Supporting information

A Ligand assisted Manganese-enabled Direct C-H Difluoromethylation of Arenes

Kehan Zhou^{*a*}, Shuang Xia^{*a*}, Yuheng Xiao^{*a*}, Zhibin Huang^{*a*}, Jingyu Zhang^{*b*}, Yingsheng Zhao^{*a*}*

^a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, P. R. China. E-mail: <u>yszhao@suda.edu.cn</u>

^b College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China. E-mail: <u>jyzhang@suda.edu.cn</u>

Table of Contents

1.	Reagents			2
2.	Instruments			2
3.	Preparation of starting materials			2
4.	Screening of ligand			5
5.	Screening of solvent			6
6.	Synthetic Application			6
7.	Gram-scale synthesis			7
8.	Synthesis of Mn complex			8
9.	Radical trapping experiments			9
10.). Light ON-OFF experiments			9
11.	. KIE experiments			10
12.	. General Procedure for difluoromethylation of arenes			10
13.	Reference			34
14.	Copies	of	NMR	spectra
	36			

1. Reagents

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. Column chromatography purifications were performed using 200–300 mesh silica gel.

2. Instruments

NMR spectra were recorded on Varian Inova–400 MHz, Inova–300 MHz, Bruker DRX–400 or Bruker DRX–500 instruments and calibrated using residual solvent peaks as internal reference. Multiplicities are recorded as: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, t = triplet, m = multiplet. HRMS analysis were carried out using a Bruker microTOF–Q instrument or a TOF–MS instrument.

3. Preparation of starting materials

3.1 Synthesis of bromofluoromethyl reagents

2a, 2b and 2c was prepared according to reported methods.¹

Step 1: Thiophenol (**S1**, 20 mmol, 1.0 equiv.) diluted in THF (10 mL) was slowly added to a suspension of 60% NaH (30 mmol, 1.5 equiv.) in anhydrous THF (40 mL) at 0 °C over a period of 30 minutes under nitrogen atmosphere. The mixture was cooled to -60 °C for 1 h, then CF_2Br_2 (60 mmol, 3.0 equiv.) diluted in THF (10 mL) was added portionwise, and stirred for 3 h at -60 °C. Then the reaction mixture was slowly warmed to room temperature and stirred overnight. The reaction was cooled in an ice-water bath and the excess of NaH was quenched by dropwise addition of water. The aqueous phase was extracted with EtOAc (3 x 60 mL), the combined organic layers washed with water (3 x 60 mL), brine (100 mL), and dried over Na₂SO₄. After the removal of the solvent under reduced pressure, the crude product was purified by flash column chromatography to give a colorless liquid of intermediate **S2**.

Step 2: To a solution of intermediate **S2** in DCM (40 mL) was slowly added *m*-CPBA (3.0 equiv.) at 0 °C, and the reaction was stirred at 50 °C for 4 h. Then the reaction mixture was concentrated, dissolved in EtOAc (100 mL) and washed with 10 % NaOH (100 mL), saturated NaCl (100 mL) and dried over Na_2SO_4 . The solvent was removed in vacuo and the residue was by flash column chromatography to give target product **2**.

3.2 Synthesis of 2-((bromodifluoromethyl)sulfonyl)benzo[d]thiazole

2d was prepared according to reported methods.²

Step 1: A dry flask was evacuated and backfilled with N_2 for 3 times. NaH (33 mol) followed by DMF (80 mL) was added at 0 °C. Then **S3** (30 mol, 1.0 equiv.) in DMF (20 mL) was added dropwise with

syringe at 0°C, and then the mixture was stirred at r. t. for 0.5 h. $CHClF_2$ gas was bubbled to the system for 1 h. The mixture was stirred at r. t for 12 h. After the reaction was complete, the mixture was quenched dropwise by H₂O at 0°C. The mixture was extracted with Et₂O for 3 times. Then the organic phase was combined and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel to provide S4.

Step 2: To a flask add **S4** (20 mmol, 1.0 equiv.), MeCN (20 mL), CCl₄ (20 mL), H₂O (40 mL), and RuCl₃·xH₂O (5 mol%) were added. Then NaIO₄ (50 mol, 2.5 equiv.) was added. The mixture was stirred at r. t for 12 h. After the reaction was complete, the mixture was neutralized by saturated aq. NaHCO₃. After filtration, the filter residue was washed with EtOAc. The filtrate mixture was extracted with EtOAc for 3 times. Then the organic phase was combined and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel to provide **S5**.

Step 3: Sulfone **S5** (5 mmol, 1.0 equiv.) and NBS (15 mmol, 3.0 equiv.) were added to a dry Schlenk tube. The flask was evacuated and backfilled with pure N₂ for 3 times. Then THF (20 mL) was added with syringe under N₂ atmosphere. The mixture was cooled to -78 °C, LiHMDS (1.0 M in THF, 15 mmol, 15 mL, 3.0 equiv.) was added with syringe under N₂ atmosphere in 15 min. The mixture was stirred at -78 °C for 3 h. After the reaction was complete, the mixture was quenched by saturated aq. NH₄Cl (10 mL). After the mixture was warmed to r. t., the aqueous layer was extracted with Et₂O for 3 times. Then the organic phase was combined and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel to provide the 2-((bromodifluoromethyl)sulfonyl)benzo[*d*]thiazole **2d**.

3.3 Synthesis of difluoromethyl-2-pyridyl sulfone

2e was prepared according to reported methods.^{1,2}

Step 1: Thiophenol (**S6**, 20 mmol, 1.0 equiv.) diluted in THF (10 mL) was slowly added to a suspension of 60% NaH (30 mmol, 1.5 equiv.) in anhydrous THF (40 mL) at 0 °C over a period of 30 minutes under nitrogen atmosphere. The mixture was cooled to -60 °C for 1 h, then CF_2Br_2 (60 mmol, 3.0 equiv.) diluted in THF (10 mL) was added portionwise, and stirred for 3 h at -60 °C. Then the reaction mixture was slowly warmed to room temperature and stirred overnight. The reaction was cooled in an ice water bath and the excess of NaH was quenched by dropwise addition of water. The aqueous phase was extracted with EtOAc (3 x 60 mL), the combined organic layers washed with water (3 x 60 mL), brine (100 mL),

and dried over Na_2SO_4 . After the removal of the solvent under reduced pressure, the crude product was purified by flash column chromatography to give a colorless liquid of intermediate **S7**.

Step 2: To a flask **S7** (20 mmol, 1.0 equiv.), MeCN (20 mL), CCl₄ (20 mL), H₂O (40 mL), and RuCl₃·xH₂O (5 mol%) were added. Then NaIO₄ (50 mol, 2.5 equiv.) was added. The mixture was stirred at r. t for 12 h. After the reaction was complete, the mixture was neutralized by saturated aq. NaHCO₃. After filtration, the filter residue was washed with EtOAc. The filtrate mixture was extracted with EtOAc f or 3 times. Then the organic phase was combined and dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel to provide target product.

3.4 Synthesis of ^{*i*}Boc-protected anilines ³

A solution of isobutyl chloroformate (2.2 mL, 1.7 equiv.) in 20 mL of DCM was cooled to 0 °C, and a solution of aniline (10 mmol) and triethylamine (1.8 mL, 1.3 equiv.) in 10 mL of DCM was added dropwise. The mixture was warmed to room temperature and stirred overnight. The mixture was extracted with EA (20 mL x 3), dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give the corresponding product as a white solid with >90% yield.

4. Screening of Ligand

^{*a*} Standard condition: **1a** (0.2 mmol), **2a** (0.6 mmol), Mn₂(CO)₁₀ (10 mmol%), K₂CO₃ (2 equiv), Ligand (15 mmol%), DCE (2 mL), 40 °C, 36 h. ^{*b*} Yield were based on GC analysis using tridecane as an internal standard. **2a**: *p*-ClPhSO₂CF₂Br.

5. Screening of Solvent

MeO F F MeO 1a 2a	Br K_2CO_3 (2.0 equiv) Solvent, White LEDs MeO 3	
Entry	Solvent	Yield (%)
1	DCE	72
2	DCM	81
3	CCl ₄	-
4	CHCI ₃	65
5	MeCN	48
6	DMF	54
7	1,4-Dioxane	45
8	MeOH	51
9	MTBE	45

~

^{*a*} Standard condition: **1a** (0.2 mmol), **2a** (0.6 mmol), Mn₂(CO)₁₀ (10 mmol%), K₂CO₃ (2 equiv), DavePhos (15 mmol%), Solvent (2 mL), 40 °C, 36 h. ^{*b*} Yield were based on GC analysis using tridecane as an internal standard. **2a**: *p*-ClPhSO₂CF₂Br.

6. Synthetic Application

6.1 Reductive desulfonylation reaction ¹

A suspension of magnesium turnings (120 mg, 5 mmol) in MeOH (3 mL) was treated with dibromoethane (10 μ L) in MeOH (3 mL), and the mixture was stirred for a few minutes until evolution of H₂ started. And then, the solution of **3** (0.2 mmol) in DCM (5 mL) was added dropwise, and the mixture was stirred for 3 h at r. t. The solvent was evaporated, and the residue was treated with saturated aqueous NH₄Cl, extracted with EA (10 mL) for 3 times. The organic layers was dried by anhydrous Na₂SO₄. The solvent

was evaporated, and the residue was purified by flash column chromatography to afford the corresponding product 6.

6.2 Synthesis of aryldifluoromethyl ether ⁴

A mixture of **3** (0.24 mmol, 1.2 equiv), arylthiols or diphenyl diselenide (0.2 mmol), Cs_2CO_3 (2 equiv), DMA (2 mL) in a 15 mL glass vial sealed at r. t under Blue LEDs irradiation for 24 h. The reaction mixture cooled to room temperature and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the product **7**.

7. Gram-scale synthesis

To an oven-dried 100 mL sealed flask, $Mn_2(CO)_{10}$ (5 mol%), DavePhos (15 mol%), $K_2CO_3(2 \text{ equiv.})$, 1,2-dimethoxybenzene (5 mmol), 1-((bromodifluoromethyl)sulfonyl)-4-chlorobenzene (3 equiv.), DCE (50 mL) were added and the flask was backfilled with nitrogen. The resulting reaction mixture was vigorously stirred under the irradiation of white LEDs (distance app. 4.0 cm from the bulb) at 40 °C for 48 h. After the reaction finished, the solvent was removed under vacuum, and the resulting residue was purified by flash column chromatography to afford the corresponding product in 1.25 g, 78 % yield.

To an oven-dried 100 mL sealed flask, $Mn_2(CO)_{10}$ (5 mol%), DavePhos (15 mol%), $K_2CO_3(2 \text{ equiv.})$, 2,6-dimethoxypyridine (5 mmol), 1-((bromodifluoromethyl)sulfonyl)-4-chlorobenzene (3 equiv.), DCE (50 mL) were added and the flask was backfilled with nitrogen. The resulting reaction mixture was vigorously stirred under the irradiation of white LEDs (distance app. 4.0 cm from the bulb) at 40 °C for 48 h. After the reaction finished, the solvent was removed under vacuum, and the resulting residue was purified by flash column chromatography to afford the corresponding product in 1.25 g, 78% yield.

To an oven-dried 100 mL sealed flask, $Mn_2(CO)_{10}$ (5 mol%), DavePhos (15 mol%), $K_2CO_3(2 \text{ equiv.})$, isobutyl (2,5-dimethylphenyl) carbamate (5 mmol), 1-((bromodifluoromethyl)sulfonyl)-4chlorobenzene (3 equiv.), DCE (50 mL) were added and the flask was backfilled with nitrogen. The resulting reaction mixture was vigorously stirred under the irradiation of white LEDs (distance app. 4.0 cm from the bulb) at 40 °C for 48 h. After the reaction finished, the solvent was removed under vacuum, and the resulting residue was purified by flash column chromatography to afford the corresponding product in 1.31 g, 79.6 % yield.

To an oven-dried 100 mL sealed flask, $Mn_2(CO)_{10}$ (5 mol%), DavePhos (15 mol%), $K_2CO_3(2 \text{ equiv.})$, Gemfibrozil-ester (5 mmol), 1-((bromodifluoromethyl)sulfonyl)-4-chlorobenzene (3 equiv.), DCE (50 mL) were added and the flask was backfilled with nitrogen. The resulting reaction mixture was vigorously stirred under the irradiation of white LEDs (distance app. 4.0 cm from the bulb) at 40 °C for 48 h. After the reaction finished, the solvent was removed under vacuum, and the resulting residue was purified by flash column chromatography to afford the corresponding product in 1.08 g, 74 % yield.

8. Synthesis of Mn complex ⁵

 $[Mn(CO)_3(1,2-dimethoxybenzene)]BF_4$ was prepared by a modified procedure.⁵ $Mn(CO)_5Br$ (1.0 g) and AgBF₄ (1.1 equiv) were dissolved in 50 mL of CH₂Cl₂ and refluxed for 2 h under N₂ in the dark. The 1,2-dimethoxybenzene (2 equiv) in 10 mL of CH₂Cl₂ was then added and the reaction mixture refluxed overnight. After it was cooled to room temperature, the solution was filtered through Celite and and concentrated to ca. 20 mL in vacuo and the product precipitated with diethyl ether. The Yellow $[Mn(CO)_3(1,2-dimethoxybenzene)]BF_4$ salts were washed repeatedly with ether and dried in vacuo. Yellow solid.

9. Radical trapping experiments

10. Light ON-OFF experiments

11. KIE experiments

12. General Procedure for difluoromethylation of arenes

A mixture of Arenes (1, 0.2 mmol), bromofluoromethyl reagent (2, 0.2 mmol), $Mn_2(CO)_{10}$ (10 mol%), K_2CO_3 (0.4 mol, 2 equiv), DavePhos (15 mol%) and DCM (2 mL) in a 15 mL glass vial sealed was heated at 40 °C under white LEDs irradiation for 36 hours. The reaction mixture cooled to room temperature and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel to give the product.

4-(((4-chlorophenyl)sulfonyl)difluoromethyl)-1,2-dimethoxybenzene, (3a), Yield: 81% ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.54 (d, *J* = 8.6 Hz, 2H), 7.20 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.06 (d, *J* = 1.9 Hz, 1H), 6.92 (d, *J* = 8.5 Hz, 1H), 3.87 (d, *J* = 4.4 Hz, 6H). **¹⁹F NMR** (377 MHz, CDCl₃) δ -100.7.

¹³C NMR (101 MHz, CDCl₃) δ 152.5, 149.0, 142.2, 132.2, 131.4, 129.7, 122.0 (t, $J_{C-F} = 287.3$ Hz), 121.4 (t, $J_{C-F} = 6.5$ Hz), 117.9 (t, $J_{C-F} = 22.8$ Hz), 110.8, 110.2 (t, $J_{C-F} = 5.9$ Hz), 56.1, 56.0. HRMS Calcd for C₁₅H₁₃ClF₂O₄S [M+Na⁺]: 385.0083; Found: 385.0075.

2-(((4-chlorophenyl)sulfonyl)difluoromethyl)-1-methoxy-4-methylbenzene, **(3b), Yield: 59% ¹H NMR** (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 8.7 Hz, 2H), 7.30 (d, *J* = 7.9 Hz, 2H), 6.85 (d, *J* = 8.2 Hz, 1H), 3.70 (s, 3H), 2.32 (s, 3H).

¹⁹F NMR (377 MHz, CDCl₃) δ -97.0.

¹³C NMR (101 MHz, CDCl₃) δ 156.7, 143.3, 142.0, 132.4, 132.3, 131.2, 129.4, 127.0 (t, $J_{C-F} = 7.8$ Hz), 122.7 (t, $J_{C-F} = 289.2$ Hz), 114.2 (t, $J_{C-F} = 20.1$ Hz), 112.4, 56.2, 34.3, 31.4.

HRMS Calcd for C₁₅H₁₃ClF₂O₃S [M+Na⁺]: 369.0134; Found: 369.0141.

4-(tert-butyl)-2-(((4-chlorophenyl)sulfonyl)difluoromethyl)-1-methoxybenzene, (3c), Yield: 63% ¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.5 Hz, 2H), 7.58 – 7.48 (m, 3H), 7.41 (d, *J* = 2.5 Hz, 1H), 6.90 (d, *J* = 8.8 Hz, 1H), 3.74 (s, 3H), 1.28 (s, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -97.2.

¹³C NMR (101 MHz, CDCl₃) δ 156.7, 143.3, 142.0, 132.4, 132.3, 131.2, 129.5, 127.0 (t, $J_{C-F} = 7.8$ Hz), 122.7 (t, $J_{C-F} = 289.2$ Hz), 114.2 (t, $J_{C-F} = 20.1$ Hz), 112.4, 56.2, 34.3, 31.4.

1-(3-(((4-chlorophenyl)sulfonyl)difluoromethyl)-4-methoxyphenyl)ethan-1-one, (3d), Yield: 48% ¹H NMR (400 MHz, CDCl₃) δ 8.15 (dd, *J* = 8.8, 2.2 Hz, 1H), 8.11 (d, *J* = 2.2 Hz, 1H), 7.90 (d, *J* = 8.6 Hz, 2H), 7.58 (d, *J* = 8.7 Hz, 2H), 7.04 (d, *J* = 8.8 Hz, 1H), 3.86 (s, 3H), 2.58 (s, 3H). **¹⁹F NMR** (377 MHz, CDCl₃) δ -97.3.

¹³C NMR (101 MHz, CDCl₃) δ 195.6, 162.4, 142.4, 134.7, 132.3, 132.0, 131.3 (t, $J_{C-F} = 7.9$ Hz), 130.0, 129.7, 122.1 (t, $J_{C-F} = 289.8$ Hz), 115.1 (t, $J_{C-F} = 21.1$ Hz), 112.4, 56.5, 26.4. HRMS Calcd for C₁₆H₁₃ClF₂O₄S [M+Na⁺]: 397.0083; Found: 397.0091.

2-(((4-chlorophenyl)sulfonyl)difluoromethyl)-1,4-dimethoxybenzene, (3e), Yield: 51% ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 8.7 Hz, 2H), 7.05 (dt, *J* = 5.0, 3.0 Hz, 2H), 6.90 (d, *J* = 8.8 Hz, 1H), 3.78 (s, 3H), 3.69 (s, 3H). **¹⁹F NMR** (377 MHz, CDCl₃) δ -97.2.

¹³**C NMR** (101 MHz, CDCl₃) δ 153.3, 153.0 (t, $J_{C-F} = 2.3$ Hz), 142.1, 132.3, 132.3, 129.5, 122.3 (t, $J_{C-F} = 290.5$ Hz), 120.0, 115.5 (t, $J_{C-F} = 20.6$ Hz), 114.9 (t, $J_{C-F} = 8.2$ Hz), 114.3, 56.8, 56.0.

HRMS Calcd for $C_{15}H_{13}ClF_2O_4S$ [M+Na⁺]: 385.0083; Found: 385.0085.

methyl 2-(((4-chlorophenyl)sulfonyl)difluoromethyl)-3,4,5-trimethoxybenzoate, (3f), Yield: 44% ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.6 Hz, 2H), 7.56 (d, *J* = 8.6 Hz, 2H), 6.77 (s, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 3.85 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -87.0.

¹³C NMR (101 MHz, CDCl₃) δ 168.3, 156.6, 153.9 (t, $J_{C-F} = 3.5$ Hz), 143.9, 141.9, 133.5, 132.1, 130.1 (*t*, $J_{C-F} = 4.0$ Hz), 129.5, 122.9 (t, $J_{C-F} = 292.2$ Hz), 112.4 (t, $J_{C-F} = 20.5$ Hz), 107.5, 62.0, 61.0, 56.4, 53.0. HRMS Calcd for C₁₈H₁₇ClF₂O₇S [M+Na⁺]: 473.0244; Found: 473.0252.

1-(((4-chlorophenyl) sulfonyl) difluoromethyl)-2, 4-dimethoxybenzene, (3g), Yield: 70%

¹**H NMR** (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.5 Hz, 2H), 7.54 (d, *J* = 8.6 Hz, 2H), 7.42 (d, *J* = 8.8 Hz, 1H), 6.55 (d, *J* = 8.6 Hz, 1H), 6.45 (s, 1H), 3.83 (s, 3H), 3.70 (s, 3H).

¹⁹F NMR (377 MHz, CDCl₃) δ -96.6.

¹³C NMR (101 MHz, CDCl₃) δ 164.6, 160.3, 141.9, 132.3, 131.6 (t, $J_{C-F} = 7.9$ Hz), 129.4, 122.8 (t, $J_{C-F} = 288.7$ Hz), 107.1 (t, $J_{C-F} = 21.3$ Hz), 105.1, 99.5, 56.0, 55.7.

HRMS Calcd for $C_{15}H_{13}ClF_2O_4S$ [M+Na⁺]: 385.0083; Found: 385.0079.

1-chloro-4-((difluoro(phenyl)methyl)sulfonyl)benzene, (3h), Yield: 43%

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.7 Hz, 2H), 7.66 (d, *J* = 7.6 Hz, 2H), 7.60 (d, *J* = 8.7 Hz, 3H), 7.51 (t, *J* = 7.6 Hz, 2H).

¹⁹F NMR (377 MHz, CDCl₃) δ -101.8.

¹³**C NMR** (101 MHz, CDCl₃) δ 142.5, 132.6, 132.3, 132.1, 131.2, 130.1, 130.0, 128.6, 127.8 (t, $J_{C-F} = 6.1$ Hz), 126.3 (t, $J_{C-F} = 22.0$ Hz), 121.8 (t, $J_{C-F} = 286.3$ Hz).

HRMS Calcd for C₁₃H₉ClF₂O₂S [M+Na⁺]: 324.9872; Found: 324.9879.

2-(((4-chlorophenyl)sulfonyl)difluoromethyl)-1,4-dimethylbenzene, (3i), Yield: 48%

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, J = 8.6 Hz, 2H), 7.63 (d, J = 8.6 Hz, 2H), 7.35 (s, 1H), 7.28 (d, J = 7.8 Hz, 1H), 7.20 (d, J = 7.8 Hz, 1H), 2.56 (t, J = 3.4 Hz, 3H), 2.38 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -95.8.

¹³**C NMR** (101 MHz, CDCl₃) δ 156.9, 156.2, 156.2, 153.5, 153.1, 123.6, 117.1, 117.1, 113.9, 113.9, 56.7, 56.1.

HRMS Calcd for C₁₅H₁₃ClF₂O₂S [M+Na⁺]: 353.0185; Found: 353.0190.

2-(((4-chlorophenyl)sulfonyl)difluoromethyl)-1,3,5-trimethylbenzene, (3j), Yield: 46%

¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.6 Hz, 2H), 7.53 (d, *J* = 8.7 Hz, 2H), 6.87 (s, 2H), 2.48 (t, *J* = 5.0 Hz, 6H), 2.22 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -87.4.

¹³C NMR (101 MHz, CDCl₃) δ 142.3, 142.2, 140.8 (t, $J_{C-F} = 3.1$ Hz), 132.3, 131.9, 129.8, 125.3 (t, $J_{C-F} = 290.1$ Hz), 120.5 (t, $J_{C-F} = 18.5$ Hz), 22.5 (t, $J_{C-F} = 6.6$ Hz), 21.1.

HRMS Calcd for C₁₆H₁₅ClF₂O₂S [M+Na⁺]: 367.0342; Found: 367.0331 .

1-Bromo-2-(((4-chlorophenyl)sulfonyl)difluoromethyl)-4,5-dimethoxybenzene, (3k), Yield: 55%. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.6 Hz, 2H), 7.62 (d, *J* = 8.6 Hz, 2H), 7.14 (s, 1H), 7.08 (s, 1H), 3.95 (s, 3H), 3.92 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -96.1.

¹³C NMR (101 MHz, CDCl₃) δ 152.4, 148.2, 142.6, 132.5, 131.5, 129.9, 121.6 (t, *J* = 288.5 Hz), 118.0, 117.5 (t, *J* = 21.4 Hz), 113.3 (t, *J* = 7.6 Hz), 56.5, 56.4.

HRMS Calcd for C₁₅H₁₂ClBrF₂O₄S [M+Na⁺]: 462.9194; Found: 462.9201.

methyl 5-(((4-chlorophenyl)sulfonyl)difluoromethyl)furan-2-carboxylate, (3l), Yield: 86% ¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.7 Hz, 2H), 7.67 – 7.48 (m, 2H), 7.26 – 7.14 (m, 1H), 7.00

(d, *J* = 3.7 Hz, 1H), 3.86 (s, 3H).

¹⁹F NMR (377 MHz, CDCl₃) δ -102.5.

¹³**C NMR** (101 MHz, CDCl₃) δ 158.1, 148.0, 143.2, 142.4 (t, *J* = 31.5 Hz), 132.4, 130.7, 130.1, 118.4, 117.2, 116.6 (t, *J*_{C-F} = 287.1 Hz), 52.6.

HRMS Calcd for C₁₄H₁₂F₂O₅S [M+Na⁺]: 353.0266; Found: 353.0270.

3-(((4-chlorophenyl)sulfonyl)difluoromethyl)-2,6-dimethoxypyridine, (3m), Yield: 85% ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.7 Hz, 2H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.57 (d, *J* = 8.7 Hz, 2H), 6.39 (d, *J* = 8.4 Hz, 1H), 3.95 (s, 3H), 3.87 (s, 3H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -98.2. ¹³**C NMR** (101 MHz, CDCl₃) δ 166.0, 161.6, 142.2, 141.9 (t, $J_{C-F} = 6.7$ Hz), 132.3, 132.1, 129.6, 122.2 (t, $J_{C-F} = 288.0$ Hz), 102.1, 99.9 (t, $J_{C-F} = 23.3$ Hz), 54.1, 54.0. **HRMS** Calcd for C₁₄H₁₂ClF₂NO₄S [M+Na⁺]: 386.0036; Found: 386.0044.

2-(((4-chlorophenyl)sulfonyl)difluoromethyl)-5-methylthiophene, (3n), Yield: 64%

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.6 Hz, 2H), 7.62 (d, *J* = 8.6 Hz, 2H), 7.36 (d, *J* = 3.7 Hz, 1H), 6.85 (dd, *J* = 2.3, 1.1 Hz, 1H), 2.57 (d, *J* = 0.9 Hz, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -92.5.

¹³C NMR (101 MHz, CDCl₃) δ 147.5, 142.5, 132.6 (t, $J_{C-F} = 5.4$ Hz), 132.4, 129.9, 120.7 (t, $J_{C-F} = 286.1$ Hz), 126.4, 123.6 (t, $J_{C-F} = 27.3$ Hz), 15.6.

HRMS Calcd for C₁₂H₉ClF₂O₂S₂ [M+Na⁺]: 344.9593; Found: 344.9587.

1-(5-(((4-Chlorophenyl)sulfonyl)difluoromethyl)-1-ethyl-1H-pyrrol-2-yl)ethan-1-one, (30), Yield: 71%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.69 – 7.51 (m, 2H), 6.92 (d, *J* = 4.2 Hz, 1H), 6.51 (d, *J* = 4.3 Hz, 1H), 4.14 (s, 3H), 3.83 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -96.4.

¹³C NMR (101 MHz, CDCl₃) δ 161.1, 142.7, 132.2, 131.2, 129.9, 128.3, 123.3 (t, $J_{C-F} = 28.5$ Hz), 119.4 (t, $J_{C-F} = 286.4$ Hz), 116.9, 115.1 (t, $J_{C-F} = 5.2$ Hz), 51.7, 34.8.

HRMS (ESI) Calcd for C₁₅H₁₄ClF₂NO₃S [M+Na⁺]: 384.0249; Found: 384.0255.

5,7-bis(((4-chlorophenyl)sulfonyl)difluoromethyl)-2,3-dihydrothieno[3,4-b][1,4]dioxine, (3p), Yield: 74%.

¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.88 (m, 4H), 7.69 – 7.54 (m, 4H), 4.28 (s, 4H). ¹⁹F NMR (377 MHz, CDCl₃) δ -94.9.

¹³C NMR (101 MHz, CDCl₃) δ 143.7, 142.9, 132.5, 131.0 (t, $J_{C-F} = 118.52$ Hz), 130.0, 120.1 (t, $J_{C-F} = 288.5$ Hz), 106.0 (t, $J_{C-F} = 29.8$ Hz), 64.7.

HRMS Calcd for C₂₀H₁₂Cl₂F₄O₆S₃ [M+Na⁺]: 612.9001; Found: 612.9013.

isobutyl (4-(((4-chlorophenyl)sulfonyl)difluoromethyl)-2-methoxyphenyl)carbamate, (3q), Yield:

75%

¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.6 Hz, 2H), 7.59 (d, J = 8.7 Hz, 2H), 7.40 (s, 1H), 7.22 (dd, J = 8.6, 1.6 Hz, 1H), 7.10 (d, J = 1.7 Hz, 1H), 3.98 (d, J = 6.7 Hz, 2H), 3.93 (s, 3H), 0.98 (d, J = 6.7 Hz, 6H).

 ^{19}F NMR (377 MHz, CDCl₃) δ -101.0.

¹³**C NMR** (101 MHz, CDCl₃) δ 153.3, 147.1, 142.3, 132.2, 132.0, 131.4, 129.7, 121.5 (t, $J_{C-F} = 6.4$ Hz), 121.4 (t, $J_{C-F} = 287.4$ Hz), 119.5 (t, $J_{C-F} = 22.83$ Hz), 117.3, 109.0 (t, $J_{C-F} = 6.1$ Hz), 71.7, 56.0, 27.9, 19.1.

HRMS Calcd for $C_{19}H_{20}ClF_2NO_5S$ [M+Na⁺]: 470.0611; Found: 470.0615.

isobutyl (2-(tert-butyl)-4-(((4-chlorophenyl)sulfonyl)difluoromethyl)phenyl)carbamate, (3r), Yield: 64%

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (dd, *J* = 14.5, 8.4 Hz, 1H), 7.90 (d, *J* = 8.5 Hz, 2H), 7.57 (d, *J* = 8.6 Hz, 2H), 7.52 (d, *J* = 9.1 Hz, 2H), 6.83 (s, 1H), 3.98 (d, *J* = 6.7 Hz, 2H), 2.07 – 1.93 (m, 1H), 1.43 (s, 9H), 0.96 (d, *J* = 6.7 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -101.4.

¹³C NMR (101 MHz, CDCl₃) δ 153.7, 142.4, 140.1, 132.4, 131.6, 129.8, 126.8 (t, $J_{C-F} = 6.0$ Hz), 126.2 (t, $J_{C-F} = 6.1$ Hz), 122.1 (t, $J_{C-F} = 287.34$ Hz), 121.6 (t, $J_{C-F} = 22.1$ Hz), 71.9, 34.6, 30.5, 28.1, 19.1. HRMS Calcd for C₂₂H₂₆ClF₂NO₄S [M+Na⁺]: 496.1131; Found: 496.1139.

Isobutyl (4-(((4-chlorophenyl)sulfonyl)difluoromethyl)-2-(trifluoromethoxy)phenyl)carbamate, (3s), Yield: 67%

¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (d, *J* = 8.8 Hz, 1H), 7.92 (d, *J* = 8.6 Hz, 2H), 7.66 – 7.56 (m, 3H), 7.51 (s, 1H), 7.12 (s, 1H), 4.01 (d, *J* = 6.7 Hz, 2H), 2.02 (dp, *J* = 13.4, 6.7 Hz, 1H), 0.99 (d, *J* = 6.7 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -57.7, -101.6.

¹³C NMR (101 MHz, CDCl₃) δ 152.9, 142.8, 137.0, 135.1, 132.4, 131.1, 130.0, 127.6 (t, $J_{C-F} = 6.0$ Hz), 120.6 (t, $J_{C-F} = 23.6$ Hz), 120.3 (t, $J_{C-F} = 5.6$ Hz), 119.8, 72.4, 28.0, 19.1. HRMS Calcd for C₁₉H₁₇ClF₅NO₅S [M+Na⁺]: 524.0328; Found: 524.0340.

Isobutyl (4-(((4-chlorophenyl)sulfonyl)difluoromethyl)-2-ethoxyphenyl)carbamate, (3t), Yield: 48%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.90 (d, *J* = 7.0 Hz, 2H), 7.58 (d, *J* = 7.2 Hz, 2H), 7.39 (s, 1H), 7.20 (d, *J* = 7.5 Hz, 1H), 7.08 (s, 1H), 4.16 (d, *J* = 6.1 Hz, 2H), 3.98 (d, *J* = 5.2 Hz, 2H), 2.02 (d, *J* = 8.7 Hz, 1H), 1.48 (s, 3H), 0.98 (d, *J* = 5.5 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -101.1.

¹³**C NMR** (101 MHz, CDCl₃) δ 153.4, 146.5, 142.4, 132.3, 132.1, 131.5, 129.8, 121.3 (t, $J_{C-F} = 6.4$ Hz), 119.6 (t, $J_{C-F} = 22.7$ Hz), 117.4, 110.0 (t, $J_{C-F} = 6.1$ Hz), 71.8, 64.8, 28.1, 19.2, 14.7.

HRMS (ESI) Calcd for $C_{20}H_{22}ClF_2NO_5S$ [M+Na]⁺: 484.0773; Found: 484.0781.

isobutyl (4-(((4-chlorophenyl)sulfonyl)difluoromethyl)-2-(methylthio)phenyl)carbamate, (3u), Yield: 43%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (d, J = 8.7 Hz, 1H), 7.93 (d, J = 8.6 Hz, 3H), 7.75 (d, J = 1.9 Hz, 1H), 7.60 (d, J = 8.6 Hz, 2H), 7.56 (dd, J = 8.8, 1.9 Hz, 1H), 4.00 (d, J = 6.7 Hz, 2H), 2.41 (s, 3H), 2.07-1.97 (m, J = 13.4, 6.7 Hz, 1H), 0.99 (d, J = 6.7 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -101.5.

¹³C NMR (101 MHz, CDCl₃) δ 153.4, 142.7, 142.6, 132.8 (t, $J_{C-F} = 6.0$ Hz), 132.4, 131.4, 129.9, 128.9 (t, $J_{C-F} = 5.9$ Hz), 124.8, 121.6 (t, $J_{C-F} = 287.7$ Hz), 120.5 (t, $J_{C-F} = 23.0$ Hz), 118.2, 72.0, 28.1, 19.2, 19.1. HRMS Calcd for C₁₉H₂₀ClF₂NO₄S₂ [M+Na⁺]: 486.0383; Found: 486.0393.

isobutyl (4-(((4-chlorophenyl)sulfonyl)difluoromethyl)-2-isopropoxyphenyl)carbamate, (3v), Yield: 61%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 8.5 Hz, 2H), 7.58 (d, J = 8.6 Hz, 2H), 7.38 (s, 1H), 7.18 (d, J = 8.6 Hz, 1H), 7.10 (d, J = 1.5 Hz, 1H), 4.66 (dt, J = 12.1, 6.1 Hz, 1H), 3.98 (d, J = 6.7 Hz, 2H), 2.01 (dp, J = 13.4, 6.7 Hz, 1H), 1.40 (d, J = 6.1 Hz, 6H), 0.98 (d, J = 6.7 Hz, 6H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -101.2. ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 145.3, 142.4, 132.3, 131.5, 129.8, 122.0 (t, $J_{C-F} = 287.5$ Hz), 121.1 (t, $J_{C-F} = 6.4$ Hz), 119.5 (t, $J_{C-F} = 22.7$ Hz), 117.6, 111.5 (t, $J_{C-F} = 6.0$ Hz), 71.9, 71.8, 28.1, 22.0, 19.2. HRMS Calcd for C₂₁H₂₄ClF₂NO₅S [M+Na⁺]: 498.0924; Found: 498.0933.

isobutyl (4-(((4-chlorophenyl)sulfonyl)difluoromethyl)-3-fluorophenyl)carbamate, (3w), Yield: 49% ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.6 Hz, 2H), 7.60 (d, *J* = 8.6 Hz, 2H), 7.48 (dd, *J* = 19.8, 11.3 Hz, 2H), 7.15 (d, *J* = 8.6 Hz, 1H), 7.08 (s, 1H), 3.98 (d, *J* = 6.6 Hz, 2H), 1.94 - 2.01 (m, 1H), 0.96 (d, *J* = 6.7 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -99.0 (d, J_{C-F} = 22.7 Hz), -108.6 (d, J_{C-F} = -6.11 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 161.5 (d, J_{C-F} = 257.2 Hz), 153.1, 144.4 (d, J_{C-F} = 11.6 Hz), 142.7, 132.4, 131.2, 130.7 (t, J_{C-F} = 6.8 Hz), 129.9, 121.4 (t, J_{C-F} = 289.9 Hz), 113.5 (d, J_{C-F} = 2.8 Hz), 106.6 (d, J_{C-F} = 27.2 Hz), 72.1, 28.0, 19.1.

HRMS Calcd for C₁₈H₁₇ClF₃NO₄S [M+Na⁺]: 458.0411; Found: 458.0420.

isobutyl (4-(((4-chlorophenyl)sulfonyl)difluoromethyl)-3-methoxyphenyl)carbamate, (3x), Yield: 65%

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 8.7 Hz, 2H), 7.39 (d, *J* = 8.5 Hz, 2H), 7.00 (s, 1H), 6.81 (dd, *J* = 8.6, 1.8 Hz, 1H), 3.96 (d, *J* = 6.7 Hz, 2H), 3.70 (s, 3H), 2.06 – 1.84 (m, 1H), 0.96 (d, *J* = 6.7 Hz, 6H).

¹⁹F NMR (377 MHz, CDCl₃) δ -97.0.

¹³C NMR (101 MHz, CDCl₃) δ 159.9, 153.4, 143.9, 142.1, 132.4, 132.3, 130.9 (t, $J_{C-F} = 7.9$ Hz), 129.5, 122.6 (t, $J_{C-F} = 288.7$ Hz), 109.8, 108.8 (t, $J_{C-F} = 21.3$ Hz), 102.1, 71.9, 56.0, 28.0, 19.1. HRMS Calcd for C₁₉H₂₀ClF₂NO₅S [M+Na⁺]: 470.0611; Found: 470.0613.

isobutyl (3-chloro-4-(((4-chlorophenyl)sulfonyl)difluoromethyl)phenyl)carbamate, (3y), Yield: 44% ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.6 Hz, 2H), 7.69 – 7.53 (m, 4H), 7.39 (d, *J* = 8.8 Hz, 1H), 6.92 (s, 1H), 3.98 (d, *J* = 6.6 Hz, 2H), 2.05 – 1.92 (m, 1H), 0.97 (d, *J* = 6.7 Hz, 6H). ¹⁹F NMR (377 MHz, CDCl₃) δ -96.5.

¹³**C NMR** (101 MHz, CDCl₃) δ 153.0, 142.8, 142.6, 135.0, 132.3, 131.9 (t, *J*_{C-F} = 7.7 Hz), 131.4, 129.8, 121.6 (t, *J*_{C-F} = 290.3 Hz), 120.8, 118.1 (t, *J*_{C-F} = 21.5 Hz), 115.9, 72.0, 27.9, 19.0.

Isobutyl (4-(((4-chlorophenyl)sulfonyl)difluoromethyl)-3-methylphenyl)carbamate, (3z), Yield: 44%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.6 Hz, 2H), 7.63 – 7.54 (m, 2H), 7.43 (d, *J* = 9.0 Hz, 1H), 7.33 (d, *J* = 7.9 Hz, 2H), 6.90 (s, 1H), 3.97 (d, *J* = 6.6 Hz, 2H), 2.54 (t, *J* = 3.2 Hz, 3H), 1.98 (m, 1.93-2.03, 1H), 0.96 (d, *J* = 6.7 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -95.5.

¹³C NMR (101 MHz, CDCl₃) δ 153.4, 142.4, 141.9, 140.7, 132.3, 131.7, 130.9 (t, $J_{C-F} = 8.3$ Hz), 129.8, 123.5 (t, $J_{C-F} = 291.6$ Hz), 121.5, 118.6 (t, $J_{C-F} = 20.7$ Hz), 115.4, 71.8, 28.0, 21.0, 19.1. HRMS Calcd for C₁₉H₂₀ClF₂NO₄S [M+Na⁺]: 454.0662; Found: 454.0671.

isobutyl (2-(((4-chlorophenyl)sulfonyl)difluoromethyl)-4-methylphenyl)carbamate, (3aa), Yield: 58%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.5 Hz, 2H), 7.85 (dd, *J* = 7.7, 4.6 Hz, 1H), 7.65 (s, 1H), 7.61 (d, *J* = 8.7 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 1H), 3.96 (d, *J* = 6.7 Hz, 2H), 2.33 (s, 3H), 2.07 – 1.92 (m, 1H), 0.97 (d, *J* = 6.7 Hz, 6H).

¹⁹**F** NMR (377 MHz, CDCl₃) δ -99.1.

¹³C NMR (101 MHz, CDCl₃) δ 154.3, 143.0, 135.0, 134.4, 134.3, 132.3, 130.8, 130.0, 129.5 (t, $J_{C-F} = 8.2 \text{ Hz}$), 122.5 (t, $J_{C-F} = 288.3 \text{ Hz}$), 71.7, 28.1, 20.8, 19.1.

HRMS Calcd for C₁₉H₂₀ClF₂NO₄S [M+Na⁺]: 454.0662; Found: 454.0650.

Isobutyl (4-(((4-chlorophenyl)sulfonyl)difluoromethyl)-2,5-dimethoxyphenyl)carbamate, (3ab), Yield: 80%.

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.83 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.6 Hz, 2H), 7.42 (s, 1H), 6.91 (s, 1H), 3.95 (d, J = 6.7 Hz, 2H), 3.84 (s, 3H), 3.65 (s, 3H), 2.11 – 1.87 (m, 1H), 0.96 (d, J = 6.8 Hz, 6H).

 ^{19}F NMR (377 MHz, CDCl₃) δ -96.9.

¹³C NMR (101 MHz, CDCl₃) δ 153.9, 153.4, 141.9, 140.9, 133.2, 132.4, 132.3, 129.4, 122.5 (t, $J_{C-F} = 288.9$ Hz), 110.8 (t, $J_{C-F} = 8.1$ Hz), 106.8 (t, $J_{C-F} = 21.3$ Hz), 102.9, 71.8, 56.5, 56. 4, 28.0, 19.1.

HRMS (ESI) Calcd for $C_{20}H_{22}ClF_2NO_6S$ [M+Na⁺]: 500.0722; Found: 500.0709.

isobutyl (5-bromo-4-(((4-chlorophenyl)sulfonyl)difluoromethyl)-2-methoxyphenyl)carbamate, (3ac), Yield: 48%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.91 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 8.6 Hz, 2H), 7.34 (s, 1H), 7.07 (s, 1H), 3.99 (d, J = 6.7 Hz, 2H), 3.92 (s, 3H), 2.09 – 1.90 (m, 1H), 0.98 (d, J = 6.7 Hz, 6H). ¹⁹**F** NMR (377 MHz, CDCl₃) δ -96.3.

¹³C NMR (101 MHz, CDCl₃) δ 153.1, 146.1, 142.7, 132.5, 131.5, 129.9, 123.8, 118.8 (t, $J_{C-F} = 21.4$ Hz), 113.8 (t, $J_{C-F} = 2.4$ Hz), 112.1 (t, $J_{C-F} = 8.0$ Hz), 72.1, 56.3, 28.0, 19.2.

HRMS Calcd for $C_{19}H_{19}BrClF_2NO_5S$ [M+Na⁺]: 547.9716 ; Found: 547.9717.

isobutyl (4-(((4-chlorophenyl)sulfonyl)difluoromethyl)-2,5-dimethylphenyl)carbamate, (3ad), Yield: 73%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.93 (d, J = 8.6 Hz, 2H), 7.58 (d, J = 8.6 Hz, 2H), 7.30 (s, 1H), 6.58 (s, 1H), 3.97 (d, J = 6.7 Hz, 3H), 2.52 (t, J = 3.2 Hz, 4H), 2.23 (s, 4H), 2.11 – 1.89 (m, 2H), 0.97 (d, J = 6.7 Hz, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -95.4.

¹³C NMR (101 MHz, CDCl₃) δ 153.5, 142.3, 140.0, 138.6, 132.3, 131.8, 131.5 (t, $J_{C-F} = 8.2$ Hz), 129.7, 123.5 (t, $J_{C-F} = 288.9$ Hz), 123.3, 122.9, 118.6 (t, $J_{C-F} = 20.4$ Hz), 71.9, 28.0, 20.8 (t, $J_{C-F} = 4.3$ Hz), 19.2, 17.2.

HRMS Calcd for C₂₀H₂₂ClF₂NO₄S [M+Na⁺]: 468.0818; Found: 468.0820.

isobutyl (4-(((4-chlorophenyl)sulfonyl)difluoromethyl)-3,5-dimethoxyphenyl)carbamate, (3ae), Yield: 61%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.5 Hz, 2H), 7.58 (s, 1H), 7.53 (d, *J* = 8.6 Hz, 2H), 7.26 (s, 1H), 6.10 (d, *J* = 1.4 Hz, 1H), 3.83 (s, 3H), 3.50 (s, 3H), 1.52 (s, 9H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -93.4.

¹³C NMR (101 MHz, CDCl₃) δ 164.0, 161.1, 153.0, 142.4, 141.5, 132.4, 131.7, 129.5, 100.8, 95.6, 81.0, 56.1, 55.7, 28.4.

HRMS Calcd for C₂₀H₂₂ClF₂NO₆S [M+Na⁺]: 500.0717; Found: 500.0726.

Isobutyl (5-(((4-chlorophenyl)sulfonyl)difluoromethyl)-2-methylquinolin-8-yl)carbamate, (3af), Yield: 51%

¹**H NMR** (400 MHz, CDCl₃) δ 9.52 (s, 1H), 8.61 (d, J = 8.8 Hz, 1H), 8.45 (d, J = 8.0 Hz, 1H), 7.94 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.9 Hz, 1H), 4.06 (d, J = 6.7 Hz, 2H), 2.76 (s, 3H), 2.16 – 1.99 (m, 2H), 1.03 (d, J = 6.7 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -94.5.

¹³C NMR (101 MHz, CDCl₃) δ 166.8, 159.5, 156.6 (d, $J_{C-F} = 2.1$ Hz), 153.8, 143.7, 143.7, 134.3, 129.7, 129.7, 129.2, 129.2, 127.8, 127.7, 117.4, 63.8, 33.3, 28.7 (t, $J_{C-F} = 2.3$ Hz), 19.1, 19.1. HRMS Calcd for C₂₂H₂₁ClF₂N₂O₄S [M+Na⁺]: 505.0771; Found: 505.0785.

2-(((3,4-dimethoxyphenyl)difluoromethyl)sulfonyl)pyridine, (5a), Yield: 72%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.88 (dd, *J* = 4.6, 0.7 Hz, 1H), 8.17 (d, *J* = 7.8 Hz, 1H), 8.01 (td, *J* = 7.8, 1.7 Hz, 1H), 7.65 (ddd, *J* = 7.6, 4.7, 1.0 Hz, 1H), 7.29 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.16 (d, *J* = 1.9 Hz, 1H), 6.96 (d, *J* = 8.5 Hz, 1H), 3.92 (s, 3H), 3.90 (s, 3H).

 ^{19}F NMR (377 MHz, CDCl₃) δ -99.7.

¹³**C NMR** (101 MHz, CDCl₃) δ 152.8, 152.7, 151.0, 149.1, 138.3, 128.6, 126.7, 122.8 (t, $J_{C-F} = 286.8$), 121.6 (t, $J_{C-F} = 6.4$ Hz), 118.0 (t, $J_{C-F} = 22.7$ Hz), 110.9, 110.4, 56.2, 56.2.

HRMS Calcd for $C_{14}H_{13}F_2NO_4S$ [M+Na⁺]: 352.0426; Found: 352.0433.

3-(difluoro(pyridin-2-ylsulfonyl)methyl)-2,6-dimethoxypyridine, (5b), Yield: 65%

¹**H NMR** (400 MHz, CDCl₃) δ 8.89 – 8.81 (m, 1H), 8.18 (d, *J* = 7.9 Hz, 1H), 8.01 (td, *J* = 7.8, 1.7 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.64 (ddd, *J* = 7.6, 4.7, 1.0 Hz, 1H), 6.40 (d, *J* = 8.4 Hz, 1H), 3.96 (s, 3H), 3.89 (s, 3H).

¹⁹F NMR (377 MHz, CDCl₃) δ -97.0.

¹³C NMR (101 MHz, CDCl₃) δ 166.1, 161.7, 153.4, 150.9, 141.9 (t, $J_{C-F} = 6.7$ Hz), 138.2, 128.5, 126.7, 122.9 (t, $J_{C-F} = 289.4$ Hz), 102.2, 100.1 (t, $J_{C-F} = 23.0$ Hz), 54.1, 54.1.

2-(((2,5-dimethoxyphenyl)difluoromethyl)sulfonyl)pyridine, (5c), Yield: 53%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.85 (d, *J* = 3.9 Hz, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 8.00 (td, *J* = 7.8, 1.7 Hz, 1H), 7.63 (ddd, *J* = 7.6, 4.7, 0.9 Hz, 1H), 7.07 (dd, *J* = 12.5, 3.0 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 1H), 3.78 (s, 3H), 3.74 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -95.8.

¹³C NMR (101 MHz, CDCl₃) δ 153.5, 153.3, 153.1 (t, $J_{C-F} = 2.6$ Hz), 150.8, 138.1, 128.4, 126.6, 123.0 (t, $J_{C-F} = 291.8$ Hz), 120.2, 115.7 (t, $J_{C-F} = 20.5$ Hz), 114.7 (t, $J_{C-F} = 8.3$ Hz), 114.3, 56.9, 56.0. HRMS Calcd for C₁₄H₁₃F₂NO₄S [M+Na⁺]: 352.0426; Found: 352.0433.

2-(((5-(tert-butyl)-2-methoxyphenyl)difluoromethyl)sulfonyl)pyridine, (5d), Yield: 49% ¹H NMR (400 MHz, CDCl₃) δ 8.84 (dd, *J* = 4.7, 0.8 Hz, 1H), 8.14 (d, *J* = 7.9 Hz, 1H), 7.99 (td, *J* = 7.8, 1.7 Hz, 1H), 7.62 (ddd, *J* = 7.6, 4.7, 1.0 Hz, 1H), 7.57 – 7.46 (m, 2H), 6.92 (d, *J* = 8.6 Hz, 1H), 3.79 (s, 3H), 1.29 (s, 9H).

¹⁹F NMR (377 MHz, CDCl₃) δ -95.6.

¹³C NMR (101 MHz, CDCl₃) δ 156.9, 153.6, 150.8, 143.3, 138.1, 131.3, 128.3, 126.9 (t, $J_{C-F} = 8.0$ Hz), 126.6, 123.5 (t, $J_{C-F} = 290.5$ Hz), 114.3 (t, $J_{C-F} = 20.0$ Hz), 112.4, 56.3, 34.3, 31.4. HRMS Calcd for C₁₇H₁₉F₂NO₃S [M+Na⁺]: 378.0946; Found: 378.0945.

Isobutyl (4-(difluoro(pyridin-2-ylsulfonyl)methyl)-2-methoxyphenyl)carbamate, (5e), Yield: 61% ¹H NMR (400 MHz, CDCl₃) δ 8.89 (d, J = 4.0 Hz, 1H), 8.27 (d, J = 8.3 Hz, 1H), 8.18 (d, J = 7.8 Hz, 1H), 8.03 (td, J = 7.8, 1.5 Hz, 1H), 7.67 (dd, J = 7.5, 4.7 Hz, 1H), 7.41 (s, 1H), 7.33 – 7.23 (m, 1H), 7.19 (s, 1H), 3.98 (d, J = 6.7 Hz, 2H), 3.94 (s, 3H), 2.12 – 1.84 (m, 1H), 0.98 (d, J = 6.7 Hz, 6H). ¹⁹F NMR (377 MHz, CDCl₃) δ -100.0.

¹³**C NMR** (101 MHz, CDCl₃) δ 153.4, 152.7, 151.0, 147.2, 138.3, 132.1, 128.7, 126.7, 122.7 (t, $J_{C-F} = 289.0 \text{ Hz}$), 121.5 (t, $J_{C-F} = 6.4 \text{ Hz}$), 119.5 (t, $J_{C-F} = 22.6 \text{ Hz}$), 117.4, 109.2 (t, $J_{C-F} = 6.1 \text{ Hz}$), 71.8, 56.1, 28.0, 19.1.

HRMS Calcd for $C_{18}H_{20}F_2N_2O_5S$ [M+Na⁺]: 437.0953; Found: 437.0960.

Isobutyl (2-(tert-butyl)-4-(difluoro(pyridin-2-ylsulfonyl)methyl)phenyl)carbamate, (5f), Yield: 58% ¹**H NMR** (400 MHz, CDCl₃) δ 8.88 (d, *J* = 3.8 Hz, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 8.01 (td, *J* = 7.8, 1.6 Hz, 2H), 7.66 (t, *J* = 5.6 Hz, 2H), 7.56 (dd, *J* = 8.5, 1.7 Hz, 1H), 6.82 (s, 1H), 3.98 (d, *J* = 6.7 Hz, 2H), 2.06 - 1.92 (m, 1H), 1.44 (s, 9H), 0.96 (d, *J* = 6.7 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -100.1.

¹³C NMR (101 MHz, CDCl₃) δ 153.7, 152.8, 151.0, 140.2, 138.3, 128.7, 126.8 (d, J_{C-F} = 8.5 Hz), 126.8, 126.4 (t, J_{C-F} = 6.0 Hz), 71.8, 34.6, 30.5, 28.1, 19.1.

HRMS Calcd for $C_{21}H_{26}F_2N_2O_4S$ [M+Na⁺]: 463.1474; Found: 463.1482.

Isobutyl (4-(difluoro(pyridin-2-ylsulfonyl)methyl)-2,5-dimethylphenyl)carbamate, (5g), Yield: 68% ¹H NMR (400 MHz, CDCl₃) δ 8.92 – 8.83 (m, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 8.01 (td, *J* = 7.8, 1.6 Hz, 1H), 7.95 (s, 1H), 7.65 (ddd, *J* = 7.6, 4.7, 0.9 Hz, 1H), 7.37 (s, 1H), 6.57 (s, 1H), 3.96 (d, *J* = 6.7 Hz, 2H), 2.56 (t, *J* = 3.1 Hz, 3H), 2.24 (s, 3H), 2.12 – 1.91 (m, 1H), 0.96 (d, *J* = 6.7 Hz, 6H). ¹⁹F NMR (377 MHz, CDCl₃) δ -94.3.

¹³C NMR (101 MHz, CDCl₃) δ 153.5, 153.1, 151.0, 140.0, 138.7, 138.3, 131.6 (t, $J_{C-F} = 8.3$ Hz), 128.6, 126.7, 124.3 (t, $J_{C-F} = 290.6$ Hz), 123.3, 122.9, 118.7 (t, $J_{C-F} = 20.1$ Hz), 71.9, 28.0, 20.8, 19.1, 17.2. HRMS Calcd for C₁₉H₂₂F₂N₂O₄S [M+Na⁺]: 435.1166; Found: 435.1171.

Isobutyl (4-(difluoro(pyridin-2-ylsulfonyl)methyl)-2-ethoxyphenyl)carbamate, (5h), Yield: 56%. ¹**H NMR** (400 MHz, CDCl₃) δ 8.86 (dd, *J* = 4.6, 0.8 Hz, 1H), 8.24 (d, *J* = 8.3 Hz, 1H), 8.15 (d, *J* = 7.8 Hz, 1H), 8.00 (td, *J* = 7.8, 1.7 Hz, 1H), 7.64 (ddd, *J* = 7.6, 4.7, 1.0 Hz, 1H), 7.37 (s, 1H), 7.24 (dd, *J* = 8.6, 1.4 Hz, 1H), 7.16 (d, *J* = 1.6 Hz, 1H), 4.16 (q, *J* = 7.0 Hz, 2H), 3.97 (d, *J* = 6.7 Hz, 2H), 2.00 (tq, *J* = 13.4, 6.7 Hz, 1H), 1.47 (t, *J* = 7.0 Hz, 3H), 0.97 (d, *J* = 6.7 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -100.0.

¹³**C NMR** (101 MHz, CDCl₃) δ 153.4, 152.8, 151.0, 146.5, 138.3, 132.1, 128.6, 126.7, 122.7 (t, $J_{C-F} = 288.9 \text{ Hz}$), 121.3 (t, $J_{C-F} = 6.4 \text{ Hz}$), 119.5 (t, $J_{C-F} = 22.4 \text{ Hz}$), 117.4, 110.1 (t, $J_{C-F} = 6.0 \text{ Hz}$), 71.8, 64.8, 28.0, 19.2, 14.7.

HRMS (ESI) Calcd for $C_{19}H_{22}F_2N_2O_5S$ [M+Na⁺]: 451.1115; Found: 451.1123.

Isobutyl (4-((benzo[d]thiazol-2-ylsulfonyl)difluoromethyl)-2-ethylphenyl)carbamate, (5i), Yield: 34%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.41 – 8.30 (m, 1H), 8.18 (d, J = 8.6 Hz, 1H), 8.10 – 8.00 (m, 1H), 7.65 (dddd, J = 17.6, 10.7, 7.9, 1.7 Hz, 3H), 7.53 (d, J = 1.8 Hz, 1H), 6.68 (s, 1H), 3.99 (d, J = 6.7 Hz, 2H), 2.63 (q, J = 7.5 Hz, 2H), 2.10 – 1.92 (m, 1H), 1.26 (t, J = 7.5 Hz, 3H), 0.98 (d, J = 6.7 Hz, 6H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -99.1.

¹³C NMR (101 MHz, CDCl₃) δ 159.7, 153.6, 153.1, 140.3, 138.4, 132.0, 128.8, 128.0 (t, $J_{C-F} = 5.9$ Hz), 127.2 (t, $J_{C-F} = 6.0$ Hz), 126.4, 122.4, 119.9 (t, $J_{C-F} = 11.0$ Hz), 72.0, 28.0, 24.1, 19.2, 13.2. HRMS Calcd for C₂₁H₂₂F₂N₂O₄S₂ [M+Na⁺]: 491.0881; Found: 491.0890.

$\label{eq:constraint} 2-(((3,4-dimethoxyphenyl) diffuoromethyl) sulfonyl) benzo[d] thiazole, (5j), Yield: 41\% (5) and (5) an$

¹**H** NMR (400 MHz, CDCl₃) δ 8.42 – 8.30 (m, 1H), 8.11 – 8.02 (m, 1H), 7.76 – 7.63 (m, 2H), 7.40 – 7.32 (m, 1H), 7.17 (d, J = 2.0 Hz, 1H), 6.99 (d, J = 8.5 Hz, 1H), 3.95 (s, 3H), 3.89 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -98.7.

¹³C NMR (101 MHz, CDCl₃) δ 159.7, 153.2, 153.1, 149.4, 138.4, 128.9, 128.1, 126.4, 122.4, 122.0 (t, $J_{C-F} = 6.5$ Hz), 111.1, 110.4 (t, $J_{C-F} = 5.8$ Hz), 56.3, 56.2.

HRMS Calcd for C₁₆H₁₃F₂NO₄S₂ [M+Na⁺]: 408.0146; Found: 408.0158.

4-(Difluoro((4-nitrophenyl)sulfonyl)methyl)-1,2-dimethoxybenzene, (5k), Yield: 55%

¹**H** NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.9 Hz, 2H), 8.23 (d, J = 8.8 Hz, 2H), 7.26 (dd, J = 8.4, 2.0 Hz, 1H), 7.14 (d, J = 2.0 Hz, 1H), 6.98 (d, J = 8.5 Hz, 1H), 3.95 (s, 3H), 3.94 (s, 3H). ¹⁹**F** NMR (377 MHz, CDCl₃) δ -99.8.

¹³C NMR (101 MHz, CDCl₃) δ 153.0, 151.9, 149.3, 139.2, 132.4, 124.4, 122.4 (t, $J_{C-F} = 288$ Hz), 121.8 (t, $J_{C-F} = 6.5$ Hz), 117.2 (t, $J_{C-F} = 22.6$ Hz), 111.0, 110.4 (t, $J_{C-F} = 5.9$ Hz), 56.3, 56.2. HRMS Calcd for C₁₅H₁₃F₂NO₆S [M+Na⁺]: 396.0324; Found: 396.0330.

- 24 -

Isobutyl (2-(tert-butyl)-4-(difluoro((4-nitrophenyl)sulfonyl)methyl)phenyl)carbamate, (51), Yield: 47%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.53 – 8.40 (m, 2H), 8.22 (d, *J* = 8.8 Hz, 2H), 8.05 (d, *J* = 8.5 Hz, 1H), 7.61 (d, *J* = 1.8 Hz, 1H), 7.55 (dd, *J* = 8.6, 2.0 Hz, 1H), 6.86 (s, 1H), 4.00 (d, *J* = 6.7 Hz, 2H), 2.08 – 1.89 (m, 1H), 1.46 (s, 8H), 0.98 (d, *J* = 6.7 Hz, 6H).

¹⁹F NMR (377 MHz, CDCl₃) δ -100.3.

¹³C NMR (101 MHz, CDCl₃) δ 153.6, 151.9, 140.5, 139.2, 132.5, 127.0 (t, $J_{C-F} = 6.0$ Hz), 126.3 (t, $J_{C-F} = 6.2$ Hz), 124.4, 71.9, 34.6, 30.5, 28.1, 19.1.

HRMS Calcd for C₂₂H₂₆F₂N₂O₆S [M+Na⁺]: 507.1372; Found: 507.1384.

6-(Difluoro(tosyl)methyl)-2,3-dihydrobenzo[b][1,4]dioxine, (5m), Yield: 53%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, J = 8.2 Hz, 2H), 7.40 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 2.0 Hz, 1H), 7.13 (dd, J = 8.5, 2.1 Hz, 1H), 6.95 (d, J = 8.5 Hz, 1H), 4.30 (td, J = 5.3, 2.1 Hz, 4H), 2.49 (s, 3H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -101.0.

¹³**C NMR** (101 MHz, CDCl₃) δ 147.3, 146.7, 143.7, 131.0, 130.1, 130.0, 121.4 (t, $J_{C-F} = 6.3$ Hz), 117.7, 117.5 (t, $J_{C-F} = 6.3$ Hz), 64.7, 64.3, 22.0.

HRMS Calcd for C₁₆H₁₄F₂O₄S [M+Na⁺]: 363.0473; Found: 363.0465.

4-(tert-butyl)-2-(difluoro(tosyl)methyl)-1-methoxybenzene, (5n), Yield: 51%

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (d, J = 8.2 Hz, 2H), 7.50 (dd, J = 8.7, 2.5 Hz, 1H), 7.37 (d, J = 2.5 Hz, 1H), 7.34 (d, J = 8.1 Hz, 2H), 6.90 (d, J = 8.8 Hz, 1H), 3.74 (s, 3H), 2.45 (s, 3H), 1.27 (s, 9H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -97.6.

¹³**C NMR** (101 MHz, CDCl₃) δ 156.8 (t, $J_{C-F} = 2.1$ Hz), 146.2, 143.1, 130.9, 130.9 (t, $J_{C-F} = 9.7$ Hz), 129.7, 127.0 (t, $J_{C-F} = 7.8$ Hz), 122.7 (t, $J_{C-F} = 288.8$ Hz), 114.7 (t, $J_{C-F} = 20.1$ Hz), 112.4, 56.2, 34.2, 31.4, 21.8.

HRMS Calcd for C₁₉H₂₂F₂O₃S [M+Na⁺]: 391.1155; Found: 391.1149.

4-(difluoro(tosyl)methyl)-1,2-dimethoxybenzene, (50), Yield: 63%

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 7.24 (dd, J = 8.5, 1.8 Hz, 1H), 7.08 (d, J = 1.9 Hz, 1H), 6.94 (d, J = 8.5 Hz, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 2.48 (s, 3H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -101.2.

¹³C NMR (101 MHz, CDCl₃) δ 152.4, 149.0, 146.7, 131.0, 130.0, 130.0, 122.0 (t, $J_{C-F} = 287.0$ Hz), 121.5 (t, $J_{C-F} = 6.5$ Hz), 118.7 (t, $J_{C-F} = 22.9$ Hz), 110.8, 110.4 (t, $J_{C-F} = 5.9$ Hz), 56.2, 56.2, 21.9. HRMS Calcd for C₁₆H₁₆F₂O₄S [M+Na⁺]: 391.1150; Found: 391.1161.

Isobutyl (4-(difluoro(tosyl)methyl)-2,5-dimethylphenyl)carbamate, (5p), Yield: 71%

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.86 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 7.31 (s, 1H), 6.55 (s, 1H), 3.98 (d, *J* = 6.7 Hz, 2H), 2.51 (t, *J* = 3.2 Hz, 3H), 2.48 (s, 3H), 2.23 (s, 3H), 2.11 – 1.90 (m, 1H), 0.98 (d, *J* = 6.7 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -95.8.

¹³C NMR (101 MHz, CDCl₃) δ 153.5, 146.6, 139.7, 138.5, 131.5 (t, $J_{C-F} = 8.2$ Hz), 130.9, 130.2, 130.0, 123.4 (t, $J_{C-F} = 288.6$ Hz), 123.2, 122.8, 119.2 (t, $J_{C-F} = 20.7$ Hz), 71.8, 28.0, 21.9, 20.8, 19.2, 17.2. HRMS Calcd for C₂₁H₂₅F₂NO₄S [M+Na⁺]: 448.1370; Found: 448.1361.

Ethyl 2,2-difluoro-2-(4-((isobutoxycarbonyl)amino)-2,5-dimethylphenyl)acetate, (5q), Yield: 84% ¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.34 (s, 1H), 6.47 (s, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 3.97 (d, *J* = 6.7 Hz, 2H), 2.37 (s, 3H), 2.25 (s, 3H), 1.99 (dp, *J* = 13.4, 6.7 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H), 0.97 (d, *J* = 6.7 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -100.8.

¹³C NMR (101 MHz, CDCl₃) δ 163.3 (t, J_{C-F} = 35.7 Hz), 152.7, 137.1, 134.3 (t, J_{C-F} = 2.9 Hz), 127.1 (t, J_{C-F} = 8.8 Hz), 121.9, 113.1 (t, J_{C-F} = 251.7 Hz), 70.6, 62.0, 27.0, 18.5, 18.0, 16.1, 12.9. HRMS Calcd for C₁₇H₂₃F₂NO₄ [M+Na⁺]: 366,1487; Found: 366.1493.

Ethyl 2-(2,6-dimethoxypyridin-3-yl)-2,2-difluoroacetate, (5r), Yield: 95%

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.3 Hz, 1H), 6.37 (d, *J* = 8.3 Hz, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 3.93 (d, *J* = 1.9 Hz, 6H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹⁹**F** NMR (377 MHz, CDCl₃) δ -101.7. ¹³C NMR (101 MHz, CDCl₃) δ 165.0, 164.0 (t, J_{C-F} = 34.5 Hz), 159.9 (t, J_{C-F} = 5.1 Hz), 138.5 (t, J_{C-F} = 6.2 Hz), 112.4 (t, J_{C-F} = 248.0 Hz), 107.4 (t, J_{C-F} = 26.2 Hz), 101.5, 62.9, 53.9, 53.7, 14.1. HRMS Calcd for C₁₁H₁₃F₂NO₄ [M+Na⁺]: 284.0705; Found: 284.0710.

Ethyl 2-(3,4-dimethoxyphenyl)-2,2-difluoroacetate, (5s), Yield: 51%

¹H NMR (400 MHz, CDCl₃) δ 7.17 (dd, *J* = 8.5, 1.5 Hz, 1H), 7.09 (d, *J* = 1.9 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), 4.30 (q, *J* = 7.1 Hz, 2H), 3.90 (s, 6H), 1.30 (t, *J* = 7.1 Hz, 3H).
¹⁹F NMR (377 MHz, CDCl₃) δ -102.6.

¹³C NMR (101 MHz, CDCl₃) δ 164.5 (t, J_{C-F} = 36.0 Hz), 151.2, 149.1, 125.2 (t, J_{C-F} = 26.2 Hz), 118.6 (t, J_{C-F} = 6.6 Hz), 113.5 (t, J_{C-F} = 252.0 Hz), 110.9, 108.4 (t, J_{C-F} = 6.1 Hz), 63.2, 56.1, 56.1, 14.0. HRMS Calcd for C₁₂H₁₄F₂O₄ [M+Na⁺]: 283.0752; Found: 283.0760.

Ethyl 2,2-difluoro-2-(5-methylthiophen-2-yl)acetate, (5t), Yield: 93%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.20 – 7.15 (m, 1H), 6.75 – 6.66 (m, 1H), 4.35 (q, *J* = 7.1 Hz, 2H), 2.50 (d, *J* = 1.1 Hz, 3H), 1.35 (t, *J* = 7.1 Hz, 4H).

¹⁹F NMR (377 MHz, CDCl₃) δ -92.8.

¹³C NMR (101 MHz, CDCl₃) δ 163.6 (t, J_{C-F} = 35.4 Hz), 144.3, 131.3 (t, J_{C-F} = 30.3 Hz), 128.7 (t, J_{C-F} = 5.8 Hz), 125.5, 111.8 (t, J_{C-F} = 249.9 Hz), 63.5, 15.4, 14.0.

HRMS Calcd for $C_9H_{10}F_2O_2S$ [M+Na⁺]: 243.0262; Found: 243.0266.

4-(difluoromethyl)-1,2-dimethoxybenzene, (6a), Yield: 71%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.08 – 6.99 (m, 2H), 6.88 (d, *J* = 8.1 Hz, 1H), 6.57 (t, *J* = 56.7 Hz, 1H), 3.89 (s, 3H), 3.89 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -108.2.

¹³C NMR (101 MHz, CDCl₃) δ 151.0, 149.3, 127.0 (t, $J_{C-F} = 22.6$ Hz), 118.8 (t, $J_{C-F} = 7.0$ Hz), 115.0 (t, $J_{C-F} = 237.7$ Hz), 110.8, 108.1 (t, $J_{C-F} = 5.3$ Hz), 56.0, 56.0.

HRMS Calcd for C₉H₁₀F₂O₂ [M+H⁺]: 189.0722; Found: 189.0727.

Isobutyl (4-(difluoromethyl)-2,5-dimethylphenyl)carbamate, (6b), Yield: 78%.

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.28 (s, 1H), 6.70 (t, *J* = 55.7 Hz, 1H), 6.44 (s, 1H), 3.97 (d, *J* = 6.7 Hz, 2H), 2.39 (s, 3H), 2.25 (s, 3H), 2.10 – 1.92 (m, 1H), 0.98 (d, *J* = 6.7 Hz, 6H). ¹⁹**F** NMR (377 MHz, CDCl₃) δ -112.0.

¹³**C NMR** (101 MHz, CDCl₃) δ 153.9, 138.0, 135.3 (t, $J_{C-F} = 4.7$ Hz), 128.0 (t, $J_{C-F} = 7.3$ Hz), 127.5 (t, $J_{C-F} = 21.0$ Hz), 122.4, 114.4 (t, $J_{C-F} = 237.0$ Hz), 71.8, 28.1, 19.2, 18.4, 17.3. **HRMS** Calcd for C₁₄H₁₉F₂NO₂ [M+Na⁺]: 294.1276; Found: 294.1281.

Isobutyl (4-(difluoromethyl)-2,5-dimethoxyphenyl)carbamate, (6c), Yield: 66%. ¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.36 (s, 1H), 7.04 (s, 1H), 6.94 (t, J = 14.1 Hz, 1H), 3.97 (d, J = 6.7 Hz, 2H), 3.88 (s, 3H), 3.85 (s, 3H), 1.99 (td, J = 13.5, 6.8 Hz, 1H), 0.98 (d, J = 6.7 Hz, 6H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -113.4.

¹³C NMR (101 MHz, CDCl₃) δ 153.7, 152.1 (t, $J_{C-F} = 6.4$ Hz), 141.4, 131.0, 115.6 (t, $J_{C-F} = 22.3$ Hz), 114.0, 111.6, 109.3, 107.8 (t, $J_{C-F} = 5.6$ Hz), 102.2, 71.7, 60.5, 56.4, 56.4, 28.1, 19.2. HRMS (ESI) Calcd for C₁₄H₁₉F₂NO₄ [M+Na]⁺: 326.1180; Found: 326.1186.

tert-butyl (4-(difluoromethyl)-2-ethoxyphenyl)carbamate, (6d), Yield: 69%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.17 (d, J = 7.4 Hz, 1H), 7.30 (s, 1H), 7.06 (d, J = 8.3 Hz, 1H), 7.00 (s, 1H), 6.58 (t, J = 56.7 Hz, 1H), 4.14 (q, J = 7.0 Hz, 2H), 3.97 (d, J = 6.7 Hz, 2H), 2.01 (dp, J = 13.4, 6.7 Hz, 1H), 1.48 (t, J = 7.0 Hz, 3H), 0.98 (d, J = 6.7 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -108.8.

¹³**C NMR** (101 MHz, CDCl₃) δ 153.6, 146.9, 130.2, 128.6 (t, $J_{C-F} = 22.5$ Hz), 119.0 (t, $J_{C-F} = 6.8$ Hz), 117.7, 115.0 (t, $J_{C-F} = 238.0$ Hz), 107.6 (t, $J_{C-F} = 5.5$ Hz), 71.7, 64.6, 28.1, 19.2, 14.9. **HRMS** Calcd for C₁₄H₁₉F₂NO₃ [M+Na⁺]: 310.1225; Found: 310.1230.

isobutyl (4-(difluoromethyl)-3-fluorophenyl)carbamate, (6e), Yield: 45%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.48 (dd, J = 14.2, 6.1 Hz, 1H), 7.07 (dd, J = 8.5, 1.6 Hz, 1H), 6.81 (s, 1H), 3.97 (d, J = 6.6 Hz, 1H), 1.97 (td, J = 13.4, 6.7 Hz, 1H), 0.97 (d, J = 6.7 Hz, 3H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -112.9, -117.8.

¹³C NMR (101 MHz, CDCl₃) δ 153.3, 142.2 (d, $J_{C-F} = 10.9$ Hz), 130.0 (d, $J_{C-F} = 208.6$ Hz), 127.5 (d, $J_{C-F} = 20.0$ Hz), 127.5 (d, $J_{C-F} = 4.6$ Hz), 113.8, 110.8 (t, $J_{C-F} = 237.4$ Hz), 110.7 (t, $J_{C-F} = 237.2$ Hz), 105.9 (d, $J_{C-F} = 26.4$ Hz), 72.0, 28.1, 19.2.

HRMS Calcd for C₁₂H₁₄F₃NO₂ [M+Na⁺]: 284.0869; Found: 284.0873.

tert-butyl (4-(difluoromethyl)-2-methoxyphenyl)carbamate, (6f), Yield: 74%

¹**H NMR** (400 MHz, CDCl₃) δ 8.18 (d, J = 7.9 Hz, 1H), 7.31 (s, 1H), 7.07 (d, J = 8.3 Hz, 1H), 7.01 (s, 1H), 6.59 (t, J = 56.7 Hz, 1H), 3.97 (d, J = 6.7 Hz, 2H), 3.92 (s, 3H), 2.10 – 1.89 (m, 1H), 0.98 (d, J = 6.7 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -108.8.

¹³C NMR (101 MHz, CDCl₃) δ 153.6, 147.7, 130.2, 128.6 (t, $J_{C-F} = 22.5$ Hz), 119.1 (t, $J_{C-F} = 6.9$ Hz), 117.7, 114.9 (t, $J_{C-F} = 238.0$ Hz), 106.8 (t, $J_{C-F} = 5.5$ Hz), 71.7, 56.0, 28.1, 19.2. HRMS Calcd for C₁₃H₁₇F₂NO₃ [M+Na⁺]: 296.1069; Found: 296.1078.

((3,4-dimethoxyphenyl)difluoromethyl)(4-methoxyphenyl)sulfane, (7a), Yield: 66%

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.7 Hz, 2H), 7.13 (d, *J* = 8.4 Hz, 1H), 7.02 (d, *J* = 1.8 Hz, 1H), 6.94 – 6.82 (m, 3H), 3.91 (s, 3H), 3.90 (s, 3H), 3.83 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -71.1.

¹³**C NMR** (101 MHz, CDCl₃) δ 161.3, 150.8, 148.8, 138.3, 118.5 (t, $J_{C-F} = 4.1$ Hz), 114.7, 110.6, 108.7 (t, $J_{C-F} = 4.6$ Hz), 56.1, 55.5.

HRMS Calcd for C₁₆H₁₆F₂O₃S [M+Na⁺]: 349.0686; Found: 349.0693.

((3,4-dimethoxyphenyl)difluoromethyl)(3-methoxyphenyl)sulfane, (7b), Yield: 58%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.29 (d, *J* = 7.8 Hz, 1H), 7.23 – 7.12 (m, 3H), 7.04 (d, *J* = 1.9 Hz, 1H), 6.96 (dd, *J* = 7.8, 2.1 Hz, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 3.91 (s, 3H), 3.90 (s, 3H), 3.81 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -69.9.

¹³C NMR (101 MHz, CDCl₃) δ 159.8, 150.9, 148.8, 129.8, 128.9, 128.5, 128.5, 127.8, 121.1, 118.6 (t, $J_{C-F} = 5.0$ Hz), 116.2, 110.6, 108.6 (t, $J_{C-F} = 4.4$ Hz), 56.2, 55.5. HRMS Calcd for C₁₆H₁₆F₂O₃S [M+Na⁺]: 349.0680; Found: 349.0690.

((3,4-dimethoxyphenyl)difluoromethyl)(phenyl)selane, (7c), Yield: 31%.

¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.1 Hz, 1H), 7.40 (t, *J* = 7.4 Hz, 1H), 7.32 (t, *J* = 7.4 Hz, 3H), 7.07 (d, *J* = 7.4 Hz, 1H), 6.92 (s, 1H), 6.84 (d, *J* = 8.4 Hz, 1H), 3.90 (s, 3H), 3.85 (s, 3H).
¹⁹F NMR (377 MHz, CDCl₃) δ -68.1.

¹³C NMR (101 MHz, CDCl₃) δ 148.7, 137.2, 129.5, 129.2, 118.1, 110.6, 108.3, 56.1, 56.1, 29.9. HRMS Calcd for C₁₅H₁₄F₂O₂Se [M+Na⁺]: 367.0019; Found: 367.0032.

Isobutyl (4-(difluoro((4-methoxyphenyl)thio)methyl)-2,5-dimethylphenyl)carbamate, (7d), Yield: 56%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.53 (d, *J* = 8.8 Hz, 2H), 7.23 (s, 1H), 6.89 (d, *J* = 8.8 Hz, 2H), 6.44 (s, 1H), 3.97 (d, *J* = 6.7 Hz, 2H), 3.83 (s, 3H), 2.57 (s, 3H), 2.21 (s, 3H), 1.99 (td, *J* = 13.4, 6.7 Hz, 1H), 0.98 (d, *J* = 6.7 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -70.1.

¹³**C NMR** (101 MHz, CDCl₃) δ 161.3, 153.8, 138.4, 137.9, 135.4, 128.3 (t, $J_{C-F} = 7.0$ Hz), 127.9, 123.1, 118.4, 114.6, 71.8, 55.5, 28.1, 19.2, 17.2.

HRMS Calcd for C₂₁H₂₅F₂NO₃S [M+Na⁺]: 432.1415; Found: 432.1421.

Methyl 5-(4-(((4-chlorophenyl)sulfonyl)difluoromethyl)-2,5-dimethylphenoxy)-2,2dimethylpentanoate, (9a), Yield: 81%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.5 Hz, 2H), 7.48 (d, *J* = 8.5 Hz, 2H), 7.17 (s, 1H), 6.56 (s, 1H), 3.88 (t, *J* = 5.6 Hz, 2H), 3.58 (s, 3H), 2.44 (t, *J* = 2.9 Hz, 3H), 2.10 (s, 3H), 1.80 – 1.52 (m, 4H), 1.14 (s, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -94.8.

¹³C NMR (101 MHz, CDCl₃) δ 178.2, 160.0, 142.1, 138.7, 132.2, 132.0, 131.6 (t, $J_{C-F} = 8.0$ Hz), 129.6, 124.5, 123.8 (t, $J_{C-F} = 288.7$ Hz), 115.2 (t, $J_{C-F} = 20.5$ Hz), 114.4, 68.1, 51.8, 42.1, 37.0, 25.2, 25.0, 20.9, 15.7.

HRMS Calcd for C₂₃H₂₇ClF₂O₅S [M+Na⁺]: 511.1128; Found: 511.1111.

Methyl 5-(4-(difluoromethyl)-2,5-dimethylphenoxy)-2,2-dimethylpentanoate, (9b), Yield: 67%. ¹**H NMR** (400 MHz, CDCl₃) δ 7.24 (s, 1H), 6.68 (t, J = 14.1 Hz, 1H), 6.60 (s, 1H), 3.94 (t, *J* = 5.7 Hz, 2H), 3.67 (s, 3H), 2.38 (s, 3H), 2.20 (s, 3H), 1.82 – 1.67 (m, 4H), 1.22 (s, 6H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -110.3.

¹³C NMR (101 MHz, CDCl₃) δ 178.4, 158.6, 135.2 (t, $J_{C-F} = 4.6$ Hz), 128.4 (t, $J_{C-F} = 7.0$ Hz), 124.3, 124.0 (t, $J_{C-F} = 21.1$ Hz), 114.9 (t, $J_{C-F} = 237.1$ Hz), 113.4, 68.2, 51.9, 42.2, 37.1, 25.3, 25.2, 18.6, 15.8. HRMS Calcd for C₁₇H₂₄F₂O₃ [M+Na⁺]: 337,1586; Found: 337.1591.

Methyl 5-(4-(difluoro((4-methoxyphenyl)thio)methyl)-2,5-dimethylphenoxy)-2,2dimethylpentanoate, (9c), Yield: 49%.

¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.50 (m, 2H), 7.23 (s, 1H), 6.90 (d, *J* = 8.8 Hz,2H), 6.60 (s, 1H), 3.95 (t, *J* = 5.6 Hz, 2H), 3.83 (s, 3H), 3.67 (s, 3H), 2.55 (s, 3H), 2.16 (s, 3H), 1.59 (s, 2H), 1.22 (s, 6H).
¹⁹F NMR (377 MHz, CDCl₃) δ -69.0.

¹³**C NMR** (101 MHz, CDCl₃) δ 178.4, 161.2, 158.5, 138.3, 135.3, 128.6 (t, $J_{C-F} = 6.6$ Hz), 123.9, 118.7, 114.6, 114.1, 68.2, 55.5, 51.9, 42.2, 37.2, 25.3, 25.2, 15.8.

HRMS Calcd for C₂₄H₃₀F₂O₄S [M+Na⁺]: 475.1725; Found: 475.1734.

Methyl 2-(4-(2-(4-chlorobenzamido)ethyl)-2-(((4-chlorophenyl)sulfonyl)difluoromethyl)phenoxy)-2-methylpropanoate, (9d), Yield: 44%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.6 Hz, 2H), 7.67 (d, *J* = 8.5 Hz, 2H), 7.56 (d, *J* = 8.6 Hz, 2H), 7.40 – 7.31 (m, 3H), 7.31 – 7.22 (m, 1H), 6.63 (d, *J* = 8.6 Hz, 1H), 6.42 (s, 1H), 3.76 (s, 3H), 3.63 (q, *J* = 6.6 Hz, 2H), 2.87 (t, *J* = 6.8 Hz, 2H), 1.61 (s, 6H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -96.4.

¹³**C NMR** (101 MHz, CDCl₃) δ 174.7, 166.7, 153.9, 142.3, 137.8, 133.9, 132.9, 132.2, 132.0, 131.9, 130.8 (t, $J_{C-F} = 7.7$ Hz), 129.8, 128.9, 128.6, 122.4 (t, $J_{C-F} = 289.4$ Hz), 117.7, 116.7 (t, $J_{C-F} = 20.0$ Hz), 80.0, 52.8, 41.1, 34.6, 24.9.

HRMS Calcd for $C_{27}H_{25}Cl_2F_2NO_6S$ [M+Na⁺]: 622.0640; Found: 622.0653.

(9r,10r)-2-(((4-chlorophenyl)sulfonyl)difluoromethyl)-9,10-dihydro-9,10-[1,2]benzenoanthracene, (9e), Yield: 32%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (d, J = 8.6 Hz, 2H), 7.60 (d, J = 1.3 Hz, 1H), 7.57 – 7.46 (m, 3H), 7.46 – 7.38 (m, 4H), 7.36 (dd, J = 7.7, 1.5 Hz, 1H), 7.11 – 6.95 (m, 4H), 5.52 (s, 1H), 5.48 (s, 1H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -100.8.

¹³**C NMR** (101 MHz, CDCl₃) δ 150.3, 146.2, 144.5, 144.3, 142.4, 132.3, 131.4, 125.6 (t, $J_{C-F} = 6.36$ Hz), 129.7, 125.7, 125.7, 124.1, 124.0, 123.9, 122.8 (t, $J_{C-F} = 5.8$ Hz), 54.1, 53.9.

HRMS Calcd for C₂₇H₁₇ClF₂O₂S [M+Na⁺]: 501.0498; Found: 501.0509.

Isopropyl (4-(((4-chlorophenyl)sulfonyl)difluoromethyl)phenyl)carbamate, (9f), Yield: 35%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.6 Hz, 2H), 7.67 – 7.45 (m, 6H), 6.80 (s, 1H), 5.04 (dt, *J* = 12.5, 6.3 Hz, 1H), 1.31 (d, *J* = 6.3 Hz, 6H).

¹⁹**F NMR** (377 MHz, CDCl3) δ -101.3.

¹³**C NMR** (101 MHz, CDCl₃) δ 152.9, 142.5, 142.4, 132.4, 131.5, 129.8, 129.1 (t, $J_{C-F} = 6.0$ Hz), 120.3 (t, $J_{C-F} = 22.8$ Hz), 118.0, 69.6, 22.2.

HRMS Calcd for C₁₇H₁₆ClF₂NO₄S [M+Na⁺]: 426.0349; Found: 426.0358.

Isopropyl (3-chloro-4-(((4-chlorophenyl)sulfonyl)difluoromethyl)phenyl)carbamate, (9g), Yield: 31%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.93 (d, J = 8.6 Hz, 2H), 7.71 – 7.50 (m, 4H), 7.37 (d, J = 9.5 Hz, 1H), 6.85 (s, 1H), 5.03 (dt, J = 12.5, 6.3 Hz, 1H), 1.31 (d, J = 6.3 Hz, 6H). ¹⁹**F NMR** (377 MHz, CDCl₃) δ -96.5.

¹³C NMR (101 MHz, CDCl₃) δ 152.6, 143.0, 142.7, 135.1 (t, $J_{C-F} = 2.3$ Hz), 132.4, 132.0 (t, $J_{C-F} = 7.7$ Hz), 131.5, 129.9, 121.8 (t, $J_{C-F} = 290.4$ Hz), 120.9, 118.1 (t, $J_{C-F} = 21.6$ Hz), 116.0, 70.0, 22.1. HRMS Calcd for C₁₇H₁₅Cl₂F₂NO₄S [M+Na⁺]: 459.9965; Found: 459.9971.

methyl 2-(4-chloro-2-(((4-chlorophenyl)sulfonyl)difluoromethyl)phenoxy)-2-methylpropanoate (9h); methyl 2-(4-chloro-3-(((4-chlorophenyl)sulfonyl)difluoromethyl)phenoxy)-2-methylpropanoate (9h*); a mixture of 9h and 9h* in a ratio of 1.5:1.

9h¹⁹**F NMR** (377 MHz, CDCl₃) δ -96.6

9h* 19F NMR (377 MHz, CDCl₃) δ -97.3

HRMS Calcd for C₁₈H₁₆Cl₂F₂O₅S [M+Na⁺]: 474.9956; Found: 474.9949.

(2R,4S,5R,6S)-2-(acetoxymethyl)-6-(3-(((4-chlorophenyl)sulfonyl)difluoromethyl)-4-methoxyphen oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate, (9i), Yield: 52%

¹**H NMR** (400 MHz, CDCl₃) δ 9.07 (dd, J = 8.8, 2.1 Hz, 1H), 9.01 (d, J = 2.2 Hz, 1H), 8.97 (s, 1H), 8.27 (s, 1H), 7.90 (d, J = 8.6 Hz, 2H), 7.61 – 7.49 (m, 2H), 7.13 (d, J = 8.9 Hz, 1H), 6.29 (d, J = 5.5 Hz, 1H), 6.00 (t, J = 5.5 Hz, 1H), 5.75 – 5.63 (m, 1H), 4.57 – 4.28 (m, 3H), 3.85 (s, 3H), 2.16 (s, 3H), 2.14 (s, 3H), 2.08 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -97.3.

¹³**C NMR** (101 MHz, CDCl₃) δ 170.5, 169.8, 169.5, 160.9, 152.7 (t, $J_{C-F} = 58.5$ Hz), 142.7, 142.1, 136.0, 132.4, 132.2, 132.1 (t, $J_{C-F} = 8.2$ Hz), 131.3, 129.5, 128.1, 122.4 (t, $J_{C-F} = 289.7$ Hz), 115.5 (t, $J_{C-F} = 20.9$ Hz), 112.5, 86.4, 80.5, 73.1, 70.8, 63.2, 56.3, 20.9, 20.7, 20.5.

HRMS Calcd for $C_{28}H_{29}ClF_2O_{13}S$ [M+Na⁺]: 701.0878; Found: 701.0900.

(2R,4S,5R,6S)-2-(acetoxymethyl)-6-(2-(((4-chlorophenyl)sulfonyl)difluoromethyl)-3,4,5-trimethox yphenoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate, (9j), Yield: 43%

¹**H NMR** (400 MHz, CDCl₃) δ 8.91 (s, 1H), 8.20 (s, 1H), 7.84 (d, J = 8.7 Hz, 2H), 7.46 (d, J = 8.7 Hz, 2H), 6.69 (s, 1H), 6.24 (d, J = 4.7 Hz, 1H), 6.04 – 5.90 (m, 1H), 5.69 (t, J = 5.3 Hz, 1H), 4.52 – 4.43 (m, 2H), 4.37 (dd, J = 12.9, 5.1 Hz, 1H), 3.96 (s, 3H), 3.88 (s, 3H), 3.85 (s, 3H), 2.14 (s, 3H), 2.10 (s, 3H), 2.08 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -84.9.

¹³C NMR (101 MHz, CDCl₃) δ 170.4, 169.7, 169.5, 158.4, 156.2, 154.5 (t, *J* = 3.6 Hz), 151.9, 150.9, 143.3, 143.2, 141.5, 133.6, 132.1, 131.0, 129.2, 123.5 (t, *J* = 292.6 Hz), 113.5 (t, *J* = 20.0 Hz), 110.4, 86.9, 80.3, 73.3, 70.4, 62.9, 62.0, 60.9, 56.3, 20.8, 20.6, 20.5.

HRMS Calcd for C₃₀H₃₃ClF₂O₁₅S [M+Na⁺]: 761.1089; Found: 761.1103.

(2S,3S,4S,5S)-2-(acetoxymethyl)-5-(6-(3-(((4-chlorophenyl)sulfonyl)difluoromethyl)-4-metho xyphenyl)-9H-purin-9-yl)tetrahydrofuran-3,4-diyl diacetate, (9k), Yield: 76%

¹**H NMR** (400 MHz, CDCl3) δ 9.07 (dd, J = 8.8, 2.1 Hz, 1H), 9.01 (d, J = 2.2 Hz, 1H), 8.97 (s, 1H), 8.27 (s, 1H), 7.90 (d, J = 8.6 Hz, 2H), 7.56 – 7.49 (m, 2H), 7.13 (d, J = 8.9 Hz, 1H), 6.29 (d, J = 5.5 Hz, 1H), 6.00 (t, J = 5.5 Hz, 1H), 5.76 – 5.57 (m, 1H), 4.55 – 4.32 (m, 3H), 3.85 (s, 3H), 2.15 (d, J = 6.9 Hz, 6H), 2.08 (s, 3H).

¹⁹**F NMR** (377 MHz, CDCl₃) δ -97.3.

¹³C NMR (101 MHz, CDCl₃) δ 170.5, 169.7, 169.5, 160.9, 152.71 (t, $J_{C-F} = 58.5$ Hz), 142.7, 142.4 (d, $J_{C-F} = 52.0$ Hz), 136.0, 132.4, 132.2, 131.3, 132.1 (t, $J_{C-F} = 8.2$ Hz), 129.5, 128.1, 122.4 (t, $J_{C-F} = 289.7$ Hz), 115.5 (t, J = 20.9 Hz), 112.5, 86.4, 80.5, 73.1, 70.8, 63.2, 56.3, 20.9, 20.7, 20.5.

HRMS Calcd for $C_{30}H_{27}ClF_2N_4O_{10}S$ [M+Na⁺]: 731.0997; Found: 731.0974.

¹H NMR (400 MHz, Acetone) δ 6.83 (s, 2H), 6.48 (s, 2H), 4.19 (s, 6H).

13. Reference

- 1) J. Han, J. Han, S. Chem, T. Zhong, Y. J. He, X. L. Yang, G. Q. Wang, C. J. Zhu, J. Xie. *Nat. Synth.* **2022**, *1*, 475-486.
- 2) J. J. Yu, X. Zhang, X. X. Wu, T. Liu, Z. Q. Zhang, J. Wu, C. Zhu. Chem. 2023, 9, 472-482.
- 3) X. P. Jiang, Y. Q. Q. Jiang, Q. Q. Liu, B. Li, D. Q. Shi, Y. S. Zhao. J. Org. Chem. 2022, 87, 3546-3554.
- 4) Z. Q. Wei, Z. Z. Lou, C. F. Ni, W. Zhang, J. B.. Hu. Chem. Commun. 2022, 58, 10024-10027.
- a) K. Li, W. Q. Wu, Y. Z. Lin, H. Shi. *Nat. Commun.* 2023, *14*, 2170; b) S.H. Sun, L. K. Yeung,
 D. A. Sweigart. *Organometallics*. 1995, *14*, 2613-2615.

14. Copies of NMR spectra

-3.70

-2.32

----97.00

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

7.55 7.55 7.55 7.55 7.55 7.55 7.53 7.53

142.46 132.25 132.25 132.25 132.27 132.24 131.24 131.24 127.77 126.25 1127.89 1127.89 1127.89 1127.69 1127.77 126.25 1124.64 112.176 112.46 112.126 126.25 112.46 127.77 126.25 112.46 127.77 126.25 112.76 127.77 126.25 112.76 127.66 127.77 126.25 127.76 127.77 127.66 127.77 127.76 127.76 127.77 127.76 127.77 127.76 127.76 127.77 127.77 127.77 127.77 127.77 127.76 127.77 127.76 127.77 126 127.77 126 127.77 126 127.77 126 127.77 127.77 126 127.77 126 127.77 127.77 127.77 126 127.77 127.77 127.77 126 127.77 127.77 126 127.77 127.77 126 127.77 127.77 126 127.77 127.77 126 127.77 127.77 126 127.77 127.77 127.77 126 127.77 127.77 127.77 126 127.77 177.77 177.77 177.77 177.77 177.77 177.77 177.77 177.77 177.

- 50 -

3.32.006

7.55 6.38 6.38 6.38 3.95 3.95 3.95

0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

> 7.95 6.85 6.85 6.85 6.85

- 56 -

L7.93 7.93 7.92 7.60 7.60

- 59 -

43.99 3.973.93 €0.99 ∕0.97

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -21 fl (ppm) -15.325 -147.09 -147.09 -147.09 -147.09 -129.68 -131.96 -131.96 -131.96 -131.96 -131.96 -131.96 -131.96 -131.96 -131.96 -131.96 -19.06

----57.70

I			
	l		
·	ļ	 	

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -21 -21

8 4

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

 826
 826

 1000
 1000

 1000
 1000

 1000
 1000

 1000
 1000

 1000
 1000

 1000
 1000

 1000
 1000

 1000
 1000

 1000
 1000

 1000
 1000

 1000
 1000

- 70 -

 7.1.1.558
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3
 5.3.3

-----96.48

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: fl (ppm)

----95.46

- 74 -

7.36 7.385 7.385 7.85 7.85 7.85 7.85 7.85 7.38 7.38 7.38 $\binom{3.97}{1.99}$

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -21 fl (ppm)

-3.50

10 0 -10 -20 -30 -40 -50 -50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -21 fl (ppm)

-955 -956 -957 -9588 -9588 -958 -958 -958 -958 -958 -958 -958 -958 -958 -958

6.52

----97.00

- 89 -

----99.96

OMe OMe NHiBoc

- 92 -

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -21 fl (ppm)

----98.71

✓153.03 ✓151.03 ✓151.03 ✓151.03 ✓139.21 ✓139.21 ✓132.40 ✓121.23 ✓121.23 ✓121.23 ✓121.23 ✓121.23 ✓121.23 ✓121.23 ✓122.36 ✓111.21 ✓112.23   112.23   112.23   112.23   112.23   112.23    112.23    112.23    112.23    112.23    112.23    112.23    112.23     112.23     112.23     112.23     112.23

----100.34

- 104 -

2.392 (6.95 (6.95) (5.00) (5.0

-----95.83

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

----92.83

(1.02) (1.03)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2; fl (ppm) ~150.98 ~1150.98 ~1127.21 ~1127.21 ~1128.97~1128.97 ~1128.97 ~1128.97~1128.97 ~1128.97 ~1128.97~1128.97~1128.97 ~1128.97~1128.97~1128.97~112

$\begin{array}{c} 7.53\\ 7.51\\ 7.55\\ 7.15\\ 7.12\\ 6.90\\ 6.90\\ 6.88\\$

- 128 -

7738

77738

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758

77758</t

122 -2.55 -2.55 -2.55 -2.55 -1.22 -1.22

-178.39 -178.39 -161.21 -15847 -15855 -138.332 -128.555 -1128.555 -112.8555 -112.8555 -114.09 -114.09 -55.50 -55.50 -55.19 -68.17 -68.17 -68.17 -55.50 -55.22 -55.22 -55.22

----101.33

 $<^{1.32}_{1.30}$

- 140 -

9.09</t

$\begin{array}{c} & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\$

