (t, J = 250.6 Hz), 63.3, 14.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.86 (s); HRMS (ESI) calcd for C₁₄H₁₃F₂O₂S [M+H]⁺ 283.0599, found 283.0616.

3,7-Dimethyloct-6-en-1-yl 2-([1,1'-biphenyl]-4-yl)-2,2-difluoroacetate (1s)

Colorless oil (92%, 710.6 mg); $R_f = 0.5$ (PE/EtOAc = 50:1);¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.66 (m, 4H), 7.60 – 7.59 (m, 2H), 7.48 – 7.45 (m, 2H), 7.41 – 7.38 (m, 1H), 5.06 (s, 1H), 4.31 (s, 2H), 1.95 – 1.92 (m, 4H), 1.75 – 1.67 (m, 3H), 1.58 – 1.50 (m, 2H), 1.32 – 1.27 (m, 1H), 1.17 (s, 1H), 0.89 – 0.88 (m, *J* = 3.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5 (t, *J* = 35.0 Hz), 144.2, 140.2, 131.9 (t, *J* = 25.7 Hz), 129.2, 128.3, 127.6, 127.5, 126.2 (t, *J* = 5.9 Hz), 124.6, 113.7 (t, *J* = 250.6 Hz), 65.9, 37.1, 35.3, 29.6, 25.9, 25.6, 19.5, 17.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.83 (s); HRMS (ESI) calcd for C₂₄H₂₈F₂O₂Na [M+Na]⁺ 409.1950, found 409.1951.

2-Isopropyl-5-methylcyclohexyl 2-([1,1'-biphenyl]-4-yl)-2,2-difluoroacetate (1t) White solid (96%, 741.5 mg, d.r. = 1:1); m.p.: 99-100 °C; $R_f = 0.5$ (PE/EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 4H), 7.60 (d, J = 7.6 Hz, 2H), 7.48 – 7.45 (m, 2H), 7.41 – 7.37 (m, 1H), 4.79 (t, J = 10.8 Hz, 1H), 4.68 (t, J = 10.8 Hz, 1H), 2.04 (s, 1H), 1.98 (d, J = 7.6 Hz, 1H), 1.89 – 1.85 (m, 1H), 1.69 (s, 1H), 1.66 (s, 1H), 1.48 – 1.42 (m, 1H), 1.40 – 1.31 (m, 1H), 1.06 – 1.02 (m, 1H), 0.91 (s, 3H), 0.89 (s, 3H), 0.81 – 0.76 (m, 1H), 0.64 (d, J = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 163.9 (t, J = 35.1 Hz), 143.9, 140.1, 131.9 (t, J = 25.5 Hz), 129.0, 128.1, 127.34, 127.32, 126.0 (t, J = 5.9 Hz), 113.6 (t, J = 251.1 Hz), 77.8, 74.3, 47.1, 47.0, 41.0, 40.2, 34.3, 34.1, 31.5, 26.4, 26.1, 23.6, 23.4, 22.1, 22.0, 21.4, 20.8, 20.6, 16.5, 16.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.16 (d, J = 250.4 Hz), -105.07 (d, J = 250.4 Hz); HRMS (ESI) calcd for C₂₄H₂₈F₂O₂Na [M+NH₄]⁺ 409.1950, found 409.1949.

((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5b:4',5'-d]pyran-3a-yl)methyl 2-([1,1'-biphenyl]-4-yl)-2,2-difluoroacetate (1u) Colorless oil (89%, 872.6 mg, d.r. = 1:1); $R_f = 0.5$ (PE/EtOAc = 10:1); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 4H), 7.62 (d, J = 6.8 Hz, 2H), 7.51 – 7.48 (m, 2H), 7.44 – 7.40 (m, 1H), 4.66 (d, J = 7.6 Hz, 1H), 4.56 (d, J = 11.6 Hz, 1H), 4.37 (s, 1H), 4.28 – 4.22 (m, 2H), 3.98 – 3.78 (m, 2H), 1.55 (s, 3H), 1.50 (s, 3H), 1.37 (s, 3H), 1.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.6 (t, J = 35.8 Hz), 144.2, 139.9, 131.3 (t, J =25.4 Hz), 129.0, 128.1, 127.5, 127.3, 126.1 (t, J = 5.9 Hz), 113.5 (t, J = 250.9 Hz), 109.3, 109.3, 100.9, 70.8, 70.2, 67.0, 66.4, 61.5, 26.6, 26.0, 25.0, 24.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -102.14 (d, J = 253.8 Hz), -102.94 (d, J = 253.8 Hz); HRMS (ESI) calcd for C₂₆H₃₂F₂O₇N [M+NH₄]⁺ 508.2141, found 508.2163.

10,13-dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl-2-([1,1'-biphenyl]-4-yl)-2,2difluoroacetate (1v)

White solid (80%, 986.2 mg, d.r. = 1:1); m.p.: 108-109 °C; $R_f = 0.5$ (PE/EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.68 (m, 4H), 7.62 (d, J = 7.2 Hz, 2H), 7.50 – 7.46 (m, 1H), 7.42 – 7.39 (m, 1H), 5.41 (s, 1H), 4.83 – 4.76 (m, 2H), 2.47 – 2.40 (m, 2H), 2.06 – 1.89 (m, 6H), 1.75 – 1.46 (m, 9H), 1.39 – 1.29 (m, 5H), 1.18 – 1.09 (m, 8H), 1.05 (d, J = 15.8 Hz, 5H), 0.95 (d, J = 6.0 Hz, 3H), 0.91 (d, J = 6.4 Hz, 6H), 0.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7 (t, J = 34.9 Hz), 143.9, 140.0, 138.9, 131.9 (t, J = 25.6 Hz), 129.0, 128.1, 127.4, 127.3, 126.1 (t, J = 5.8 Hz), 123.5,

113.6 (t, J = 250.6 Hz), 56.8, 56.2, 50.1, 42.4, 39.8, 39.6, 37.7, 36.9, 36.6, 36.3, 35.9, 32.0, 31.9, 28.4, 28.1, 27.5, 24.4, 24.0, 23.0, 22.7, 21.1, 19.4, 18.8, 12.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.52 (s); HRMS (ESI) calcd for C₄₁H₅₈F₂O₂N [M+NH₄]⁺ 634.4421, found 634.4430.

(4-(2-ethoxy-1,1-difluoro-2-oxoethyl)-[1,1'-biphenyl]-2-yl)methyl-2-(4-isobutylphenyl)propanoate (1w)

Colorless oil (73%, 721.5 mg); $R_f = 0.5$ (PE/EtOAc = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.49 – 7.46 (m, 1H), 7.40 – 7.35 (m, 3H), 7.22 (d, J = 7.2 Hz, 4H), 7.14 (d, J = 7.6 Hz, 2H), 5.04 (dd, J = 36.8, 12.8 Hz, 2H), 4.37 (q, J = 6.8 Hz, 2H), 3.76 (q, J = 6.8 Hz, 1H), 2.49 (d, J = 6.8 Hz, 2H), 1.92 – 1.85 (m, 1H), 1.52 (d, J = 7.2 Hz, 3H), 1.38 (t, J = 7.2 Hz, 2H), 0.93 (d, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 164.3 (t, J = 34.8 Hz), 145.0, 140.8, 139.2, 137.5, 134.1, 132.2 (t, J = 25.4 Hz), 130.6, 129.5, 129.0, 128.9, 128.5, 128.0, 127.3, 126.4 (t, J = 6.1 Hz), 125.4 (t, J = 6.3 Hz), 113.3 (t, J = 250.6 Hz), 64.4, 63.4, 45.22, 45.18, 30.3, 22.5, 18.5, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -103.47 (s), -103.51 (s); HRMS (ESI) calcd for C₃₀H₃₆F₂O₄N [M+NH₄]⁺ 512.2607, found 512.2584.

3. Optimization of Reaction Conditions

3.1 General Procedures for the Ethyl 2-(4-Biphenylyl)-2,2-difluoroacetate 1a with D₂O

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with ethyl 2-(4-biphenylyl)-2,2-difluoroacetate **1a** (0.20 mmol), photocatalyst, base and additive. Then the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of D₂O (50 equiv.) in solvent (2.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W Blue LED (λ = 460–470 nm; distance app. 1.0 cm from the bulb) for a specified time. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (PE/acetone = 30:1 to 5:1) furnishes the desired product **2a/3a** as oil.

3.2 Optimization of the Reaction 1a, D_2O^a

Solvent

	Ir(ppy) ₃ (1.0 mol%) Cs ₂ CO ₃ (2.0 equiv.), S1 (10 mol%) Solvent (2.0 mL), D ₂ O (50 equiv.) Blue LED 10 W, 45 °C, 24 h	$e^{E_{a}}$ $e^{D_{a}}$ e^{D	t S1 : S)2 Me (10 mol%)
Entry	Solvent	Yield of 2a (%)	Yield of 3a (%)
1	DMSO	trace	trace
2	DMF	31 (97% D)	4
3	DMAc	trace	trace
4	NMP	58 (97% D)	6
5	THF	trace	trace
6	1,4-diaxone	trace	trace
7	EtOAc	trace	trace
8	MTBE	trace	trace
9	MeNO ₂	trace	trace
10	toluene	trace	trace

^{*a*}Reaction conditions: **1a** (0.2 mmol), $Ir(ppy)_3$ (1.0 mol%), Cs_2CO_3 (2.0 equiv.), **S1** (10 mol%), Solvent (2.0 mL), D₂O (50 equiv.), Blue LED 10 W, 45 °C, 24 h. Yields of isolated products and the deuterated incorporations were determined by ¹H NMR analysis.

	Ir(ppy) ₃ (1.0 mol%) Cs ₂ CO ₃ (2.0 equiv.), S1 (10 mol%) Solvent (2.0 mL), D ₂ O (50 equiv.) Blue LED 10 W, 45 °C, 24 h	$ \begin{array}{c} $	OEt S1: Me (10 mol%)
Entry	Time (h)	Yield of 2a (%)	Yield of 3a (%)
1^b	8	12 (97% D)	trace
2^b	16	20 (97% D)	2
3^b	24	31 (97% D)	4
4^b	32	31 (97% D)	4
5 ^c	8	9 (97% D)	trace
6 ^c	16	47 (97% D)	5
7^c	24	58 (97% D)	6
8^c	32	59 (97% D)	6

^{*a*}Reaction conditions: **1a** (0.2 mmol), Ir(ppy)₃ (1.0 mol%), Cs₂CO₃ (2.0 equiv.), **S1** (10 mol%), D₂O (50 equiv.), Blue LED 10 W, 45 °C, x h, Yields of isolated products and the deuterated incorporations were determined by ¹H NMR analysis. ^{*b*}DMF was used as solvent (2.0 mL), ^{*c*}NMP was used as solvent (2.0 mL).

Time

Photocatalyst

	Ir(ppy) ₃ (1.0 mol%) Cs ₂ CO ₃ (2.0 equiv.), S1 (10 mol%) NMP (2.0 mL), D ₂ O (50 equiv.) Blue LED 10 W, 45 °C, 24 h	Za DD DD OE	t S1 : S1 Me (10 mol%)
Entry	РС	Yield of 2a (%)	Yield of 3a (%)
1	Ir(ppy) ₃	58 (97% D)	6
2	4CzIPN	21 (97% D)	trace
3	Rhodamine B	0	0
4	EosinY	0	0
5	Rose Bengale	0	0
6	Methlyene Blue	0	0

^{*a*}Reaction conditions: **1a** (0.2 mmol), PC (1.0 mol%), Cs_2CO_3 (2.0 equiv.), **S1** (10 mol%), D_2O (50 equiv.), NMP (2.0 mL), Blue LED 10 W, 45 °C, 24 h. Yields of isolated products and the deuterated incorporations were determined by ¹H NMR analysis.

	Ir(ppy) ₃ (1.0 mol%) base (2.0 equiv), \$1 (10 mol%) NMP, D ₂ O (50 equiv.) Blue LED 10 W, 45 °C, 24 h	F_{2a} OEt $+$ OEt OC OC OC OC OC OC OC OC	Et $Me \xrightarrow{(10 \text{ mol}\%)} S_2$
Entry	Base	Yield of 2a (%)	Yield of 3a (%)
1	Li ₂ CO ₃	21 (97% D)	trace
2	Na ₂ CO ₃	19 (97% D)	trace
3	K ₂ CO ₃	25 (97% D)	3
4	Cs_2CO_3	58 (97% D)	6
5	NaOAc	trace	trace
6	KOAc	trace	trace
7	Et ₃ N	0	trace
8	DBU	trace	0
9^b	Cs_2CO_3	3	86 (98% D)
$10^{b,c}$	Cs ₂ CO ₃	2	86 (98% D)

Base

^{*a*}Reaction conditions: **1a** (0.2 mmol), $Ir(ppy)_3$ (1.0 mol%), Base (2.0 equiv.), **S1** (10 mol%), D₂O (50 equiv.), NMP (2.0 mL), Blue LED 10 W, 45 °C, 24 h. Yields of isolated products and the deuterated incorporations were determined by ¹H NMR analysis. ^{*b*}extra Et₃N (3.0 equiv.) was used. ^{*c*}DMF (2.0 mL) was used as solvent.

Equiv. of Cs₂CO₃

	Ir(ppy) ₃ (1.0 mol%) Cs ₂ CO ₃ (x equiv.), S1 (10 mol%) NMP (2.0 mL), D ₂ O (50 equiv.) Blue LED 10 W, 45 °C, 24 h	2a	Et S1: S1: Ne (10 mol%)
Entry	Cs_2CO_3 (x equiv.)	Yield of 2a (%)	Yield of 3a (%)
1	/	0	0
2	0.5	12 (97% D)	trace
3	1	42 (97% D)	3
4	2	58 (97% D)	6
5	3	59 (97% D)	6

^{*a*}Reaction conditions: **1a** (0.2 mmol), $Ir(ppy)_3$ (1.0 mol%), Cs_2CO_3 (x equiv.), **S1** (10 mol%), D_2O (50 equiv.), NMP (2.0 mL), Blue LED 10 W, 45 °C, 24 h. Yields of isolated products and the deuterated incorporations were determined by ¹H NMR analysis.

D-transfer mediator

	Ir(ppy) ₃ (1.0 mol%) <u>Cs₂CO₃ (2.0 equiv.), [S] (10 mol%)</u> NMP (2.0 mL), D ₂ O (50 equiv.) Blue LED 10 W, 24 h, 45 °C	2a FD OEt +	
Entry	[S]	Yield of 2a (%)	Yield of 3a (%)
1	/	0	0
2	S1	58 (97% D)	6
3	S2	0	trace
4	S 3	trace	trace
5	S4	trace	trace
6	S5	50 (97% D)	5
7	S6	32 (90% D)	3
8^b	S1	52 (97% D)	5
9 ^c	S1	58 (97% D)	6

^{*a*}Reaction conditions: **1a** (0.2 mmol), $Ir(ppy)_3$ (1.0 mol%), Cs_2CO_3 (2.0 equiv.), **[S]** (10 mol%), D_2O (50 equiv.), NMP (2.0 mL), Blue LED 10 W, 45 °C, 24 h. Yields of isolated products and the deuterated incorporations were determined by ¹H NMR analysis. ^{*b*}5 mol% of **S1** was used. ^{*c*}15 mol% of **S1** was used.

D-Source

	Ir(ppy) ₃ (1.0 mol%) Cs ₂ CO ₃ (2.0 equiv.), S1 (10 mol%) NMP (2.0 mL), [D] (50 equiv.) Blue LED 10 W, 45 °C, 24 h	2a FD OEt +	B → OEt O → OEt S1 : → S → 2 Me → (10 mol%)
Entry	[D]	Yield of 2a (%)	Yield of 3a (%)
1	D ₂ O	58 (97% D)	6
2	MeOD	9	trace
3	acetone- d_6	7	trace
4	CD ₃ CN	trace	trace
5	DMSO- d_6	trace	trace

^{*a*}Reaction conditions: **1a** (0.2 mmol), $Ir(ppy)_3$ (1.0 mol%), Cs_2CO_3 (2.0 equiv.), **S1** (10 mol%), [D] (50 equiv.), NMP (2.0 mL), Blue LED 10 W, 45 °C, 24 h. Yields of isolated products and the deuterated incorporations were determined by ¹H NMR analysis.

Equiv. of D_2O

	Ir(ppy) ₃ (1.0 mol%) Cs ₂ CO ₃ (2.0 equiv.), S1 (10 mol%) NMP (2.0 mL), D ₂ O (x equiv.) Blue LED 10 W, 45 °C, 24 h	F D OEt $+$ C	
Entry	D ₂ O (x equiv.)	Yield of 2a (%)	Yield of 3a (%)
1	20	32 (86% D)	3
2	40	63 (97% D)	6
3	50	58 (97% D)	6
4	80	43 (97% D)	4
5	120	39 (97% D)	3

^{*a*}Reaction conditions: **1a** (0.2 mmol), $Ir(ppy)_3$ (1.0 mol%), Cs_2CO_3 (2.0 equiv.), **S1** (10 mol%), D_2O (x equiv.), NMP (2.0 mL), Blue LED 10 W, 45 °C, 24 h. Yields of isolated products and the deuterated incorporations were determined by ¹H NMR analysis.

Temperature

	Ir(ppy) ₃ (1.0 mol%) 5 ₂ CO ₃ (2.0 equiv.), S1 (10 mol%) NMP (2.0 mL), D ₂ O (40 equiv.) Blue LED 10 W, x °C, 24 h	$ \begin{array}{c} $	S1 : Me (10 mol%)
Entry	x °C	Yield of 2a (%)	Yield of 2a (%)
1	45	63 (97% D)	6
2	35	69 (97% D)	5
3	25	78 (97% D)	3

^{*a*}Reaction conditions: **1a** (0.2 mmol), $Ir(ppy)_3$ (1.0 mol%), Cs_2CO_3 (2.0 equiv.), **S1** (10 mol%), D₂O (40 equiv.), NMP (2.0 mL), Blue LED 10 W, x °C, 24 h. Yields of isolated products and the deuterated incorporations were determined by ¹H NMR analysis.

	7.	
1	1M	ο
1	ini	c

	Ir(ppy) ₃ (1.0 mol%) Cs ₂ CO ₃ (2.0 equiv.), S1 (10 mol%) DMF (2.0 mL), D ₂ O (40 equiv.), Et ₃ N (3.0 equiv.) Blue LED 10 W, 25 °C, x h	Za + Ja - J	DEt $S1: \qquad S1: \qquad $
Entry	Time	Yield of 2a (%)	Yield of 3a (%)
1	1	16 (97% D)	29 (98% D)
2	4	31 (97% D)	47 (98% D)
3	8	32 (97% D)	55 (98% D)
4	12	2	86 (98% D)
5	16	2	86 (98% D)
6	20	2	86 (98% D)
7	24	2	86 (98% D)
8^b	12	2	81 (98% D)
9c	12	3	86 (98% D)

^{*a*}Reaction conditions: **1a** (0.2 mmol), $Ir(ppy)_3$ (1.0 mol%), Cs_2CO_3 (2.0 equiv.), **S1** (10 mol%), D_2O (40 equiv.), DMF (2.0 mL), Et_3N (3.0 equiv.), Blue LED 10 W, 25 °C, 24 h. Yields of isolated products and the deuterated incorporations were determined by ¹H NMR analysis. ^{*b*}2.0 equiv. of Et_3N was used, ^{*c*}4.0 equiv. of Et_3N

was used.

Light Source

Monodeuterodefluorination

	Ir(ppy) ₃ (1.0 mol%) Cs ₂ CO ₃ (2.0 equiv.), S1 (10 mol%) NMP (2.0 mL), D ₂ O (40 equiv.) Light Source, 25 °C, 24 h	2a + 3a	A B
Entry	Light Source	Yield of 2a (%)	Yield of 3a (%)
1	Blue LED (5 W)	69 (97% D)	2
2	Blue LED (10 W)	78 (97% D)	3
3	Blue LED (15 W)	78 (97% D)	5
4	CFL (15 W)	0^b	0

^{*a*}Reaction conditions: **1a** (0.2 mmol), $Ir(ppy)_3$ (1.0 mol%), Cs_2CO_3 (2.0 equiv.), **S1** (10 mol%), D_2O (40 equiv.), NMP (2.0 mL), Light Source, 25 °C, 24 h. Yields of isolated products and the deuterated incorporations were determined by ¹H NMR analysis. ^{*b*}92% of **1a** was recovered.

Dideuterodefluorination

	Ir(ppy) ₃ (1.0 mol%) Cs ₂ CO ₃ (2.0 equiv.), S1 (10 mol%) DMF (2.0 mL), D ₂ O (40 equiv.), Et ₃ N (3.0 equiv.) Light Source, 25 °C, 12 h	2a + 3	B C S1: Me (10 mol%)
Entry	Light Source	Yield of 2a (%)	Yield of 3a (%)
1	Blue LED (5 W)	2	81 (98% D)
2	Blue LED (10 W)	2	86 (98% D)
3	Blue LED (15 W)	4	85 (98% D)
4	CFL (15 W)	0	0^b

^{*a*}Reaction conditions: **1a** (0.2 mmol), Ir(ppy)₃ (1.0 mol%), Cs₂CO₃ (2.0 equiv.), **S1** (10 mol%), D₂O (40 equiv.), Et₃N (2.0 equiv.), NMP (2.0 mL), Light Source, 25 °C, 12 h. Yields of isolated products and the deuterated incorporations were determined by ¹H NMR analysis. ^{*b*}90% of **1a** was recovered.

4. Representative Procedure for the Deutodeflurination of 1 with D₂O

4.1 Monodeuterodefluorination reaction

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with ethyl α, α -difluoroaryl acetate derivatives **1** (0.20 mmol), Ir(ppy)₃ (1.0 mol%), Cs₂CO₃ (2.0 equiv.), **S1** (10 mol%). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of D₂O (40 equiv.) in NMP (2.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W Blue LED ($\lambda = 460-470$ nm; distance app. 1.0 cm from the bulb) for 24 h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (PE/acetone: 30:1 to 20:1) furnishes the desired products **2**.

4.2 Dideuterodefluorination reaction

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with ethyl α,α -difluoroaryl acetate derivatives **1** (0.20 mmol), Ir(ppy)₃ (1.0 mol%), Cs₂CO₃ (2.0 equiv.), Et₃N (3.0 equiv.), **S1** (10 mol%). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of D₂O (40 equiv.) in DMF (2.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W Blue LED ($\lambda = 460-470$ nm; distance app. 1.0 cm from the bulb) for 24 h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (PE/acetone: 30:1 to 20:1) furnishes the desired products **3**. The Visible-Light Photoredox Catalysis Experimental Setup (photographed by author Li-Na Guo)

4.3 Applied Research

Large Scale Synthesis of 2a and 3a

$$\begin{array}{c} & \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ &$$

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with 2-(4-Biphenylyl)-2,2-difluoroacetate **1a** (1.0 mmol), Ir(ppy)₃ (5.0 mol%), Cs₂CO₃ (2.0 equiv.), **S1** (50 mol%). Then the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of D₂O (40 equiv.) in NMP (10 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W Blue LED ($\lambda = 460-470$ nm; distance app. 1.0 cm from the bulb) for 36 h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (PE/acetone = 30:1) furnishes the desired product **2a**.

$$\begin{array}{c} & \begin{array}{c} & & \\ & &$$

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with 2-(4-Biphenylyl)-2,2-difluoroacetate **1a** (1.0 mmol), $Ir(ppy)_3$ (5.0 mol%), Cs_2CO_3 (2.0 equiv.), Et₃N (3.0 equiv.) **S1** (50 mol%). Then the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of D₂O (40 equiv.) in DMF (10 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W Blue LED ($\lambda = 460-470$ nm; distance app. 1.0 cm from the bulb) for 24 h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. Purification of the crude product **3a**.

Selective hydrodefluorination of 1a

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with 2-(4-Biphenylyl)-2,2-difluoroacetate **1a** (0.2 mmol), $Ir(ppy)_3$ (1.0 mol%), Cs_2CO_3 (2.0 equiv.), **S1** (10 mol%). Then the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of H₂O (40 equiv.) in NMP (2.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W Blue LED ($\lambda = 460-470$ nm; distance app. 1.0 cm from the bulb) for 24 h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (PE/acetone = 30:1) furnishes the desired product **4a**.

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with 2-(4-Biphenylyl)-2,2-difluoroacetate **1a** (0.2 mmol), $Ir(ppy)_3$ (1.0 mol%), Cs_2CO_3 (2.0 equiv.), Et₃N (3.0 equiv.) **S1** (10 mol%). Then the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of D₂O (40 equiv.) in DMF (2.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W Blue LED ($\lambda = 460-470$ nm; distance app. 1.0 cm from the bulb) for 24 h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (PE/acetone = 30:1) furnishes the desired product **4b**.

Hydrolysis of 2a and 3a

In a 50 mL round bottom flask, **2a** (0.2 mmol, 1.0 equiv.) was added to a mixture of THF/D₂O (5/1, 2.0 mL) and LiOH (3.0 equiv.) and stirred for 10 h at room temperature. The reaction was then poured into 1 M HCl aq. to acidify to pH = 2, and the aqueous phase was extracted with EtOAc (3 \times 10 mL), washed with brine (10 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (PE/EtOAc = 5:1) to afford product **5a**.

In a 50 mL round bottom flask, **3a** (0.2 mmol, 1.0 equiv.) was added to a mixture of THF/D₂O (5/1, 2.0 mL) and LiOH (3.0 equiv.) and stirred for 10 h at room temperature. The reaction was then poured into 1 M HCl aq. to acidify to pH = 2, and the aqueous phase was extracted with EtOAc (3 \times 10 mL), washed with brine (10 mL), dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (PE/EtOAc = 5:1) to afford product **5b**. *Esterification of* **5a**

To a solution of **4a** (0.1 mmol), Isoxepac (0.12 mmol), and DMAP (5.0 mol%) in DCM (1.0 mL) at 0 °C was added DCC (0.24 mmol) in one portion. A precipitate began to form almost immediately. The reaction was stirred at 0 °C for 10 min and then warmed to room temperature. After completion as detected by TLC, the reaction was then diluted with pentane (5.0 mL) and filtered through a short plug of silica. The aqueous layer was extracted with EtOAc, the combined organic layer was dried over Na₂SO₄, filtered and concentrated under the reduced pressure. The residue was purified by column chromatography on silica gel (PE/EtOAc = 10:1) to afford product **6**.

Reduction and further esterification of 2a

To a solution of **2a** (0.2 mmol, 1.0 equiv.) in THF (2.0 mL) was added lithium aluminium tetrahydride (0.42 mmol, 2.1 equiv.) at room temperature. The reaction mixture was stirred at room temperature for 8 h. After completion as detected by TLC, the reaction was quenched with saturated NH₄Cl aqueous solution. The aqueous layer was extracted with EtOAc, the combined organic layer was dried over Na₂SO₄, filtered and concentrated under the reduced pressure. The residue was purified by column chromatography on silica gel (PE/EtOAc = 5:1) to afford product **7a**.

To a solution of **4a** (0.1 mmol), Isoxepac (0.12 mmol), and DMAP (5.0 mol%) in DCM (1.0 mL) at 0 °C was added DCC (0.24 mmol) in one portion. A precipitate began to form almost immediately. The reaction was stirred at 0 °C for 10 min and then warmed to room temperature. After completion as detected by TLC, the reaction was then diluted with pentane (5.0 mL) and filtered through a short plug of silica. The aqueous layer was extracted with EtOAc, the combined organic layer was dried over Na₂SO₄, filtered and concentrated under the reduced pressure. The residue was purified by column chromatography on silica gel (PE/EtOAc = 10:1) to afford product **7b**.

5. Mechanism Studies

5.1 Radical Inhibiting Experiments

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with **1a** (0.2 mmol), $Ir(ppy)_3$ (1.0 mol%), Cs_2CO_3 (2.0 equiv.), **S1** (10 mol%) and TEMPO (0.4 mmol, 2.0 equiv.). Then the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of D₂O (40 equiv.) in NMP (2.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W Blue LED ($\lambda = 460-470$ nm; distance app. 1.0 cm from the bulb) for 24 h.

After that, it was found that a trace amount of **2a** was observed, along with the TEMPO adduct **8a** was detected by LC-HRMS (HRMS (ESI) calcd for $C_{25}H_{32}FNO_3Na$ [M+Na]⁺ 436.2258, found 436.2274). This result indicates that a radical intermediate might be involved in this transformation. The results are shown in Figure S1.

Figure S1. LC-HRMS Spectra of 7a

Similarly, when 2.0 equiv. of BHT was subjected into the reaction of 1a with D_2O under the standard conditions, only a trace amount of 2a was observed. This result also indicates that a radical pathway might be involved in this transformation.

5.2 EPR Experiment

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with 2-(4-Biphenylyl)-2,2-difluoroacetate **1a** (0.2 mmol), $Ir(ppy)_3$ (1.0 mol%), Cs_2CO_3 (2.0 equiv.), S1 (10 mol%) and DMPO (5.0 equiv.). Then the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of D₂O (40 equiv.) in NMP (2.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W Blue LED ($\lambda = 460-470$ nm; distance app. 1.0 cm from the bulb) for 24 h.

When 5.0 equiv. of DMPO was subjected into the reaction of **1a** with D_2O under the standard conditions. It was found that only a trace amount of **2a** was observed, along with the DMPO adduct **9a** was detected by EPR and LC-HRMS (HRMS (ESI) calcd for $C_{25}H_{32}FNO_3Na$ [M]⁺ 370.1813, found 370.1816). This result indicates that a radical intermediate might be involved in this transformation. The results are shown in Figure S2 and Figure S3.

Figure S2. EPR Spectra of 8a

Figure S3. LC-HRMS Spectra of 8a

5.3 Transformation of 1a to 4a/5a without Ir(ppy)₃

A 10 mL oven-dried Schlenk-tube equipped with a magnetic stirrer was charged with **1a** (0.2 mmol), Cs₂CO₃ (2.0 equiv.), **S6** (1.2 equiv.). Then the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of H₂O (40 equiv.) in NMP (2.0 mL) was added by a syringe. The reaction mixture was stirred under the irradiation of a 10 W Blue LED ($\lambda = 460-470$ nm; distance app. 1.0 cm from the bulb) for 24 h. After that, the resulting mixture was quenched with H₂O and extracted with EtOAc (3 x 10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄, and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (PE/acetone: 30:1) furnishes the desired products **4a** and **4b**.

5.4 Stern-Volmer Fluorescence Quenching Experiments

To a solution of $Ir(ppy)_3$ in anhydrous, N_2 -saturated NMP (5 × 10⁻⁴ mol/L) in a quartz cuvette, different amounts of **S1** was added, and the resulting changes in fluorescence intensity (concentration of **S1**: 5 × 10⁻⁵ mol/L, 10 × 10⁻⁵ mol/L, 15 × 10⁻⁵ mol/L, 20 × 10⁻⁵ mol/L, 25 × 10⁻⁵ mol/L) were collected. The emission intensity at 536 nm was collected with excited wavelength of 460 nm. The results are shown in Figure S4.

Figure S4. (a) The fluorescence emission spectra of $Ir(ppy)_3$ with different concentration of 1a added. (b) The Stern–Volmer emission quenching studies of 1a. I_0 is the inherent fluorescence intensity of $Ir(ppy)_3$. I is the fluorescence intensity of $Ir(ppy)_3$ in the presence of 1a.

To a solution of **S6** anion (freshly prepared in situ by the deprotonation of **S6** with NaOH) in anhydrous, N_2 -saturated NMP (5 × 10⁻⁴ mol/L) in a quartz cuvette, different amounts of **1a** was added, and the resulting changes in fluorescence intensity (concentration of **1a** anion: 5 × 10⁻⁵ mol/L, 10 × 10⁻⁵ mol/L, 15 × 10⁻⁵ mol/L, 20 × 10⁻⁵ mol/L, 25 × 10⁻⁵ mol/L) were collected. The emission intensity at 536 nm was collected with excited wavelength of 460 nm. The results are shown in Figure S5.

b)

Figure S5. (a) The fluorescence emission spectra of S6 anion with different concentration of 1a added. (b) The Stern–Volmer emission quenching studies of 1a. I_0 is the inherent fluorescence intensity of S6 anion. I is the fluorescence intensity of S6 anion in the presence of 1a.

5.5 Light On-Off Experiments

a)

To further examine the impact of light, we conducted the reaction of 1a with D₂O under alternating periods of irradiation and darkness. The results are shown in Figure S6.

Figure S6. Yield of 2a with or without light irridiation

The results of light on-off experiments indicated that the reaction proceeded only

under the irradiation of light. Suggesting the reaction that proceeded via a catalytic process rather than a radical chain process.

5.6 Cyclic Voltammetry and UV/vis Absorption Experiments

Cyclic voltammetry was performed in a three-electrode cell connected to a Schlenk line at room temperature. A cyclic voltammograms in **1a** or **2a** by using glassy carbon as the working electrode, Pt wire as the counter electrode and Ag/AgCl as the reference electrode. The scan rate was 50 mV/s, ranging from 0 V to -4.0 V nBu4NBF4 (0.1 M) was used as the electrolyte, MeCN or DMF as the solvent.

Figure S7 Cyclic Voltammetry Experiments

The results of Cyclic voltammetry experiments indicated that the role of Et₃N in the reaction, adding Et₃N change the reduction potential of **1a** from $E_{red p/2} = -2.28$ V vs. SCE to $E_{red p/2} = -2.22$ V vs. SCE. Furthermore, Changing the reduction potential of 2a from $E_{red p/2}$ = -2.21 V vs. SCE to $E_{red p/2}$ = -2.17 V vs. SCE. The addition of Et₃N to the reaction substantially changed the CV profile of the 1a or 2a and made them reduced. easier be The results shown Figure S7. to are in

Cyclic voltammetry was performed in a three-electrode cell connected to a Schlenk line at room temperature. A cyclic voltammograms in S6 anion (generated in situ by the deprotonation of the S6 with 1.2 equiv. NaOH) by using glassy carbon as the working electrode, Pt wire as the counter electrode and Ag/AgCl as the reference electrode. The scan rate was 50 mV/s, ranging from 0 V to -4.0 V nBu4NPF6 (0.1M) was used as the electrolyte, dry MeCN as the solvent. The results are shown in Figure S8 and Figure S9.

Figure S8. Cyclic Voltammetry Experiments Figure S9. UV/vis absorption spectra of S6 anion

The results of Cyclic voltammetry experiments indicated that $E_{p/2}(\mathbf{S6}\cdot\mathbf{/S6}\cdot) = -0.16 \text{ V}$ vs SCE. With this data in hand, we calculated the redox potential of the excited S6 anion employing the following equation: ^[4]

$$E_{p/2}(\mathbf{S6^{-}/S6^{-}}) = E_{p/2}(\mathbf{S6^{-}/S6^{-}}) - E_{0-0}(\mathbf{S6^{-}/S6^{-}})$$

 $E_{p/2}(\mathbf{S6^{*}/S6^{\circ}}) = -0.16 \text{ V vs SCE}$, In the absence of vibrational structures, $E_{0.0}$ can be roughly estimated from the absorption.^[5] This corresponds to 395 nm, which translates into an $E_{0.0}(\mathbf{S6^{*-/S6^{\circ}}})$ of 3.17 eV for the S6 anion.

 $E_{p/2}(\mathbf{S6^{*}}/\mathbf{S6^{*}}) = E_{p/2}(\mathbf{S6^{*}}/\mathbf{S6^{*}}) - E_{0.0}(\mathbf{S6^{*}}/\mathbf{S6^{*}}) = -0.16 - 3.17 = -3.33 \text{ V vs SCE.}$

5.7 Proportions of 2a and 3a under Conditions A and B

In order to further investigate the proportion and conversion of products 2a and 3a under different conditions, we obtained the yields of products 1a and 2a at different reaction times. The results are shown in Figure S10.

Figure S10. Proportions of 2a and 3a under Conditions A and B

The competitive formations of 2a and 3a were detected under reaction conditions A and B, respectively (Figure S4). Under condition A, the yield of 2a gradually increased with time, while the yield of 3a remained below than 10% all the time. Under condition B, the yield of 3a gradually increased with time. Here, the yield of 2a can reach up to 31% and then it is converted to 3a with time.

5.8 Proposed mechanism (dideuterodefluorination)

Figure S11. Proposed mechanism (dideuterodefluorination)
6 Characterization of Products

Propyl 2-([1,1'-biphenyl]-4-yl)-2-fluoroacetate-d (2a)

Colorless oil (78%, 40.4 mg, 97% D); $R_f = 0.5$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.45 (m, 6H), 7.38 – 7.34 (m, 2H), 7.30 – 7.27 (m, 1H), 4.26 – 4.11 (m, 2H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7 (d, J = 27.6 Hz), 142.7 (d, J = 2.2 Hz), 140.4, 133.2 (d, J = 20.5 Hz), 129.0, 127.9, 127.6, 127.3, 127.2, 89.0 (dt, J = 183.1, 23.3 Hz), 62.0, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -179.36 – -180.04 (m); HRMS (ESI) calcd for C₁₆H₁₄FDO₂K [M+K]⁺ 298.0750, found 298.0763.

Cyclopropylmethyl 2-([1,1'-biphenyl]-4-yl)-2-fluoroacetate-d (2b)

Colorless oil (72%, 41.1 mg, 96% D); $R_f = 0.5$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.55 (m, 6H), 7.47 – 7.44 (m, 2H), 7.39 – 7.36 (m, 1H), 4.12 – 3.99 (m, 2H), 1.18 – 1.12 (m, 1H), 0.59 – 0.54 (m, 2H), 0.30 – 0.26 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9 (d, J = 27.4 Hz), 142.7 (d, J = 2.2 Hz), 140.4, 133.3 (d, J = 20.6 Hz), 129.0, 127.9, 127.6, 127.4, 127.3, 89.0 (dt, J = 183.8, 23.9 Hz), 70.8, 9.8, 3.51, 3.46; ¹⁹F NMR (376 MHz, CDCl₃) δ -177.47 – -181.66 (m); HRMS (ESI) calcd for C₁₈H₂₀FDNO₂ [M+NH₄]⁺ 303.1614, found 303.1608.

3-Methylbut-2-en-1-yl 2-([1,1'-biphenyl]-4-yl)-2-fluoroacetate-d (2c)

Colorless oil (63%, 37.7 mg, 96% D); $R_f = 0.5$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.56 (m, 6H), 7.46 – 7.42 (m, 2H), 7.38 – 7.34 (m, 1H), 5.34 – 5.30 (m, 1H), 4.76 – 4.59 (m, 2H), 1.73 (s, 3H), 1.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7 (d, J = 27.5 Hz), 142.7 (d, J = 2.2 Hz), 140.6, 140.5, 133.3 (d, J = 20.4 Hz), 129.0, 127.9, 127.6, 127.4, 127.3, 117.8, 89.0 (dt, J = 183.8, 22.8 Hz), 62.8, 25.9, 18.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -179.01 – -179.68 (m); HRMS (ESI) calcd for C₁₉H₁₈FDO₂Na [M+Na]⁺ 322.1324, found 322.1334.

But-3-yn-1-yl 2-([1,1'-biphenyl]-4-yl)-2-fluoroacetate-d (2d)

Colorless oil (65%, 36.8 mg, 97% D); $R_f = 0.5$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.47 (m, 6H), 7.38 (t, J = 7.6 Hz, 2H), 7.32 – 7.28 (m, 1H), 4.39 – 4.07 (m, 2H), 2.48 (t, J = 6.8 Hz, 2H), 1.89 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4 (d, J = 28.0 Hz), 142.8 (d, J = 2.2 Hz), 140.4, 132.9 (d, J = 20.5 Hz), 129.0, 127.9, 127.7, 127.4, 127.3, 89.2 (dt, J = 183.2, 18.2 Hz), 79.4, 70.4, 63.4, 19.0;

 ^{19}F NMR (376 MHz, CDCl₃) δ -179.76 - -180.43 (m); HRMS (ESI) calcd for $C_{18}H_{14}\text{FDO}_2\text{K}$ [M+K]+ 322.0750, found 322.0737.

Benzyl 2-([1,1'-biphenyl]-4-yl)-2-fluoroacetate-d (2e)

Colorless oil (58%, 37.2 mg, 97% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.53 (m, 6H), 7.49 – 7.45 (m, 2H), 7.41 – 7.31 (m, 6H), 5.21 (d, J = 12.0 Hz, 1H), 5.29 (d, J = 12.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.51 (d, J = 27.9 Hz), 142.76 (d, J = 2.1 Hz), 140.4, 135.0, 133.0 (d, J = 20.5 Hz), 129.0, 128.73, 128.66, 128.3, 127.9, 127.6, 127.4, 127.3, 89.0 (dt, J = 184.0, 24.2 Hz), 67.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -179.39 – -180.06 (m); HRMS (ESI) calcd for $C_{21}H_{16}FO_{2}D$ [M]⁺ 321.1270, found 321.1279.

2-([1,1'-Biphenyl]-4-yl)-2-fluoro-N-phenylacetamide-2-d (2f)

White solid (43%, 26.3 mg, 97% D); m.p.: 151-152 °C; $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.66 – 7.58 (m, 8H), 7.48 – 7.44 (m, 2H), 7.39 – 7.35 (m, 3H), 7.20 – 7.16 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5 (d, *J* = 20.7 Hz), 142.8 (d, *J* = 2.4 Hz), 140.5, 136.8, 133.4 (d, *J* = 19.1 Hz), 129.3, 129.0, 127.8, 127.7, 127.33, 127.28, 125.3, 120.2, 91.5 (dt, *J* = 188.2, 23.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -172.65 – -178.33 (m); HRMS (ESI) calcd for C₂₀H₁₅FDNONa [M+Na]⁺ 329.1171, found 329.1170.

Methyl (2-([1,1'-biphenyl]-4-yl)-2-fluoroacetyl)leucinate (2g)

White solid (51%, 36.5 mg, 92% D); m.p.: 65-66 °C; $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.55 (m, 5H), 7.52 – 7.43 (m, 3H), 7.39 – 7.35 (m, 1H), 4.74 – 4.68 (m, 1H), 3.78 (s, 1.5H), 3.74 (s, 1.5H), 1.75 – 1.62 (m), 1.00 (d, J = 2.8 Hz, 1.5H), 0.99 (d, J = 2.8 Hz, 1.5H), 0.94 (d, J = 6.0 Hz, 1.5H), 0.92 (d, J = 6.1 Hz, 1.5H); ¹³C NMR (100 MHz, CDCl₃) δ 172.96, 172.94, 168.52 (d, J = 22.2 Hz), 168.46 (d, J = 22.3 Hz), 142.65 (d, J = 12.2 Hz), 142.63 (d, J = 11.9 Hz), 140.53, 140.48, 133.60 (d, J = 19.1 Hz), 133.50 (d, J = 19.1 Hz), 128.95 (s), 127.76 (s), 127.70 (s), 127.63 (s), 127.30 (s), 127.19 (s), 91.41 (dt, J = 191.5, 21.6 Hz), 52.62 (s), 52.58 (s), 41.64 (s), 41.55 (s), 25.02 (s), 22.97 (s), 22.86 (s), 22.04 (s), 21.92 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -175.32 – -176.00 (m), -177.71 – -178.39 (m); HRMS (ESI) calcd for C₂₁H₂₃FDNO₃Na [M+Na]⁺ 381.1695, found 381.1698.

Ethyl 2-([1,1'-biphenyl]-3-yl)-2-fluoroacetate-d (2h)

Colorless oil (70%, 36.3 mg, 99% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (s, 1H), 7.65 – 7.59 (m, 3H), 7.51 – 7.44 (m, 4H), 7.40 – 7.35 (m,

1H), 4.35 - 4.19 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6 (d, J = 27.5 Hz), 142.0, 140.4, 134.8 (d, J = 20.8 Hz), 129.3, 129.0, 128.5 (d, J = 1.4 Hz), 127.8, 127.3, 125.5 (t, J = 5.7 Hz), 88.9 (dt, J = 184.6, 22.7 Hz), 62.0, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -179.92 - -180.60 (m); HRMS (ESI) calcd for C₁₆H₁₄FDO₂K [M+K]⁺ 298.0750, found 298.0746.

Ethyl 2-fluoro-2-(2-fluoro-[1,1'-biphenyl]-4-yl)acetate-d (2i)

Colorless oil (49%, 27.2 mg, 97% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.54 (m, 2H), 7.51 – 7.44 (m, 3H), 7.41 – 7.37 (m, 1H), 7.34 – 7.28 (m, 2H), 4.36 – 4.22 (m, 2H), 1.30 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2 (d, J = 26.9 Hz), 161.0, 158.5, 135.3 (dd, J = 21.0, 7.8 Hz), 135.1, 131.3 (d, J = 3.8 Hz), 130.5 (dd, J = 13.4, 1.8 Hz), 129.1 (d, J = 2.8 Hz), 128.7, 128.2, 122.5 (dd, J = 6.1, 3.5 Hz), 114.5 (dd, J = 24.7, 6.7 Hz), 88.4 (dt, J = 184.7, 25.0 Hz), 62.3, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.23 – -117.06 (t, J = 9.8 Hz), -181.41 – -182.30 (m); HRMS (ESI) calcd for C₁₆H₁₃F₂DO₂Na [M+Na]⁺ 300.0917, found 300.0923.

Ethyl 2-(2-chloro-[1,1'-biphenyl]-4-yl)-2-fluoroacetate-d (2j)

Colorless oil (58%, 34.0 mg, 98% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (s, 1H), 7.44 – 7.38 (m, 7H), 4.37 – 4.22 (m, 2H), 1.32 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1 (d, J = 27.0 Hz), 141.9 (d, J = 1.9 Hz), 138.7, 134.8 (d, J = 21.0 Hz), 133.1, 131.8, 129.5, 128.3, 128.2 (d, J = 6.7 Hz), 128.1, 125.0 (d, J = 6.1 Hz), 88.2 (dt, J = 185.4, 23.0 Hz), 62.4, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -181.52 – -182.17 (m); HRMS (ESI) calcd for C₁₆H₁₇FClDO₂N [M+NH₄]⁺ 311.1067, found 311.1077.

Ethyl 2-fluoro-2-(2-methyl-[1,1'-biphenyl]-4-yl)acetate-d (2k)

Colorless oil (51%, 27.9 mg, 97% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.2 Hz, 2H), 7.49 – 7.42 (m, 5H), 7.37 (d, J = 7.2 Hz, 1H), 4.37 – 4.18 (m, 2H), 2.51 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0 (d, J = 28.0 Hz), 142.6 (d, J = 2.7 Hz), 140.5, 137.1 (d, J = 3.7 Hz), 131.8 (d, J = 19.2 Hz), 129.8, 128.9, 128.0 (d, J = 6.5 Hz), 127.8, 127.3, 88.8 (dt, J = 185.2, 25.3 Hz), 62.0, 19.5, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -178.64 – -179.93 (m); HRMS (ESI) calcd for C₁₇H₁₆FDO₂K [M+K]⁺ 312.0906, found 312.0907.

Ethyl 2-(4'-(tert-butyl)-[1,1'-biphenyl]-4-yl)-2-fluoroacetate-d (2l)

Colorless oil (68%, 42.9 mg, 97% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 7.2 Hz, 2H), 7.56 – 7.52 (m, 4H), 7.48 (d, J = 7.2 Hz, 2H), 4.35 – 4.20 (m, 2H), 1.37 (s, 9H), 1.29 (t, J = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7 (d, J = 27.6 Hz), 151.0, 142.6, 137.5, 132.9 (d, J = 20.2 Hz), 127.5, 127.3 (d, J = 5.8 Hz), 126.9, 126.0, 87.2 (dt, J = 184.6, 22.5 Hz), 62.0, 34.7, 31.5, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -179.02 – -179.70 (m); HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₃FDO₂ 316.1818; Found: 316.1820. HRMS (ESI) calcd for C₂₀H₂₃FDO₂ [M+H]⁺ 316.1818, found 316.1820.

Ethyl 2-(4'-bromo-[1,1'-biphenyl]-4-yl)-2-fluoroacetate-d (2m)

Colorless oil (52%, 35.1 mg, 98% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.54 (m, 6H), 7.45 (d, J = 8.0 Hz, 2H), 4.35 – 4.2 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6 (d, J = 27.3 Hz), 141.4 (d, J = 2.0 Hz), 139.3, 133.7 (d, J = 20.3 Hz), 132.1, 128.9, 127.42, 127.37, 127.3, 122.2, 88.9 (dt, J = 182.6, 24.0 Hz), 62.1, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ - 179.95 – -180.62 (m); HRMS (ESI) calcd for C₁₆H₁₃BrFDO₂K [M+K]⁺ 375.9856, found 375.9854.

Ethyl 2-fluoro-2-(3'-methoxy-[1,1'-biphenyl]-4-yl)acetate-d (2n)

Colorless oil (77%, 44.5 mg, 97% D); $R_f = 0.5$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 7.6 Hz, 2H), 7.39 – 7.35 (m, 1H), 7.17 (d, J = 7.6 Hz, 1H), 7.12 (s, 1H), 6.92 (dd, J = 8.0 Hz, 1H), 4.33 – 4.22 (m, 2H), 3.87 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7 (d, J = 27.3 Hz), 160.1, 142.6, 141.9, 133.4 (d, J = 20.3 Hz), 130.0, 127.7, 127.2 (d, J = 5.8 Hz), 119.8, 113.2 (d, J = 14.2 Hz), 89.0 (dt, J = 185.4, 23.0 Hz), 62.1, 55.5, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -179.50 – -180.17 (m); HRMS (ESI) calcd for $C_{17}H_{16}FDO_{3}K$ [M+K]⁺ 328.0856, found 328.0848.

Ethyl 2-(2'-chloro-[1,1'-biphenyl]-4-yl)-2-fluoroacetate-d (20)

Colorless oil (51%, 29.9 mg, 97% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.47 (m, 5H), 7.33 – 7.29 (m, 3H), 4.36 – 4.21 (m, 2H), 1.30 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.62 (d, J = 27.4 Hz), 140.8 (d, J = 2.2 Hz), 139.8, 133.6 (d, J = 20.6 Hz), 132.6, 131.4, 130.2, 130.0, 129.0, 127.1, 126.5

(d, J = 6.z Hz), 88.9 (dt, J = 184.8, 22.5 Hz), 62.1, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -180.18 - -180.84 (m); HRMS (ESI) calcd for C₁₆H₁₇ClFDO₂ [M+NH₄]⁺ 311.1067, found 311.1059.

Ethyl 2-(3',5'-dimethyl-[1,1'-biphenyl]-4-yl)-2-fluoroacetate-d (2p)

Colorless oil (67%, 38.5 mg, 97% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 7.2 Hz, 2H), 7.20 (s, 2H), 7.02 (s, 1H), 4.35 – 4.2 (m, 2H), 2.39 (s, 6H), 1.29 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7 (d, J = 27.7 Hz), 143.0 (d, J = 4.4 Hz), 140.5, 138.5, 133.0 (d, J = 20.6 Hz), 129.5, 127.7, 127.2 (d, J = 5.9 Hz), 125.2, 89.4 (dt, J = 184.3, 24.1 Hz), 62.0, 21.5, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -179.15 – -179.83 (m); HRMS (ESI) calcd for C₁₈H₁₈FDO₂Na [M+Na]⁺ 310.1324, found 310.1313.

Ethyl 2-(9,9-dimethyl-9H-fluoren-2-yl)-2-fluoroacetate-d (2q)

Colorless oil (58%, 34.7 mg, 98% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 6.4 Hz, 2H), 7.55 (s, 1H), 7.45 – 7.44 (m, 2H), 7.37 – 7.35 (m, 2H), 4.35 – 4.21 (m, 2H), 1.50 (s, 6H), 1.28 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9 (d, J = 27.9 Hz), 154.2 (d, J = 23.7 Hz), 140.9 (d, J = 2.2 Hz), 138.4, 133.1 (d, J = 20.2 Hz), 128.0, 127.2, 126.0 (d, J = 5.9 Hz), 122.8, 121.2 (d, J = 5.8 Hz), 120.4 (d, J = 15.3 Hz), 89.5 (dt, J = 182.6, 24.0 Hz), 61.9, 47.1, 27.2, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -177.13 – -177.80 (m); HRMS (ESI) calcd for C₁₉H₁₈FDO₂Na [M+Na]⁺ 322.1324, found 322.1317.

Ethyl 2-fluoro-2-(4-(thiophen-2-yl)phenyl)acetate-d (2r)

Colorless oil (56%, 29.7 mg, 97% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.6 Hz, 2H), 7.48 (d, J = 7.6 Hz, 2H), 7.35 – 7.31 (m, 2H), 7.10 – 7.09 (m, 1H), 4.33 – 4.19 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.6 (d, J = 27.6 Hz), 143.5, 135.8 (d, J = 2.3 Hz), 133.3 (d, J = 20.3 Hz), 128.3, 127.4 (d, J = 5.9 Hz), 126.3, 125.6, 123.9, 88.9 (dt, J = 184.2, 4.6 Hz), 62.1, 14.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -179.74 – -180.42 (m); HRMS (ESI) calcd for C₁₄H₁₃FDO₂S [M+H]⁺ 266.0756, found 266.0749.

3,7-Dimethyloct-6-en-1-yl 2-([1,1'-biphenyl]-4-yl)-2-fluoroacetate-d (2s)

Colorless oil (49%, 36.2 mg, 96% D, dr = 1:1); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.53 (m, 6H), 7.45 (t, J = 7.2 Hz, 2H), 7.39 – 7.36

(m, 1H), 5.05 (t, J = 7.2 Hz, 1H), 4.26 – 4.23 (m, 2H), 1.95 – 1.89 (m, 2H), 1.69 – 1.65 (m, 4H), 1.59 – 1.57 (m, 3H), 1.46 – 1.42 (m, 2H), 1.29 – 1.28 (m, 1H), 1.16 – 1.14 (m, 1H), 0.87 (t, J = 5.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8 (d, J = 27.5 Hz), 142.7 (d, J = 1.9 Hz), 140.4, 133.3 (d, J = 20.6 Hz), 131.6, 129.0, 127.9, 127.6, 127.27, 127.26 (d, J = 1.4 Hz), 127.2, 124.6, 89.0 (dt, J = 184.8, 16.7 Hz), 64.5, 37.0, 35.4, 29.5, 29.5, 25.8, 25.5, 19.5, 19.4, 17.8; ¹⁹F NMR (376 MHz, CDCl₃) δ - 179.62 – -180.42 (m); HRMS (ESI) calcd for C₂₄H₂₉FDO₂ [M+H]⁺ 370.2287, found 370.2288.

2-Isopropyl-5-methylcyclohexyl 2-([1,1'-biphenyl]-4-yl)-2-fluoroacetate-d (2t)

Colorless oil (61%, 45.0 mg, 99% D, dr = 1:1); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.54 (m, 6H), 7.48 – 7.45 (m, 2H), 7.40 – 7.36 (m, 1H), 4.86 – 4.74 (m, 1H), 2.07 – 1.88 (m, 1H), 1.692 – 1.61 (m, 2H), 1.48 – 1.28 (m, 3H), 1.11 – 0.97 (m, 2H), 0.92 – 0.84 (m, 5.5H), 0.78 (d, *J* = 5.6 Hz, 1.5H), 0.69 (d, *J* = 5.6 Hz, 1.5H), 0.53 (d, *J* = 5.2 Hz, 1.5H); ¹³C NMR (100 MHz, CDCl₃) δ 168.45 (d, *J* = 8.6 Hz), 168.2 (d, *J* = 7.9 Hz), 142.7 (d, *J* = 2.1 Hz), 142.5 (d, *J* = 2.2 Hz), 140.5, 140.4, 129.0, 127.8, 127.53, 127.50, 127.4 (d, *J* = 5.5 Hz), 127.3, 127.2 (d, *J* = 6.0 Hz), 89.02 (dt, *J* = 183.3, 24.6 Hz), 88.99 (dt, *J* = 182.8, 23.5 Hz), 76.2, 47.1, 47.0, 40.8, 40.4, 34.22, 34.19, 31.52, 31.47, 26.3, 25.8, 23.5, 23.3, 22.1, 22.0, 20.8, 20.7, 16.3, 16.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -178.34 – -179.81 (m); HRMS (ESI) calcd for C₂₄H₂₉FDO [M+H]⁺ 370.2287, found 370.2289.

((3aS,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5b:4',5'-d]pyran-3a-yl)methyl 2-([1,1'-biphenyl]-4-yl)-2-fluoroacetate-d (2u)

Colorless oil (52%, 49.2 mg, 96% D, dr = 1:1); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.53 (m, 6H), 7.47 – 7.44 (m, J = 7.2 Hz, 2H), 7.40 – 7.36 (m, 1H), 4.63 – 4.6 (m, 1H), 4.52 – 4.48 (m, 1H), 4.33 – 4.14 (m, 3H), 3.92 – 3.52 (m, 3H), 1.52 (s, 3H), 1.49 – 1.47 (m, 3H), 1.34 – 1.20 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0 (d, J = 4.5 Hz), 142.9, 140.4, 132.8 (d, J = 20.0 Hz), 129.0, 127.9, 127.74, 127.72, 127.67, 127.6 (d, J = 5.6 Hz), 127.3, 109.4, 109.3, 109.19, 109.15, 101.3, 101.2, 89.7 (dt, J = 183.4, 23.3Hz), 70.90, 70.87, 70.4, 70.11, 70.10, 66.0, 65.9, 61.5, 42.7, 34.1, 26.6, 26.0, 25.2, 25.0, 24.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -177.76 – -178.70 (m); HRMS (ESI) calcd for C₂₆H₂₉FDO₇ [M+H]⁺ 474.203, found 474.2045.

10,13-Dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl-2-([1,1'-biphenyl]-4-yl)-2fluoroacetate-d (2v)

White solid (50%, 59.9 mg, 99% D, dr = 1:1); m.p.: 95-96 °C; $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.54 (m, 6H), 7.47 – 7.44 (m, 2H), 7.39 – 7.35 (m, 1H), 5.39 (s, 0.5H), 5.35 (s, 0.5H), 4.77 – 4.75 (m, 1H), 2.40 – 2.27 (m, 2H), 2.03 – 1.79 (m, 6H), 1.59 – 1.47 (m, 8H), 1.35 – 1.25 (m, 5H), 1.12 – 1.06 (m, 6H), 1.02 – 0.98 (s, 5H), 0.93 – 0.86 (m, 8H), 0.70 – 0.67 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1 (d, *J* = 27.2 Hz), 142.6 (d, *J* = 2.1 Hz), 140.4, 139.2 (d, *J* = 5.7 Hz), 133.4 (d, *J* = 20.3 Hz), 129.0, 127.8, 127.6, 127.3, 127.2, 123.3 (d, *J* = 5.0 Hz), 87.2 (dt, *J* = 183.4, 21.8 Hz) 75.9, 56.8, 56.2, 50.1, 42.4, 39.8, 39.7, 38.0, 37.8, 37.0, 36.9, 36.7, 36.3, 35.9, 32.01, 31.95, 28.4, 28.2, 27.8, 27.6, 24.4, 24.0, 23.0, 22.7, 21.2, 19.4, 18.9, 12.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -178.95 – -179.61 (m); HRMS (ESI) calcd for C₄₁H₅₄FDO₂K [M+K]⁺ 638.3880, found 638.3862.

(4-(2-Ethoxy-1-fluoro-2-oxoethyl-1-d)-[1,1'-biphenyl]-2-yl)methyl-2-(4-isobutylphenyl)propanoate (2w)

Colorless oil (52%, 49.6 mg, 99% D, dr = 1:1); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 9.2 Hz, 2H), 7.33 – 7.32 (m, 4H), 7.21 – 7.19 (m, 4H), 7.12 (d, J = 6.8 Hz, 2H), 5.04 (d, J = 12.4 Hz, 1H), 4.98 (d, J = 12.4 Hz, 1H), 4.35 – 4.24 (m, 2H), 3.73 (q, J = 7.6 Hz, 1H), 2.47 (d, J = 5.6 Hz, 2H), 1.89 – 1.83 (m, 1H), 1.49 (d, J = 6.8 Hz, 3H), 1.31 (t, J = 6.4 Hz, 3H), 0.90 (d, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 174.3, 168.5 (d, J = 27.2 Hz), 143.6 (d, J = 5.6 Hz), 143.58 (d, J = 5.6 Hz), 140.8, 139.6, 137.6, 134.1, 133.7, 133.5, 130.7, 129.5, 129.1, 128.4, 127.7, 127.4, 126.4 (d, J = 5.6 Hz), 126.2 (d, J = 5.7 Hz), 88.8 (dt, J = 181.9, 23.2 Hz), 64.4, 62.1, 45.22, 45.16, 30.3, 22.5, 18.5, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -179.44 – -180.55 (m); HRMS (ESI) calcd for C₃₀H₃₂FDO₄K [M+K]⁺ 516.2057, found 516.2062.

Ethyl 2-([1,1'-biphenyl]-4-yl)acetate-d₂ (3a)

Colorless oil (86%, 41.6 mg, 98% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.60 (m, 4H), 7.49 – 7.46 (m, 2H), 7.42 – 7.36 (m, 3H), 4.22 (q, J = 7.2 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 140.9, 140.1, 133.2, 129.7, 128.8, 127.4, 127.3, 127.1, 61.0, 41.9 – 40.2 (m), 14.3; HRMS (ESI) calcd for C₁₆H₁₈D₂O₂N [M+NH₄]⁺ 260.1614, found 260.1605.

Cyclopropylmethyl 2-([1,1'-biphenyl]-4-yl)acetate-d₂ (3b)

Colorless oil (80%, 42.9 mg, 98% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 4H), 7.47 – 7.34 (m, 5H), 3.98 (d, J = 7.2 Hz, 2H), 1.20 – 1.13 (m, 1H), 0.59 (d, J = 6.8 Hz, 2H), 0.31 (d, J = 2.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 140.9, 140.1, 133.3, 129.8, 128.9, 127.41, 127.36, 127.2, 69.8, 42.2 – 40.0 (m), 9.9, 3.4; HRMS (ESI) calcd for C₁₈H₁₆D₂O₂K [M+K]⁺ 307.1064, found 307.1054.

3-methylbut-2-en-1-yl 2-([1,1'-biphenyl]-4-yl)acetate-d₂ (3c)

Colorless oil (73%, 41.2 mg, 98% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.55 (m, 4H), 7.46 – 7.42 (m, 2H), 7.38 – 7.33 (m, 3H), 5.36 (t, J = 6.8 Hz, 1H), 4.62 (d, J = 6.8 Hz, 2H), 1.77 (s, 3H), 1.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 141.0, 140.2, 139.4, 133.2, 129.8, 128.9, 127.44, 127.38, 127.2, 118.6, 62.0, 41.04 – 40.66 (m), 25.9, 18.2; HRMS (ESI) calcd for C₁₉H₁₈D₂O₂K [M+K]⁺ 321.1220, found 321.1216.

But-3-yn-1-yl 2-([1,1'-biphenyl]-4-yl)acetate-d₂ (3d)

White solid (69%, 36.7 mg, 98% D); m.p.: 64-65 °C; $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.56 (m, 4H), 7.46 – 7.43 (m, 2H), 7.39 – 7.34 (m, 3H), 4.24 (t, J = 6.2 Hz, 2H), 2.55 (t, J = 6.0 Hz, 2H), 1.28 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 140.9, 140.3, 132.9, 129.8, 128.9, 127.5, 127.4, 127.2, 62.7, 40.9 – 39.9 (m), 19.1; HRMS (ESI) calcd for C₁₈H₁₄D₂O₂ [M]⁺ 266.1270, found 266.1261.

Benzyl 2-([1,1'-biphenyl]-4-yl)acetate-d₂ (3e)

White solid (75%, 45.6 mg, 96% D); m.p.: 72-73 °C; $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.57 (m, 4H), 7.48 – 7.44 (m, 2H), 7.40 – 7.35 (m, 8H), 5.18 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 140.9, 140.3, 136.0, 133.0, 129.8, 128.9, 128.7, 128.4, 128.3, 127.5, 127.4, 127.2, 66.8, 41.2 – 40.1 (m); HRMS (ESI) calcd for C₂₁H₂₀D₂O₂N [M+NH₄]⁺ 322.1771, found 322.1789.

2-([1,1'-biphenyl]-4-yl)-*N*-phenylacetamide-2,2-d₂ (3f)

White solid (75%, 43.4 mg, 96% D); m.p.: 133-134 °C; $R_f = 0.5$ (PE/acetone = 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.60 (m, 4H), 7.48 – 7.37 (m, 6H), 7.31 – 7.29 (m, 2H), 7.11 – 7.06 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 140.8, 140.6, 137.7, 133.4, 130.1, 129.1, 129.0, 128.1, 127.7, 127.2, 124.7, 120.0, 42.8 – 42.1 (m); HRMS (ESI) calcd for C₂₀H₁₅D₂ON [M]⁺ 289.1430, found 289.1425.

Methyl (2-([1,1'-biphenyl]-4-yl)acetyl)leucinate-d₂ (3g)

White solid (73%, 49.8 mg, 95% D); m.p.: 67-68 °C; $R_f = 0.5$ (petroleum ether/acetone = 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.2 Hz, 4H), 7.46 – 7.43 (m, 2H), 7.36 – 7.35 (m, 3H), 5.87 (d, J = 6.8 Hz, 1H), 4.67 – 4.63 (m, 1H), 3.71 (s, 3H), 1.63 – 1.47 (m, 3H), 0.91 – 0.88 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 170.8, 140.7, 140.4, 133.6, 129.9, 128.9, 127.8, 127.5, 127.2, 52.4, 50.9, 43.2 – 42.2 (m), 41.6, 25.0, 22.9, 22.1; HRMS (ESI) calcd for C₁₈H₁₈F₂O₂N [M+Na]⁺ 364.1852, found 364.1860.

Ethyl 2-([1,1'-biphenyl]-3-yl)acetate-d₂ (3h)

Colorless oil (81%, 39.2 mg, 97% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 6.8 Hz, 2H), 7.56 – 7.32 (m, 2H), 7.48 – 7.36 (m, 4H), 7.32 – 7.31 (m, 1H), 4.20 (q, J = 6.8 Hz, 2H), 1.30 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 141.7, 141.1, 134.7, 129.2, 128.9, 128.3, 127.5, 127.4, 126.1, 61.1, 41.6 – 40.5 (m), 14.4; HRMS (ESI) calcd for C₁₆H₁₄D₂O₂Na [M+Na]⁺ 265.1168, found 265.1156.

Ethyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)acetate-d₂ (3i)

Colorless oil (71%, 36.9 mg, 96% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.2 Hz, 2H), 7.47 – 7.36 (m, 4H), 7.15 – 7.12 (m, 2H), 4.20 (q, J = 6.8 Hz, 2H), 1.30 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 160.9, 158.5, 135.6, 135.4 (d, J = 8.1 Hz), 130.9 (d, J = 3.9 Hz), 129.1 (d, J = 2.8 Hz), 128.5, 127.9 (d, J = 13.4 Hz), 127.8, 125.4 (d, J = 2.9 Hz), 117.1 (d, J = 23.6 Hz), 61.2, 40.8 – 4.1 (m), 14.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -117.93 (t, J = 9.8 Hz). HRMS (ESI) calcd for C₁₆H₁₄FD₂O₂ [M+H]⁺ 261.1254, found 261.1255.

Ethyl 2-(2-chloro-[1,1'-biphenyl]-4-yl)acetate-d₂ (3j)

Colorless oil (65%, 35.9 mg, 96% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 6H), 7.33 (d, J = 7.6 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 4.22 (q, J = 7.2 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 139.4, 139.2, 134.8, 132.6, 131.6, 130.8, 129.6, 128.2, 127.9, 127.7, 61.3, 40.6 – 40.0 (m), 14.3; HRMS (ESI) calcd for C₁₆H₁₃ClD₂O₂Na [M+Na]⁺ 299.0778, found 299.0769.

Ethyl 2-(4'-(*tert*-butyl)-[1,1'-biphenyl]-4-yl)acetate-d₂ (3k)

Colorless oil (79%, 47.1 mg, 97% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.55 (m, 4H), 7.50 (d, J = 7.2 Hz, 2H), 7.38 (d, J = 6.8 Hz, 2H), 4.21 (q, J = 6.8 Hz, 2H), 1.40 (s, 9H), 1.31 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 150.4, 134.0, 138.0, 132.9, 129.7, 127.3, 126.8, 125.8, 61.0, 41.3 – 40.1 (m), 34.6, 31.5, 14.3; HRMS (ESI) calcd for C₂₀H₂₂D₂O₂Li [M+Li]⁺ 305.2056, found 305.2070.

Ethyl 2-(3'-methoxy-[1,1'-biphenyl]-4-yl)acetate-d₂ (3l)

Colorless oil (83%, 45.2 mg, 96% D); $R_f = 0.4$ (PE/acetone = 30:1); ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.46 (m, 2H), 7.28 (d, J = 6.0 Hz, 3H), 7.09 (d, J = 6.8 Hz, 1H), 7.03 (s, 1H), 6.81 (d, J = 8.0 Hz, 1H), 4.09 (q, J = 6.8 Hz, 2H), 3.78 (s, 3H), 1.19 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 160.1, 142.5, 140.0, 133.4, 129.9, 129.7, 127.5, 119.7, 112.9, 112.8, 61.0, 55.4, 41.1 – 40.1 (m), 14.3; HRMS (ESI) calcd for C₁₇H₁₆D₂O₃ [M]⁺ 272.1376, found 272.1375.

Ethyl 2-(2'-chloro-[1,1'-biphenyl]-4-yl)acetate-d₂ (3m)

Colorless oil (66%, 36.4 mg, 97% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.45 (m, 3H), 7.42 – 7.29 (m, 5H), 4.23 (q, J = 7.2 Hz, 2H), 1.33 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 140.2, 138.2, 133.5, 132.5, 131.4, 130.0, 129.7, 129.0, 128.8, 128.6, 127.4, 127.1, 126.9, 61.0, 41.2 – 40.2 (m), 14.3; HRMS (ESI) calcd for C₁₆H₁₇ClD₂O₂N [M+NH₄]⁺ 294.1224, found 294.1234.

Ethyl 2-(3',5'-dimethyl-[1,1'-biphenyl]-4-yl)acetate-d₂ (3n)

Colorless oil (78%, 42.1 mg, 97% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 6.0 Hz, 2H), 7.40 (d, J = 6.4 Hz, 2H), 7.25 (s, 2H), 7.04 (s, 1H), 4.23 (q, J = 7.2 Hz, 2H), 2.43 (s, 6H), 1.33 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 140.9, 140.3, 138.3, 133.0, 129.6, 129.0, 127.4, 125.1, 61.0, 41.1 – 40.1 (m), 21.5, 14.3; HRMS (ESI) calcd for C₁₈H₁₈D₂O₂Li [M+Li]⁺ 277.1743, found 277.1744.

Ethyl 2-(9,9-dimethyl-9H-fluoren-2-yl)acetate-d₂ (30)

Colorless oil (68%, 38.4 mg, 98% D); $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.71 (m, 2H), 7.47 (d, J = 6.4 Hz, 1H), 7.4 (m, 1H), 7.37 – 7.30 (m, 3H), 4.22 (q, J = 7.2 Hz, 2H), 1.53 (s, 6H), 1.31 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 154.1, 153.8, 139.0, 138.3, 133.2, 128.1, 127.3, 127.1, 123.7, 122.6, 120.1, 120.0, 60.9, 46.9, 41.4 – 40.8 (m), 27.2, 14.3; HRMS (ESI) calcd for C₁₉H₁₈D₂O₂Li [M+Li]⁺ 289.1743, found 289.1757.

2-Isopropyl-5-methylcyclohexyl 2-([1,1'-biphenyl]-4-yl)acetate-d₂ (3p)

Colorless oil (66%, 46.5 mg, 97% D, dr = 1:1); $R_f = 0.5$ (PE/acetone = 50:1); ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.57 (m, 4H), 7.47 (t, J = 7.2 Hz, 2H), 7.38 (d, J = 7.2 Hz, 3H), 4.76 – 4.70 (m, 2H), 2.07 (s, 1H), 2.03 (d, J = 12.0 Hz, 1H), 1.94 – 1.87 (m, 1H), 1.81 – 1.77 (m, 1H), 1.69 (s, 1H), 1.51 (s, 1H), 1.40 (t, J = 10.8 Hz, 1H), 1.08 – 1.00 (m, 1H), 0.93 (d, J = 6.0 Hz, 3H), 0.88 (d, J = 6.8 Hz, 3H), 0.80 (d, J = 6.8 Hz, 1H), 0.73 (d, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 170.8, 141.0, 140.0, 133.5, 129.7, 128.9, 127.4, 127.2, 74.9, 47.2, 40.9, 41.1 – 40.8 (m), 34.4, 31.5, 26.3, 23.5, 22.2, 20.9, 16.4; HRMS (ESI) calcd for C₂₄H₂₈D₂O₂Na [M+Na]⁺ 375.2264, found 375.2257.

10,13-Dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17 tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 2-([1,1'-biphenyl]-4 yl)acetate-d2 (3q)

White solid (50%, 58.2 mg, 96% D); m.p.: 98-99 °C; $R_f = 0.4$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.60 (m, 4H), 7.48 (t, J = 7.2 Hz, 2H), 7.42 – 7.36 (m, 3H), 5.42 (s, 1H), 4.74 – 4.67 (m, 1H), 2.39 (d, J = 7.2 Hz, 2H), 2.08 – 1.90 (m,

6H), 1.71 – 1.49 (m, 8H), 1.40 – 1.30 (m, 5H), 1.18 – 1.14 (m, 6H), 1.09 – 1.04 (m, 5H), 0.98 – 0.92 (m, 8H), 0.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 140.9, 140.0, 139.7, 133.4, 129.7, 128.9, 127.4, 127.3, 127.2, 122.8, 74.6, 56.8, 56.2, 50.1, 42.4, 41.2 – 40.6 (m), 39.8, 39.6, 38.2, 37.1, 36.7, 36.3, 35.9, 32.01, 31.96, 28.4, 28.1, 27.9, 24.4, 24.0, 23.0, 22.7, 21.2, 19.5, 18.9, 12.0; HRMS (ESI) calcd for C₄₁H₅₄D₂O₂ [M]⁺ 582.4400, found 582.4415.

(4-(2-Ethoxy-2-oxoethyl-1,1-d2)-[1,1'-biphenyl]-2-yl)methyl-2-(4-isobutylphenyl)propanoate (3r)

Colorless oil (67%, 61.7 mg, 96% D); $R_f = 0.3$ (PE/acetone = 40:1); ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.32 (m, 4H), 7.28 – 7.22 (m, 6H), 7.14 (d, J = 7.2 Hz, 2H), 5.02 (q, J = 12.4 Hz, 2H), 4.22 (q, J = 6.0 Hz, 2H), 3.75 (q, J = 6.0 Hz, 1H), 2.50 (d, J = 6.4 Hz, 2H), 1.97 – 1.82 (m, 1H), 1.51 (d, J = 6.0 Hz, 3H), 1.32 (t, J = 7.2 Hz, 3H), 0.94 (d, J = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 171.6, 141.2, 140.7, 140.1, 137.7, 133.5, 133.4, 130.5, 130.4, 129.5, 129.2, 129.1, 128.3, 127.4, 127.4, 64.7, 61.1, 45.2, 45.2, 41.1 – 40.2 (m), 30.3, 22.5, 18.5, 14.3; HRMS (ESI) calcd for $C_{30}H_{32}D_2O_4Na$ [M+Na]⁺ 483.2475, found 483.2489.

Ethyl 2-([1,1'-biphenyl]-4-yl)-2-fluoroacetate (4a)^[1]

Colorless oil (79%, 40.8 mg); $R_f = 0.5$ (PE/acetone = 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.55 (m, 6H), 7.48 – 7.37 (m, 2H), 7.40 – 7.33 (m, 1H), 5.84 (d, J = 47.6 Hz, 1H), 4.36 – 4.21 (m, 2H), 1.30 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.7 (d, J = 27.4 Hz), 142.7 (d, J = 2.2 Hz), 140.4, 133.3 (d, J = 20.5 Hz), 129.0, 127.8, 127.6, 127.3, 127.2, 90.3, 88.4, 62.0, 14.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -179.38 (d, J = 47.8 Hz). Characterization data consistent with reported data^[1].

Ethyl 2-([1,1'-biphenyl]-4-yl)acetate (4b)^[3b]

Colorless oil (82%, 39.4 mg); $R_f = 0.5$ (PE/acetone = 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.56 (m, 4H), 7.47 – 7.43 (m, 2H), 7.39 – 7.34 (m, 3H), 4.19 (q, J = 6.8 Hz, 2H), 3.67 (s, 2H), 1.29 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 140.9, 140.1, 133.2, 129.7, 128.8, 127.4, 127.3, 127.1, 61.0, 41.1, 14.3. Characterization data consistent with reported data^[3b].

2-([1,1'-biphenyl]-4-yl)-2-fluoroacetic-2-d acid (5a)

White solid (80%, 33.7 mg, 89% D); m.p.: 131-132 °C; $R_f = 0.5$ (PE/acetone = 4:1); ¹H NMR (400 MHz, DMSO- d_6) δ 7.75 – 7.67 (m, 4H), 7.56 (d, J = 7.6 Hz, 2H), 7.50 -7.46 (m, 1H), 7.41 -7.37 (m, 1H); ¹⁹F NMR (376 MHz, DMSO) δ -175.62 - -176.28 (m); ¹³C NMR (100 MHz, DMSO) δ 169.8 (d, J = 27.0 Hz), 141.3 (d, J = 2.3 Hz), 139.5, 134.1 (d, J = 19.9 Hz), 129.0, 127.9, 127.6 (d, J = 5.4 Hz), 127.1, 126.8, 88.17 (dt, J = 177.1, 20.6 Hz); HRMS (ESI) calcd for C₁₄H₁₀FDO₂K [M+K]⁺ 270.0437, found 270.0425.

2-([1,1'-Biphenyl]-4-yl)acetic-2,2-d₂ acid (5b)

White solid (82%, 35.1 mg, 90% D); $R_f = 0.5$ (PE/EtOAc = 4:1); ¹H NMR (400 MHz, DMSO) δ 12.31 (s, 1H), 7.58 – 7.52 (m, 4H), 7.39 – 7.36 (m, 2H), 7.28 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.1, 140.4, 139.0, 134.7, 130.4, 129.4, 127.8, 127.0. Characterization data consistent with reported data^[3a].

(2R,5S)-5-methyl-2-(prop-1-en-2-yl)cyclohexyl-2-([1,1'-biphenyl]-4-yl)-2-fluoroacetate-d (6)

Colorless oil (80%, 29.4 mg, 89% D); $R_f = 0.5$ (PE/EtOAc = 25:1); ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.58 (m, 4H), 7.52 – 7.44 (m, 4H), 7.39 – 7.36 (m, 1H), 4.94 – 4.85 (m, 1H), 4.74 (d, J = 7.2 Hz, 1H), 4.42 (d, J = 26.4 Hz, 1H), 2.18 – 2.02 (m, 1H), 1.93 – 1.91 (m, 1H), 1.75 – 1.68 (m, 1H), 1.65 (s, 3H), 1.58 – 1.57 (m, 1H), 1.40 (s, 3H), 1.37–1.30 (m, 1H), 1.09 – 1.01 (m, 1H), 0.94– 1.30 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0 (d, J = 27.4 Hz), 168.0 (d, J = 26.8 Hz), 145.7, 145.1, 142.40, 142.38, 140.5, 140.4, 133.4 (d, J = 20.2 Hz), 133.3 (d, J = 20.1 Hz), 128.9, 127.7, 127.7, 127.4, 127.3, 127.32, 127.25, 112.3, 112.1, 88.99 (dt, J = 154.8, 22.4 Hz), 88.98 (dt, J = 155.9, 21.7 Hz), 75.4, 75.3, 50.6, 50.5, 40.3, 39.9, 34.9, 34.0, 33.9, 31.36, 30.5, 30.3, 25.5, 24.7, 22.0, 21.9, 19.4, 19.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -178.48 – -179.93 (m); HRMS (ESI) calcd for C₂₄H₂₆FDO₂K [M+K]⁺ 406.1689, found 406.1698.

2-([1,1'-Biphenyl]-4-yl)-2-fluoroethan-2-d-1-ol (7a)

White solid (86%, 37.3 mg, 92% D); m.p.: 97-98 °C; $R_f = 0.5$ (PE/EtOAc = 4:1); ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.62 (m, 4H), 7.49 – 7.41 (m, 5H), 4.05 – 3.85 (m, 2H), 2.44 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 141.88 (d, J = 1.3 Hz), 140.6, 135.5, 135.3, 129.0, 127.7, 127.4, 127.2, 126.4, 126.3, 94.37 (dt, J = 170.0, 23.5 Hz), 66.47 (d, J = 24.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -186.17 – -187.00 (m); HRMS (ESI) calcd for C₁₄H₁₂FDONa [M+Na]⁺ 240.0905, found 240.0910.

2-([1,1'-Biphenyl]-4-yl)-2-fluoroethyl-2-d-2-(11-oxo-6,11dihydrodibenzo[b,e]oxepin-2-yl)acetate (7b)

Colorless oil (88%, 41.1 mg, 92% D); $R_f = 0.5$ (PE/EtOAc = 4:1); ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.90 (d, J = 7.2 Hz, 1H), 7.61 – 7.54 (m, 5H), 7.49 – 7.35 (m, 8H), 7.03 (d, J = 8.0 Hz, 1H), 5.17 (s, 2H), 4.51 – 4.37 (m, 2H), 3.73 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 190.9, 171.3, 160.7, 142.1, 140.5 (d, J = 5.6 Hz), 136.5, 135.7, 134.7 (d, J = 19.8 Hz), 132.9, 132.7, 129.6, 129.4, 129.0, 127.9, 127.7, 127.5, 127.3, 126.4 126.4, 125.3, 121.3, 91.1 (dt, J = 175.9, 23.2 Hz), 73.7, 67.3, 67.0, 40.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -183.90 – -184.73 (m); HRMS (ESI) calcd for $C_{30}H_{22}FDO_4Li$ [M+Li]⁺ 474.1798, found 474.1778.

7. References

- S. Mizuta, I. S. R. Stenhagen, M. O'Duill, J. Wolstenhulme, A. K. Kirjavainen, S. J. Forsback, M. Tredwell, G. Sandford, P. R. Moore, M. Huiban, S. K. Luthra, J. Passchier, O. Solin and V. Gouverneur, *Org. Lett.* 2013, 15, 2648-2651.
- 2. Z.-H. Yuan, H. Xin, L. Zhang, P. Gao, Xu. Yang, X.-H. Duan and L.-N. Guo, *Green Chem.* **2023**, 25, 6733-6738.
- 3. (a) M. Peng, H. Li, Z. Qin, J. Li, Y. Sun, X. Zhang, L. Jiang, D. Hainam and J. An, Adv. Synth. Catal. 2022, 364, 2184-2186; (b) Y. Lan, D.-G. Yu, Chem. Sci. 2018, 9, 4873-4878.
- 4. M. Silvi, E. Arceo, I. D. Jurberg, C. Cassani, P. Melchiorre, J. Am. Chem. Soc. 2015, 137, 6120-6123.
- 5. L. Buzzetti, G. E. M. Crisenza, P. Melchiorre, Angew. Chem., Int. Ed. 2019, 58, 3730-3747.

8. ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra of Products 2, 3 - 7 and

Materials 1

¹H, ¹³C NMR and ¹⁹F spectra for compound 2a (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 2c (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 2d (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 2e (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 2g (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 2i (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 2k (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 2m (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 2n (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 20 (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 2q (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 2r (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 2s (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 2t (Chloroform-d)

7.656 7.658 7.638 7.555 7.5555 7.5555 7.5555 7.5555 7.5603 7.5555 7.5555 7.564 7.5364 7.337 7.337 7.337 7.337 7.337 7.337 7.337 7.337 7.337 7.337 7.337 7.337 7.337 7.337 7.337 7.337 7.337 7.337 7.364 1.663 1.6033 0.0530 0.540 0.5710.571

¹H, ¹³C NMR and ¹⁹F spectra for compound 2u (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 2v (Chloroform-d)

7.648 7.610 7.555 7.537 1.909 1.5261

¹H, ¹³C NMR and ¹⁹F spectra for compound 2w (Chloroform-d)

¹H and ¹³C NMR spectra for compound 3g (Chloroform-d)

¹H and ¹³C NMR spectra for compound 3j (Chloroform-d)

¹H and ¹³C NMR spectra for compound 3k (Chloroform-d)

¹H and ¹³C NMR spectra for compound 3l (Chloroform-d)

¹H and ¹³C NMR spectra for compound 3m (Chloroform-d)

¹H and ¹³C NMR spectra for compound 3n (Chloroform-d)

¹H and ¹³C NMR spectra for compound 3p (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 4a (Chloroform-d)

¹H, ¹³C and ¹⁹F NMR NMR spectra for compound 5a (DMSO-d₆)

¹H and ¹³C NMR spectra for compound 5b (DMSO-d₆)

¹H, ¹³C NMR and ¹⁹F spectra for compound 6 (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 5a (Chloroform-d)

141.885 141.872 141.872 135.464 135.267 135.267 135.267 128.950 127.437 127.437 127.437 127.437 127.437 127.437 127.437 127.437 127.437 127.437 127.437 127.437 126.332 95.454 93.753 93.282 66.598 66.538

¹H, ¹³C NMR and ¹⁹F spectra for compound 5b (Chloroform-d)

11.2 ¹H NMR, ¹³C NMR and ¹⁹F NMR Spectra of material 1

¹H, ¹³C NMR and ¹⁹F spectra for compound 1b (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 1c (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 1e (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 1g (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 1i (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 1k (Chloroform-d)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹H, ¹³C NMR and ¹⁹F spectra for compound 1m (Chloroform-d)

5.0 fl (ppm) 10.0 9.5 9.0 6.5 4.0 3.5 3.0 2. 5 0.0 8.5 7. 0 6.0 5.5 4. 5 1.5 1.0 0.5 2.0 8.0

¹H, ¹³C NMR and ¹⁹F spectra for compound 10 (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 1p (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 1q (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 1s (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 1u (Chloroform-d)

¹H, ¹³C NMR and ¹⁹F spectra for compound 1v (Chloroform-d)

7.679 7.679 7.613 7.613 7.613 7.613 7.595 7.467 7.392 7.332 1.235 1.2321

