Supporting Information

Energy-transfer photocatalysis for Minisci C-H (amino)alkylation of

heteroarenes using oxime esters as dual-role reagents

Jun Xu,^{‡a} Yuru Zhang,^{‡a} Ruiyuan Xu,^a Yuxin Wang, ^a Jiabin Shen,^{*b} and Wanmei Li^{*a}

 ^a College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou, 311121, China.
 ^b Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.

[‡] Jun Xu and Yuru Zhang contributed equally.

Email: shenjiabinhznu@163.com (J. Shen); liwanmei@hznu.edu.cn (W. Li)

Table of contents

General Information	S3
1. Experimental Section	S 3
1.1 Details of Optimization	S 3
1.2 General Procedure for Photoinduced Minisci C-H (Amino)alkylation	S4
2. Characterization of Products	S 6
3. References	S30
4. Copies of ¹ H, ¹³ C and ¹⁹ F NMR Spectra	S 31

General Information

All reagents and deuterated solvents were commercially available and used without further purification. The oxime esters were prepared according to previous references.¹⁻³ The quinoxalinones on the basis of our early reports.⁴⁻⁶ All products were separated by silica gel (200-300 mesh) column chromatography with petroleum ether (PE) (60-90°C) and ethyl acetate (EA). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker Advance 500 spectrometer at ambient temperature with CDCl₃ as solvent and tetramethylsilane (TMS) as the internal standard. Analytical thin layer chromatography (TLC) was performed on Merk precoated TLC (silica gel 60 F254) plates. Compounds for HRMS were analyzed by positive mode electrospray ionization (ESI) using Agilent 6530 QTOF mass spectrometer.

1. Experimental Section

1.1 Details of Optimization

Table S1. Screening of oxime ester for the Minisci C–H (amino)alkylation. a,b

^a Reaction conditions: **1a** (0.2 mmol), **2** (0.4 mmol), TXT (5 mol%), MeCN (1.0 mL), 395 nm LEDs, room temperature, N₂, 12 h. ^b Isolated yields.

Table S2. Screening of catalyst for the Minisci C-H (amino)alkylation. *a,b*

	$ \begin{array}{c} & & & & \\ & & & &$	yst (5 mol%) Ds, rt, 12 h	
Entry	Photocatalyst	E _T (kcal/mol)	Yield (%)
1	Thioxanthone (TXT)	65.5	59
2	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)](PF ₆)	61.8	42
3	fac-Ir(ppy) ₃	58.1	n.d.
4	$[Ru(bpy)_3](PF_6)_2$	46.5	n.d.
5	[Mes-Acr]ClO ₄	44.7	n.d.
6	None	-	n.d.

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2e** (0.4 mmol), photocatalyst (5 mol%), MeCN (1.0 mL), LEDs, room temperature, N₂, 12 h. ^{*b*} Isolated yields are given.

Table S3. Screening of solvent for the Minisci C-H (amino)alkylation. *a,b*

→ N + N → H + 0 1a	Ph TXT (5 mol%) solvent, rt, 12 h 395 nm LEDs 2e	
Entry	Solvent	Yield (%)
1	MeCN	59
2	DCM	54
3	DMF	trace
4	Acetone	41
5	EA	68
6	MeOH	27
7	PEG	trace
8	H_2O	trace
9	$DCM/H_2O(v/v = 1:1)$	19
10	$EA/H_2O(v/v = 1:1)$	24

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2e** (0.4 mmol), TXT (5 mol%), solvent (1.0 mL), 395 nm LEDs, room temperature, N₂, 12 h. ^{*b*} Isolated yields are given.

Table S4. Screening of reaction time for the Minisci C-H (amino)alkylation. a,b

N N H 1a	Ph TXT (5 mol%) EA, 395 nm LEDs, rt 2e	
Entry	Reaction time (hour)	Yield (%)
1	2	26
2	4	43
3	6	59
4	8	71
5	10	73
6	12	68

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2e** (0.4 mmol), TXT (5 mol%), EA (1.0 mL), 395 nm LEDs, room temperature, N₂. ^{*b*} Isolated yields are given.

1.2 General Procedure for Photoinduced Minisci C-H (Amino)alkylation

A mixture of heteroarenes (1) (0.2 mmol), oxime ester (2) (0.4 mmol), thioxanthone (TXT) (5 mol%) and EA (2 mL) in a 25-mL tube was stirred under N₂ with the irradiation of 395 nm LEDs (10 W) for 8 h. After completing the reaction as indicated by TLC, a saturated NaHCO₃ solution was added to the mixture. The mixture was then extracted with EA, and the collected organic layer was washed with brine, and dried with MgSO₄. The solvent was removed *in vacuo*, and the obtained residue was further purified by silica gel column chromatography (200-300 mesh silica gel).

Scheme S1. Fluorescence quenching of thioxanthone by benzaldoxime ester

Scheme S2 Visible light irradiation On/Off experiments.

2. Characterization of Products

3-Cyclohexyl-1-methylquinoxalin-2(1H)-one (3)⁷

Obtained as a white solid (71% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 8.0, 1.6 Hz, 1H), 7.50 (ddd, J = 8.6, 7.3, 1.5 Hz, 1H), 7.36 – 7.28 (m, 1H), 7.28 (dd, J = 8.4, 1.2 Hz, 1H), 3.70 (s, 3H), 3.35 (tt, J = 11.6, 3.3 Hz, 1H), 1.99 – 1.92 (m, 2H), 1.87 (dt, J = 13.0, 3.4 Hz, 2H), 1.81 – 1.72 (m, 1H), 1.58 (qd, J = 12.5, 3.1 Hz, 2H), 1.47 (qt, J = 12.9, 3.3 Hz, 2H), 1.32 (dddd, J = 16.4, 12.7, 8.2, 4.3 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.3, 154.5, 132.9, 132.8, 129.7, 129.4, 123.4, 113.5, 40.8, 30.5, 29.1, 26.3, 26.2.

3-Cyclopentyl-1-methylquinoxalin-2(1H)-one (4)⁷

Obtained as a white solid (72% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, J = 8.0, 1.5 Hz, 1H), 7.50 (ddd, J = 8.6, 7.3, 1.6 Hz, 1H), 7.34 – 7.27 (m, 2H), 3.72 (d, J = 8.2 Hz, 1H), 3.70 (s, 3H), 2.10 – 2.03 (m, 2H), 1.92 (dq, J = 12.3, 8.1 Hz, 2H), 1.82 (tdd, J = 12.2, 9.5, 5.2 Hz, 2H), 1.73 (ddd, J = 12.3, 8.0, 4.3 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 163.7, 155.0, 133.0, 132.7, 129.8, 129.3, 123.4, 113.4, 42.7, 30.8, 29.0, 26.0.

3-Cyclooctyl-1-methylquinoxalin-2(1H)-one (5)7

Obtained as a white solid (69% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.8 Hz, 1H), 7.18 (ddd, J = 8.7, 2.5, 1.2 Hz, 1H), 7.10 (d, J = 2.4 Hz, 1H), 3.67 (s, 3H), 3.32 (tt, J = 11.5, 3.3 Hz, 1H), 1.98 – 1.90 (m, 2H), 1.87 (dt, J = 12.9, 3.2 Hz, 2H), 1.80 – 1.73 (m, 1H), 1.59 – 1.51 (m, 2H), 1.46 (dtd, J = 12.9, 9.3, 3.1 Hz, 2H), 1.31 (tt, J = 12.5, 3.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 154.5, 132.9, 132.7, 129.7, 129.3, 123.4, 113.4, 40.4, 30.6, 29.1, 26.7, 26.6, 25.9.

3-Cyclododecyl-1-methylquinoxalin-2(1H)-one (6)⁷

Obtained as a white solid (64% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 7.9 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.37 – 7.27 (m, 2H), 3.71 (s, 4H), 1.78 (q, J = 6.7 Hz, 3H), 1.61 (q, J = 6.2, 5.6

Hz, 2H), 1.50 - 1.42 (m, 6H), 1.39 - 1.28 (m, 9H), 0.84 (t, J = 6.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.5, 154.9, 132.9, 132.7, 129.7, 129.4, 123.4, 113.5, 36.2, 29.1, 28.1, 24.0, 23.9, 23.6, 23.3, 23.1.

1-Methyl-3-(tetrahydro-2*H*-pyran-2-yl)quinoxalin-2(1*H*)-one (7)⁸

Obtained as a white solid (75% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.98 (dd, J = 8.0, 1.5 Hz, 1H), 7.48 (ddd, J = 8.6, 7.3, 1.5 Hz, 1H), 7.29 – 7.23 (m, 2H), 4.93 (dd, J = 10.9, 2.1 Hz, 1H), 4.22 (dq, J = 9.9, 2.5 Hz, 1H), 3.63 (s, 4H), 2.08 (dt, J = 12.7, 2.1 Hz, 1H), 1.91 (dt, J = 11.6, 2.4 Hz, 1H), 1.79 – 1.70 (m, 2H), 1.59 – 1.49 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 158.8, 153.7, 133.0, 132.7, 130.6, 130.3, 123.7, 113.5, 76.5, 69.5, 30.2, 29.0, 25.6, 23.6.

3-(sec-Butyl)-1-methylquinoxalin-2(1H)-one (8)9

Obtained as a white solid (70% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 7.9, 1.6 Hz, 1H), 7.51 (ddd, J = 8.5, 7.3, 1.5 Hz, 1H), 7.36 – 7.27 (m, 2H), 3.70 (s, 3H), 3.46 (h, J = 6.9 Hz, 1H), 1.93 (dp, J = 14.4, 7.3 Hz, 1H), 1.61 (dt, J = 13.4, 7.2 Hz, 1H), 1.29 (d, J = 6.9 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.5, 154.7, 132.9, 132.8, 129.8, 129.4, 123.4, 113.5, 37.8, 29.1, 27.5, 17.9, 12.1.

1-Methyl-3-(pentan-3-yl)quinoxalin-2(1*H*)-one (9)⁹

Obtained as a white solid (74% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 8.0, 1.3 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.34 – 7.30 (m, 1H), 7.29 (d, J = 8.4 Hz, 1H), 3.70 (s, 3H), 3.38 – 3.31 (m, 1H), 1.90 – 1.83 (m, 2H), 1.70 (ddd, J = 13.4, 7.4, 5.9 Hz, 2H), 0.88 (t, J = 7.4 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 163.8, 155.1, 132.8, 132.8, 129.8, 129.4, 123.3, 113.4, 44.6, 29.1, 25.7, 11.9.

1-Methyl-3-(pent-4-en-2-yl)quinoxalin-2(1H)-one (10)9

Obtained as a white solid (57% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 8.0, 1.6 Hz, 1H), 7.52 (ddd, J = 8.5, 7.2, 1.5 Hz, 1H), 7.36 – 7.28 (m, 2H), 5.90 – 5.80 (m, 1H), 5.05 (dq, J = 17.0, 1.7 Hz, 1H), 4.97 (ddt, J = 10.2, 2.1, 1.1 Hz, 1H), 3.70 (s, 3H), 3.63 (h, J = 6.9 Hz, 1H), 2.66 (dtt, J = 14.2, 6.6, 1.4 Hz, 1H), 2.34 (dtt, J = 13.9, 7.5, 1.2 Hz, 1H), 1.30 (d, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.8, 154.6, 136.9, 132.9, 132.8, 129.8, 129.6, 123.4, 116.2, 113.5, 38.7, 36.0, 29.1, 17.9.

3-(tert-Butyl)-1-methylquinoxalin-2(1H)-one (11)¹⁰

Obtained as a white solid (68% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 8.0, 1.5 Hz, 1H), 7.50 (ddd, J = 8.6, 7.4, 1.5 Hz, 1H), 7.33 – 7.25 (m, 2H), 3.67 (s, 3H), 1.49 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 165.3, 153.8, 133.3, 132.2, 130.1, 129.5, 123.2, 113.3, 39.5, 28.8, 27.9.

1-Methyl-3-(1-methylcyclohexyl)quinoxalin-2(1H)-one (12)¹⁰

Obtained as a white solid (61% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 7.9, 1.5 Hz, 1H), 7.50 (ddd, J = 8.5, 7.3, 1.5 Hz, 1H), 7.31 (ddd, J = 8.3, 7.3, 1.2 Hz, 1H), 7.29 – 7.25 (m, 1H), 3.67 (s, 3H), 2.46 (ddd, J = 12.3, 7.6, 3.3 Hz, 2H), 1.66 (ddd, J = 13.0, 8.7, 3.7 Hz, 2H), 1.58 (td, J = 7.4, 3.9 Hz, 2H), 1.51 (ddd, J = 8.7, 4.4, 2.6 Hz, 2H), 1.48 – 1.43 (m, 2H), 1.43 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.8, 153.8, 133.1, 132.3, 130.1, 129.5, 123.1, 113.2, 43.0, 35.8, 28.8, 26.6, 24.5, 22.9.

1-Methyl-3-(1-methylcyclopropyl)quinoxalin-2(1H)-one (13)

Obtained as a white solid (59% yield); M. P. = 108-109 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 7.9, 1.5 Hz, 1H), 7.51 (ddd, J = 8.6, 7.3, 1.5 Hz, 1H), 7.35 – 7.30 (m, 1H), 7.28 (dd, J = 8.4, 1.2 Hz, 1H), 3.69 (s, 3H), 1.57 (s, 3H), 1.28 (q, J = 4.2 Hz, 2H), 0.86 – 0.79 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.0, 154.4, 133.3, 132.5, 129.8, 129.6, 123.4, 113.4, 28.9, 22.4, 22.3, 13.9; HRMS (ESI+): Calculated for C₁₃H₁₄N₂O: [M+H]⁺ 215.1179, Found 215.1164.

1-Methyl-3-(1-phenylcyclopropyl)quinoxalin-2(1H)-one (14)9

Obtained as a white solid (65% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, J = 7.9, 1.5 Hz, 1H), 7.55 – 7.49 (m, 1H), 7.49 – 7.41 (m, 2H), 7.35 – 7.31 (m, 1H), 7.29 – 7.22 (m, 3H), 7.20 – 7.12 (m, 1H), 3.60 (s, 3H), 1.54 – 1.45 (m, 2H), 1.42 – 1.34 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 160.4, 154.4, 141.9, 133.6, 132.5, 130.1, 130.0, 128.6, 128.2, 126.5, 123.4, 113.5, 30.7, 29.0, 13.7.

Methyl 4-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)bicyclo[2.2.2]octane-1-carboxylate (15)9

Obtained as a white solid (69% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.81 (dd, J = 7.9, 1.5 Hz, 1H), 7.51 (ddd, J = 8.5, 7.3, 1.6 Hz, 1H), 7.34 – 7.29 (m, 1H), 7.27 (dd, J = 8.3, 1.2 Hz, 1H), 3.68 (s, 3H), 3.66 (s, 3H), 2.22 – 2.12 (m, 6H), 1.96 – 1.89 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 178.6, 163.7, 153.8, 133.1, 132.3, 130.1, 129.7, 123.3, 113.3, 51.7, 40.1, 39.1, 28.8, 28.2, 27.6.

1-Methyl-3-(2-methylpent-4-en-2-yl)quinoxalin-2(1H)-one (16)9

Obtained as a white solid (43% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 7.9, 1.5 Hz, 1H), 7.51 (ddd, J = 8.6, 7.3, 1.6 Hz, 1H), 7.31 (ddd, J = 8.2, 7.3, 1.2 Hz, 1H), 7.28 (d, J = 1.2 Hz, 1H), 5.71 (ddt, J = 17.5, 10.1, 7.4 Hz, 1H), 5.01 (ddt, J = 17.0, 2.6, 1.4 Hz, 1H), 4.91 (ddt, J = 10.2, 2.3, 1.1 Hz, 1H), 3.67 (s, 3H), 2.78 (d, J = 7.3 Hz, 2H), 1.46 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 164.2, 153.8, 135.6, 133.3, 132.2, 130.2, 129.6, 123.2, 116.9, 113.3, 44.1, 42.8, 28.8, 25.9.

1-Methyl-3-(1,1,1-trifluoro-2-methylpropan-2-yl)quinoxalin-2(1H)-one (17)⁹

Obtained as a white solid (72% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 7.9, 1.5 Hz, 1H), 7.58 (ddd, J = 8.5, 7.3, 1.5 Hz, 1H), 7.35 (ddd, J = 8.3, 7.3, 1.2 Hz, 1H), 7.30 (dd, J = 8.4, 1.2 Hz, 1H), 3.69 (s, 3H), 1.80 – 1.74 (m, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 156.0, 153.3, 133.4, 131.6, 130.9, 130.9, 127.9 (q, J = 284.8 Hz), 123.6, 113.4, 49.1 (d, J = 25.2 Hz), 29.1, 20.2 (d, J = 2.5 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -73.59.

1-Methyl-3-propylquinoxalin-2(1H)-one (18)9

Obtained as a white solid (63% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 8.0, 1.4 Hz, 1H), 7.52 (ddd, J = 8.5, 7.4, 1.5 Hz, 1H), 7.36 – 7.28 (m, 2H), 3.71 (s, 3H), 2.99 – 2.87 (m, 2H), 1.83 (h, J = 7.4 Hz, 2H), 1.05 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 161.2, 155.0, 133.1, 132.7, 129.6, 129.5, 123.5, 113.6, 36.3, 29.1, 20.3, 14.1.

1-Methyl-3-pentylquinoxalin-2(1H)-one (19)9

Obtained as a white solid (61% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, J = 7.9, 1.5 Hz, 1H), 7.51 (ddd, J = 8.6, 7.2, 1.5 Hz, 1H), 7.36 – 7.17 (m, 2H), 3.69 (s, 3H), 2.98 – 2.88 (m, 2H), 1.89 – 1.68 (m, 2H), 1.50 – 1.34 (m, 4H), 0.92 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.4, 154.9, 133.1, 132.7, 129.6, 129.4, 123.5, 113.5, 34.3, 31.8, 29.0, 26.5, 22.5, 14.0.

3-(2-Cyclohexylethyl)-1-methylquinoxalin-2(1H)-one (20)9

Obtained as a white solid (59% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, J = 8.0, 1.5 Hz, 1H), 7.51 (ddd, J = 8.5, 7.3, 1.6 Hz, 1H), 7.32 (ddd, J = 8.3, 7.3, 1.3 Hz, 1H), 7.28 (dd, J = 8.4, 1.2 Hz, 1H), 3.69 (s, 3H), 3.07 – 2.87 (m, 2H), 1.87 – 1.80 (m, 2H), 1.77 – 1.60 (m, 5H), 1.38 (ddd, J = 11.0, 7.5, 4.1 Hz, 1H), 1.29 – 1.14 (m, 3H), 1.06 – 0.93 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 161.7, 154.9, 133.1, 132.7, 129.5, 129.4, 123.5, 113.5, 37.8, 34.2, 33.2, 31.9, 29.0, 26.7, 26.4.

3-Benzyl-1-methylquinoxalin-2(1H)-one (21)⁸

Obtained as a white solid (49% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, J = 8.0, 1.6 Hz, 1H), 7.53 (ddd, J = 8.5, 7.3, 1.5 Hz, 1H), 7.51 – 7.41 (m, 2H), 7.34 (td, J = 7.8, 7.3, 1.2 Hz, 1H), 7.32 – 7.26 (m, 3H), 4.28 (s, 2H), 3.67 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.3, 154.7, 137.0, 133.4, 132.6, 129.9, 129.9, 129.6, 128.4, 126.6, 123.6, 113.6, 40.7, 29.2.

1-Methyl-3-phenethylquinoxalin-2(1*H*)-one (22)¹⁰

Obtained as a white solid (57% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 7.9, 1.5 Hz, 1H), 7.53 (ddd, J = 8.5, 7.2, 1.5 Hz, 1H), 7.38 – 7.26 (m, 6H), 7.24 – 7.15 (m, 1H), 3.71 (s, 3H), 3.32 – 3.25 (m, 2H), 3.18 – 3.10 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 160.1, 154.9, 141.6, 133.2, 132.6, 129.7, 129.7, 128.6, 128.4, 126.0, 123.6, 113.6, 36.0, 32.6, 29.1.

3-(4-Chlorobutyl)-1-methylquinoxalin-2(1H)-one (23)9

Obtained as a white solid (45% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 8.0, 1.5 Hz, 1H), 7.54 (ddd, J = 8.7, 7.3, 1.5 Hz, 1H), 7.38 – 7.28 (m, 2H), 3.71 (s, 3H), 3.61 (t, J = 6.2 Hz, 2H), 2.99 (t, J = 7.1 Hz, 2H), 2.00 – 1.92 (m, 4H); ¹³C NMR (126 MHz, CDCl₃) δ 160.3, 154.9, 133.1, 132.6, 129.8, 129.7, 123.6, 113.6, 44.8, 33.2, 32.3, 29.1, 23.9.

3-(But-3-en-1-yl)-1-methylquinoxalin-2(1H)-one (24)¹⁰

Obtained as a white solid (38% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, J = 7.9, 1.5 Hz, 1H), 7.52 (ddd, J = 8.5, 7.3, 1.5 Hz, 1H), 7.33 (ddd, J = 8.2, 7.3, 1.3 Hz, 1H), 7.29 (dd, J = 8.4, 1.2 Hz, 1H), 5.96 (ddt, J = 16.8, 10.2, 6.6 Hz, 1H), 5.11 (dq, J = 17.2, 1.7 Hz, 1H), 5.00 (dq, J = 10.2, 1.4 Hz, 1H), 3.69 (s, 3H), 3.09 – 3.02 (m, 2H), 2.62 – 2.53 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 160.3, 154.8, 137.7, 133.1, 132.7, 129.7, 129.6, 123.5, 115.1, 113.6, 33.5, 30.6, 29.0.

1-Butyl-3-cyclohexylquinoxalin-2(1H)-one (25)⁷

Obtained as a white solid (77% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 7.9, 1.5 Hz, 1H), 7.54 – 7.43 (m, 1H), 7.33 – 7.27 (m, 2H), 4.24 (dd, J = 9.0, 6.6 Hz, 2H), 3.46 – 3.26 (m, 1H), 1.96 (dd, J = 13.2, 3.3 Hz, 2H), 1.87 (dt, J = 13.1, 3.4 Hz, 2H), 1.74 (dq, J = 12.6, 8.0, 7.6 Hz, 3H), 1.58 (qd, J = 12.5, 3.1 Hz, 2H), 1.53 – 1.42 (m, 4H), 1.32 (tt, J = 12.6, 3.6 Hz, 1H), 1.00 (t, J = 7.3 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 164.3, 154.2, 133.2, 132.0, 130.0, 129.3, 123.1, 113.5, 42.1, 40.8, 30.5, 29.4, 26.4, 26.2, 20.3, 13.8.

3-Cyclohexyl-1-isobutylquinoxalin-2(1*H*)-one (26)⁸

Obtained as a white solid (72% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 8.0, 1.6 Hz, 1H), 7.47 (ddd, J = 8.6, 7.2, 1.5 Hz, 1H), 7.32 – 7.26 (m, 2H), 4.13 (d, J = 7.5 Hz, 2H), 3.45 – 3.25 (m, 1H), 2.25 (dt, J = 13.8, 6.9 Hz, 1H), 2.01 – 1.92 (m, 2H), 1.87 (dt, J = 13.0, 3.4 Hz, 2H), 1.76 (dtd, J = 13.2, 3.3, 1.6 Hz, 1H), 1.58 (qd, J = 12.6, 3.1 Hz, 2H), 1.46 (qt, J = 12.9, 3.3 Hz, 2H), 1.32 (tt, J = 12.6, 3.6 Hz, 1H), 1.00 (d, J = 6.7 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 164.3, 154.7, 133.0, 132.4, 130.0, 129.2, 123.2, 113.9, 49.0, 40.8, 30.5, 27.3, 26.3, 26.2, 20.3.

3-Cyclohexyl-1-(2-oxo-2-phenylethyl)quinoxalin-2(1H)-one (27)⁸

Obtained as a white solid (58% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.14 – 7.99 (m, 2H), 7.87 (dd, J = 8.0, 1.5 Hz, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.55 (t, J = 7.7 Hz, 2H), 7.43 – 7.36 (m, 1H), 7.30 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.3 Hz, 1H), 5.72 (s, 2H), 3.41 – 3.26 (m, 1H), 2.03 – 1.96 (m, 2H), 1.87 (dt, J = 13.2, 3.3 Hz, 2H), 1.79 – 1.73 (m, 1H), 1.61 (qd, J = 12.6, 3.3 Hz, 2H), 1.46 (qt, J = 12.9, 3.4 Hz, 2H), 1.32 (dddd, J = 16.4, 12.7, 8.0, 3.4 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 191.4, 163.9, 154.3, 134.7, 134.3, 133.0, 132.3, 130.0, 129.5, 129.0, 128.2, 123.6, 113.3, 48.5, 40.9, 30.5, 26.3, 26.2.

Ethyl 2-(3-cyclohexyl-2-oxoquinoxalin-1(2H)-yl)acetate (28)8

Obtained as a white solid (64% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.87 (dd, J = 8.0, 1.5 Hz, 1H), 7.47 (ddd, J = 8.6, 7.3, 1.5 Hz, 1H), 7.38 – 7.28 (m, 1H), 7.05 (dd, J = 8.4, 1.2 Hz, 1H), 5.01 (s, 2H), 4.25 (q, J = 7.1 Hz, 2H), 3.40 – 3.27 (m, 1H), 1.97 (dt, J = 12.8, 2.7 Hz, 2H), 1.87 (dt, J = 13.1, 3.4 Hz, 2H), 1.80 – 1.73 (m, 1H), 1.59 (qd, J = 12.6, 3.2 Hz, 2H), 1.46 (qt, J = 12.8, 3.3 Hz, 2H), 1.36 – 1.30 (m, 1H), 1.27 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.3, 164.1, 154.1, 132.9, 132.0, 130.1, 129.6, 123.7, 112.9, 62.0, 43.6, 40.8, 30.5, 26.3, 26.1, 14.1.

tert-Butyl 2-(3-cyclohexyl-2-oxoquinoxalin-1(2H)-yl)acetate (29)7

Obtained as a white solid (62% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 7.9 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.04 (d, J = 8.3 Hz, 1H), 4.93 (s, 2H), 3.33 (ddd, J = 11.7, 8.4, 3.3 Hz, 1H), 2.02 – 1.93 (m, 2H), 1.86 (dt, J = 13.3, 3.5 Hz, 2H), 1.76 (d, J = 13.1 Hz, 1H), 1.58 (qd, J = 12.6, 3.1 Hz, 2H), 1.49 (d, J = 9.1 Hz, 1H), 1.45 (s, 9H), 1.35 – 1.29 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 166.3, 164.1, 154.1, 132.9, 132.1, 130.0, 129.4, 123.6, 112.9, 83.0, 44.3, 40.8, 30.5, 28.0, 26.3, 26.2.

3-Cyclohexyl-1-phenylquinoxalin-2(1H)-one (30)⁸

Obtained as a white solid (56% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.80 (dd, J = 6.3, 3.2 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.47 (d, J = 7.4 Hz, 1H), 7.30 – 7.19 (m, 4H), 6.66 – 6.50 (m, 1H), 3.27 (tt, J = 11.7, 3.3 Hz, 1H), 1.98 – 1.90 (m, 2H), 1.80 (dt, J = 13.0, 3.4 Hz, 2H), 1.72 – 1.66 (m, 1H), 1.56 (qd, J = 12.6, 3.4 Hz, 2H), 1.43 – 1.33 (m, 2H), 1.30 – 1.23 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.1, 154.3, 136.1, 133.7, 132.7, 130.2, 129.4, 129.3, 129.0, 128.3, 123.6, 115.3, 40.9, 30.6, 26.3, 26.2.

1-Allyl-3-cyclohexylquinoxalin-2(1*H*)-one (31)⁷

Obtained as a white solid (54% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 7.9, 1.6 Hz, 1H), 7.46 (ddd, J = 8.5, 7.2, 1.5 Hz, 1H), 7.34 – 7.24 (m, 2H), 5.94 (ddt, J = 17.2, 10.4, 5.2 Hz, 1H), 5.26 (dq, J = 10.3, 1.4 Hz, 1H), 5.17 (dq, J = 17.2, 1.6 Hz, 1H), 4.90 (dt, J = 5.3, 1.8 Hz, 2H), 3.35 (tt, J = 11.6, 3.3 Hz, 1H), 2.02 – 1.93 (m, 2H), 1.87 (dt, J = 13.0, 3.4 Hz, 2H), 1.80 – 1.73 (m, 1H), 1.58 (qd, J = 12.6, 3.1 Hz, 2H), 1.46 (qt, J = 12.9, 3.3 Hz, 2H), 1.31 (qt, J = 12.9, 3.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.3, 154.1, 133.0, 132.1, 130.8, 129.9, 129.3, 123.4, 118.0, 114.0, 44.6, 40.8, 30.6, 26.3, 26.2.

3-Cyclohexyl-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one (32)⁸

Obtained as a white solid (47% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 1.4 Hz, 1H), 7.60 – 7.48 (m, 1H), 7.44 (d, J = 8.3 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 5.05 (d, J = 2.6 Hz, 2H), 3.40 – 3.28 (m, 1H), 2.28 (t, J = 2.6 Hz, 1H), 2.01 – 1.93 (m, 2H), 1.87 (dt, J = 13.2, 3.3 Hz, 2H), 1.80 – 1.73 (m, 1H), 1.58 (qd, J = 12.5, 3.2 Hz, 2H), 1.47 (dddd, J = 16.3, 12.9, 8.0, 3.4 Hz, 2H), 1.32 (tt, J = 12.5, 3.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.2, 153.5, 133.1, 131.4, 129.9, 129.5, 123.8, 113.9, 77.2, 73.0, 40.8, 31.5, 30.5, 26.3, 26.2.

1-Benzyl-3-cyclohexylquinoxalin-2(1*H*)-one (33)⁷

Obtained as a white solid (60% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 7.9, 1.4 Hz, 1H), 7.39 – 7.34 (m, 1H), 7.32 – 7.28 (m, 2H), 7.25 (dd, J = 12.3, 6.0 Hz, 4H), 5.48 (s, 2H), 3.40 (ddd, J = 11.6, 8.3, 3.3 Hz, 1H), 2.06 – 1.97 (m, 2H), 1.88 (dt, J = 13.0, 3.4 Hz, 2H), 1.77 (dt, J = 12.5, 3.6 Hz, 1H), 1.61 (qd, J = 12.6, 3.3 Hz, 2H), 1.48 (qt, J = 12.9, 3.4 Hz, 2H), 1.32 (qt, J = 12.8, 3.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 154.6, 135.5, 133.2, 132.2, 129.9, 129.4, 128.9, 127.6, 126.9, 123.5, 114.3, 46.0, 40.9, 30.6, 26.4, 26.2.

3-Cyclohexyl-1-(4-methylbenzyl)quinoxalin-2(1H)-one (34)⁷

Obtained as a white solid (61% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 7.9, 1.5 Hz, 1H), 7.38 (td, J = 8.4, 7.8, 1.5 Hz, 1H), 7.28 – 7.24 (m, 2H), 7.19 – 7.06 (m, 4H), 5.45 (s, 2H), 3.41 (tt, J = 11.6, 3.3 Hz, 1H), 2.30 (s, 3H), 2.04 – 1.97 (m, 2H), 1.88 (dp, J = 9.9, 3.3 Hz, 2H), 1.81 – 1.74 (m, 1H), 1.61 (qd, J = 12.6, 3.2 Hz, 2H), 1.48 (qt, J = 12.9, 3.4 Hz, 2H), 1.33 (qt, J = 12.8, 3.5 Hz, 1H).; ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 154.6, 137.4, 133.1, 132.5, 132.3, 129.8, 129.6, 129.4, 127.0, 123.4, 114.3, 45.8, 40.8, 30.6, 26.4, 26.2, 21.1.

1-(4-Chlorobenzyl)-3-cyclohexylquinoxalin-2(1H)-one (35)⁷

Obtained as a white solid (56% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 7.9, 1.5 Hz, 1H), 7.39 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.34 – 7.26 (m, 3H), 7.24 – 7.12 (m, 3H), 5.44 (s, 2H), 3.39 (tt, J = 11.7, 3.3 Hz, 1H), 2.05 – 1.96 (m, 2H), 1.88 (dp, J = 10.1, 3.3 Hz, 2H), 1.81 – 1.75 (m, 1H), 1.61 (qd, J = 12.6, 3.2 Hz, 2H), 1.48 (qt, J = 12.8, 3.3 Hz, 2H), 1.32 (qt, J = 12.8, 3.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 154.5, 134.0, 133.5, 133.2, 132.0, 130.0, 129.5, 129.1, 128.4, 123.6, 114.0, 45.4, 40.9, 30.6, 26.3, 26.2.

1-(4-Bromobenzyl)-3-cyclohexylquinoxalin-2(1*H*)-one (36)⁷

Obtained as a white solid (58% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 7.9, 1.5 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.39 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.29 (td, J = 7.7, 1.3 Hz, 1H), 7.17 (dd, J = 8.4, 1.2 Hz, 1H), 7.15 – 7.05 (m, 2H), 5.43 (s, 2H), 3.48 – 3.28 (m, 1H), 2.05 – 1.96 (m, 2H), 1.88 (dt, J = 12.9, 3.3 Hz, 2H), 1.78 (dtd, J = 11.4, 3.3, 1.6 Hz, 1H), 1.61 (qd, J = 12.6, 3.2 Hz, 2H), 1.48 (qt, J = 12.9, 3.3 Hz, 2H), 1.37 – 1.28 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 154.5, 134.6, 133.1, 132.0, 132.0, 130.0, 129.5, 128.7, 123.6, 121.6, 114.0, 45.4, 40.9, 30.6, 26.3, 26.2.

4-((3-Cyclohexyl-2-oxoquinoxalin-1(2H)-yl)methyl)benzonitrile (37)⁷

Obtained as a white solid (46% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.80 (dd, J = 7.9, 1.5 Hz, 1H), 7.61 – 7.47 (m, 2H), 7.32 (ddd, J = 8.5, 7.3, 1.6 Hz, 1H), 7.30 – 7.19 (m, 3H), 7.01 (dd, J = 8.3, 1.2 Hz, 1H), 5.45 (s, 2H), 3.29 (tt, J = 11.7, 3.3 Hz, 1H), 1.97 – 1.88 (m, 2H), 1.81 (dt, J = 13.1, 3.3 Hz, 2H), 1.74 – 1.68 (m, 1H), 1.53 (qd, J = 12.6, 3.2 Hz, 2H), 1.40 (qt, J = 12.9, 3.4 Hz, 2H), 1.25 (qt, J = 12.8, 3.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 154.4, 140.9, 133.2, 132.8, 131.8, 130.2, 129.6, 127.6, 123.9, 118.4, 113.7, 111.8, 45.6, 40.9, 30.6, 26.3, 26.1.

3-Cyclohexyl-1-(3-methylbenzyl)quinoxalin-2(1H)-one (38)⁷

Obtained as a white solid (61% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 8.0, 1.5 Hz, 1H), 7.37 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.29 – 7.22 (m, 2H), 7.18 (t, J = 7.7 Hz, 1H), 7.04 (q, J = 7.6 Hz, 3H), 5.45 (s, 2H), 3.41 (ddd, J = 11.6, 8.3, 3.2 Hz, 1H), 2.29 (s, 3H), 2.05 – 1.98 (m, 2H), 1.88 (dp, J = 10.2, 3.3 Hz, 2H), 1.81 – 1.74 (m, 1H), 1.61 (qd, J = 12.6, 3.2 Hz, 2H), 1.48 (qt, J = 12.9, 3.4 Hz, 2H), 1.38 – 1.28 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 154.6, 138.7, 135.4, 133.1, 132.3, 129.8, 129.4, 128.8, 128.4, 127.6, 124.0, 123.4, 114.3, 46.0, 40.8, 30.6, 26.4, 26.2, 21.5.

1-(3-Chlorobenzyl)-3-cyclohexylquinoxalin-2(1H)-one (39)⁷

Obtained as a white solid (53% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 1.5 Hz, 1H), 7.40 (ddd, J = 8.5, 7.2, 1.4 Hz, 1H), 7.30 (td, J = 7.7, 1.2 Hz, 1H), 7.26 – 7.21 (m, 3H), 7.16 (dd, J = 8.4, 1.2 Hz, 1H), 7.11 (td, J = 4.6, 2.2 Hz, 1H), 5.45 (s, 2H), 3.39 (ddd, J = 11.7, 8.4, 3.3 Hz, 1H), 2.05 – 1.98 (m, 2H), 1.89 (dt, J = 13.2, 3.3 Hz, 2H), 1.80 – 1.75 (m, 1H), 1.61 (qd, J = 12.6, 3.2 Hz, 2H), 1.48 (tdd, J = 13.0, 11.1, 3.4 Hz, 2H), 1.37 – 1.28 (m, 1H) ; ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 154.5, 137.6, 134.9, 133.1, 132.0, 130.2, 130.0, 129.5, 128.0, 127.1, 125.1, 123.7, 114.0, 45.5, 40.9, 30.6, 26.3, 26.2.

3-Cyclohexyl-1-(2-fluorobenzyl)quinoxalin-2(1H)-one (40)⁷

Obtained as a white solid (43% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 7.9, 1.5 Hz, 1H), 7.40 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.29 (td, J = 7.7, 1.2 Hz, 1H), 7.24 (dd, J = 5.3, 3.3 Hz, 1H), 7.22 – 7.18 (m, 1H), 7.11 (dd, J = 10.3, 8.3 Hz, 1H), 7.07 – 6.92 (m, 2H), 5.55 (s, 2H), 3.40 (tt, J = 11.6, 3.2 Hz, 1H), 2.07 – 1.96 (m, 2H), 1.89 (dt, J = 13.1, 3.4 Hz, 2H), 1.82 – 1.74 (m, 1H), 1.62 (qd, J = 12.6, 3.3 Hz, 2H), 1.48 (qt, J = 13.0, 3.4 Hz, 2H), 1.38 – 1.30 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.3, 160.3 (d, J = 245.7 Hz), 154.7, 133.1, 131.9, 129.9, 129.6, 129.4 (d, J = 7.6 Hz), 128.5 (d, J = 3.8 Hz), 124.7 (d, J = 245.7 Hz), 123.6, 122.5 (d, J = 13.9 Hz), 115.5 (d, J = 21.4 Hz), 113.9 (d, J = 2.5 Hz), 40.9, 39.4, 39.3, 30.6, 26.3, 26.2; ¹⁹F NMR (471 MHz, CDCl₃) δ -118.38.

1-(2-Chlorobenzyl)-3-cyclohexylquinoxalin-2(1H)-one (41)⁷

Obtained as a white solid (44% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 7.9, 1.6 Hz, 1H), 7.45 (dd, J = 8.0, 1.2 Hz, 1H), 7.38 (ddd, J = 8.5, 7.3, 1.5 Hz, 1H), 7.30 (td, J = 7.7, 1.3 Hz, 1H), 7.21 (td, J = 7.7, 1.6 Hz, 1H), 7.09 (td, J = 7.7, 1.3 Hz, 1H), 7.02 (dd, J = 8.4, 1.2 Hz, 1H), 6.74 (dd, J = 7.8, 1.5 Hz, 1H), 5.58 (s, 2H), 3.40 (ddd, J = 11.6, 8.4, 3.2 Hz, 1H), 2.05 – 1.98 (m, 2H), 1.89 (dp, J = 9.9, 3.2 Hz, 2H), 1.82 – 1.75 (m, 1H), 1.63 (qd, J = 12.6, 3.3 Hz, 2H), 1.48 (qt, J = 13.0, 3.4 Hz, 2H), 1.39 – 1.31 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 154.6, 133.1, 132.7, 132.5, 131.9, 129.9, 129.7, 129.7, 128.8, 127.3, 126.9, 123.7, 114.2, 43.6, 40.9, 30.6, 26.3, 26.2.

3-Cyclohexyl-1,5-dimethylquinoxalin-2(1H)-one (42)8

Obtained as a white solid (63% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.38 (dd, J = 8.4, 7.4 Hz, 1H), 7.18 (d, J = 7.4 Hz, 1H), 7.12 (d, J = 8.1 Hz, 1H), 3.68 (s, 3H), 3.33 (tt, J = 11.4, 3.4 Hz, 1H), 2.68 (s, 3H), 2.02 – 1.94 (m, 2H), 1.86 (dt, J = 12.8, 3.4 Hz, 2H), 1.76 (dddd, J = 12.8, 4.8, 3.2, 1.5 Hz, 1H), 1.56 (qd, J = 12.4, 2.8 Hz, 2H), 1.48 (qt, J = 12.9, 3.0 Hz, 2H), 1.32 (tt, J = 12.4, 3.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 162.2, 154.5, 138.6, 132.9, 131.3, 129.0, 124.7, 111.3, 40.8, 30.7, 29.2, 26.3, 26.3, 17.4.

5-Chloro-3-cyclohexyl-1-methylquinoxalin-2(1H)-one (43)⁸

Obtained as a white solid (60% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.36 (m, 2H), 7.19 (dd, J = 6.7, 3.2 Hz, 1H), 3.69 (s, 3H), 3.34 (td, J = 11.2, 5.6 Hz, 1H), 1.99 (d, J = 12.9 Hz, 2H), 1.93 – 1.84 (m, 2H), 1.76 (d, J = 13.0 Hz, 1H), 1.62 (qd, J = 12.6, 3.4 Hz, 2H), 1.52 – 1.42 (m, 2H), 1.37 – 1.31 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.7, 154.2, 134.8, 134.3, 129.5, 129.3, 124.3, 112.3, 41.3, 30.5, 29.5, 26.2, 26.1.

3-Cyclohexyl-6-methoxy-1-methylquinoxalin-2(1*H*)-one (44)⁷

Obtained as a white solid (61% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 2.9 Hz, 1H), 7.21 (d, J = 9.2 Hz, 1H), 7.14 (dd, J = 9.1, 2.8 Hz, 1H), 3.89 (s, 3H), 3.69 (s, 3H), 3.41 – 3.34 (m, 1H), 2.05 – 1.91 (m, 2H), 1.87 (dt, J = 13.0, 3.4 Hz, 2H), 1.80 – 1.74 (m, 1H), 1.60 (qd, J = 12.6, 3.2 Hz, 2H), 1.47 (qt, J = 10.9, 2.4 Hz, 2H), 1.33 (tt, J = 13.3, 3.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.9, 155.9, 154.2, 133.4, 127.1, 118.7, 114.4, 111.1, 55.8, 40.9, 30.6, 29.3, 26.3, 26.1.

3-Cyclohexyl-1-methyl-6-(trifluoromethoxy)quinoxalin-2(1H)-one (45)⁸

Obtained as a white solid (60% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 8.8 Hz, 1H), 7.18 (ddd, J = 8.7, 2.5, 1.2 Hz, 1H), 7.10 (d, J = 2.4 Hz, 1H), 3.67 (s, 3H), 3.32 (tt, J = 11.5, 3.3 Hz, 1H), 1.98 – 1.90 (m, 2H), 1.87 (dt, J = 12.9, 3.2 Hz, 2H), 1.80 – 1.73 (m, 1H), 1.59 – 1.51 (m, 2H), 1.46 (dtd, J = 12.9, 9.3, 3.1 Hz, 2H), 1.31 (tt, J = 12.5, 3.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.7, 154.3, 149.4, 149.3, 133.9, 131.2, 118.3 (q, J = 258.3 Hz), 115.8, 106.1, 40.8, 30.5, 29.3, 26.3, 26.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -57.68.

3-Cyclohexyl-6-fluoro-1-methylquinoxalin-2(1H)-one (46)⁸

Obtained as a white solid (56% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.63 – 7.46 (m, 1H), 7.28 – 7.20 (m, 2H), 3.69 (s, 3H), 3.40 – 3.27 (m, 1H), 1.98 – 1.91 (m, 2H), 1.87 (dt, *J* = 13.0, 3.3 Hz, 2H), 1.77 (dddd, *J* = 13.2, 4.8, 3.2, 1.6 Hz, 1H), 1.59 – 1.51 (m, 2H), 1.50 – 1.40 (m, 2H), 1.35 – 1.26 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.9, 158.6 (d, *J* = 243.2 Hz), 154.2, 133.5 (d, *J* = 11.3 Hz), 129.5 (d, *J* = 1.3 Hz), 117.0 (d, *J* = 23.9 Hz), 115.2 (d, *J* = 22.7 Hz), 114.5 (d, *J* = 10.1 Hz), 40.87, 30.49, 29.31, 26.26, 26.13; ¹⁹F NMR (471 MHz, CDCl₃) δ -119.55.

6-Chloro-3-cyclohexyl-1-methylquinoxalin-2(1H)-one (47)⁸

Obtained as a white solid (45% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 2.4 Hz, 1H), 7.45 (dd, J = 8.9, 2.4 Hz, 1H), 7.20 (d, J = 8.9 Hz, 1H), 3.67 (s, 3H), 3.38 – 3.26 (m, 1H), 1.94 (dd, J = 12.4, 3.4 Hz, 2H), 1.86 (dt, J = 12.9, 3.2 Hz, 2H), 1.80 – 1.74 (m, 1H), 1.58 – 1.50 (m, 2H), 1.50 – 1.41 (m, 2H), 1.31 (tt, J = 12.2, 3.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.7, 154.2, 133.4, 131.6, 129.3, 129.2, 128.7, 114.6, 40.8, 30.5, 29.3, 26.3, 26.1.

3-Cyclohexyl-1,6,7-trimethylquinoxalin-2(1H)-one (48)⁸

Obtained as a white solid (69% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.62 (s, 1H), 7.04 (s, 1H), 3.67 (s, 3H), 3.32 (tt, J = 11.7, 3.2 Hz, 1H), 2.40 (s, 3H), 2.34 (s, 3H), 1.99 – 1.91 (m, 2H), 1.86 (dt, J = 13.1, 3.5 Hz, 2H), 1.76 (d, J = 12.9 Hz, 1H), 1.57 (qd, J = 12.5, 3.1 Hz, 2H), 1.46 (qt, J = 12.9, 3.2 Hz, 2H), 1.32 (tt, J = 12.8, 3.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 163.0, 154.6, 139.1, 132.3, 131.1, 130.9, 129.8, 114.1, 40.7, 30.6, 29.0, 26.4, 26.2, 20.5, 19.1.

3-Cyclohexyl-6,7-difluoro-1-methylquinoxalin-2(1H)-one (49)⁷

Obtained as a white solid (63% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.65 (dd, J = 10.4, 8.2 Hz, 1H), 7.07 (dd, J = 11.4, 7.1 Hz, 1H), 3.64 (s, 3H), 3.30 (ddd, J = 11.4, 8.1, 3.2 Hz, 1H), 1.93 (d, J = 12.4 Hz, 2H), 1.89 – 1.81 (m, 2H), 1.80 – 1.73 (m, 1H), 1.49 (dddd, J = 25.7, 16.0, 9.6, 3.2 Hz, 4H), 1.31 (tt, J = 14.1, 4.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.9 (d, J = 3.5 Hz), 154.1, 150.9

(dd, J = 252.2, 14.5 Hz), 146.5 (dd, J = 246.2, 13.9 Hz), 130.0 (dd, J = 8.9, 1.5 Hz), 129.1 (dd, J = 9.2, 2.9 Hz), 117.4 (dd, J = 18.0, 2.1 Hz), 102.0 (d, J = 23.0 Hz), 40.8, 30.5, 29.6, 26.2, 26.1; ¹⁹F NMR (471 MHz, CDCl3) δ -132.34 (d, J = 22.3 Hz), -142.75 (d, J = 22.5 Hz).

3-Cyclohexyl-1-methylbenzo[g]quinoxalin-2(1H)-one (50)⁸

Obtained as a white solid (40% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.37 (s, 1H), 7.96 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 8.3 Hz, 1H), 7.55 (ddd, J = 8.2, 6.7, 1.3 Hz, 1H), 7.47 (ddd, J = 8.1, 6.7, 1.2 Hz, 1H), 3.76 (s, 3H), 3.44 – 3.35 (m, 1H), 2.04 – 1.96 (m, 2H), 1.89 (dt, J = 12.9, 3.4 Hz, 2H), 1.81 – 1.76 (m, 1H), 1.63 (qd, J = 12.6, 3.2 Hz, 2H), 1.49 (qt, J = 12.9, 3.4 Hz, 2H), 1.35 (tt, J = 12.7, 3.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.8, 154.4, 133.3, 132.3, 131.7, 129.7, 128.7, 128.4, 127.5, 127.1, 125.1, 109.7, 40.9, 30.7, 29.1, 26.3, 26.2.

6-Cyclohexyl-2,4-dimethyl-1,2,4-triazine-3,5(2H,4H)-dione (51)⁸

Obtained as a white solid (72% yield); ¹H NMR (500 MHz, CDCl₃) δ 3.61 (s, 3H), 3.34 (s, 3H), 2.96 – 2.80 (m, 1H), 1.90 – 1.78 (m, 4H), 1.76 – 1.71 (m, 1H), 1.38 (td, J = 9.8, 3.4 Hz, 4H), 1.23 (d, J = 3.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 156.1, 149.2, 148.3, 39.4, 38.3, 30.4, 27.1, 26.1, 26.0.

6-Cyclohexyl-2,4-bis(4-methylbenzyl)-1,2,4-triazine-3,5(2*H*,4*H*)-dione (52)

Obtained as a white solid (63% yield); M. P. = 112-113 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 7.9 Hz, 2H), 7.30 (s, 2H), 7.14 (d, J = 7.8 Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 5.02 (d, J = 2.4 Hz, 4H), 2.85 (t, J = 7.6 Hz, 1H), 2.33 (s, 3H), 2.31 (s, 3H), 1.85 (d, J = 8.1 Hz, 2H), 1.80 (d, J = 5.6 Hz, 2H), 1.71 (d, J = 12.7 Hz, 1H), 1.35 (t, J = 10.4 Hz, 4H), 1.28 – 1.18 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 155.7, 148.9, 148.8, 137.9, 137.8, 133.0, 132.9, 129.6, 129.3, 129.2, 128.8, 55.0, 43.9, 38.4, 30.5, 26.5, 26.0, 21.2, 21.2; HRMS (ESI+): Calculated for C₂₅H₂₉N₃O₂: [M+Na]⁺ 426.2152, Found 426.2171.

2,4-Diallyl-6-cyclohexyl-1,2,4-triazine-3,5(2H,4H)-dione (53)¹⁷

Obtained as a colourless liquid (36% yield); ¹H NMR (500 MHz, CDCl₃) δ 6.04 – 5.78 (m, 2H), 5.36 – 5.15 (m, 4H), 4.54 (t, *J* = 5.3 Hz, 4H), 2.88 (ddd, *J* = 11.0, 8.0, 3.2 Hz, 1H), 1.87 (d, *J* = 7.2 Hz, 2H), 1.85 – 1.78 (m, 2H), 1.72 (d, *J* = 12.7 Hz, 1H), 1.38 (dd, *J* = 20.7, 11.1 Hz, 4H), 1.29 – 1.19 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 155.4, 148.9, 148.5, 131.7, 130.6, 119.1, 118.7, 53.9, 42.9, 38.4, 30.4, 26.1, 26.0; HRMS (ESI+): Calculated for C₁₅H₂₁N₃O₂: [M+Na]⁺ 298.1526, Found 298.1538.

6-Cyclohexylphenanthridine (54)¹¹

Obtained as a white solid (52% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.53 (d, J = 8.2 Hz, 1H), 8.47 – 8.38 (m, 1H), 8.21 (d, J = 8.2 Hz, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.54 – 7.45 (m, 1H), 3.52 (tt, J = 11.3, 3.3 Hz, 1H), 2.02 – 1.96 (m, 2H), 1.87 (ddd, J = 15.2, 9.8, 3.4 Hz, 4H), 1.78 – 1.73 (m, 1H), 1.48 (dt, J = 13.2, 3.5 Hz, 2H), 1.36 (tt, J = 12.9, 3.4 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.3, 143.9, 133.0, 130.1, 129.9, 128.4, 127.1, 126.2, 125.6, 124.7, 123.4, 122.6, 121.8, 42.0, 32.3, 26.9, 26.4.

1-Cyclohexylisoquinoline (55)⁷

Obtained as a colourless liquid (40% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.48 (d, J = 5.7 Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.65 (t, J = 7.5 Hz, 1H), 7.58 (ddd, J = 8.3, 6.7, 1.4 Hz, 1H), 7.48 (d, J = 5.7 Hz, 1H), 3.63 – 3.51 (m, 1H), 2.01 – 1.91 (m, 4H), 1.89 – 1.77 (m, 3H), 1.54 (qt, J = 12.9, 3.3 Hz, 2H), 1.41 (tt, J = 13.1, 3.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.7, 141.8, 136.4, 129.6, 127.6, 126.9, 126.3, 124.8, 118.9, 41.5, 32.6, 26.9, 26.2.

1-Cyclohexyl-6-methylisoquinoline (56)¹⁸

Obtained as a colourless liquid (36% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.43 (d, J = 5.7 Hz, 1H), 8.11 (d, J = 8.7 Hz, 1H), 7.58 (s, 1H), 7.41 (t, J = 6.4 Hz, 2H), 3.58 – 3.47 (m, 1H), 2.53 (s, 3H), 1.95 (t, J = 15.0 Hz, 4H), 1.84 (dd, J = 24.6, 12.8 Hz, 3H), 1.53 (td, J = 13.0, 3.4 Hz, 2H), 1.41 (t, J

= 12.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 165.4, 141.8, 136.8, 130.5, 129.1, 126.5, 124.7, 124.6, 118.5, 41.5, 32.6, 26.9, 26.2, 21.8; HRMS (ESI+): Calculated for C₁₆H₁₉N: [M+H]⁺ 226.1590, Found 226.1592.

1-Cyclohexylisoquinoline-5-carbonitrile (57)¹⁴

Obtained as a colourless liquid (23% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.68 (d, J = 5.8 Hz, 1H), 8.50 (d, J = 8.6 Hz, 1H), 8.09 (d, J = 7.1 Hz, 1H), 7.89 (d, J = 5.8 Hz, 1H), 7.74 – 7.62 (m, 1H), 3.64 – 3.49 (m, 1H), 1.96 (d, J = 11.0 Hz, 4H), 1.86 (dd, J = 22.8, 12.6 Hz, 3H), 1.53 (dt, J = 16.0, 12.8 Hz, 2H), 1.41 (t, J = 12.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 144.3, 136.0, 136.0, 130.1, 126.1, 125.7, 116.9, 115.9, 110.4, 41.8, 32.6, 26.7, 26.1; HRMS (ESI+): Calculated for C₁₆H₁₆N₂: [M+H]⁺ 237.1386, Found 237.1390.

2-Cyclohexylquinoxaline (58)¹⁶

Obtained as a colourless liquid (35% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.77 (s, 1H), 8.06 (t, J = 9.0 Hz, 2H), 7.71 (ddd, J = 15.1, 14.0, 6.8 Hz, 2H), 2.97 (t, J = 12.0 Hz, 1H), 2.04 (d, J = 12.1 Hz, 2H), 1.92 (d, J = 13.1 Hz, 2H), 1.80 (d, J = 12.7 Hz, 1H), 1.71 (dt, J = 15.5, 7.7 Hz, 2H), 1.47 (ddd, J = 15.7, 12.8, 3.1 Hz, 2H), 1.41 – 1.30 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 145.0, 142.2, 141.4, 129.8, 129.1, 129.0, 128.8, 45.0, 32.3, 26.4, 25.9.

2-Cyclohexyl-3-methylquinoxaline (59)¹²

Obtained as a colourless liquid (38% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.06 – 7.99 (m, 1H), 7.99 – 7.92 (m, 1H), 7.68 – 7.61 (m, 2H), 3.04 (tt, *J* = 11.5, 3.2 Hz, 1H), 2.79 (s, 3H), 1.97 – 1.88 (m, 4H), 1.83 – 1.74 (m, 3H), 1.51 – 1.36 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 160.4, 152.6, 141.4, 140.5, 128.7, 128.7, 128.6, 128.1, 42.6, 31.6, 26.6, 26.0, 22.7.

3-Cyclohexylquinoxalin-2-ol (60)²²

Obtained as a white solid (31% yield); ¹H NMR (500 MHz, CDCl₃) δ 11.68 (s, 1H), 7.83 (d, J = 7.2 Hz, 1H), 7.66 (dd, J = 41.8, 9.2 Hz, 1H), 7.52 – 7.43 (m, 1H), 7.32 (s, 1H), 3.35 (t, J = 11.0 Hz, 1H), 1.99 (d, J = 11.0 Hz, 2H), 1.89 (d, J = 11.1 Hz, 2H), 1.79 (d, J = 9.8 Hz, 1H), 1.66 – 1.57 (m, 2H), 1.49 (d, J = 12.5 Hz, 2H), 1.33 (d, J = 12.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 164.9, 132.9, 130.6, 129.5, 128.9, 126.3, 124.0, 115.4, 40.2, 30.5, 26.3, 26.1; HRMS (ESI+): Calculated for C₁₄H₁₆N₂O: [M+Na]⁺ 251.1155, Found 251.1162.

2,6-Dichloro-3-cyclohexylquinoxaline (61)

Obtained as a yellow solid (29% yield); M. P. = 66-67 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 2.2 Hz, 1H), 7.90 (d, *J* = 8.9 Hz, 1H), 7.64 (dd, *J* = 8.9, 2.3 Hz, 1H), 3.33 (tt, *J* = 11.6, 3.2 Hz, 1H), 2.01 (d, *J* = 12.1 Hz, 2H), 1.93 (d, *J* = 13.2 Hz, 2H), 1.84 – 1.77 (m, 1H), 1.67 (dd, *J* = 12.0, 3.1 Hz, 2H), 1.49 (dd, *J* = 13.0, 3.3 Hz, 2H), 1.39 – 1.30 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 160.3, 147.7, 141.4, 139.1, 135.6, 130.8, 129.2, 127.9, 42.6, 31.2, 26.3, 25.9; HRMS (ESI+): Calculated for C₁₄H₁₄Cl₂N₂: [M+H]⁺ 281.0607, Found 281.0615.

3-Cyclohexyl-1-methyl-5,6-diphenylpyrazin-2(1H)-one (62)¹¹

Obtained as a white solid (67% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.39 (dd, J = 5.0, 2.1 Hz, 3H), 7.26 – 7.19 (m, 2H), 7.19 – 7.14 (m, 2H), 7.14 – 7.07 (m, 3H), 3.30 (s, 4H), 2.04 – 1.96 (m, 2H), 1.86 (dt, J = 13.4, 3.4 Hz, 2H), 1.77 – 1.73 (m, 1H), 1.61 (qd, J = 12.7, 3.4 Hz, 2H), 1.52 – 1.43 (m, 2H), 1.31 – 1.27 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 155.3, 138.2, 135.8, 132.9, 132.1, 130.2, 130.1, 129.3, 129.0, 127.6, 126.7, 40.6, 34.0, 30.5, 26.4, 26.2.

3-Cyclohexyl-1-methyl-5,6-di-p-tolylpyrazin-2(1H)-one (63)

Obtained as a white solid (62% yield); M. P. = 96-97 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.19 (d, J = 7.8 Hz, 2H), 7.08 (dd, J = 11.6, 8.1 Hz, 4H), 6.94 (d, J = 8.0 Hz, 2H), 3.35 – 3.21 (m, 4H), 2.38 (s, 3H), 2.25 (s, 3H), 1.98 (d, J = 12.0 Hz, 2H), 1.85 (d, J = 13.0 Hz, 2H), 1.74 (d, J = 12.8 Hz, 1H), 1.60 (dd, J = 27.7, 12.7 Hz, 2H), 1.46 (dd, J = 28.8, 12.8 Hz, 2H), 1.29 (t, J = 9.1 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 160.8, 155.4, 139.2, 136.3, 135.5, 135.5, 132.0, 130.1, 130.0, 129.8,

129.1, 128.4, 40.5, 33.9, 30.5, 26.4, 26.2, 21.4, 21.1; HRMS (ESI+): Calculated for $C_{25}H_{28}N_2O$: [M+H]⁺ 373.2274, Found 373.2275.

1-Benzyl-3-cyclohexyl-5-phenylpyrazin-2(1*H*)-one (64)

Obtained as a white solid (53% yield); M. P. = 82-83 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, J = 7.4 Hz, 2H), 7.42 – 7.32 (m, 9H), 5.15 (s, 2H), 3.29 (tt, J = 11.5, 3.2 Hz, 1H), 1.98 (d, J = 12.0 Hz, 2H), 1.86 (d, J = 12.9 Hz, 2H), 1.76 (d, J = 12.9 Hz, 1H), 1.57 (dd, J = 12.0, 2.7 Hz, 2H), 1.49 – 1.43 (m, 2H), 1.30 (dd, J = 8.9, 3.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 163.4, 154.8, 136.2, 135.3, 132.2, 129.1, 128.7, 128.5, 128.5, 127.7, 124.9, 121.8, 52.6, 40.6, 30.6, 26.4, 26.2; HRMS (ESI+): Calculated for C₂₂H₂₄N₂O: [M+H]⁺ 333.1961, Found 333.1966.

1-Cyclohexylphthalazine (65)⁷

Obtained as a white solid (47% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.76 (s, 1H), 8.09 – 8.01 (m, 2H), 7.70 (dtd, J = 14.9, 6.9, 1.4 Hz, 2H), 2.96 (tt, J = 12.0, 3.4 Hz, 1H), 2.03 (d, J = 11.8 Hz, 2H), 1.92 (d, J = 13.3 Hz, 2H), 1.80 (d, J = 12.8 Hz, 1H), 1.75 – 1.66 (m, 2H), 1.47 (dd, J = 25.8, 12.8 Hz, 2H), 1.36 (t, J = 12.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 145.0, 142.2, 141.3, 129.8, 129.1, 129.0, 128.8, 45.0, 32.3, 26.4, 25.8.

3-Cyclohexyl-2H-benzo[b][1,4]oxazin-2-one (66)¹⁹

Obtained as a white solid (37% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.73 (dd, J = 7.9, 1.2 Hz, 1H), 7.49 – 7.41 (m, 1H), 7.37 – 7.31 (m, 1H), 7.26 (d, J = 8.3 Hz, 1H), 3.23 – 3.09 (m, 1H), 1.99 (d, J = 12.0 Hz, 2H), 1.88 (d, J = 13.0 Hz, 2H), 1.77 (d, J = 12.8 Hz, 1H), 1.55 (ddd, J = 15.1, 12.6, 2.8 Hz, 2H), 1.49 – 1.37 (m, 2H), 1.37 – 1.22 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 161.3, 152.6, 146.2, 131.4, 130.3, 128.9, 125.3, 116.2, 41.4, 30.3, 26.1, 26.0; HRMS (ESI+): Calculated for C₁₄H₁₅NO₂: [M+Na]⁺ 252.0995, Found 252.1001.

8-Cyclohexylimidazo[1,2-a]pyrazine (67)¹⁵

Obtained as a white solid (52% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 4.5 Hz, 1H), 7.82 (d, J = 4.5 Hz, 1H), 7.76 (s, 1H), 7.66 (s, 1H), 3.67 (tt, J = 11.9, 3.3 Hz, 1H), 2.04 (d, J = 11.9 Hz, 2H), 1.89 (dd, J = 9.5, 6.6 Hz, 2H), 1.82 – 1.72 (m, 3H), 1.53 (dt, J = 16.4, 6.4 Hz, 2H), 1.41 – 1.35 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 160.3, 139.7, 134.1, 129.0, 117.1, 113.8, 41.3, 31.1, 26.3, 26.1.

4-Cyclohexylquinazoline (68)¹⁶

Obtained as a colourless liquid (50% yield); ¹H NMR (500 MHz, CDCl₃) δ 9.26 (s, 1H), 8.20 (d, J = 8.3 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.88 (t, J = 7.3 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 3.56 (dd, J = 15.9, 7.4 Hz, 1H), 1.95 (d, J = 9.7 Hz, 4H), 1.88 – 1.75 (m, 3H), 1.53 (dt, J = 16.0, 8.4 Hz, 2H), 1.44 – 1.36 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 175.3, 154.6, 149.9, 133.4, 129.2, 127.4, 124.2, 123.2, 41.3, 32.0, 26.5, 26.0.

6-Chloro-2-cyclohexylimidazo[1,2-b]pyridazine (69)¹³

Obtained as a white solid (46% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 1.3 Hz, 1H), 7.72 (d, J = 1.2 Hz, 1H), 6.86 (s, 1H), 3.36 (ddt, J = 11.6, 8.2, 3.4 Hz, 1H), 2.09 (ddd, J = 8.4, 3.9, 2.0 Hz, 2H), 1.90 (ddd, J = 10.1, 4.7, 2.4 Hz, 2H), 1.82 (dtd, J = 12.8, 3.2, 1.6 Hz, 1H), 1.52 (qd, J = 10.3, 8.5, 2.9 Hz, 4H), 1.32 (tt, J = 12.5, 3.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 148.1, 147.4, 137.9, 133.1, 117.2, 114.6, 38.8, 32.0, 26.2, 26.0.

2-Cyclohexylimidazo[1,2-b]pyridazine (70)¹⁴

Obtained as a white solid (55% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.24 (d, J = 4.7 Hz, 1H), 7.95 (d, J = 1.2 Hz, 1H), 7.74 (d, J = 1.2 Hz, 1H), 6.84 (d, J = 4.7 Hz, 1H), 3.39 (ddd, J = 11.6, 7.8, 3.0 Hz, 1H), 2.13 – 2.06 (m, 2H), 1.93 – 1.86 (m, 2H), 1.85 – 1.79 (m, 1H), 1.54 (qd, J = 12.2, 11.7, 3.0 Hz, 4H), 1.33 (td, J = 12.4, 3.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 146.3, 143.5, 139.3, 132.4, 116.8, 112.5, 38.5, 32.2, 26.4, 26.1.

3-Cyclohexyl-1-methylcinnolin-4(1*H*)-one (71)

Obtained as a yellow liquid (68% yield); M. P. = 92-93 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.35 (dt, J = 3.4, 1.8 Hz, 1H), 7.78 – 7.57 (m, 1H), 7.47 – 7.33 (m, 1H), 4.07 (d, J = 2.6 Hz, 1H), 3.38 – 3.15 (m, 1H), 1.91 (dd, J = 13.8, 8.0 Hz, 1H), 1.87 – 1.79 (m, 1H), 1.78 – 1.73 (m, 1H), 1.53 – 1.41 (m, 1H), 1.32 – 1.27 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 169.9, 154.5, 141.1, 133.3, 126.3, 123.9, 123.2, 114.4, 43.4, 37.2, 31.0, 26.5, 26.3; HRMS (ESI+): Calculated for C₁₅H₁₈N₂O: [M+H]⁺ 243.1492, Found 243.1491.

2-Cyclohexylbenzo[d]oxazole (72)²⁰

Obtained as a colourless liquid (20% yield); ¹H NMR (500 MHz, DMSO) δ 7.74 – 7.62 (m, 2H), 7.38 – 7.29 (m, 2H), 3.00 (dd, J = 9.1, 5.5 Hz, 1H), 2.09 (dd, J = 12.8, 2.9 Hz, 2H), 1.77 (dd, J = 10.2, 6.4 Hz, 2H), 1.69 – 1.60 (m, 3H), 1.41 (dd, J = 24.6, 12.1 Hz, 2H), 1.29 (dd, J = 19.8, 7.8 Hz, 1H); ¹³C NMR (126 MHz, DMSO) δ 170.2, 150.5, 141.3, 125.1, 124.6, 119.8, 111.0, 37.3, 30.4, 25.8, 25.4; HRMS (ESI+): Calculated for C₁₃H₁₅NO: [M+H]⁺ 202.1226, Found 202.1232.

2-Cyclohexylbenzo[d]thiazole (73)¹⁵

Obtained as a colourless liquid (26% yield); ¹H NMR (500 MHz, DMSO) δ 8.03 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.38 (dd, J = 10.9, 4.1 Hz, 1H), 3.09 (tt, J = 11.4, 3.6 Hz, 1H), 2.15 – 2.04 (m, 2H), 1.79 (d, J = 13.2 Hz, 2H), 1.68 (d, J = 12.8 Hz, 1H), 1.60 – 1.53 (m, 2H), 1.39 (dd, J = 12.5, 9.3 Hz, 2H), 1.30 – 1.23 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 177.1, 153.2, 134.5, 126.4, 125.2, 122.7, 122.5, 42.7, 33.2, 25.9, 25.8.

2-Chloro-4-cyclohexylpyrimidine (74)¹²

Obtained as a colourless liquid (18% yield); ¹H NMR (500 MHz, DMSO) δ 8.58 (d, J = 5.0 Hz, 1H), 7.50 (d, J = 5.1 Hz, 1H), 2.66 (tt, J = 11.6, 3.2 Hz, 1H), 1.84 (d, J = 11.5 Hz, 2H), 1.78 (d, J = 12.7 Hz, 2H), 1.69 (d, J = 12.6 Hz, 1H), 1.44 (dd, J = 22.0, 12.5 Hz, 2H), 1.34 (dd, J = 19.4, 12.6 Hz, 2H), 1.22 (d, J = 8.9 Hz, 1H); ¹³C NMR (126 MHz, DMSO) δ 178.4, 160.7, 152.6, 119.1, 45.1, 31.6, 25.9, 25.7.

2-Cyclohexyl-4-methylquinoline (75)⁹

Obtained as a colourless liquid (15% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.70 – 7.63 (m, 1H), 7.52 – 7.46 (m, 1H), 7.17 (s, 1H), 2.94 – 2.83 (m, 1H), 2.68 (s, 3H), 2.01 (d, J = 11.8 Hz, 2H), 1.89 (d, J = 13.1 Hz, 2H), 1.79 (d, J = 15.6 Hz, 1H), 1.62 (dd, J = 23.6, 11.2 Hz, 2H), 1.47 (q, J = 9.6 Hz, 2H), 1.38 – 1.32 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 147.4, 144.4, 129.3, 129.0, 127.0, 125.4, 123.5, 120.2, 47.5, 32.8, 26.5, 26.1, 18.8.

tert-Butyl ((4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)methyl)carbamate (77)9

Obtained as a white solid (47% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 7.9 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.30 (dd, J = 13.3, 5.7 Hz, 2H), 5.72 (s, 1H), 4.52 (d, J = 3.8 Hz, 2H), 3.65 (s, 3H), 1.43 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 155.8, 155.0, 154.0, 133.1, 132.1, 130.3, 129.9, 123.8, 113.7, 79.5, 43.0, 28.9, 28.4; HRMS (ESI+): Calculated for C₁₅H₁₉N₃O₃: [M+Na]⁺ 312.1319, Found 312.1328.

Benzyl ((4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)methyl)carbamate (78)⁹

Obtained as a white solid (45% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.9 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 1H), 7.35 – 7.23 (m, 7H), 6.04 (s, 1H), 5.09 (s, 2H), 4.57 (d, *J* = 4.8 Hz, 2H), 3.62 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 156.3, 154.5, 153.9, 136.6, 133.1, 132.1, 130.4, 129.9, 128.6, 128.3, 128.2, 123.9, 113.8, 66.9, 43.3, 29.0; HRMS (ESI+): Calculated for C₁₈H₁₇N₃O₃: [M+Na]⁺ 346.1162, Found 346.1183.

tert-Butyl-(1-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)ethyl)carbamate (79)⁹

Obtained as a white solid (49% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (dd, J = 8.0, 1.1 Hz, 1H), 7.57 (t, J = 7.8 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.32 (d, J = 8.4 Hz, 1H), 5.94 (s, 1H), 5.26 (s, 1H), 3.71 (s, 3H), 1.51 (d, J = 6.7 Hz, 3H), 1.47 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 161.1, 156.9, 155.4, 135.0, 133.9, 132.1, 131.7, 125.5, 115.5, 81.1, 50.5, 30.8, 30.2, 22.0; HRMS (ESI+): Calculated for C₁₆H₂₁N₃O₃: [M+Na]⁺ 326.1475, Found 326.1498.

tert-Butyl-(2,2-dimethyl-1-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)propyl)carbamate (80)⁹

Obtained as a white solid (54% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 7.6 Hz, 1H), 7.56 (dd, *J* = 11.4, 4.2 Hz, 1H), 7.38 – 7.28 (m, 2H), 5.85 (d, *J* = 6.5 Hz, 1H), 5.33 (d, *J* = 9.6 Hz, 1H), 3.70 (s, 3H), 1.43 (s, 9H), 1.01 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 159.2, 155.5, 154.5, 133.2, 132.2, 130.3, 130.1, 123.5, 113.6, 79.0, 57.7, 37.1, 29.3, 28.4, 26.6; HRMS (ESI+): Calculated for C₁₉H₂₇N₃O₃: [M+Na]⁺ 368.1945, Found 368.1936.

tert-Butyl 4-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)piperidine-1-carboxylate (81)⁹

Obtained as a white solid (44% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 7.7 Hz, 1H), 7.46 (t, J = 7.4 Hz, 1H), 7.26 (t, J = 7.6 Hz, 1H), 7.22 (d, J = 8.4 Hz, 1H), 4.14 (d, J = 11.6 Hz, 1H), 4.04 (t, J = 10.6 Hz, 1H), 3.63 (s, 3H), 3.39 (d, J = 3.6 Hz, 1H), 3.17 (t, J = 11.8 Hz, 1H), 2.79 (t, J = 10.7 Hz, 1H), 2.11 (s, 1H), 1.75 (s, 1H), 1.58 (t, J = 9.4 Hz, 2H), 1.36 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 161.3, 154.8, 154.2, 133.0, 132.6, 129.9, 129.8, 123.5, 113.5, 79.3, 38.9, 29.2, 29.1, 28.4, 24.9; HRMS (ESI+): Calculated for C₁₉H₂₅N₃O₃: [M+Na]⁺ 366.1788, Found 366.1798.

3-(5-(2,5-Dimethylphenoxy)-2-methylpentan-2-yl)-1-methylquinoxalin-2(1H)-one (82)9

Obtained as a white solid (65% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.86 – 7.80 (m, 1H), 7.53 – 7.47 (m, 1H), 7.31 (t, *J* = 7.3 Hz, 1H), 7.24 (d, *J* = 9.8 Hz, 1H), 6.96 (d, *J* = 7.4 Hz, 1H), 6.61 (d, *J* = 7.4 Hz, 1H), 6.53 (s, 1H), 3.87 (t, *J* = 6.6 Hz, 2H), 3.63 (s, 3H), 2.24 (s, 3H), 2.21 – 2.16 (m, 2H), 2.15 (s, 3H), 1.67 (dd, *J* = 10.0, 6.4 Hz, 2H), 1.50 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 157.0, 153.7, 136.3, 133.3, 132.2, 130.2, 129.6, 129.5, 123.6, 123.2, 120.4, 113.3, 111.9, 68.1, 42.6, 35.9, 28.7, 26.3, 25.4, 21.4, 15.8; HRMS (ESI+): Calculated for C₂₃H₂₈N₂O₂: [M+H]⁺ 365.2224, Found 365.2235.

3-(1-(2-Fluoro-[1,1'-biphenyl]-4-yl)ethyl)-1-methylquinoxalin-2(1H)-one (83)⁹

Obtained as a white solid (50% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.94 (dd, J = 8.0, 1.0 Hz, 1H), 7.53 (dd, J = 10.4, 3.3 Hz, 1H), 7.49 (d, J = 7.9 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.37 – 7.33 (m, 2H), 7.32 (d, J = 4.4 Hz, 1H), 7.30 (s, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.22 (d, J = 12.9 Hz, 1H), 4.86 (q, J = 7.1 Hz, 1H), 3.65 (s, 3H), 1.71 (d, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.2, 159.7 (d, J = 248.2 Hz), 154.5, 144.8 (d, J = 6.3 Hz), 135.8, 133.1, 132.7, 130.6 (d, J = 3.8 Hz), 130.2, 130.0, 129.0 (d, J = 3.8 Hz), 128.4, 127.4, 127.1 (d, J = 12.6 Hz), 124.2 (d, J = 2.5 Hz), 123.6, 115.5 (d, J = 22.7 Hz), 113.6, 41.4, 29.2, 19.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -118.05; HRMS (ESI+): Calculated for C₂₃H₁₉FN₂O: [M+H]⁺ 359.1554, Found 359.1561.

(Z)-3-(Heptadec-8-en-1-yl)-1-methylquinoxalin-2(1H)-one (84)⁹

Obtained as a white solid (45% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, J = 7.9 Hz, 1H), 7.55 – 7.49 (m, 1H), 7.37 – 7.31 (m, 1H), 7.30 (d, J = 8.3 Hz, 1H), 5.34 (t, J = 4.6 Hz, 2H), 3.70 (s, 3H), 3.02 – 2.89 (m, 2H), 2.01 (d, J = 5.1 Hz, 4H), 1.86 – 1.71 (m, 2H), 1.30 (dd, J = 35.9, 3.3 Hz, 20H), 0.87 (dd, J = 8.2, 5.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.4, 154.9, 133.1, 132.8, 129.9, 129.9, 129.6, 129.5, 123.5, 113.5, 34.4, 31.9, 29.8, 29.8, 29.7, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.0, 27.2, 26.9, 22.7, 14.1; HRMS (ESI+): Calculated for C₂₆H₄₀N₂O: [M+Na]⁺ 419.3033, Found 419.3045.

1-Benzyl-3-(1-(4-((2-oxocyclopentyl)methyl)phenyl)ethyl)quinoxalin-2(1H)-one (85)

Obtained as a white solid (53% yield); M.P. = 119-120 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, J = 8.0 Hz, 1H), 7.31 – 7.25 (m, 3H), 7.20 (d, J = 7.6 Hz, 1H), 7.18 – 7.14 (m, 3H), 7.10 (d, J = 8.3 Hz, 1H), 7.06 (d, J = 7.8 Hz, 2H), 7.00 (d, J = 8.0 Hz, 2H), 5.43 (d, J = 15.9 Hz, 1H), 5.20 (dd, J = 16.5, 8.2 Hz, 1H), 4.82 – 4.75 (m, 1H), 3.02 (dd, J = 13.9, 4.0 Hz, 1H), 2.37 (ddd, J = 13.8, 9.8, 1.5 Hz, 1H), 2.27 – 2.16 (m, 2H), 2.07 – 1.92 (m, 2H), 1.83 (dd, J = 6.4, 2.7 Hz, 1H), 1.64 – 1.57 (m, 4H), 1.44 (dd, J = 12.0, 6.5 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 162.1, 154.5, 141.0, 138.2, 135.3, 133.0, 132.4, 130.2, 129.7, 128.9, 128.9, 128.9, 128.2, 127.6, 126.8, 123.5, 114.3, 51.1, 45.9, 41.4, 38.2, 35.3, 29.3, 20.6, 19.7; HRMS (ESI+): Calculated for C₂₉H₂₈N₂O₂: [M+H]⁺ 437.2224, Found 437.2222.

1-Ethyl-3-(1-(4-isobutylphenyl)ethyl)quinoxalin-2(1*H*)-one (86)

Obtained as a white solid (61% yield); M.P. = 115-116 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.91 (dd, J = 8.0, 1.4 Hz, 1H), 7.50 – 7.44 (m, 1H), 7.35 (d, J = 8.1 Hz, 2H), 7.32 – 7.27 (m, 1H), 7.25 (d, J = 7.8 Hz, 1H), 7.05 (d, J = 8.0 Hz, 2H), 4.83 (q, J = 7.1 Hz, 1H), 4.29 (dq, J = 14.3, 7.2 Hz, 1H), 4.16 (dq, J = 14.2, 7.2 Hz, 1H), 2.40 (d, J = 7.2 Hz, 2H), 1.81 (dt, J = 13.5, 6.8 Hz, 1H), 1.67 (d, J = 7.1 Hz, 3H), 1.30 (t, J = 7.2 Hz, 3H), 0.86 (dd, J = 6.6, 2.2 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 162.2, 153.9, 140.4, 139.8, 133.1, 132.0, 130.4, 129.6, 129.1, 127.8, 123.2, 113.3, 45.1, 41.2, 37.3, 30.2, 22.5, 22.5, 19.8, 12.4; HRMS (ESI+): Calculated for C₂₂H₂₆N₂O: [M+H]⁺ 335.2118, Found 335.2112.

2-(4-Chlorophenyl)-2-(2,6-dichloro-4-(6-cyclohexyl-4-methyl-3,5-dioxo-4,5-dihydro-1,2,4-triazin-2(3*H*)-yl)phenyl)acetonitrile (88)

Obtained as a yellow solid (66% yield); M.P. = 98-99 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.78 (s, 2H), 7.30 (dt, J = 20.8, 10.4 Hz, 4H), 6.17 (s, 1H), 3.40 (s, 3H), 2.98 (d, J = 7.0 Hz, 1H), 1.93 (d, J = 7.3 Hz, 2H), 1.84 (d, J = 5.1 Hz, 2H), 1.74 (d, J = 12.1 Hz, 1H), 1.48 – 1.36 (m, 4H), 1.26 (d, J = 15.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 155.1, 150.6, 148.1, 141.9, 135.6, 134.3, 130.9, 129.4, 129.1, 128.3, 124.7, 116.3, 38.8, 37.0, 30.4, 27.6, 26.1, 25.9; HRMS (ESI+): Calculated for C₂₄H₂₁Cl₃N₄O₂: [M+Na]⁺ 525.0622, Found 525.0615.

Diphenylmethanimine (90)²¹

Obtained as a colourless liquid (64% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.79 (s, 1H), 7.58 (d, *J* = 7.3 Hz, 4H), 7.45 (dt, *J* = 14.7, 5.6 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 178.5, 139.1, 130.5, 128.6, 128.4; HRMS (ESI+): Calculated for C₁₃H₁₁N: [M+Na]⁺ 204.0784, Found 204.0779.

3. References

1. C.-P. Yuan, Y. Zheng, Z.-Z. Xie, K.-Y. Deng, H.-B. Chen, H.-Y. Xiang, K. Chen, and H. Yang, *Org. Lett.*, 2023, **25**, 1782.

2. X.-K. Qi, M.-J. Zheng, C. Yang, Y. Zhao, L. Guo, and W. Xia, J. Am. Chem. Soc., 2023, 145, 16630.

3. G. Tan, F. Paulus, A. Petti, M.-A. Wiethoff, A. Lauer, C. Daniliuc, and F. Glorius, *Chem. Sci.*, 2023, 14, 2447.

4. J. Xu, H. Yang, L. He, L. Huang, J. Shen, W. Li, and P. Zhang, Org. Lett., 2021, 23, 195.

5. J. Xu, L. Huang, L. He, Z. Ni, J. Shen, X. Li, K. Chen, W. Li, and P. Zhang, *Green Chem.*, 2021, 23, 2123.

- 6. J. Zhu, Y. Guo, Y. Zhang, W. Li, P. Zhang, and J. Xu, Green Chem., 2023, 25, 986.
- 7. J. Xu, H. Cai, J. Shen, C. Shen, J. Wu, P. Zhang, and X. Liu, J. Org. Chem., 2021, 86, 17816.
- 8. C. Liang, Y. Guo, Y. Zhang, Z. Wang, L. Li, and W. Li, Org. Chem. Front., 2023, 10, 611.
- 9. J. Xu, C. Liang, J. Shen, Q. Chen, W. Li, and P. Zhang, Green Chem., 2023, 25, 1975.
- 10. K. Niu, H. Jiao, P. Zhou, and Q. Wang, Org. Lett., 2023, 25, 8970.
- 11. Y. Deng, X. Cheng, H. Tan, Y. He, C. Zhang, G. Qiu, and D. Zheng, *Adv. Synth. Catal.*, 2023, **365**, 865.
- 12. C. Liu, X. Liu, and Q. Liu, Chem, 2023, 9, 2585.
- 13. H. Yan, Z-W. Hou, and H.-C. Xu, Angew. Chem. Int. Ed., 2019, 58, 4592.
- 14. R. A. Garza-Sanchez, A. Tlahuext-Aca, G. Tavakoli, and F. Glorius, *ACS Catal.*, 2022, **12**, 6640.
- 15. X. Shao, X. Wu, S. Wu, and C. Zhu, Org. Lett., 2020, 22, 7450.
- 16. H. Zhao, and J. Jin, Org. Lett., 2019, 21, 6179.
- 17. S. P. Panda, S. K. Hota, R. Dash, L. Roy, and S. Murarka, Org. Lett., 2023, 25, 3739.
- 18. R.-N. Ci, J. Qiao, Q.-C. Gan, B. Chen, C.-H. Tung, and L.-Z. Wu, *Green Chem.*, 2023, **25**, 8500.
- 19. M. Wang, Z. Zhang, C. Xiong, P. Sun, and C. Zhou, ChemistrySelect, 2022, 7, e202200816.
- 20. A. Koyanagi, Y. Murata, S. Hayakawa, M. Matsumura, and S. Yasuike, *Beilstein J. Org. Chem.*, 2022, **18**, 1479.
- 21. S. Shibata, Y. Masui, and M. Onaka, Tetrahedron Lett., 2021, 67, 152840.
- 22. H.-Y. Song, Z.-T. Zhang, H.-Y. Tan, Y.-H. Lu, T.-B. Yang, J.-Y. Chen, H.-T. Ji, and W.-M. He, *Asian J. Org. Chem.*, 2023, **12**, e202200658.

4. Copies of ¹H, ¹³C and ¹⁹F NMR Spectra

7.28 7.28 7.28 7.28 7.28 7.28 7.29 7

Figure S1. ¹H NMR (500 MHz, CDCl₃) spectrum of 3

Figure S3. ¹H NMR (500 MHz, CDCl₃) spectrum of 4

Figure S5. ¹H NMR (500 MHz, CDCl₃) spectrum of 5

Figure S7. ¹H NMR (500 MHz, CDCl₃) spectrum of 6

Figure S9. ¹H NMR (500 MHz, CDCl₃) spectrum of 7

Figure S11. ¹H NMR (500 MHz, CDCl₃) spectrum of 8

Figure S13. ¹H NMR (500 MHz, CDCl₃) spectrum of 9

Figure S14. ¹³C NMR (126 MHz, CDCl₃) spectrum of 9

Figure S15. ¹H NMR (500 MHz, CDCl₃) spectrum of 10

Figure S17. ¹H NMR (400 MHz, CDCl₃) spectrum of 11

Figure S18. ¹³C NMR (101 MHz, CDCl₃) spectrum of 11

Figure S19. ¹H NMR (500 MHz, CDCl₃) spectrum of 12

Figure S21. ¹H NMR (400 MHz, CDCl₃) spectrum of 13

Figure S23. ¹H NMR (500 MHz, CDCl₃) spectrum of 14

Figure S25. ¹H NMR (500 MHz, CDCl₃) spectrum of 15

Figure S27. ¹H NMR (500 MHz, CDCl₃) spectrum of 16

Figure S29. ¹H NMR (500 MHz, CDCl₃) spectrum of 17

Figure S31. ¹⁹F NMR (471 MHz, CDCl₃) spectrum of 17

Figure S33. ¹³C NMR (101 MHz, CDCl₃) spectrum of 18

Figure S35. ¹³C NMR (126 MHz, CDCl₃) spectrum of 19

イン22 1,200 1,20

Figure S39. ¹³C NMR (126 MHz, CDCl₃) spectrum of 21

3.3.2.2 3.3.2.2 3.3.2.2 3.3.2.2 3.3.2.2 3.3.2.2 3.3.2.2 3.3.2.2 3.3.2.2 3.3.2.2 3.3.2.2 3.3.2.2 3.3.2.2 3.3.2.2 3.3.2.2 3.3.2.2 3.3.2.2 3.3.2 3.3.3.3 3.3.3.3 3.3.3.4 3.3.4 3.3.4 3.3.4 3.3.4 3.3.4 3.3.4 3.3.4 3.3.4 3.3.4 3.4.4 4.4.4 4.4.4 4.4.4

Figure S40. ¹H NMR (500 MHz, CDCl₃) spectrum of 22

0.07	1.62 2.64 2.64 3.60 3.60 3.60 3.60	28 03	.95
12	4000000000	11	32 32
I I	in the second se		N I I

Figure S41. ¹³C NMR (126 MHz, CDCl₃) spectrum of 22

Figure S42. ¹H NMR (500 MHz, CDCl₃) spectrum of 23

-160.33	-154.86	L133.10 L132.58 L129.75 L129.65 L123.63	-113.60	77.27 77.02 76.76	-44.82	33.2432.3429.0823.93
---------	---------	---	---------	-------------------------	--------	---

Figure S43. ¹³C NMR (126 MHz, CDCl₃) spectrum of 23

Figure S45. ¹³C NMR (126 MHz, CDCl₃) spectrum of 24

Figure S47. ¹³C NMR (126 MHz, CDCl₃) spectrum of 25

Figure S49. ¹³C NMR (126 MHz, CDCl₃) spectrum of **26** S55

Figure S51. ¹³C NMR (126 MHz, CDCl₃) spectrum of 27

Figure S53. ¹³C NMR (126 MHz, CDCl₃) spectrum of 28

Figure S55. ¹³C NMR (126 MHz, CDCl₃) spectrum of 29

Figure S57. ¹³C NMR (126 MHz, CDCl₃) spectrum of 30

Figure S59. ¹³C NMR (126 MHz, CDCl₃) spectrum of 31

Figure S61. ¹³C NMR (126 MHz, CDCl₃) spectrum of 32

Figure S63. ¹³C NMR (126 MHz, CDCl₃) spectrum of 33

7.38 7.27 7.28 7.28 7.28 7.23 7.25

Figure S65. ¹³C NMR (126 MHz, CDCl₃) spectrum of 34

Figure S67. ¹³C NMR (126 MHz, CDCl₃) spectrum of 35

7.37.7.387 7.387 7.487 7.487 7.487 7.487 7.448 7.448 7.448 7.448 7.4500 7.45000 7.4500 7.45000 7.45000 7.45000 7.45000 7.4500

Figure S69. ¹³C NMR (126 MHz, CDCl₃) spectrum of 36

Figure S71. ¹³C NMR (126 MHz, CDCl₃) spectrum of 37

7.38 7.38 7.38 7.38 7.38 7.38 7.37 7.37 7.37 7.38 7.37 7.36 7.37 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37 7.36 7.37

Figure S73. ¹³C NMR (126 MHz, CDCl₃) spectrum of 38

Figure S75. ¹³C NMR (126 MHz, CDCl₃) spectrum of 39

7.88 7.88 7.89 7.40

Figure S77. ¹³C NMR (126 MHz, CDCl₃) spectrum of 40

Figure S79. ¹H NMR (500 MHz, CDCl₃) spectrum of 41

Figure S81. ¹H NMR (500 MHz, CDCl₃) spectrum of 42

Figure S83. ¹H NMR (500 MHz, CDCl₃) spectrum of 43

Figure S85. ¹H NMR (500 MHz, CDCl₃) spectrum of 44

Figure S87. ¹H NMR (500 MHz, CDCl₃) spectrum of 45

Figure S89. ¹⁹F NMR (471 MHz, CDCl₃) spectrum of 45

 $\begin{array}{c} 7,55\\ 5,55\\$

Figure S91. ¹³C NMR (126 MHz, CDCl₃) spectrum of 46

Figure S93. ¹H NMR (500 MHz, CDCl₃) spectrum of 47

Figure S95. ¹H NMR (500 MHz, CDCl₃) spectrum of 48

Figure S96. ¹³C NMR (126 MHz, CDCl₃) spectrum of 48

Figure S97. ¹H NMR (500 MHz, CDCl₃) spectrum of 49

Figure S98. ¹³C NMR (126 MHz, CDCl₃) spectrum of 49

Figure S99. ¹⁹F NMR (471 MHz, CDCl₃) spectrum of 49

Figure S101. ¹³C NMR (126 MHz, CDCl₃) spectrum of 50

-7.28 2.33.56 2.298 2.297 2.298 2.297 2.298 2.297 2.298 2.297 2.298 2.298 2.298 2.298 2.297 2.298 2.297 2.298 2.297 2.298 2.298 2.298 2.297 2.298 2.298 2.298 2.298 2.297 2.298 2.297 2.297 2.298 2.297 2.29

Figure S103. ¹³C NMR (126 MHz, CDCl₃) spectrum of 51

Figure S105. ¹³C NMR (126 MHz, CDCl₃) spectrum of 52

Figure S107. ¹³C NMR (126 MHz, CDCl₃) spectrum of 53

Figure S109. ¹³C NMR (126 MHz, CDCl₃) spectrum of 54

Figure S111. ¹³C NMR (126 MHz, CDCl₃) spectrum of 55

Figure S113. ¹³C NMR (126 MHz, CDCl₃) spectrum of 56

Figure S115. ¹³C NMR (126 MHz, CDCl₃) spectrum of 57

Figure S117. ¹³C NMR (126 MHz, CDCl₃) spectrum of 58

Figure S119. ¹³C NMR (126 MHz, CDCl₃) spectrum of 59

Figure S121. ¹³C NMR (126 MHz, CDCl₃) spectrum of 60

Figure S123. ¹³C NMR (126 MHz, CDCl₃) spectrum of 61

Figure S125. ¹³C NMR (126 MHz, CDCl₃) spectrum of 62

Figure S127. ¹³C NMR (126 MHz, CDCl₃) spectrum of 63

Figure S129. ¹³C NMR (126 MHz, CDCl₃) spectrum of 64

Figure S131. ¹³C NMR (126 MHz, CDCl₃) spectrum of 65

Figure S133. ¹³C NMR (126 MHz, CDCl₃) spectrum of 66

Figure S135. ¹³C NMR (126 MHz, CDCl₃) spectrum of 67

Figure S137. ¹³C NMR (126 MHz, CDCl₃) spectrum of 68

Figure S138. ¹H NMR (500 MHz, CDCl₃) spectrum of 69

Figure S139. ¹³C NMR (126 MHz, CDCl₃) spectrum of 69

7.23 7.23 7.23 7.24 7.25

Figure S141. ¹³C NMR (126 MHz, CDCl₃) spectrum of 70

Figure S143. ¹³C NMR (126 MHz, CDCl₃) spectrum of 71

Figure S145. ¹³C NMR (471 MHz, DMSO) spectrum of 72

Figure S149. ¹³C NMR (471 MHz, DMSO) spectrum of 74

Figure S151. ¹³C NMR (471 MHz, CDCl₃) spectrum of 75

Figure S176. ¹³C NMR (126 MHz, CDCl₃) spectrum of 90