Support Information

Visible Light-Induced Deoxygenative Amidation Protocol for Synthesis of Dipeptide and Amide

Ji-Wei Ren,* Cheng-Shuai Han, Huai-Xin Zhang, Qing-Hao Zhang,

Xian-Ting Song, and Jing-Hui Sun

Table of Contents

1.	General experimental information 2
2.	Experimental procedures and characterization data3
	2.1. Optimization studies
	2.2. General procedure for the synthesis of dipeptides 3
	2.3. General procedure for the synthesis of chiral amides 6 11
	2.4. General procedure for the synthesis of racemic amides 914
	2.5. Synthetic procedure of 5 mmol scale model reaction
	2.6. Mechanistic experiments 16
3.	NMR Spectra ······20

1. General experimental information

Unless otherwise noted, all the substrates and reagents were purchased from commercial suppliers and used without further purification, which were known compounds. ¹H NMR spectra were recorded at 500 MHz. The chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration. ¹³C NMR data were collected at 125 MHz with complete proton decoupling. Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. High resolution mass spectroscopy (HRMS) was performed on Thermo Q Exactive Plus (FTMS ESI) mass spectrometer and acetonitrile was used to dissolve the sample. Column chromatography was carried out on silica gel (200-300 mesh).

2. Experimental procedures and characterization data

2.1. Optimization studies

Fmoc HN COOH 1a	MeOOC + 2a	photocatalyst (1 mol %) (Boc) ₂ O (2.0 eq.) MgCl ₂ (2.0 eq.) MeCN (0.1 M) blue LEDs, rt, 20 min	Fmoc NH O NH MeOOC 3a
Entry	Phe	Photocatalyst	
1	Ru(bpy) ₃ (PF ₆) ₂		74
2	Ru(bpz) ₃ (PF ₆) ₂		70
3	Ir(ppy)2(dtbbpy)PF6		79
4	Ir(dF(CF ₃)ppy) ₂ (bpy)PF ₆		38
5	Ir(dF(CF3)ppy)2(dtbbpy)PF6		52
6	<i>fac</i> -Ir(ppy) ₃		41
7	Rose Bengal		68
8	8 Eosin Y		76
9 Rhoda		odamine B	83
10 DCA			82

Table S1. The effects of photocatalyst^{*a*}

^{*a*}Unless otherwise noted, all reactions were carried out using amino acid **1a** (0.2 mmol, 1.0 equiv.), amino acid ester **2a** (0.24 mmol, 1.2 equiv.), photocatalyst (1 mol %), (Boc)₂O (0.4 mmol, 2.0 equiv.) and MgCl₂ (0.4 mmol, 2.0 equiv.) in acetonitrile (2.0 mL) at room temperature for 20 min under the irradiation of 440 nm blue LEDs (10 W). ^{*b*}Isolated yield with >20:1 *dr* determined by ¹H NMR.

Fmoc HN	MeOOC	Rhodamine B (1 (Boc) ₂ O (2.0 MgCl ₂ (2.0 e	mol %) eq.) ////	Fmoc NH
∖—СООН ≷́1а	2a	solvent (0.1 blue LEDs, rt, 2	M) o rd 20 min MeOOC	NH 3a
_	Entry	Solvent	Yield $(\%)^b$	_
	1	MeCN	83	
	2	DCE	71	
	3	DMF	77	

4	EtOH	83
5	THF	80
6	toluene	80
7	1,4-Dioxane	77

^{*a*}Unless otherwise noted, all reactions were carried out using amino acid **1a** (0.2 mmol, 1.0 equiv.), amino acid ester **2a** (0.24 mmol, 1.2 equiv.), rhodamine B (1 mol %), (Boc)₂O (0.4 mmol, 2.0 equiv.) and MgCl₂ (0.4 mmol, 2.0 equiv.) in solvent (2.0 mL) at room temperature for 20 min under the irradiation of 440 nm blue LEDs (10 W). ^{*b*}Isolated yield with >20:1 *dr* determined by ¹H NMR.

	Table S	53. The effects	s of base ^a	
Fmoc HN	MeOOC	Rhodamine B (Boc) ₂ O (2 H ₂ MgCl ₂ (2.0 base (2.0	(1 mol %) .0 eq.) 0 eq.) 9 eq.)	Fmoc NH
, ─COOH 1a	2a	EtOH (0. blue LEDs, ri	1 M) O	NH Ba
_	Entry	Base	Yield $(\%)^b$	
	1	-	83	
	2	K ₂ HPO ₄	83	
	3	NaHCO ₃	70	
	4	Na ₂ CO ₃	65	
	5	K ₂ CO ₃	46	
	6	K ₃ PO ₄	trace	

^{*a*}Unless otherwise noted, all reactions were carried out using amino acid **1a** (0.2 mmol, 1.0 equiv.), amino acid ester **2a** (0.24 mmol, 1.2 equiv.), rhodamine B (1 mol %), (Boc)₂O (0.4 mmol, 2.0 equiv.), MgCl₂ (0.4 mmol, 2.0 equiv.) and base (0.4 mmol, 2.0 equiv.) in ethanol (2.0 mL) at room temperature for 20 min under the irradiation of 440 nm blue LEDs (10 W). ^{*b*}Isolated yield with >20:1 *dr* determined by ¹H NMR.

Entry	Variation from the standard conditions	Yield $(\%)^b$
1	5 mol % of rhodamine B	84
2	no photocatalyst	trace
3	in dark	trace
4	no (Boc) ₂ O or MgCl ₂	NR

^{*a*}Unless otherwise noted, all reactions were carried out using amino acid **1a** (0.2 mmol, 1.0 equiv.), amino acid ester **2a** (0.24 mmol, 1.2 equiv.), rhodamine B (1 mol %), (Boc)₂O (0.4 mmol, 2.0 equiv.) and MgCl₂ (0.4 mmol, 2.0 equiv.) in ethanol (2.0 mL) at room temperature for 20 min under the irradiation of 440 nm blue LEDs (10 W). ^{*b*}Isolated yield with >20:1 *dr* determined by ¹H NMR.

2.2. General procedure for the synthesis of dipeptides 3

N-protected amino acids 1 (0.2 mmol, 1.0 equiv.), amino acid esters 2 (0.24 mmol, 1.2 equiv.), rhodamine B (1 mol %), (Boc)₂O (0.4 mmol, 2.0 equiv.) and MgCl₂ (0.4 mmol, 2.0 equiv.) were well mixed in ethanol (2.0 mL). The resulting mixture was stirred at room temperature for 20 min under the irradiation of 440 nm blue LEDs (10 W). The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (EtOAc/PE = 20%-40%) to yield dipeptides **3**.

Dipeptide 3a¹: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (78.5 mg, 83% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 7.5 Hz, 2H), 7.59 (d, *J* = 7.0 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.23 (t, *J* = 7.0 Hz, 2H), 7.18 (t, *J* = 7.0 Hz, 1H), 7.07 (d, *J* = 7.0 Hz, 2H), 6.40 (d, *J* = 6.0 Hz, 1H), 5.29 (d, *J* = 6.0 Hz, 1H), 4.84-4.88 (m, 1H), 4.38-4.42 (m, 1H), 4.32-4.36 (m, 1H), 4.19-4.22 (m, 2H), 3.72 (s, 3H), 3.16 (dd, *J* = 14.0, 6.0 Hz, 1H), 3.07 (dd, *J* = 14.0, 6.0 Hz, 1H), 1.35 (d, *J* = 6.0 Hz, 3H).

Dipeptide 3b²: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (61.4 mg, 80% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.35 (m, 5H), 7.21-7.27 (m, 3H), 7.08 (d, J = 7.0 Hz, 2H), 6.46 (d, J = 4.0 Hz, 1H), 5.26 (d, J = 4.5 Hz, 1H), 5.06-5.13 (m, 2H), 4.83-4.87 (m, 1H), 4.21-4.22 (m, 1H), 3.72 (s, 3H), 3.14 (dd, *J* = 14.0, 6.0 Hz, 1H), 3.07 (dd, *J* = 14.0, 6.0 Hz, 1H), 1.33 (d, *J* = 7.0 Hz, 3H).

Dipeptide 3c³: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (52.7 mg, 75% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.22-7.30 (m, 3H), 7.10 (d, J = 7.0 Hz, 2H), 6.56 (d, J = 7.5 Hz, 1H), 4.97 (br s, 1H), 4.83-4.87 (m, 1H), 4.15 (br s, 1H), 3.71 (s, 3H), 3.16 (dd, J = 13.5, 6.0 Hz, 1H), 3.08 (dd, J = 13.5, 6.0 Hz, 1H), 1.44 (s, 9H), 1.31 (d, J = 7.0 Hz, 3H).

Dipeptide 3d⁴: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (101.8 mg, 83% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 7.5 Hz, 2H), 7.58 (d, *J* = 7.0 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.31 (t,

J = 7.5 Hz, 2H), 7.24-7.27 (m, 2H), 7.18-7.21 (m, 3H), 7.00 (d, J = 7.0 Hz, 1H), 5.93 (d, J = 8.0 Hz, 1H), 4.66-4.70 (m, 1H), 4.53 (d, J = 3.5 Hz, 1H), 4.33-4.41 (m, 2H), 4.22 (t, J = 7.0 Hz, 1H), 3.08 (d, J = 6.0 Hz, 2H), 2.90 (dd, J = 17.0, 3.5 Hz, 1H), 2.61 (dd, J = 17.0, 6.5 Hz, 1H), 1.44 (s, 9H), 1.38 (s, 9H).

Dipeptide 3e⁴: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (95.4 mg, 86% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.54 (t, *J* = 7.0 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.27 (d, *J* = 9.0 Hz, 2H), 7.23 (d, *J* = 7.5 Hz, 1H), 7.18 (d, *J* = 4.5 Hz, 2H), 6.16 (d, *J* = 4.5 Hz, 1H), 5.34 (d, *J* = 6.0 Hz, 1H), 4.40-4.46 (m, 3H), 4.31 (*br* s, 1H), 4.19 (t, *J* = 6.5 Hz, 1H), 3.06-3.12 (m, 2H), 1.54-1.56 (m, 2H), 1.44-1.46 (m, 10H), 0.90 (d, *J* = 6.0 Hz, 3H), 0.88 (d, *J* = 6.5 Hz, 3H).

Dipeptide 3f⁴: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (90.6 mg, 82% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.60-7.62 (m, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.22 (d, *J* = 6.0 Hz, 1H), 5.78 (d, *J* = 4.0 Hz, 1H), 4.47-4.48 (m, 1H), 4.39-4.40 (m, 2H), 4.22-4.25 (m, 2H), 3.83 (dd, *J* = 8.5, 3.5 Hz, 1H), 3.39 (t, *J* = 8.0 Hz, 1H), 1.62-1.71 (m, 2H), 1.49-1.55 (m, 1H), 1.46 (s, 9H), 1.23 (s, 9H), 0.95 (d, *J* = 6.0 Hz, 6H). **Dipeptide 3g**⁴: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (89.2 mg, 85% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 6.26 (d, *J* = 7.5 Hz, 1H), 5.24 (d, *J* = 8.0 Hz, 1H), 4.46-4.50 (m, 1H), 4.36-4.43 (m, 2H), 4.21 (t, *J* = 7.0 Hz, 2H), 1.50-1.67 (m, 6H), 1.45 (s, 9H), 0.95 (s, 6H), 0.91 (dd, *J* = 6.0, 2.0 Hz, 6H).

Dipeptide 3h⁴: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (77.4 mg, 78% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 2H), 7.60 (d, J = 7.0 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.29-7.32 (m, 2H), 6.24 (d, J = 8.5 Hz, 1H), 5.44 (d, J = 8.5 Hz, 1H), 4.41-4.44 (m, 2H), 4.35-4.38 (m, 1H), 4.23 (t, J = 7.0 Hz, 1H), 4.04 (t, J = 7.5 Hz, 1H), 2.11-2.17 (m, 2H), 1.46 (s, 9H), 0.97 (t, J = 7.5 Hz, 6H), 0.91 (dd, J = 10.0, 7.0 Hz, 6H).

Dipeptide 3i⁵: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); Colorless oil (91.0 mg, 80% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.61 (d, *J* = 7.5 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 1H), 6.64 (d, *J* = 0.5 Hz, 1H), 5.96 (d, *J* = 7.5 Hz, 1H),

4.79 (dd, *J* = 14.0, 7.5 Hz, 1H), 4.68 (d, *J* = 4.5 Hz, 1H), 4.35-4.41 (m, 3H), 4.23-4.26 (m, 2H), 3.01 (dd, *J* = 14.0, 3.5 Hz, 1H), 2.73 (dd, *J* = 14.0, 7.5 Hz, 1H), 2.19-2.26 (m, 1H), 2.05 (s, 3H), 1.46 (s, 9H), 0.97 (t, *J* = 7.0 Hz, 6H).

Dipeptide 3j: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (83.6 mg, 87% yield, >20:1 dr); m.p. 122-123 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, J = 7.5 Hz, 2H), 7.57 (d, J = 6.5 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.28 (td, J = 7.5, 1.0 Hz, 2H), 6.71 (d, J = 8.5 Hz, 1H), 5.49 (d, J = 8.5 Hz, 1H), 4.58 (dd, J = 8.5, 5.0 Hz, 1H), 4.34-4.42 (m, 2H), 4.29-4.31 (m, 1H), 4.20 (t, J = 7.0 Hz, 1H), 3.70 (s, 3H), 1.88 (*br* s, 1H), 1.63-1.71 (m, 2H), 1.54-1.57 (m, 1H), 1.38-1.42 (m, 1H), 1.13-1.19 (m, 1H), 0.94 (s, 6H), 0.85-0.88 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 172.2(2), 172.1(9), 156.3, 143.9, 143.8, 141.3, 127.8, 127.1, 125.1, 120.0(1), 119.9(9), 67.1, 56.5, 53.5, 52.1, 47.1, 41.5, 37.8, 25.2, 24.7, 22.9, 22.1, 15.4, 11.6; HRMS (FTMS-ESI) m/z: [M+Na]⁺ calcd for C₂₈H₃₆N₂NaO₅⁺ 503.2516, found 503.2538.

Dipeptide 3k: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (84.2 mg, 85% yield, >20:1 dr); m.p. 206-207 °C; ¹H NMR (500 MHz, CD₃OD) δ 7.81 (d, *J* = 7.5 Hz, 2H), 7.68 (t, *J* = 7.5 Hz, 2H), 7.40 (t, *J*

= 7.5 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 4.33-4.42 (m, 3H), 4.22-4.24 (m, 2H), 3.72 (s, 3H), 2.34 (t, J = 7.5 Hz, 2H), 2.04-2.11 (m, 1H), 1.88-1.96 (m, 2H), 1.46-1.51 (m, 1H), 1.23-1.38 (m, 2H), 0.90-0.94 (m, 6H); ¹³C NMR (125 MHz, CD₃OD) δ 176.5, 173.1, 172.1, 157.0, 143.9, 143.8, 141.2, 127.4, 126.8, 124.9, 124.8, 119.5, 66.6, 56.9, 54.2, 51.1, 47.0, 37.0, 31.1, 27.7, 24.9, 14.6, 10.4; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₂₇H₃₄N₃O₆⁺ 496.2442, found 496.2439.

Dipeptide 31: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (100.2 mg, 88% yield, >20:1 dr); m.p. 105-106 °C; ¹H NMR (500

³¹ MHz, CDCl₃) δ 7.77 (d, J = 7.5 Hz, 2H), 7.61 (d, J = 6.0 Hz, 2H), 7.41 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 7.20 (d, J = 7.0 Hz, 1H), 5.98 (d, J = 8.0 Hz, 1H), 4.56-4.62 (m, 2H), 4.40-4.46 (m, 2H), 4.25 (t, J = 7.0 Hz, 1H), 3.73 (s, 3H), 3.65 (s, 3H), 2.98 (dd, J = 17.5, 3.5 Hz, 1H), 2.60 (dd, J = 17.5, 6.0 Hz, 1H), 2.34-2.47 (m, 2H), 2.20-2.27 (m, 1H), 1.96-2.04 (m, 1H), 1.46 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 173.2, 171.7, 171.5, 170.6, 156.0, 143.9, 143.7, 141.3(3), 141.3(2), 127.8, 127.1, 125.1, 120.0, 82.0, 67.3, 52.6, 51.9, 51.8, 51.0, 47.1, 37.4, 29.9, 28.0, 27.2; HRMS (FTMS-ESI) m/z: [M+Na]⁺ calcd for C₃₀H₃₆N₂NaO₉⁺ 591.2313, found 591.2323.

Dipeptide 3m: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); Colorless oil (84.0 mg, 82% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.60 (d, *J* = 7.0 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 2H),

6.41 (d, J = 9.0 Hz, 1H), 5.52 (d, J = 8.5 Hz, 1H), 4.49 (d, J = 9.0 Hz, 1H), 4.40-4.43 (m, 1H), 4.34-4.37 (m, 1H), 4.22-4.27 (m, 2H), 4.14-4.16 (m, 1H), 3.71 (s, 3H), 2.13-2.17 (m, 1H), 1.17 (d, J = 6.0 Hz, 3H), 1.11 (s, 9H), 1.02 (dd, J = 12.5, 7.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 171.5, 171.0, 156.3, 144.0, 143.9, 141.3, 127.7, 127.1, 125.1(9), 125.1(5), 120.0, 74.3, 67.2, 67.1, 60.1, 57.9, 52.2, 47.2, 31.9, 28.3, 21.1, 18.9, 17.8; HRMS (FTMS-ESI) m/z: [M+Na]⁺ calcd for C₂₉H₃₈N₂NaO₆⁺ 533.2622, found 533.2609.

Dipeptide 3n: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); Colorless oil (97.2 mg, 83% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.61 (dd, *J* = 7.5, 3.5 Hz, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.30-7.33 (m, 3H), 6.94 (*br* s, 1H), 6.05 (d, *J* = 7.0 Hz, 1H), 4.58-4.66 (m, 2H), 4.46 (d, *J* =

9.0 Hz, 1H), 4.39-4.42 (m, 2H), 4.34 (dd, J = 14.0, 5.5 Hz, 1H), 4.23-4.28 (m, 2H), 3.71 (s, 3H), 3.02 (dd, J = 14.5, 6.5 Hz, 1H), 2.85 (dd, J = 14.5, 5.0 Hz, 1H), 2.03 (s, 3H), 1.21 (d, J = 6.5 Hz, 3H), 1.13 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 171.1, 170.6, 156.4, 143.8, 143.7, 141.3(2), 141.3(0), 127.8, 127.1, 125.2, 120.0, 74.3, 67.4, 67.0, 58.4, 53.7, 52.3, 47.1, 40.6, 34.1, 28.3, 23.2, 21.3; HRMS (FTMS-ESI) m/z: [M+Na]⁺ calcd for C₃₀H₃₉N₃NaO₇S⁺ 608.2401, found 608.2405.

Dipeptide 30: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); Colorless oil (94.4 mg, 87% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 2H), 7.69 (d, J = 8.0 Hz, 1H), 7.60-7.62 (m, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 5.85 (d, J = 3.5 Hz, 1H), 4.71-4.73 (m, 1H), 4.38 (d, J = 7.0 Hz, 2H), 4.30 (*br* s, 1H), 4.24 (t, J = 7.5 Hz, 1H), 3.85-3.87 (m, 1H), 3.80-3.82 (m, 1H), 3.74 (s, 3H), 3.56 (dd, J = 9.0, 3.0 Hz, 1H), 3.45 (t, J = 8.5 Hz, 1H), 1.26 (s, 9H), 1.14 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 170.5(3), 170.4(5), 156.0, 144.0, 143.8, 141.3(1), 141.3(0), 127.7, 127.1, 125.2, 120.0, 74.4, 73.5, 67.1, 62.0, 61.8, 54.0, 53.2, 52.3, 47.2, 27.4(1), 27.3(5); HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₃₀H₄₁N₂O₇⁺ 541.2908, found 541.2900.

Dipeptide 3p: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); Colorless oil (78.3 mg, 79% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.72 (dd, J = 7.5, 3.0 Hz, 2H), 7.55 (t, J = 7.0 Hz, 2H), 7.33-7.37 (m, 2H), 7.25 (td, J = 7.5, 2.0 Hz, 2H), 5.78 (*br* s, 1H), 4.52-4.54 (m, 1H), 4.37-4.41 (m, 1H), 4.27-4.34 (m, 2H), 4.15 (t, J = 7.0 Hz, 1H), 3.87 (s, 2H), 3.51 (*br* s, 1H), 2.34 (*br* s, 1H), 1.63-1.73 (m, 2H), 1.55-1.61 (m, 1H), 1.44 (s, 9H), 0.93 (t, J = 5.8 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 169.3, 156.7, 143.9, 143.7, 141.3, 127.7, 127.0(9), 127.0(7), 125.1, 119.9(7), 119.9(5), 82.6, 67.2, 63.1, 55.4, 53.7, 47.1, 41.7, 28.0, 24.7, 23.0, 21.9; HRMS (FTMS-ESI) m/z: [M+Na]⁺ calcd for C₂₈H₃₆N₂NaO₆⁺ 519.2466, found 519.2469. **Dipeptide 3q**: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); Colorless oil (72.4 mg, 75% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.69-7.71 (m, 2H), 7.54 (t, J = 7.0 Hz, 2H), 7.31-7.36 (m, 3H), 7.23-7.25 (m, 2H), 6.01 (d, J = 8.5 Hz, 1H), 4.58-4.60 (m, 1H), 4.37-4.41 (m, 1H), 4.23-4.26 (m, 1H), 4.19 (t, J = 7.5 Hz, 1H), 4.14 (t, J = 7.5 Hz, 1H), 3.86 (d, J = 3.5 Hz, 2H), 2.08-2.14 (m, 1H), 1.43 (s, 10H), 0.98 (dd, J = 13.8, 6.8 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 169.3, 157.0, 144.0, 143.7, 141.3, 127.7, 127.0(7), 127.0(6), 125.2, 125.1, 120.0, 119.9, 82.5, 67.3, 63.1, 60.4, 55.2, 47.1, 31.4, 28.0, 19.3, 18.1; HRMS (FTMS-ESI) m/z: [M+Na]⁺ calcd for C₂₇H₃₄N₂NaO₆⁺ 505.2309, found 505.2306.

Dipeptide 3r: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); Colorless oil (83.0 mg, 81% yield, >20:1 dr); ¹H NMR (500 MHz, CD₃OD) δ 7.81 (d, *J* =

7.5 Hz, 2H), 7.68 (t, J = 8.0 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 4.38-4.42 (m, 3H), 4.22-4.25 (m, 2H), 3.90 (dd, J = 11.3, 4.8 Hz, 1H), 3.81 (dd, J = 11.0, 3.5 Hz, 1H), 2.36 (t, J = 7.5 Hz, 2H), 2.11-2.18 (m, 1H), 1.91-1.98 (m, 1H), 1.48 (s, 9H); ¹³C NMR (125 MHz, CD₃OD) δ 176.5, 172.9, 169.4, 157.1, 143.9, 143.8, 141.2, 127.4, 126.8(1), 126.7(9), 124.9, 124.8, 119.5, 81.9, 66.7, 61.5, 55.5, 54.5, 47.0, 31.2, 27.9, 26.9; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₂₇H₃₄N₃O₇⁺ 512.2391, found 512.2386.

Dipeptide 3s: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); Colorless oil (84.1 mg, 80% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.60-7.62 (m, 2H), 7.57 (d, *J* = 4.5 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 2H), 5.75 (d, *J* = 3.0 Hz, 1H), 4.49-4.52 (m, 1H), 4.40 (d, *J* = 6.0 Hz, 2H), 4.31 (*br* s, 1H), 4.24 (t, *J* = 7.0 Hz, 1H), 3.96-3.98 (m, 1H), 3.88-3.91 (m, 1H), 3.83-3.84 (m, 1H), 3.43-3.46 (m, 1H), 2.57 (*br* s, 1H), 1.48 (s, 9H), 1.22 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 169.0, 156.1, 143.9, 143.7, 141.3, 127.7, 127.1, 125.2, 120.0, 82.9, 74.4, 67.3, 63.6, 61.9, 55.8, 54.7, 47.1, 28.0, 27.4; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₂₉H₃₉N₂O₇⁺ 527.2752, found 527.2750.

Dipeptide 3t³: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (66.2 mg, 86% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 6.53-7.28 (m, 1H),

4.23-4.50 (m, 2H), 3.34-3.48 (m, 2H), 1.88-2.33 (m, 4H), 1.57-1.65 (m, 2H), 1.46-1.52 (m, 19H), 0.94 (d, *J* = 5.0 Hz, 6H).

Dipeptide 3u¹: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); Colorless oil (71.0 mg, 84% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, *J* = 7.5 Hz, 2H), 7.59 (dd, *J* = 7.5, 3.5 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 2H), 5.78-5.79 (m, 1H), 4.51-4.57 (m, 2H), 4.34 (d, *J* = 7.5 Hz, 2H), 4.20 (t, *J* = 7.5 Hz, 1H), 3.67-3.73 (m, 4H), 3.59-3.64 (m, 1H), 2.18-2.24 (m, 1H), 1.96-2.09 (m, 3H), 1.41 (d, *J* = 7.0 Hz, 3H).

Dipeptide 3v: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); Colorless oil (82.6 mg, 79% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 7.5 Hz, 2H), 7.58 (t, J = 7.0 Hz, 2H), 7.37 (td, J = 7.5, 2.5 Hz, 2H), 7.28-7.31 (m, 2H), 6.46 (*br* s, 1H), 6.14 (d, J = 8.0 Hz, 1H), 5.96 (*br* s, 1H), 4.54-4.58 (m, 1H), 4.40 (dd, J = 8.5, 4.5 Hz, 1H), 4.32-4.34 (m, 2H), 4.18 (t, J = 7.0 Hz, 1H), 3.69 (t, J = 6.5 Hz, 2H), 2.28-2.37 (m, 2H), 2.14-2.24 (m, 2H), 1.89-2.02 (m, 4H), 1.45 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 175.2, 171.3, 170.2, 156.5, 143.9, 143.7, 141.2(9), 141.2(6), 127.7, 127.1, 125.2, 119.9(8), 119.9(6), 81.7, 67.1, 59.8, 51.5, 47.1, 31.2, 29.1, 29.0, 28.0, 27.8, 24.9; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₂₉H₃₆N₃O₆⁺ 522.2599, found 522.2588.

Dipeptide 3w: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); Colorless oil (58.9 mg, 80% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 4.38-4.51 (m, 2H), 3.56-3.76 (m, 3H), 3.36-3.47 (m, 1H), 1.82-2.22 (m, 8H), 1.39-1.45 (m, 18H); ¹³C NMR (125 MHz, CDCl₃) δ 171.6, 171.3, 170.8, 154.5, 153.7, 81.1, 80.9, 79.4, 79.3, 59.5, 57.7(2), 57.6(8), 46.8, 46.6, 46.5, 46.4, 30.0, 29.1, 28.9, 28.8, 28.5, 28.3, 27.9, 24.9, 24.8, 24.0, 23.5; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₉H₃₃N₂O₅⁺ 369.2384, found 369.2371.

2.3. General procedure for the synthesis of chiral amides 6

Chiral carboxylic acids 4 (0.2 mmol, 1.0 equiv.), chiral amines 5 (0.24 mmol, 1.2 equiv.), rhodamine B (1 mol %), (Boc)₂O (0.4 mmol, 2.0 equiv.) and MgCl₂ (0.4 mmol, 2.0 equiv.) were well mixed in ethanol (2.0 mL). The resulting mixture was stirred at room temperature for 20 min under the irradiation of 440 nm blue LEDs (10 W). The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (EtOAc/PE = 20%-40%) to yield chiral amides 6.

Chiral amide 6a: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (53.9 mg, 88% yield, >20:1 dr); m.p. 53-54 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.37 (m, 4H), 7.25-7.29 (m, 1H), 5.86 (d, J = 8.5 Hz, 1H), 4.39 (dd, J = 8.5, 4.5 Hz, 1H), 3.63 (q, J = 7.0 Hz, 1H), 2.05-2.12 (m, 1H), 1.55 (d, J = 7.0 Hz, 3H), 1.39 (s, 9H), 0.87 (d, J = 7.0 Hz, 3H), 0.79 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.0, 170.7, 140.9, 128.9, 127.7, 127.3, 81.8, 57.4, 47.2, 31.4, 28.0, 18.8, 18.4, 17.6; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₈H₂₈NO₃⁺ 306.2064, found 306.2051.

Chiral amide 6b⁵: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (62.9 mg, 89% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.34 (m, 2H), 7.25-7.28 (m, 3H), 7.20-7.21 (m, 3H), 6.98-7.00 (m, 2H), 5.80 (d, *J* = 7.5 Hz, 1H), 4.66-4.70 (m, 1H), 3.55 (q, *J* = 7.5 Hz, 1H), 2.98-3.07 (m, 2H), 1.52 (d, *J* = 7.5 Hz, 3H), 1.35 (s, 9H).

Chiral amide 6c: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); Colorless oil (46.8 mg, 80% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.36 (m, 4H), 7.25-7.28 (m, 1H), 6.43 (d, J = 6.5 Hz, 1H), 4.46-4.49 (m, 1H), 3.86 (s, 2H), 3.63 (q, J = 7.0 Hz, 1H), 3.04 (*br* s, 1H), 1.53 (d, J = 7.0 Hz, 3H), 1.40 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 174.7, 169.2, 140.9, 128.9, 127.6, 127.4, 82.8, 63.9, 55.6, 47.0, 27.9, 18.6; HRMS (FTMS-ESI) m/z: [M+Na]⁺ calcd for C₁₆H₂₃NNaO₄⁺ 316.1519, found 316.1535.

Chiral amide 6d: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); Colorless oil (44.1 mg, 84% yield, >20:1 dr); ¹H NMR (500 MHz, CD₃OD) δ 7.23-7.25 (m, 2H), 7.16-7.19 (m, 2H), 7.08-7.12 (m, 1H), 4.31 (dd, *J* = 9.3, 5.8 Hz, 1H), 3.62

(q, J = 7.0 Hz, 1H), 1.51-1.59 (m, 1H), 1.45-1.49 (m, 2H), 1.34 (d, J = 7.0 Hz, 3H),0.84 (d, J = 6.5 Hz, 3H), 0.82 (d, J = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CD₃OD) δ 176.0, 175.6, 141.3, 128.2, 127.1, 126.6, 51.4, 45.8, 40.7, 24.6, 22.1, 20.6, 17.5; HRMS (FTMS-ESI) m/z: $[M+H]^+$ calcd for $C_{15}H_{23}N_2O_2^+$ 263.1754, found 263.1730.

Chiral amide 6e: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (41.7 mg, 82% yield, >20:1 dr); m.p. 131-132 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.33 (m, 2H), 7.22-7.27 (m, 5H), 7.17-7.21 (m, 1H), 7.07-7.09 (m, 2H), 5.60 (d, *J* = 7.0 Hz, 1H), 5.05-5.11 (m, 1H), 3.57 (q, *J* = 7.0 Hz, 1H), 1.51 (d, *J* = 7.0 Hz, 3H), 1.39 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.2, 143.3, 141.4, 128.9, 128.5, 127.7, 127.3, 127.1, 125.8, 48.7, 47.1, 21.9, 18.5; HRMS (FTMS-

ESI) m/z: [M+Na]⁺ calcd for C₁₇H₁₉NNaO⁺ 276.1359, found 276.1357.

Chiral amide 6f: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (52.7 mg, 87% yield, >20:1 dr); m.p. 164-165 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 8.0 Hz, 1H), 7.82-7.84 (m, 1H), 7.74 (d, *J* = 8.0 Hz, 1H),

7.45-7.51 (m, 2H), 7.28-7.39 (m, 4H), 7.22-7.26 (m, 3H), 5.82-5.88 (m, 1H), 5.74 (d, J = 8.0 Hz, 1H), 3.44 (q, J = 7.0 Hz, 1H), 1.48 (d, J = 6.5 Hz, 3H), 1.46 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 141.6, 138.4, 133.9, 131.1, 128.9, 128.8, 128.3, 127.6, 127.2, 126.5, 125.9, 125.2, 123.5, 122.5, 47.0, 44.8, 20.5, 18.7; HRMS (FTMS-ESI) m/z: $[M+H]^+$ calcd for $C_{21}H_{22}NO^+$ 304.1696, found 304.1705.

Chiral amide 6g: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (39.4 mg, 77% yield, >20:1 dr); m.p. 104-105 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.36 (m, 5H), 7.22-7.29 (m, 3H), 7.14-7.16 (m, 2H), 6.60 (d, J = 8.0

Hz, 1H), 5.00-5.06 (m, 1H), 4.91 (d, J = 2.5 Hz, 1H), 3.86 (d, J = 3.0 Hz, 1H), 1.42 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 142.8, 139.6, 128.8, 128.7, 128.6, 127.4, 126.8, 125.9, 74.1, 48.9, 21.9; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₈NO₂⁺ 256.1332, found 256.1325.

Chiral amide 6h: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); Colorless oil (35.0 mg, 83% yield, >20:1 dr); ¹H NMR (500 MHz, CDCl₃) δ 7.27-7.37 (m, 5H), 6.79

(d, J = 2.5 Hz, 1H), 5.06-5.12 (m, 1H), 4.40 (q, J = 7.0 Hz, 1H), 1.76 (d, J = 7.0 Hz, 3H), 1.53 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.6, 142.5, 128.8, 127.6, 126.1, 56.0, 49.3, 22.7, 21.7; HRMS (FTMS-ESI) m/z: [M+Na]⁺ calcd for C₁₁H₁₄ClNNaO⁺ 234.0656, found 234.0660.

Chiral amide 6i: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-40% (v/v); White solid (95.2 mg, 84% yield, >20:1 dr); m.p. 208-209 °C; ¹H NMR (500 MHz, Acetone- d_6) δ 8.01 (d, J = 8.0 Hz, 2H), 7.95-7.97 (m, 4H), 7.52-7.56 (m, 2H), 7.36-7.39 (m, 4H), 7.11-7.12 (m, 4H), 6.88-

6.96 (m, 6H), 5.93 (s, 2H), 4.92-4.98 (m, 2H), 1.22 (d, J = 7.0 Hz, 6H); ¹³C NMR (125 MHz, Acetone- d_6) δ 165.2, 165.1, 143.6, 133.5, 130.0, 129.7, 128.5, 128.1, 126.6, 126.0, 73.7, 48.6, 21.1; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₃₄H₃₃N₂O₆⁺ 565.2333, found 565.2336.

2.4. General procedure for the synthesis of racemic amides 9

Hindered carboxylic acid 7 (0.2 mmol, 1.0 equiv.), amines 8 (0.24 mmol, 1.2 equiv.), rhodamine B (1 mol %), (Boc)₂O (0.4 mmol, 2.0 equiv.) and MgCl₂ (0.4 mmol, 2.0 equiv.) were well mixed in ethanol (2.0 mL). The resulting mixture was stirred at room temperature for 20 min under the irradiation of 440 nm blue LEDs (10 W). The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (EtOAc/PE = 30%-50%) to yield amides 9.

Racemic amide 9b: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 30%-50% (v/v); Colorless oil (37.7 mg, 62% yield); ¹H NMR (500 MHz, Acetone- d_6) δ 7.77-7.79

(m, 2H), 7.38-7.41 (m, 1H), 7.30-7.34 (m, 4H), 7.14-7.17 (m, 2H), 7.07-7.10 (m, 1H), 2.89 (s, 1H), 1.43 (s, 6H); ¹³C NMR (125 MHz, Acetone- d_6) δ 183.9, 148.7, 146.3,

129.9, 127.7, 127.5, 126.0(9), 126.0(8), 125.1, 48.2, 27.3; HRMS (FTMS-ESI) m/z: [M+Na]⁺ calcd for C₁₆H₁₇NNaO₃S⁺ 326.0821, found 326.0835.

355.2016.

F3 Racemic amide 9c: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 30%-50% (v/v); Colorless oil (44.5 mg, 60% yield); ¹H NMR (500 MHz, Acetone-

 d_6) δ 7.95 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.26-7.29 (m, 2H), 7.13-7.16 (m, 2H), 7.07-7.11 (m, 1H), 2.95 (d, J = 14.0 Hz, 1H), 1.44 (s, 6H); ¹³C NMR (125 MHz, Acetone- d_6) δ 184.3, 149.8, 148.3, 131.0 (q, ${}^{I}J_{C-F} = 32.5$ Hz), 127.5, 127.0, 126.0, 125.2, 124.8 (q, ${}^{2}J_{C-F} = 3.8$ Hz), 48.2, 27.0; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₇F₃NO₃S⁺ 372.0876, found 372.0883.

Racemic amide 9d: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 30%-50% (v/v); Colorless oil (34.7 mg, 57% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.43-7.45 (m, 2H), 7.37-7.40 (m, 2H), 7.28-7.31 (m, 1H), 5.21 (s, 1H), 3.70 (s, 3H), 1.91 (d, *J* = 13.5 Hz, 2H), 1.71 (td, *J* = 13.0, 3.5 Hz, 2H), 1.58 (s, 6H), 1.47-1.55 (m, 3H), 1.14-1.20 (m, 1H), 0.99-1.07 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 176.6, 174.5, 145.1, 128.7, 127.1, 126.5, 58.5, 52.1, 47.1, 32.1, 26.8, 25.1, 21.4; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₈H₂₆NO₃⁺ 304.1907, found 304.1903.

Racemic amide 9e: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 30%-50% (v/v); Colorless oil (31.6 mg, 60% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.40 (m, 4H), 7.26-7.29 (m, 1H), 5.65 (s, 1H), 3.70 (s, 3H), 1.55 (s, 6H), 1.43 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 176.7, 174.9, 145.1, 128.7, 127.0, 126.3, 56.3, 52.5, 47.0, 27.0, 24.7; HRMS (FTMS-ESI) m/z: [M+Na]⁺ calcd for C₁₅H₂₁NNaO₃⁺ 286.1414, found 286.1403.

Racemic amide 9f: Purified by flash chromatography on silica gel,
eluting with ethyl acetate/petroleum ether 30%-50% (v/v); Colorless
oil (36.6 mg, 55% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.36 (m,
2H), 7.22-7.24 (m, 3H), 2.97-3.59 (m, 8H), 1.54 (s, 6H), 1.41 (s, 9H); ¹³C NMR (125
MHz, CDCl₃) δ 175.1, 154.5, 146.1, 129.0, 126.6, 124.8, 80.1, 47.0, 46.0, 42.6, 28.3(4),
28.3(3); HRMS (FTMS-ESI) m/z: [M+Na]⁺ calcd for C₁₉H₂₈N₂NaO₃⁺ 355.1992, found

Fmoc-**NH HN**-**CN Amide 9g**: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 30%-40% (v/v); White solid (67.9 mg, 78% yield); m.p. 204-205 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.75-8.77 (m, 1H), 8.48 (*br* s, 1H), 8.37 (dd, *J* = 8.5, 2.0 Hz, 1H), 8.28 (d, *J* = 8.5 Hz, 1H), 7.45 (d, *J* = 7.5 Hz, 2H), 7.29 (dd, *J* = 7.5, 2.5 Hz, 2H), 7.09 (t, *J* = 7.5 Hz, 2H), 7.00 (t, *J* = 7.5 Hz, 2H), 5.74 (d, *J* = 8.0 Hz, 1H), 4.83-4.87 (m, 1H), 4.34 (d, *J* = 7.5 Hz, 2H), 4.21 (t, *J* = 7.5 Hz, 1H), 1.42 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 176.4, 155.9, 143.8, 143.3, 142.6, 135.6, 134.3, 129.3, 127.9, 126.3, 123.5, 122.9, 120.0, 116.7, 115.5, 115.2, 109.6, 58.8, 52.3, 48.5, 26.8; HRMS (FTMS-ESI) m/z: [M+Na]⁺ calcd for C₂₆H₂₀N₄NaO₃⁺ 459.1428, found 459.1439.

2.5. Synthetic procedure of 5 mmol scale model reaction

N-protected amino acid **1a** (1.56 g, 5.0 mmol, 1.0 equiv.), amino acid ester **2a** (1.08 g, 6.0 mmol, 1.2 equiv.), rhodamine B (24.0 mg, 0.05 mmol, 1 mol %), (Boc)₂O (2.18 g, 10.0 mmol, 2.0 equiv.) and MgCl₂ (0.95 g, 10.0 mmol, 2.0 equiv.) were well mixed in ethanol (50.0 mL). The resulting mixture was stirred at room temperature for 20 min under the irradiation of 440 nm blue LEDs (10 W). The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (EtOAc/PE = 20%-40%) to yield dipeptide **3a** in 85% yield (2.01 g, white solid) with >20:1 dr.

2.6. Mechanistic experiments

N-protected amino acid **1a** (0.2 mmol, 1.0 equiv.), $(Boc)_2O$ (0.4 mmol, 2.0 equiv.) and MgCl₂ (0.4 mmol, 2.0 equiv.) were well mixed in ethanol (2.0 mL). The resulting mixture was stirred at room temperature for 20 min. The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (EtOAc/PE = 20%-30%) to yield anhydride **10** (65.9 mg, 86% yield) as

colorless oil.

N-protected amino acid **1a** (0.2 mmol, 1.0 equiv.), amino acid ester **2a** (0.24 mmol, 1.2 equiv.), rhodamine B (1 mol %), (Boc)₂O (0.4 mmol, 2.0 equiv.), MgCl₂ (0.4 mmol, 2.0 equiv.) and TEMPO (0.6 mmol, 3.0 equiv.) were well mixed in ethanol (2.0 mL). The resulting mixture was stirred at room temperature for 20 min under the irradiation of 440 nm blue LEDs (10 W). The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (EtOAc/PE = 20%-30%) to yield corresponding product. No desired product was formed and the corresponding radical-trapping product **11** (69.1 mg, 77% yield) was isolated and detected by NMR and HRMS (FTMS-ESI) m/z: $[M+H]^+$ calcd for C₂₇H₃₅N₂O₄⁺ 451.2591, found 451.2568 (Figure S1); and **12** was detected by HRMS (FTMS-ESI) m/z: $[M+H]^+$ calcd for C₁₁H₂₄NO₂⁺ 202.1802, found 202.1795 (Figure S2).

Figure S1. High-resolution mass spectrometry of radical-trapping product 11

Figure S2. High-resolution mass spectrometry of radical-trapping product 12

Anhydride **10** (0.2 mmol, 1.0 equiv.), rhodamine B (1 mol %), and TEMPO (0.6 mmol, 3.0 equiv.) were well mixed in ethanol (2.0 mL). The resulting mixture was stirred at room temperature for 20 min under the irradiation of 440 nm blue LEDs (10 W). The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (EtOAc/PE = 20%-30%) to yield corresponding radical-trapping product **11** (65.9 mg, 73% yield).

Anhydride **10** (0.2 mmol, 1.0 equiv.), amino acid ester **2a** (0.24 mmol, 1.2 equiv.) and rhodamine B (1 mol %) were well mixed in ethanol (2.0 mL). The resulting mixture was stirred at room temperature for 20 min under the irradiation of 440 nm blue LEDs (10 W). The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography on silica gel (EtOAc/PE = 20%-40%) to yield dipeptide

3a (70.9 mg, 75% yield).

Anhydride 10: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-30% (v/v); Colorless oil (65.9 mg, 86% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, *J* = 7.5 Hz, 2H), 7.58-7.61 (m, 2H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.30 (td, *J* = 7.5, 0.5 Hz, 2H), 5.42 (d, *J* = 7.5 Hz, 1H), 4.34-4.42 (m, 3H), 4.18-4.23 (m, 3H), 1.42 (d, *J* = 7.0 Hz, 3H), 1.27 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 155.7, 144.0, 143.8, 141.3, 127.7, 127.1, 125.2, 125.1, 120.0, 67.0, 61.6, 49.7, 47.2, 18.8, 14.2; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₂NO₆⁺ 384.1442, found 384.1438.

Radical-trapping product 11: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 20%-30% (v/v); Colorless oil (69.1 mg, 77% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.59-7.61 (m, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 5.56 (d, *J* =

6.5 Hz, 1H), 5.52 (d, J = 6.5 Hz, 1H), 5.40 (d, J = 7.5 Hz, 1H), 4.35-4.45 (m, 3H), 4.22 (t, J = 7.0 Hz, 1H), 1.43-1.50 (m, 7H), 1.16 (s, 6H), 1.09 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 172.3, 155.6, 143.9, 143.8, 141.3, 127.7, 127.1, 125.1, 120.0, 95.1, 67.0, 59.9, 59.8, 49.8, 47.2, 39.7, 33.3(0), 33.2(5), 20.2, 18.7, 17.1; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₂₇H₃₅N₂O₄⁺ 451.2591, found 451.2568.

References

1 S. Sharma, N. W. Buchbinder, W. M. Braje, S. Handa, Org. Lett., 2020, 22, 5737-5740.

2 H. Li, X. Jiang, Y. Ye, C. Fan, T. Romoff, M. Goodman, Org. Lett., 1999, 1, 91-93.

3 E. Suárez-Picado, E. Quiñoá, R. Riguera, F. Freire, *Angew. Chem., Int. Ed.*, 2020, **59**, 4537-4543.

4 L. Hu, S. Xu, Z. Zhao, Y. Yang, Z. Peng, M. Yang, C. Wang, J. Zhao, *J. Am. Chem. Soc.*, 2016, **138**, 13135-13138.

5 J.-W. Ren, M.-N. Tong, Y.-F. Zhao, F. Ni, Org. Lett., 2021, 23, 7497-7502.

3. NMR Spectra

500 MHz, CDCl₃, ¹H NMR

